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Abstract

The number of vehicles is increasing at a very high rate throughout the globe. It reached 1 billion in 2010, in 2020 it

was around 1.5 billion and experts say this could reach up to 2–2.5 billion by 2050. A large part of these vehicles will be

electrically driven and connected to a vehicular network. Rapid advancements in vehicular technology and communications

have led to the evolution of vehicular edge computing (VEC). Computation resource allocation is a vehicular network’s

primary operations as vehicles have limited onboard computation. Different resource allocation schemes in VEC operate in

different environments such as cloud computing, artificial intelligence, blockchain, software defined networks and require

specific network performance characteristics for their operations to achieve maximum efficiency. At present, researchers

have proposed numerous computation resource allocation schemes which optimize parameters such as power consumption,

network stability, quality of service (QoS), etc. These schemes are based on widely used optimization and mathematical

models such as the Markov process, Shannon’s law, etc. So, there is a need to present an organized overview of these schemes

to help in the future research of the same. In this paper, we classify state-of-the-art computation resource allocation schemes

based on three criteria: (1) Their optimization goal, (2) Mathematical models/algorithms used, and (3) Major technologies

involved. We also identify and discuss current issues in computation resource allocation in VEC and mention the future

research directions.
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Introduction

Rapid strides made in networking technologies have cata-

pulted the number of devices connected to each other over

the internet. It has led to the advent of the internet of things

(IoT) [1]. IoT has not just led to an increase in the num-

ber of networked devices but has made its influence on

other domains like industries through industrial internet of

things (IIoT) [2], vehicular networks through the internet

of vehicles (IoV) [3,4]. IoT provides a potential economic

value of 150–500 billion per year. With the IoT enabled

VEC, the computational capacity in the vehicular applica-

tion increases. Different computing paradigms are used in

IoT to provide different services for diverse applications.

ITS (intelligent transport system) plays an important role in

improving the road safety and managing the traffic. VANET

(vehicular ad hoc network) is a key enabler in ITS. Commu-

nication in VANETs is realized by V2V (vehicle to vehicle),

V2R (vehicle to RSU) and V2X (vehicle to everything). IoV
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(internet of vehicles) has facilitated the use of smart vehicles,

which are used in various applications like data storage and

processing. IoT has extended its paradigm to vehicular edge

computing with the help of technologies such as SDN, AI,

blockchain, cloud computing, etc. With the help of these tech-

nologies, billions of connected vehicle devices in the IoT run

directly at the network edge. Many companies have heavily

invested in these technologies for various IoV applications

such as street monitoring, real-time navigation, autonomous

and other safety-related systems. In of the projects of Google,

they have used AI for autonomous driving. They have used

images, ultrasound, GPS navigation, beams of radars and

central computing to identify objects and predict behavior

accurately [5–7].

IoT has also led to the advent of multiple domains in

mobile computing like fog/edge computing [8,9], mobile

edge computing [10], vehicular edge computing (VEC) [11]

among others. Mobile devices like smartphones, tablets, and

wearable devices are witnessing massive growth in the vari-

eties of applications supported by them and the number of

users worldwide. The current network devices or servers

(generally cloud servers which cater to applications for which

the user devices fall short in terms of storage/computation

or network resources) will come under immense load while

serving the needs of these devices, which are rapidly increas-

ing in numbers. Vehicular edge computing (VEC) is being

explored as a promising paradigm to reduce stress and con-

gestion on the core network by providing the necessary

computation and data storage resources. This method of

reducing the load on network devices or servers is quite sim-

ilar to the concept of mobile edge computing (MEC), except

that MEC uses stationary edge devices such as road side units

(RSUs) or Cloudlets. In contrast, VEC uses vehicles as edge

devices [12].

The vehicles run different applications such as info-

tainment, safe-driving assistance, navigation, autonomous

driving, etc which are in focus due to emerging scenarios such

as vehicular ad hoc networks (VANETs) [13] and vehicle-

2-everything (V2X) [14]. But all of these applications need

computation, storage, and network resources. It has been esti-

mated that a typical autonomous vehicle (AV) could generate

up to 1GB of data per second [15]. These vehicles themselves

rely on computation offloading (CO) to the cloud servers for

many computationally intensive tasks. It can be expected that

as the number of AVs on the roads increases, these vehicles

themselves increase the load on the cloud servers and cause

congestion in the network. In addition, this CO by the AVs

to the cloud servers is much more complex when compared

to CO by non-mobile network entities due to the high mobil-

ity and geographically distributed nature of the AVs. The

cloud servers may be located at faraway locations, leading to

increased latency and reduced reliability of these connections

[16].

Therefore, a vehicle may simultaneously function in two

roles: as a task vehicle (TaV), which requests services from

cloud servers and also as a service vehicle (SeV), which

assists nearby resource-constrained devices [17]. Hence, in

order to achieve fast and efficient computation for the vehi-

cles and nearby resource-constrained devices while simul-

taneously minimizing the load on the cloud services and

the communication network is a challenging and multi-faced

resource allocation problem in VEC.

Figure 1 gives an overview of the work done in this sur-

vey section by section. The rest of this paper is organized

as follows. The next section provides a preliminary back-

ground on VEC and CRA strategies in VEC. The following

section provides a literature review of related surveys. The

next section gives an overview of this survey, while the fol-

lowing sections present classifications of CRA schemes for

VEC in terms of the optimization goal of RA, the underlying

technology used, mathematical models/algorithms used, and

significant technologies used in the scheme, respectively. We

list open research issues and future research directions in the

next section and finally conclude our paper in the last section.

Preliminary background

Vehicular edge computing architecture

Based on the works studied in this survey, we present in Fig.

2, a generalized VEC architecture to capture the necessary

connectivity, communication and mobility aspects in order

to understand and analyze the different resource allocation

problems and solutions that have been proposed in the liter-

ature.

As can be seen in Fig. 2, a typical VEC architec-

ture includes the primary task entities (PTEs)—resource-

constrained devices such as smartphones, tablets and laptops

of pedestrians and the passengers of a vehicle. Depending

on the scenario, the computationally intensive tasks running

on these devices could be offloaded to either parked vehicles

or even moving vehicles in case the connection is deemed

stable. The vehicles in this VEC could be moving/parked

non-autonomous/ autonomous cars, buses, trucks, etc. These

vehicles may/may not have the capability to function as SeVs

or TaVs or both simultaneously. TaVs may offload their tasks

to edge servers located at cellular base stations or RSUs,

which may further offload to cloud servers based on the

requirement. Additionally, it might be possible that differ-

ent vehicles have different computational capabilities (for

example, an ordinary vehicle has much fewer resources then

an autonomous/smart vehicle). Hence the possibility of inter-

vehicle offloading also exists [18].
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Computation offloading

A typical computation offloading happens in the following

manner. First, a resource-constrained device (either TaV or

PTE) will identify a suitable node on the network to offload

its computation—this could be an SeV, RSU/cellular edge

servers or a cloud server [19]. Intermediate entities on the

network may assist/supervise the process of identifying a

suitable offloading destination which could be either one

or multiple hops away on the network. Once the offloading

destination is determined, the tasks to be offloaded are com-

municated to the destination using a suitable communication

medium. This could be Wi-Fi/Cellular/DSRC or a combina-

tion of these. The offloaded tasks are scheduled and executed

at the destination nodes, and the results are communicated

back to the respective devices.

We take the example of [20] to explain this process. The

authors of [20] propose a reliable computation offloading

scheme for a network with fixed and mobile edge comput-

ing nodes (vehicles). In their scheme (Fig. 3), we can see

that a vehicle executes some tasks locally and offloads par-

tially. It first sends a service request to a nearby Access RSU.

