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I. Introduction

T
he rapid development of our transportation systems 

has brought a great deal of convenience in our daily 

life, allowing both people and goods to be transported 

domestically and internationally in a safe and de-

pendable manner. It is estimated that more than one bil-

lion motor vehicles are owned by people around the globe, 

and it is likely that this number will doubled within one or 

two decades [1]. However, a number of issues related to this 

growth are of concern. In terms of safety, more than 30,000 

people perish from roadway crashes on U.S. highways ev-

ery year [2]. In terms of mobility, Americans lost an average 

of 97 hours a year due to traffic congestion, costing them 

nearly $87 billion in 2018, an average of $1,348 per driver 

[3]. In terms of environmental sustainability, 44.3 billion li-

ters of fuel were wasted worldwide due to traffic congestion 

in 2015 [4].

To address the aforementioned issues, connected and 

automated vehicle (CAV) technology has undergone signifi-

cant development in the last decade. The level of connectiv-

ity and automation within our vehicles has greatly increased, 

allowing these “equipped” vehicles to not only drive under 

partial or full automation using information from on-board 

sensors, but also behave cooperatively through vehicle-

to-everything (V2X) communications. At the heart of this 
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Abstract—Connected and automated vehicles (CAVs) have the potential to address a number of safety, 

mobility, and sustainability issues of our current transportation systems. Cooperative longitudinal motion 

control is one of the key CAV technologies that allows vehicles to be driven in a cooperative manner to 

achieve system-wide benefits. In this paper, we provide a literature survey on the progress accomplished 

by researchers worldwide regarding cooperative longitudinal motion control systems of multiple CAVs. 

Specifically, the architecture of various cooperative CAV systems is reviewed to answer how cooperative 

longitudinal motion control can work with the help of multiple system modules. Next, different opera-

tional concepts of cooperative longitudinal motion control applications are reviewed to answer where they 

can be implemented in today’s transportation systems. Different cooperative longitudinal motion control 

methodologies and their major characteristics are then described to answer what the critical design issues 

are. This paper concludes by describing an overall landscape of cooperative longitudinal motion control 
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technology, cooperative longitudinal motion control has 

been widely studied and developed by researchers around 

the world during the past several decades, allowing CAVs to 

cooperate with each other to form or maintain certain lon-

gitudinal formations. This is accomplished by the utilization 

of motion control systems that rely on on-board sensors and 

vehicle-to-vehicle (V2V) and/or infrastructure-to-vehicle 

(I2V) communication. The V2V communication mainly pro-

vides real-time state information (e.g., acceleration, speed, 

position) regarding the forward vehicle or vehicles, while 

the I2V communication primarily provides information about 

downstream traffic conditions or local speed suggestions as 

part of an active traffic management approach. By coopera-

tively controlling the longitudinal motions of multiple CAVs, 

some or all of the following transportation system benefits 

are possible: 1) Roadway capacity can be increased due to 

the reduction of gaps between vehicles; 2) Energy consump-

tion and pollutant emissions can be reduced due to the reduc-

tion of unnecessary speed changes and aerodynamic drag on 

following vehicles; 3) Driving safety is potentially improved 

since the detection and actuation time is shortened compared 

to manually driven vehicles; further, downstream traffic in-

formation can quickly be propagated upstream; 4) Customer 

satisfaction can be improved since the system behavior is 

more responsive to traffic changes, and the shorter following 

gaps can deter cut-ins of other vehicles [5].

Several research efforts reported in the literature have 

aimed at reviewing the cooperative control strategies of CAVs 

from a mathematical modeling perspective, such as [6]–[8]. 

In contrast, this paper addresses the different aspects of CAV 

longitudinal motion control, not only from a theoretical point 

of view, but also from the perspective of experimental im-

plementations. More generally speaking, this paper aims to 

answer three questions regarding cooperative longitudinal 

motion control: 1) How does it work with the utilization of 

multiple modules in a CAV system? 2) Where in the transpor-

tation systems can it be implemented? 3) What issues may 

be encountered during the design? It is important to point 

out that the scope of this survey paper is limited to the coop-

erative control of multiple CAVs, and does not address many 

existing efforts on various control methodologies for a single 

CAV (potentially with respect to the infrastructure).