This RSU communicates with an SDN controller running a

suitable algorithm to obtain details about the offloading deci-

sion. Based on the decision, the vehicle communicates the

task to be offloaded to the RSU. Based on the computational

requirements of the offloaded task, the RSU may further par-

tition it into independent sub-tasks and allocate it among

single/multiple fixed and mobile edge nodes for parallel exe-

cution. Once the edge nodes finish their executions, they send

the results to the. The RSU merges these individual results

and sends them back to the vehicle.

Table 1 lists the abbreviations used in this paper.

Related work

While there are several works that have surveyed resource

allocation in vehicular networks or edge networks per say, at

present there are very few works that have surveyed resource

allocation or computation resource allocation schemes in

vehicular edge computing.
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Table 1 List of abbreviations

Notation Description

VEC Vehicular edge computing

MEC Mobile edge computing

IoV Internet of vehicles

IoT Internet of things

V2X Vehicle to everything

UE User equipment

RA Resource allocation

RSU Road side unit

VECC Vehicular edge cloud computing

CAVs Connected autonomous vehicles

SDN Software defined network

DRL Deep reinforcement learning

AI Artificial intelligence

VANET Vehicular adhoc network

TaV Task vehicle

SeV Service vehicle

PTE Primary task entity

CO Primary computation offloading

QoS Quality of service

NFV Network function virtualization

Noor-A-Rahim et al. [21] have surveyed and classified RA

schemes based on the type of network they are used in DSRC,

Cellular and heterogeneous vehicular networks. Zheng et al.

[22] present a survey on computational offloading in edge

computing based on different offloading scenarios among

edge servers, IoT devices, and cloud servers), factors (device,

network, service and user factors) and strategies (full and

partial offloading). They also discuss program partitioning

and the efficient selection of program components to offload.

Jiang et al. [23] discuss several aspects of computation

offloading, such as minimizing energy consumption, enhanc-

ing and guaranteeing quality of service and user experience.

They discuss the general problems of what to offload, where

to offload, and when to offload and a few case studies based

on game theoretic and heuristic based computation offload-

ing. Lin et al. [24] identify the need and usage of resource

allocation in the industrial internet of things (IIoT). They

list a few works of resource allocation developed for dif-

ferent environments such as VEC, cloud, software defined

networks, mobile edge computing, etc., which could be uti-

lized for IIoT applications.

References [12,16] are the only works that strictly deal

with RA in VEC. Dziyauddin et al. [16] identify that although

mobile data offloading mechanisms have received significant

attention, VEC has failed to receive much attention from the

research community. They identify that content caching and

delivery (CachDel), and CO are significant resource alloca-

tion challenges to be addressed in vehicular edge networks

and carry out a thorough survey on the optimization tech-

niques which have been published to address these problems.

Their classification of CO schemes is based on single/hybrid

and multi optimization approaches. Within each category,

they classify works based on single/hybrid/multiple opti-

mization goals such as QoS, energy efficiency and cost

improvement.

Boukerche and Soto [12] present a survey on computation

offloading in VEC. They discuss the algorithms, models and

classification in computation offloading and retrieval. They

provide a detailed review of the works on computational

offloading based on the three steps involved: partitioning,

scheduling, and data retrieval. However, a significant amount

of work on resource allocation in VEC has been carried out

after [12] and hence these works remain to be surveyed.

Therefore our work serves as both an initial survey on RA

for VEC and it also serves as a compliment by including the

latest works on CRA.

Hence, to the best of our knowledge, resource allocation

in VEC has not received much attention in contemporary

literature. Thus, there is a requirement for a thorough and

comprehensive survey of resource allocation schemes explic-

itly designed for VEC. The very few works that do survey

research in this area have not covered most of the novel

research which has been published in the past 2–3 years.

Broadly, resource allocation in VEC comprises of compu-

tation resource allocation, memory resource allocation and

network resource allocation. In this work, we conduct an

extensive survey of various computation resource allocation

schemes designed explicitly for VEC and present our findings

in a comprehensive manner to clearly identify the develop-

ments, breakthroughs and open research issues in this field.

Memory and network resource allocation are not covered in

this survey. The major contributions of our work are listed

below.

1 An extensive and comprehensive survey of state-of-the-

art computation resource allocation (CRA) schemes for

VEC.

2 Classification of CRA schemes for VEC based on their

goals, namely optimizing parameters like power/energy

consumption, QoS, delay, QoE, utility, reliability and

memory allocation.

3 Classification of CRA schemes for VEC based on algo-

rithms and mathematical models used in their framework

and problem formulation.

4 Classification of CRA schemes for VEC based on under-

lying technology like SDN, blockchain, AI and cloud

computing.

5 Identification of open research issues and future research

direction in vehicular edge computing to drive forward
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research and development towards the advancement of

vehicular networks and applications.

In summary, [16]’s classification of CRA in VEC is based

on single/hybrid/multi optimizations, while [12]’s study is

based on the different stages of the computational offload-

ing process. In this work, we adopt a different perspective

by studying and classifying the latest works on CRA in

VEC based on their optimization goals, the mathematical for-

mulation/models used in the schemes, and their underlying

technologies. Moreover, this work serves as a much-needed

review to cover the latest works on CRA in VEC, which have

been published after [12,16].

Computational offloading in IoT-enabled
VEC-survey overview

Edge computing enabled software-defined IoV (Ec-SDIoV)

enhances the capability of IoV, which improves the latency

services and reduces the computational complexities. The

Ec-SDIoV architecture facilitates the RSUs (roadside units),

mobile vehicles for reducing the computational complexity

co-operatively via SDN [20]. Vehicular networks enabled

with IoT technology have become an essential part of the

ITS (intelligent transport system). It includes various appli-

cations for passengers and vehicles, such as online gaming,

augmented reality (AR) for passengers, autonomous driv-

ing, and intelligent auxiliary driving for vehicles. These

applications require intensive computational and commu-

nication resources [25]. IoV combined with various other

technologies helps in improving the efficiency of vehicular

applications. In VEC-based IoT network, the devices can

offload all or part of the computational tasks to the VEC

server, which reduces the latency and save energy for devices

[26]. With respect to the IoT services scenario, the computa-

tional complexity reduces in VEC and enhances the energy

consumption. The growth of IoT has led to the evolution of

VANETs. The IoT does not support traditional VANET ser-

vices and improves the various applications by introducing

various computing and technological paradigms.

There are many research works on resource allocation in

vehicular edge computing. To understand this area, it is cru-

cial to classify these studies under broad categories, which

may clarify where improvements can be made in its devel-

opment. Keeping this idea in mind and after an extensive

literature survey, the schemes available for VEC can be clas-

sified based on the following criteria.

1 Optimization goals in resource allocation—power/

energy optimization, delay optimization, quality of ser-

vice (QoS) optimization, utility optimization, user expe-

rience optimization, etc.

2 Underlying technology—cloud computing, software

defined networks, blockchain, machine learning, rein-

forcement learning and deep learning.

3 Mathematical models and algorithms used.

We shall explore these classifications in Sects. “Classi-

fication of RA frameworks in VEC based on optimization

goals for IoT applications”, “Classification of RA frame-

works in VEC based on mathematical and computational

models/algorithms/techniques used” and “Classification of

RA frameworks in VEC based on underlying technologies”

respectively. The summary of the survey has been presented

Table 5.

Classification of RA frameworks in VEC based
on optimization goals for IoT applications

IoT applications require low power/energy consumption, less

latency and low computation and memory resource consump-

tion. Low power/energy consumption ensures that the system

can be implemented on IoT edge servers, mobile platforms

like vehicles, etc, and can be deployed for a long-term appli-

cation. Less latency ensures that the network is more secure

and gives less opportunity to adversaries to carry out attacks.

Moreover, vehicles move at high speeds. Hence, it is nec-

essary to complete the resource allocation fast so that the

driver does not have to explicitly wait near RSUs or other

edge devices to offload its computational work and be done

even when the vehicle is running at a reasonable speed. Also,

vehicles have limited on board computation and memory

resources, so it is essential to ensure that the framework uses

the least possible resources.

One of the important resource allocation issues is the

parameter we want to optimize while allocating the resources.

So CRA frameworks designed for VEC need to ensure that

these parameters are optimized so that they can be deployed

in IoT scenarios. Based on this, the algorithm for the resource

allocation may vary. Additionally, apart from being feasible

for IoT deployment, optimizing other parameters like QoS,

Utility, reliability, etc are essential for ensuring that the sys-

tem achieves its intended functionality. Thus the parameter

which is optimized by the framework is an essential param-

eter for classification and based on optimization goals, we

classify the frameworks into the following categories (sum-

marized in Table 2).

Power/energy consumption optimization

Power/energy is one of the main factors in vehicular net-

works as vehicles have limited battery capacity and storage.
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Table 2 Classification of frameworks according to their optimization

goals

Optimization Goal References

Power/energy [28–30]

QoS [33–35]

Delay [25,26,28,35–39]

QoE and user satisfaction [34,37]

Network/system utility [26,33,37,39,40]

Reliability [20]

However, at the same time, they are required to perform

many intensive computations as part of the network [27].

Hence, authors in [28–31] try to optimize energy and power

consumption in their resource allocation schemes. Optimiz-

ing power includes various factors like transmission power,

uploading time, offloading ratio, local CPU frequency, etc

and all these factors need to be considered while formulating

the energy/power optimization problem.

In [29], an online Lyapunov optimization process is fol-

lowed to find a solution to the problem of computation

resource allocation to get a trade-off between the mean

weighted power consumption and delay. Their simulation

results showed that their joint computation offloading and

URLLC resource allocation for collaborative MEC-assisted

cellular-V2X networks could improve trade-off performance

compared to centralized MEC-assisted V2X. In [28], the

authors formulated a problem based on binary optimization

problem to minimize the entire cost of the entire system in

terms of energy and time and guarantee efficient resource

utilization among multiple vehicles which are part of the

network [30].

QoS optimization

The term QoS was coined by the International Telecom-

munication Union (ITU) in 1994 [32]. It refers to network

connection requirements like response time, signal-to-noise

ratio, cross-talk interrupts, etc. In short, it is actually an

overall performance metric for a computer network, cloud

network, etc., more specifically, the performance from the

point of view of the users of the network. It is also very close

in meaning to user satisfaction. As in any network, revenue

generation is directly dependent on the network users, and

it is crucial to have a good QoS. In works [33–35] focus on

maximizing their QoS in their resource allocation schemes

for VEC networks.

In [35], the authors adopt a deep Q-learning based

approach in their MEC-based IoV system for optimized RA

while simultaneously maintaining QoS. In [34] the authors

systematically look into the QoS guaranteed optimal RA

problem for connected vehicular fleets in MEC environ-

ments. To demonstrate the working of their framework, they

take two large real-world datasets of online-taxi services and

evaluate their QoS with their framework. Results show that

their proposed method saved up to 40 percent costs compared

to naive resource provisioning strategies.

Delay optimization

Delay optimization or reducing the network latency is an

essential goal in vehicular networks as they are of very high

speed in nature. Works [25,26,28,35–39] focus in reduc-

ing their delay while implementing their resource allocation

scheme. Ensuring less delay makes it possible to run latency-

sensitive applications like assistive driving [20].

As mentioned previously [26], use Lyapunov optimization

to optimize both delay and energy jointly and [38] formulate

their offloading problems as a constrained optimization prob-

lem where the aim is to optimize the delay. In [40], the author

formulates a joint optimization load balancing and offload-

ing problem in the form of a system utility maximization

problem under a permissible latency constraint.

QoE/user satisfaction optimization

Ensuring high QoE (quality of experience) or user satis-

faction is significant for the networks to ensure adequate

participation from users. Studies [34,37] focus on ensuring

a good QoE and user satisfaction while implementing their

resource allocation frameworks.

Utility optimization

While focusing on optimizing parameters like speed, energy,

etc, it is equally important to optimize the utility of the entire

network as a whole and ensure all the resources are ade-

quately utilized. Hence network and system utilization is

also a very important issue. Works [26,33,37,40] implement

resource allocation schemes where they try to optimize utility

or at least ensure it is above a certain threshold value.

In [39], while modeling a system based in IOV based on

edge computing, the main objective is to optimize the latency

and ensure maximum utilization of resources has been done.

The minimal latency and maximum resource utilization rate

are calculated by offloading the computing task. To increase

the maximum utilization of resources, the NSG-III method

has been adopted to find the optimal global solution for the

computation offloading method. This NSG-III is a non dom-

inated sorting genetic algorithm.

Maximizing reliability

In [5], the authors have proposed to use the resources

available of nearby RSUs and vehicles to facilitate the func-
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tionalities of edge computing keeping the constraints of

latency and computationally-intensive requests in mind. In

a dynamic and complex IoV environment, the interruption

of both communication links and processing nodes becomes

unavoidable, which may lead to adverse conditions. To

ensure timely completion of delay-sensitive IoV services,

the authors proposed a partial CO and reliable task allo-

cation scheme which supports a reprocessing method. A

non-convex optimization problem and a fault-tolerant par-

ticle swarm optimization algorithm is employed to ensure

task completion before the deadline.

Optimizingmemory allocation

In [20], the authors have proposed to use the resources

available of nearby RSUs and vehicles to facilitate the func-

tionalities of edge computing, keeping the constraints of

latency and computationally intensive requests in mind. In

a dynamic and complex IoV environment, the interruption

of both communication links and processing nodes becomes

unavoidable, which may lead to adverse conditions. To

ensure timely completion of delay-sensitive IoV services,

the authors proposed a partial CO and reliable task allo-

cation scheme which supports a reprocessing method. A

non-convex optimization problem and a fault-tolerant par-

ticle swarm optimization algorithm are employed to ensure

task completion before the deadline.

Summary of this section

The issue that arises with the resource allocation is the

question of the parameter to be optimized. As a result, the

algorithms vary and the frameworks used are classified. Some

of them are power energy consumption optimization, QoS

optimization, delay optimization, QoE/user satisfaction opti-

mization, utility optimization, maximizing reliability and

optimizing memory allocation. It is vital to consider trans-

mission power, uploading time, offloading ratio, local CPU

frequency, etc. to formulate the energy/power optimization

problem. An online Lyapunov optimization process, Binary

optimization problem gives insights into this. The second

one is the overall performance metric for a computer net-

work, cloud network, etc. from the user point of view. Deep

Q-learning based approach and considering the QoS guaran-

teed optimal RA problem helped to achieve that. Lyapunov

optimization and a joint optimization load balancing and

offloading problem help demonstrate problems based on

reducing the network latency. Ensuring user satisfaction and

optimizing the utility of the entire network is also an essential

parameter.

Classification of RA frameworks in VEC based
onmathematical and computational
models/algorithms/techniques used

Performing resource allocation among various entities

involved in a vehicular edge computing scenario is a com-

plex task where many parameters are involved. Hence most

studies adopt well-established mathematical and computa-

tional techniques to model the resource allocation problem

and solve it by optimizing the required parameters. Thus, it

is important to discuss various mathematical and computa-

tional models/algorithms/techniques. So, in this section, we

briefly discuss these as given below.

Gauss Seidel method

The Gauss Siedel method or the method of successive dis-

placement or Liebmann method is a type of iterative method

employed to solve a system of linear equations. It is similar

to the Jacobi method and is named after German mathe-

maticians Carl Friedrich Gauss and Philipp Lied von Siedel.

Interestingly it was only present in a private letter from Gauss

to one of his students, Gerling, in the year 1823, and a pub-

lication on this method was not present until the year 1874

[41,42].

In [29], the authors use the Gauss–Seidel method for cal-

culating the processor frequency to find power consumed for

running the Lyapunov Optimization method to solve com-

putation resource allocation problem in a collaborative MEC

assisted cellular-V2X network. The following equation can

give the power dissipated via the output pins of a CPU core:

P = 0.5 × C × V 2
× f , (1)

where P is the power consumed by the processor, C is the

capacitance, V is the supply voltage, and f is the operating

frequency f the processor core. So, the term f is calculated

using the Gauss Siedel method.

Online Lyapunov optimization

Lyapunov optimization is the use of the Lyapunov function

to ensure the stability of the dynamic system. In [29], the

authors have proposed a Lyapunov Optimization Technique

which solves the problem of resource allocation to get a trade-

off between the energy consumption and the delay. Also,

in [36], the authors have used this technique to solve the

ARAEUE algorithm, which was designed to enhance the user

experience by minimizing the quality loss without failing to

meet the deadline.
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Table 3 Various mathematical algorithms and models used in the frameworks

Mathematical/computational models and algorithms References Advantages Disadvantages

Gauss Seidel method [29] Used for finding frequency

for calculating the power

Makes the programming of

the network difficult as

each iteration requires

more computation time

per iteration

Online Lyapunov optimization [29,36] Enhances the user

experience by providing

the trade off between

energy consumption and

delay

There is no general method

available to construct

lyapunov functions

Game theory [26,29] Reduces the inter-cell

interference, increases the

throughput and guarantees

the reliability of URLLC

V2X communication by

choosing the best

offloading decisions

Sometimes the assumptions

can be unrealistic while

making certain offloading

decisions which may not

produce the best outcome

T-slot look ahead algorithm [36] Reduces the computing

quality loss and provides a

computationally efficient

solution

Energy consuming

Bipartite graph [29,40] Solves the NP-hard energy

optimization problem

when all the vehicles

offload their tasks to the

same VEC server

Solve the energy

optimization problem but

does not solve the latency

issues

Heuristic algorithm [20,47] Used for reliability

maximization and solves

the problem of allocating

resources to fog

computing in vehicular

applications.

Often used only when

approximate solutions are

sufficient and exact

solutions are not

necessary

Markov model [26,35,37] Reduces the computational

limitations and delay of

the VEC

Markov Models are

generally inappropriate

over sufficiently short

intervals

Fault-tolerant particle swarm optimization (FPSO-MR) [20] Converts non-convex

functions into convex

functions for to solve the

formulated problem with

less convexity

It has a very low

convergence rate in the

iterative process.

Convex optimization [36] Replaces the non-convex

functions and restrictions

by acceptable convex

functions which helps in

reducing the energy

consumption

Difficult to design a suitable

model and develop

efficient, fast, scalable and

distributed algorithm to

solve large practical issues

Reinforcement learning [28] Optimizes the computation

offloading scheduling

problem by which energy

and delay are minimized

in long term

Needs a lot of data and

requires extensive

computation which may

sometimes diminishes the

result

Newton–Raphson method [25] Reduces the complexity in

case of huge overheads

using convex optimization

algorithm

Sometimes the convergence

of Newton–Raphson

method is not guaranteed

especially in case of

multiple roots
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Table 3 continued

Mathematical/computational models and algorithms References Advantages Disadvantages

Distributed deep-Q learning [28] Minimizes the overall

computational and energy

consumption

Requires a large amount of

data for better

performance and also it is

overly sensitive to the

changes in the data set

Non-dominated sorting genetic algorithm [39] Improves the user

experience and reduces

the latency

Genetic algorithms are

non-deterministic method.

Thus, it may give different

solution each time the

algorithm is run for same

instance which makes it

non-optimal in some cases

Multiple criteria decision making [39] Provides the most optimal

solution for the

computational offloading

strategies

Time consuming

Select sort algorithm [34] Allocates the minimum

required resources which

helps in reducing the

energy consumption

This algorithm is beneficial

when used for small data

but its efficiency

decreases when dealing

with large amount of data

Randomly select algorithm [34] Uses random resources for

allocation based on game

theory which helps in

reducing the latency

There is very little control

on what the model does

and sometimes its

efficiency is not optimal as

it does random selection

Game theory

Game theory is an approach where the interests of many play-

ers are maximized under some given constraints. During the

game, the players rely on their information and formulate

a strategy for optimally playing the game. A game consists

of three things typically: (1) payoff function, (2) the strat-

egy, and (2) the players. Players can be an individual or a

team who has the freedom to decide his own strategy and

arrive at his judgment. Game models are divided into two

categories: (1) Classical games and (2) Evolutionary games.

Classical games can be classified as non-cooperative games

or cooperative games, and into dynamic games or static

games depending on the criteria, we choose for classifica-

tion. [43,44]

Cooperative and non-cooperative games

The non-cooperative and cooperative games are differen-

tiated on the basis of the fact that whether the players

participating in them reach a cooperative relationship during

the course of the game or not. If yes, then it is a coop-

erative game otherwise, it is a non-cooperative game. The

non-operative game is majorly based on the Nash equilibrium

concept. In [29], the authors use the non-cooperative game

and bipartite graph to reduce the inter-cell interference and do

channel allocation maximizing the throughput while guaran-

teeing the reliability of URLLC V2X communication in their

proposed joint computation offloading and URLLC resource

allocation frameworks for collaborative MEC assisted cellu-

lar V2X networks.

Static and dynamic games

The dynamic and static games are classified based on the

order in which the players take their actions. In a dynamic

game, the players formulate strategies to act successively,

while in a static game, the players formulate, decide their

strategy, and act simultaneously [45].

Bipartite graph

A bipartite graph or bi-graph in the mathematical field of

graph theory is a set of graph vertices, i.e., it points to where

multiple lines meet, decomposed into two disjoint sets. This

means they don’t have any common element and no two

vertices within the same graph are adjacent.

In vehicular edge computing, bipartite graph appears nat-

urally for solving the NP-hard energy optimization problem.

The limit of performance gain due to the resource offload-

ing methods where all the vehicles offload their tasks to the

same VEC (Vehicular Edge Computing) server. To address
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Fig. 4 Figure showing various mathematical models along with the references of the research studies in which they are used for computation

resource allocation in VEC

the problem mentioned above, the authors in [40] proposed

the resource allocation scheme for a multi-user multi-server

VEC system. Firstly, the joint load balancing problem is for-

mulated as a mixed-integer non-linear programming problem

to maximize system utility. Notably, the authors have consid-

ered IEEE 802.11p protocol for modeling the system utility.

So we split the problem into two sub-problems and develop

a low complexity algorithm to make VEC server selection

and optimize computation resource jointly. The problems are

non-linear, which can be solved by the rounding method by

constructing a bipartite graph. The rounding technique con-

sists of two steps as follows: (i) Construction of a weighted

bipartite graph to create the relationship between vehicles

and RSUs (road-side units). (ii) Finding a maximum match

to get the integer solution based on the bipartite graph.

V2X networks enabled with 5G are a promising tech-

nology when it comes to VEC. To solve the problem of

end-to-end delay in transmission and backhauling in net-

works, the authors in [29] have formulated a URLLC

resource allocation strategy and joint computation strategy

problem. Then, a Bipartite graph is used to decide the chan-

nel allocation and minimize the interference in the network

to increase the reliability in URRLC V2X communication.

Each vehicle in the system is considered as a vertex in the

bipartite graph. An overview of the model presented in [29]

is given in Fig. 5.

Markovmodel

Markov model is a stochastic model used for modeling

dynamic systems. There are four common Markov mod-

els used in different criteria. The four Markov models are

Markov chain, Markov decision process, semi-Markov pro-

cess, and hidden Markov model [46]. In [35], the authors have

used Markov decision process to formulate the problem of

resource allocation. This model is defined by the reward func-
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tion, state-space, and action space. After this, the authors have

solved the problem by adopting deep reinforcement learning

technology. In [37], to govern the edge cloud servers, the

authors have used the Markov decision process that collabo-

rates with the SS (state search) algorithm to get the location of

the vehicle. And in [26], the authors have proposed a suitable

offloading scheme that considers both computational limita-

tions and delay of the vehicular edge network. This problem

is further formulated by using the semi-Markov process and

later solved with DRL technology.

Heuristic algorithm

Heuristic Algorithm is designed to solve problems quickly

and efficiently without sacrificing much accuracy and pre-

cision. This algorithm is often used to solve the NP-hard

problems. For example, in [20], the authors have used a

Heuristic algorithm to solve the formulated NP-hard opti-

mization problem, which is non-convex in nature. This

algorithm was also designed for reliability maximization.

The results also show that the heuristic algorithm’s reliability

performance is superior to that of the Genetic algorithm and

Sorting algorithm as it jointly considers communication and

computational competence along with the non-success rates.

Vehicular fog computing (VFC) has become an impor-

tant model which unloads the computational tasks from the

cloud to the edges of the network. Due to this, the compu-

tational capabilities in vehicular applications have improved

[4]. However, it is still a challenge because of the limited

resources in fog computing. In [47], the authors have formu-

lated the problem of allocating resources to fog computing

in vehicular applications. Then the authors have proposed

a heuristic algorithm to find the optimal solution for the

problem formulated effectively. Then it is combined with

reinforcement learning (RL) algorithm. But at first heuristic

algorithm provides short term solution for the formulated

problem, and then it is combined with the RL algorithm

for long-term solutions, which makes the resource allocation

more efficient.

Fault-tolerant particle swarm optimization
(FPSO-MR)

Particle swarm optimization is an optimization algorithm

used for optimizing non-convex functions. It is a type of

heuristic algorithm with a lesser amount of complexity. In this

paper [20] the authors have used FPSO-MR o achieve max-

imum reliability considering the latency constraints. Since

the optimization problem discussed in the paper is a non-

convex binary function which is also NP-hard, it cannot be

easily converted to a convex function. In this algorithm, there

can be more than one solutions. This algorithm works based

on the movement of the particles in the search space. Each

particle has its velocity and position. The optimal solution

is obtained when the particle swarm has acquired the best

position. This iterative process is repeated until the particle

has settled down on the best position, which is the solution.

T-slot look ahead algorithm

T slot look ahead algorithm is designed to evaluate the per-

formance of scheduling algorithms with an analytical model

approach.

In [36], the goal is to minimize the long-term computing

quality loss by specifying the resource required and the qual-

ity of each running task expected. A mix-integer non-linear

stochastic optimization problem is formulated to optimize

the allocation of computing resources and task placement.

The unpredictable network states and the high computational

complexity of the formulated problem are responsible for the

long-term optimization issue. It is first decomposed into a

series of one-slot problems, and then an iterative algorithm

called as T slot look ahead algorithm is proposed to get a

computationally efficient solution.

DC (difference of convex) programming technique

When the mathematical programming problems deal with

functions and those functions can be represented as the

difference of two convex functions, they are called DC pro-

gramming problems. For example, in [36], authors have

proposed an ARAEUE algorithm. This algorithm consists

of multiple integer non-convex functions. DC programming

technique is used to solve this issue where acceptable con-

vex approximations replaced the non-convex functions and

restrictions, and iterative solutions were provided.

Reinforcement learning algorithm

Reinforcement learning is an algorithm in which intelligent

agents take suitable actions in an environment to maximize

the reward. In [28], this algorithm is used to optimize the

computational offloading scheduling problem formulated to

minimize the energy consumption and delay in the long term.

This algorithm is further used to find suitable values in com-

putational offloading schemes for multiple cloud computing

in vehicular edge networks.

Newton–Raphsonmethod

In [25], the authors have formed an optimization problem

and named it as P1.P1 problem consists of multiple vari-

ables which can be solved by convex optimization algorithm

like dual decomposition algorithm. This algorithm will cre-

ate a considerable overhead. To reduce the complexity and

overhead, some variables in the P1 are removed using approx-
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Table 4 Classification of frameworks according to their underlying

technologies

Underlying technology References

SDN [20,34]

Blockchain [7,37]

AI [7,26,28,35,47]

Cloud computing [28,30,33,34,37,39,58]

imation, and then the optimization problem comprises only

one variable, which can be optimized using the Newton–

Raphson convex optimization algorithm.

Distributed deep-Q learning

Distributed deep-Q learning is a type of reinforcement learn-

ing algorithm which uses neural networks for maximizing

optimization. In [28], this algorithm uses its deep neural net-

works to minimize overall computational time and energy

consumption for processing the computational task of the ith

vehicle at jth server in computational offloading schemes for

multiple cloud computing in vehicular edge networks.

Non-dominated sorting genetic algorithm-III
(NSG-III)

Multi-objective optimization plays a crucial role in science

and technology, especially in vehicular applications where

multiple objective functions are involved, and optimal solu-

tions are proposed obviously with some trade-off between

the various objectives. There are no unique solutions for

multi-objective optimization or pareto optimization problem

which affects multiple objective functions. Those solutions

are called as non-dominated or Pareto optimal, which are

found after some iterations. With the emergence of IoV, the

computational capacity of vehicular networks has signifi-

cantly improved. And to further enhance this, the authors in

[39] have proposed a computational offloading scheme called

V2X-COM (vehicle to everything communication). This

scheme uses V2X (vehicle to everything) technology to trans-

mit data in vehicular edge computing applications. Then,

to provide an effective offloading plan, the non-dominated

sorting genetic algorithm-III (NSGA-III) is proposed. This

algorithm is adopted for improving the usage of edge server

devices and reducing latency.

Multiple criteria decisionmaking (MCDM)

Multiple criteria decision making (MCDM) analysis was first

popularized in 1979 by Stanley Zionts. After that, this anal-

ysis and its mathematical modeling solved various issues

in different fields around the world. This model is mainly

concerned with providing different optimal solutions and dif-

ferent plans rather than unique solutions and plans for solving

the problems involving multiple criteria. In [39], after the

NSGA-III is adopted, which provides the most optimal solu-

tion globally for the computation offloading strategies, the

most optimal offloading plan is selected by multiple criteria

decision making (MCDM) in the final iteration.

Simple additive weighing (SAW)

Simple Additive weighing(SAW) was first proposed by Fish

burn. It is one of the simplest and oldest MCDM methods for

providing multiple alternative solutions when solving mul-

tiple criteria. In [39], after the NSGA-III is adopted which

provides the most optimal solution globally for the compu-

tation offloading strategies, the most optimal offloading plan

is selected by simple additive weighing (SAW) along with

the help of MCDM in the final iteration.

Bracketting

In [33], this is the phase-1 algorithm to calculate the mini-

mum amount of edge resources in the particular time slot. In

this algorithm, some initial value of Cn(t-1) is fed, and the

blocking probability is calculated. If the probability is higher

than the threshold value of QoS, then the value of Cn(t-1) is

doubled. This process is repeated until the Qos requirement

is satisfied.

Binary searching

In [33], to find the minimum amount of edge resources and

optimum resource volume for each edge cloud at a particu-

lar time slot, the authors have used a two-phase optimization

algorithm . This is the phase two algorithm after the bracket-

ing. In this algorithm, the Cmin (edge resource) is searched,

which satisfies the requirement of QoS.

Distance based heuristic algorithm
(Dbha)/Euclidean distance-based algorithm

Heuristic algorithm is designed to solve problems quickly

and efficiently without sacrificing much accuracy and preci-

sion. Distance-based heuristic algorithm (Dbha) is one such

algorithm that takes the shortest distance as its account while

responding to the requests of resources. It is observed that as

the no of vehicles increasing, it is posing many challenges in

limited computational capabilities. To solve this issue, many

resource allocation strategies are proposed. In [34], a vehic-

ular network with RSU (roadside unit) is proposed. Then,

an effective resource allocation scheme was proposed from

RSU’s perspective for utility optimization. Here, Dbha is

used to improve the efficiency of resource allocation. This
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Fig. 5 Overview of the joint

computation offloading and

URLLC resource allocation for

Collaborative MEC assisted

C-V2X networks (Adapted from

[20])
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paper also shows that Dbha has great advantages over GA

(genetic algorithm) and PSO (particle swarm optimization)

in terms of both performance and response latency.

Maximum value density based heuristic allocation
(MVDHA)

To solve the issue of excessive power and energy con-

sumption with the massive growth of vehicular applications,

the authors have proposed to expand VEC (vehicular edge

computing) to VECC (vehicular edge cloud computing) in

[30]. To compute the energy utilization and cost potency,

a resource allocation algorithm, namely maximum value

density-based heuristic allocation (MVDHA) based on max-

imum density value available, was proposed. Moreover, this

paper shows that when the local computation energy compu-

tation is half offloading energy consumption, a maximum

density value can be obtained. Based on this, MVDHA

algorithm was proposed to solve the energy enhancement

problem.

Randomly select algorithm (RSA)

RSA is a stochastic algorithm that uses randomized parame-

ters based on the application to select what to do next. This

randomized selection can reduce complexity. For example, a

randomized sorting algorithm can choose any random pivot

number for the sorting array. In [30], this algorithm uses

random resources for allocation, this random selection is

based on the game theory. The energy conservation percent-

age using this algorithm was found to be around 53.7%. The

time conservation performance of the RSA algorithm has an

average of 48.7%. The performance is not consistent as it

varies from 17.3 to 85.8%.

Select sort algorithm (SSA)

SSA algorithm based upon strict sorting algorithms and based

on this sorting it allocates the required minimum resources.

In terms of energy conservation, it provides an average saving

of 59.9%. The performance of SSA in terms of time conser-

vation has an average of 87.8%, which is better than the result

obtained in RSA and MVDHA.

Summary of this section

In this section, various schemes to optimize and resolve

related RA frameworks in VEC are being discussed. Differ-

ent problems have been discussed along with their resolution,

like using the Markov decision process to formulate the

resource allocation problem for the task with different types

and further enhancing it with deep reinforcement learning,

Lyapunov, and DC programming based resource allocation

improving user experience (ARAEUE). ARAEUE is built on

the Lyapunov optimization technique, which decomposes a

given problem into several one-slot mix-integer non-convex
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sub-problems. Again, a CCORAO scheme separates the

given optimization problem into two sub-problems with the

help of a distributed computation offloading and resource

allocation (DCORA) algorithm. The issue of allocating edge

computation resources in vehicle mobility is solved using

a lightweight 2-phase algorithm based on bracketing and

binary search. Distance-based heuristic algorithm for utility

optimization (DbHA) is suitable for time-sensitive scenar-

ios where RSUs are involved. Then It is demonstrated that

the MVDHA algorithm achieves an optimal balance of the

number of vehicles on each server.

A summary of the algorithms used by various studies for

designing resource allocation in vehicular edge computing

scenario has been presented in Table 3 and also presented in

Fig. 4.

Classification of RA frameworks in VEC based
on underlying technologies

SDN

Some of the IoV applications are computationally very

intensive, and latency-sensitive [48,49]. To support these

computationally intensive and latency-sensitive IoV appli-

cations, the authors of [20] have proposed to integrate fixed

edge computing nodes (i.e., fixed road infrastructure) and

mobile vehicles (i.e., edge computing nodes (EC nodes).

This makes the EC nodes complex and heterogeneous. SDN

is used as an agent to exploit these heterogeneous nodes,

and thus EC aided IoV architecture is designed. This EC-

SDIoV architecture makes it easier for mobile vehicles and

fixed roadside infrastructure to behave as EC nodes to pro-

vide services via SDN with minimal latency. SDN provides

comprehensive network control. It helps in deploying the

network and agile management of the network without inter-

fering with other networks. It accompanies the VEC and ITS

(intelligent transport system) by dealing with complex and

heterogeneous computations, a massive number of vehicles,

large data flow, and frequent topology changes. This type

of networking provides a strong mechanism for resource

utilization by providing flexibility, programmability, and

knowledge of the network [34].

Blockchain

IoV applications are complex because they require some

advanced techniques to execute due to vehicles’ inconsistent

and unpredicted behavior. Blockchain brings advantages to

vehicular applications and its infrastructure management by

providing a decentralized network for smart and secure IoV.

Blockchain has found immense applications in IoT related

areas like UAVs [50], smart grids [51], energy management

[52], 5G [53], V2G networks [54] and industry 4.0 and

industrial IoT [55]. On the industry level, many leading auto-

manufacturers have considered Blockchain to improve the

driving application by exchanging data in V2X. For instance,

Volkswagen is building a Blockchain-based tracking system

to avoid the manipulation of odometer done by the sellers to

increase the price of their cars [7]. With the introduction of

edge computing in intelligent driving, the vehicle movement,

the time-sensitivity at which data is processed, and the alloca-

tion of the resource of the EC server have become an essential

factor in intelligent driving [56,57]. To remove dependencies

on third-party platforms, the authors of [37] have resource

transaction architecture that is based on Blockchain. This

increases system scalability, and it also allows the service

providers to join/exit at any time. The Blockchain is a tech-

nique based on cryptography that allows direct trading among

participants. The decentralized feature of blockchain can help

in achieving the normalization of data and connect central-

ized databases. This decentralized feature is the actual reason

why Blockchain eliminates the interference of third-party

platforms.

Artificial intelligence

The new era of modern vehicles has many complex appli-

cations that require intelligent decision-making. Hence, the

advancement of artificial intelligence (AI) derived its path

into IoV. With the emergence of modern vehicular applica-

tions, vehicular edge computing (VEC) can solve the issue

of complex computation. VEC is composed of many com-

puting devices which are on the roadsides or in vehicles.

Such architecture helps for communication, data sharing,

and computation. AI is being applied in solving many chal-

lenges in vehicular applications. With the advancement of AI

in IoV applications, there has been a revolutionary change

in excelling self-driving, object detection, trajectory build-

ing, real-time navigation, video surveillance, traffic control,

etc. Various data is being fed to an AI model, which can

be a combination of game-theoretical decisions, logical rea-

soning, and multi-agent Reinforcement Learning (RL). With

these data, the vehicles can make various decisions [7].

In [26], the authors model their resource allocation prob-

lem using a Markov decision process and use Q-learning-

based reinforcement learning to arrive at the solution. They

avoid dimensionality using a deep reinforcement learning

(DRL) method to find the action-value function for the

Q-learning. The authors of [35] have followed a similar

approach to develop a scheme that is adaptable to chang-

ing MEC environments. The authors reported that although

deep reinforcement learning has its advantages in solving

resource allocation problems, its performance is however

highly dependent on the training dataset. Hence, other train-

ing datasets have to be used for different regions of operation,
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Fig. 6 Overview of the regional intelligent resource allocation in MEC based vehicular network . (Adapted from [35])

i.e., the models would have to be retrained. This is an open

research issue in using deep learning techniques for resource

allocation. An overview of the framework proposed by [35]

is given in Fig. 6. The authors of [28] have also used DRL

and Q-Learning techniques to find the best offloading deci-

sion. They propose to employ several deep neural networks

in parallel to achieve quick convergence. Their simulations

show that their proposed scheme performs much better as

compared to other benchmark schemes.

Cloud computing

Cloud computing has been one of the critical technologies

in the IoV. It provides high-performance computation, stor-

age, and networking services. In recent years there has been

a lot of studies on load balancing strategies of cloud com-

puting. In [58], the authors use a system model in which

computation offloading can be done to both MEC servers or

cloud servers depending on the characteristics of the task to

be offloaded. The computational resources of the MEC are

lesser compared to that of the cloud server. Offloading by

the vehicles to MEC/cloud servers is done through the RSU.

The authors of [28,59,60] also use a similar system model in

their work. In [33], authors consider a model which uses nei-

ther edge devices nor cloud servers but edge-cloud devices in

their system model. These edge-cloud devices could be sta-

tioned either at the cellular (LTE/5G) towers or at SDN/NFV

enabled data centers installed by telecom equipment man-

ufacturers (such as Ericcson) or platform vendors such as

AWS. In [34], the authors employ the concept of vehicular

clouds. A vehicular cloud is a temporary and localized cloud

that is formed by several close-by vehicles in a VANET. The

Vehicular cloud can not only increase the connectivity range

of an RSU, but it can also serve offloading requests by itself

either through individual vehicles or in a cooperative manner.

Summary of this section

Technologies like SDN exploits modified EC nodes which

are complex and heterogeneous. SDN is used as an agent.

Thus, EC aided IoV architecture is designed, making it

easier for mobile vehicles and fixed roadside infrastructure

to behave as EC nodes to provide services via SDN with

minimal latency. To remove dependencies on third-party plat-

forms, a transaction architecture is designed which is based

on Blockchain. The decentralized feature is the actual rea-
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Table 5 Summary of works surveyed

[References] Problem addressed Formulation/modelling Solution Parameter/s

optimized

Underlying

technology

[29] Joint optimization of

power

consumption and

network stability in

MEC assisted

Cellular V2X

Non-deterministic

polynomial-time

hard problem, two

subproblems: 1.

URLLC RA and 2.

Computation

resource decision

Online Lyapunov

optimization

method to solve

CO. Gauss–Siedel

method to compute

CPU frequency

Delay optimization

and

network/system

utility

–

[26] Service hole

problem in

dynamic networks

with static edge

servers in MEC

scenario

Semi-Markov

process with

Stochastic traffic,

time-varying

comm. and CO

requests

A novel VEC

network

architecture:

vehicles function

as mobile edge

servers. Q-learning

& DRL to obtain

optimal CO and

RA

Power/energy

optimization

AI

[35] Computationally

intensive IoVs

require minimal

delay in MEC.

Sudden increase in

computations

difficult to handle

due to limited

resources

RA modelled as

Markov decision

process

A regional intelligent

vehicular system

with dual MEC

planes. MEC

servers lying in

same region

co-operate to

achieve resource

sharing

Delay optimization

and QoS

AI

[36] Need for low latency

and high reliability

among capacity-

constrained and

distributed MEC

nodes. Long-term

satisfactory UE for

dynamica nd

uncertain vehicular

environments

A mix-integer

non-linear

stochastic

optimization

problem for

computing quality

loss minimization

considering

queuing,

dynamics,

throughput

constraints, and

worst-case delay

bound

Adaptive RA for

enhancing UE in

VEC networks

Delay optimization SDN

[37] Need for a

collaborative

MEC-cloud

approach for

offloading services

to vehicles

Jointly optimizing

CO decisions and

RA—A

non-convex NP

hard problem

Collaborative CO &

RA (CCORAO)

scheme and

distributed CO and

RA algorithm

(DCORA)

Delay optimization,

QoE, user

satisfaction,

network/system

utility

Blockchain and

cloud computing

[38] Present resource-

constrained

vehicles do not

meet low/ultra-low

latency demands in

delay-sensitive

applications such

as autonomous

driving

Offloading modelled

as a constrained

delay optimization

problem

Fiber-wireless

(FiWi) technology

that provides

centralized

network

management and

supports multiple

comm. techniques

Delay optimization SDN, cloud

computing

123



Complex & Intelligent Systems

Table 5 continued

[References] Problem addressed Formulation/modelling Solution Parameter/s

optimized

Underlying

technology

[25] Need for ubiquitous

connections and

high QoS for

vehicles in a

vehicular network

Vehicles divided into

groups and RA

formulated as

convex

optimization

problem

A mobility-aware

task offloading

along with a

location-based

offloading scheme

Delay optimization Cloud computing

[28] Limited

computational and

battery capacity

makes long term

network

participation

difficult for

vehicles in

vehicular

edge-cloud

computing

networks

An integration

model of CO and

RA optimizing

weighted sum of

energy

consumption and

latency as a binary

optimization

problem

A distributed DL

approach to find

near-optimal CO

decisions using a

set of DNNs

parallelly

Power/energy

optimization

AI and cloud

computing

[39] Vehicles have

computationally

intensive tasks but

limited storage and

computation

resources.

Resource utilization

and Latency

reduction in IoV

modelled as a

multi-objective

optimization goal

A CO method that

employs V2X with

edge computing. A

non-dominated

sorting

algorithm-III

(NSG-III) for

balanced

offloading using

additive weighting

and multiple

criteria decision

making

Delay optimization

and

network/system

utility

Cloud computing

[33] The difficulty to

enhance precision

in resource

provisioning

among distributed

edge clouds in high

mobility scenarios

to optimize QoS

and provisioning

costs

An optimization

problem to

minimize cost of

provisioning

resources at edge

cloud with a

specified service

blocking

probability

threshold

A stochastic traffic

analysis based

framework to

optimize resource

provisioning cost

and keep blocking

probability within

a preset limit

QoS and

network/system

utility

Cloud computing

[34] Intelligent RA

strategies required

for intensive and

low-latency

vehicular

applications in

dense networks

Modelled as a

special knapsack

problem—NP-hard

category in time

taken to obtain

solution

An RSU backed

network with three

layers-Cloud,

RSU-Cloulet and

vehicular cloud for

real-time response

to resource request

QoS, QoE, user

satisfaction

SDN, cloud

computing

[30] Excessive computing

and energy

requirements in

heavily time and

resource

constrained

vehicular scenarios

A block level

minimum

assignable resource

for vehicular CO

A three-layer VECC

framework to

support real-time

computation

augmentation,

energy

conservation, and

interconnection

CAVs at network

edges

Power/energy

optimization

Cloud computing
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Table 5 continued

[References] Problem addressed Formulation/modelling Solution Parameter/s

optimized

Underlying

technology

[40] Difficulty for

vehicles to provide

required

computation and

performance levels

in computationally

intensive and delay

sensitive

applications

Model the joint load

balancing and

offloading under

the permissible

latency constraint

to maximize utility

of the system

Jointly optimizing

VEC server

offloading and

selection in a

distributed way

with lower

overhead

Network/system

utility

–

[20] Cloud computing

may result in

excessive delay for

latency-sensitive

applications like

assisted driving etc

NP-hard,

non-convex

optimization for

maximizing

reliability

performance of CO

jointly considering

offloading in parts,

and task allocation

and reprocessing

for maximizing

reliability

A low complexity

heuristic algorithm

to maximize

reliability in

latency constrained

scenarios

Maximizing

reliability

SDN

[37] Vehicle dynamicity,

delay-sensitive

data processing

and RA at EC

server are

challenges in

intelligent driving

Objective function to

maximize user

satisfaction and

three models to

optimize user

satisfaction: 1.

Markov based state

prediction, 2.

Resource

requirement, 3.

Auction

Resource transaction

architecture based

on dynamic edge

resource allocation

and blockchain

using double

auction technique

to optimize user

and service

provider

satisfaction

Delay optimization,

QoE and user

satisfaction and

network/system

utility

blockchain and

cloud computing

[47] Limited number of

vehicles are able to

use fog computing

due to its resource

restrictions

Allocating limited

fog resources to

vehicular

applications such

that the service

latency is

minimized and

user satisfaction is

improved, by

utilizing parked

vehicles

A VFC RA

algorithm that

considers both

short-term and

long-term RAs

obtained from a

heuristic and RL

(reinforced

learning)

algorithms

respectively

Qos AI

CO computation offloading, RA resource allocation, QoS quality of service, QoE quality of experience, UE user experience, AI artificial intelligence,

SDN software defined network

son why Blockchain eliminates the interference of third-party

platforms. Also, using DRL and Q-learning techniques, we

can find the best offloading decision where it is proposed

to employ a number of deep neural networks in parallel

to achieve quick convergence. Lastly, edge-cloud devices

can be used in the system model along with the Vehicular

cloud, which not only increases the connectivity range of an

RSU but can also serve offloading requests by itself either

through individual vehicles or in a cooperative manner. Table

4 presents a classification of RA frameworks in VEC based

on underlying technologies.

Current issues and future research directions

Based on our survey, we find that there is a lot of scope for

research in resource allocation in vehicular edge computing

(VEC) environment. Some of the current issues and future

research directions in this area are as follows.
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1 Prototype testing of proposed frameworks/algorithms:

Almost all the frameworks proposed in this area have

been only verified with the help of simulations. Never-

theless, simulation platforms cannot account for various

actual life events that take place around a vehicle on

the road. Hence, a more robust solution would require

prototype testing before it can be considered for market

deployment.

2 Issues in AI-enabled offloading: Most of the offload-

ing schemes greatly rely on the availability of a dataset

that covers all practical scenarios like different traf-

fic conditions in urban and rural scenarios. Many of

the proposed resource allocation schemes use AI and

DRL-based methods to solve their formulated problems.

Although methods like DRL have advantages in solv-

ing such problems, it is very heavily dependent on the

training data. If the data changes, then the rules based on

which the transition of states takes place also change, and

subsequently, the network needs to be trained again. So

future works will need to address this issue. Also, it is to

be ensured that the data sets used for the training include

a sufficient amount of data with all necessary features

[35].

3 Privacy leakage: Intelligent transportation systems and

vehicles collect many user data to process over a long

period of time, and these are transmitted through wireless

medium [61,62]. Thus, adversaries can try to compro-

mise the data and break user privacy. Significantly when

offloading tasks and communicating with edge servers,

the network needs to be protected against spoofing and

impersonation attacks [37]. Hence, future frameworks

need to be robust and secure along with implementing

efficient resource allocation schemes.

4 Low computation and high speed algorithms for resource

allocation: Vehicles in a vehicular network face the con-

straint of having limited onboard power but at the same

time have to do computationally intensive work for

implementing resource allocation schemes. Moreover,

such schemes require a lot of time, whereas vehicular net-

works are very dynamic and need to be very fast [29,30].

So, low power consumption and high speed are criti-

cal parameters that a resource allocation scheme should

meet to be feasible for such scenarios. Future studies

can explore using emerging technologies like FPGA and

quantum computing to decrease the computation time

and at the same time consume less power.

5 Need for standardization: At present, there does not exist

any standards for VEC and RA in VEC. However, the

development of these standards can enable interaction

between numerous operators, users, and vendors on the

platform. The European Telecommunications Standards

Institute (ETSI) has, however, begun the development

of multi-access edge computing (MEC) standards which

can be used to provide various services to connected

vehicles [63]. In addition, the 5G Automotive Associ-

ation (5GAA) is also involved in developing use cases,

architectural requirements, and deployment strategies for

MEC in VEC [64]. At present, 5G networks are being

deployed rapidly around the world, and hence 3GPP’s

5G Standards are expected to influence the standardiza-

tion of VEC and RA in VEC heavily.

6 Role of 5G and beyond: 5G and beyond can play a sig-

nificant role in vehicular edge computing (VEC). The

current works of the VEC are still in the early stages

as the 5G communication infrastructure has not been

standardized yet, and the fifth-gen and beyond network

is still in the development stage. With the help of the

new generation communication infrastructure, VEC can

become fully functional, leading to the reduction of com-

putational in resource-constrained users. The network

can optimize mobile resources by allocating computa-

tional resources and processing extensive data before

sending it to the cloud for computing. Due to the 5G

and beyond infrastructure, the latency and response

times could be improved, and autonomous driving could

become a reality. This infrastructure will not only sup-

port computational resource allocation but also can be

used for content delivery in vehicle infotainment sys-

tems. Since the latency is improved, it can be used in

all latency-critical applications like autonomous driving.

The computational offloading process can become more

efficient and reliable. The ability of VEC to interact with

5G and beyond networks in traffic routing and resource

allocation can lead to application portability which can

save tons of works of developers for designing multiple

versions of VEC in vehicular edge computing. Due to

the 5G and beyond communication, the energy efficiency

of the mobile edge node can be improved drastically,

which will prolong the battery span of the nodes, and

the need for frequent replacing of the battery will not

be required. With the rapid evolution of wireless com-

munication and networks, it is believed that artificial

intelligence and machine learning, in particular, will play

vital roles beyond 5G and 6G. The machine learning

algorithms can be deployed at the VEC nodes for predict-

ing the appropriate communication bandwidth. Artificial

intelligence can significantly improve the perception of

vehicular edge networks. It can assist in the optimal

allocation of resources for different issues in vehicular

applications. AI applies deep learning and machine learn-

ing for various resource allocation problems in VEC.

The computation offloading and resource allocations are

NP-hard and non-convex problems, and the variables

involved in it vary with respect to time and environ-

ment. The solutions to this kind of problem can be done

quickly using deep reinforcement learning (DRL). The
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DRL algorithms are complex, but the problems could be

solved on the cloud due to reduced latency in 5G and

beyond networks. The result can be immediately trans-

mitted to the vehicular node with a minimum amount of

delay. This is all possible due to the high bandwidth of 5g

and beyond infrastructure. These time-constrained prob-

lems can be computed on a cloud, and the result could be

directly transmitted to the vehicles with minimum delay

[65].

7 Scalability in IoV: There is a rapid increase in the number

of vehicles around the world. This requires more efficient

scheduling of resources for low latency, more reliability,

and rich computational and storage capability from time

to time. However, VEC is very much unevenly distributed

in vehicular networks. The density of vehicles varies with

time in different areas. Therefore, adaptability is a crucial

issue for varying network conditions [5].

8 Artificial intelligence (AI): AI needs a malignant-free

environment for good performance. Otherwise, it makes

the VEC vulnerable to cyber-attacks which may threaten

the road-safety. These attacks disrupt the algorithms and

system’s behavior resulting in wrong decisions that may

endanger people’s lives. To solve this issue, AI and

Blockchain can be integrated.

9 Blockchain: With the introduction of blockchain, the

computational complexity and latency increase which

may harm the performance of vehicular applications [7].

Thus, there is a need for high-level multi-layered VEC

architecture to meet the requirements of vehicular appli-

cations.

10 Cloud computing: In vehicular cloud computing, the

mobility of the nodes is very high, and there is a continu-

ous change in the topology. That is why it is challenging

to secure vehicular communication, authentication, and

the interoperability of different clouds. By implementing

cache services, cloud computing can enhance the effi-

ciency of vehicular applications. Further research is a

need in this field for improving the resource allocation

schemes for better vehicular communications.

11 SDN: SDN also has its disadvantages, especially when it

comes to security [66]. It also increases the complexity

of computational resources. Further research and more

paradigms are needed to make SDN safer.

Conclusion

In recent years, we can see a massive growth in intelli-

gent vehicles, which has led to rapid evolution in VEC

architecture. However, due to the vast amount of data gen-

erated by these vehicles, the computation of these data on a

constrained system is a significant challenge. This survey

discussed the computational resource allocation for VEC

architecture using technologies like SDN, Blockchain, AI,

and Cloud Computing. We have further discussed the math-

ematical models used by these technologies and parameters

optimized while allocating computational resources. Finally,

we have highlighted some of the current significant road-

blocks in implementing VEC on a massive scale and its

integration with upcoming technologies like 5G and beyond.

We have also highlighted the future research directions in

VEC.
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