The remainder of this paper is organized as follows: Sec-

tion II reviews the general architecture of a CAV system, 

which answers the question on how cooperative longitudi-

nal motion control works. The question of where cooperative 

longitudinal motion control can be implemented is addressed 

in Section III, which reviews the existing literature of adopted 

CAV technology in various traffic scenarios. Section IV an-

swers the question of what issues will be encountered while 

designing the cooperative longitudinal motion control. To this 

end, we have categorized the major control issues described 

in existing literature into three types: dynamic heterogeneity, 

communication issues, and string stability. Finally, Section 

V concludes the paper and raises some open questions that 

need to be addressed in future research and development.

II. Architecture of CAV Systems
Although this paper focuses on the “control” aspect of CAV sys-

tems, the control system cannot work without involvements of

other modules. In general, we will consider a communication

module, perception module, localization module, and plan-

ning module as shown in Fig. 1. In this section, we summarize

the system architecture of CAV systems based on existing lit-

erature, aiming to answer how cooperative longitudinal motion 

control works within an integrated environment of subsystem

FIG 1 General architecture of a CAV system with five modules: Communication, localization, perception, planning, and control.

Communication ControlPlanning

Perception Localization
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modules. Both hardware and software are being developed to 

realize the cooperative automation  functionality, where CAV 

systems are always installed as a set of distinct additional 

components in factory-standard production vehicles. While 

designing the architecture for CAV systems, two major engi-

neering requirements are usually considered: 1) Each function 

in the system architecture should be a self-contained unit that 

does not depend on other same-hierarchical-level functions, 

except for receiving its inputs; 2) The developed system archi-

tecture should be minimally intrusive in the existing vehicle 

architecture [9].

Applications based on intensive international research 

on cooperative automation of CAVs have been developed and 

implemented through numerous demonstrations. We have 

reviewed several existing CAV designs and implementations 

for cooperative automation purposes, such as those from the 

Grand Cooperative Driving Challenge (GCDC) [9]–[12], the 

University of California at Berkeley’s PATH Program [13], 

and the Federal Highway Administration (FHWA)’s CARMA 

platform [14]. Based on this review, we summarize the gen-

eral architecture of a CAV system as illustrated in Fig. 1.

A. Perception Module
Perception sensors equipped on a CAV system, such as cam-

eras, radar and/or LIDAR, are the primary sources of in-

formation regarding surrounding vehicles and the road 

environment. This sensor information is typically integrat-

ed and then provided to the planning module.

The perception sensors also play a crucial fallback role 

in terms of acquiring information about the driving environ-

ment, when information about other CAVs or the infrastruc-

ture from V2V/I2V wireless communication is impeded by 

wireless dropouts or channel congestion. Note that the scope 

of this paper is limited to longitudinal motion control of CAVs, 

where most existing related implementations are realized as 

SAE Level 1 automation [15]. Lateral control maneuvers like 

lane keeping and lane changing are considered to be con-

ducted by human drivers. Therefore, the perception sensors 

of such CAV systems need to focus primarily on providing the 

preceding vehicles’ information and/or traffic signals’ infor-

mation, such as the speed of the preceding vehicles, the clear-

ance with respect to the immediately preceding vehicle, and 

the Signal Phase and Timing (SPaT) information.

B. Communication Module
The communication module of a CAV system facilitates 

real-time and reliable wireless V2V/I2V communication. 

As can be seen from the communication module in Fig. 1, 

hardware communication devices installed on the ego-CAV 

receive information from other CAVs, while simultaneous-

ly sending its own state information to others through V2V 

communication. Additionally, it can also exchange infor-

mation with the roadside infrastructure through I2V com-

munication. The communication module of a CAV system 

can provide additional information that cannot be readily 

detected by perception sensors, and can generally provide 

information more quickly than through sensor detection 

and processing. This includes:

 ■ Information from other vehicles that are beyond sensor

ranges or that are occluded from view by intermediate

vehicles, or due to horizontal/vertical road curvatures.

 ■ Vehicle status information from other vehicles that can-

not be sensed by remote sensors (wheel speeds, fault status,

performance capabilities, etc.).

■ Immediate notification of speed change or steering

commands as soon as they have been issued to another

vehicle’s actuators, even before the vehicle’s motion has

begun to change.

■ Negotiations between cooperative vehicles regarding

desired maneuvers (merging, lane changing), so that

these can be done more safely and efficiently.

The information flow topology defines the origins and

destinations of information transmission among CAVs and the 

infrastructure, thus playing a very important role in informa-

tion exchange and sharing [16]. Some of the representative in-

formation flow topologies of CAVs are illustrated in Fig. 2. The 

first four are V2V-only information flow topologies, where no 

roadway infrastructure element gets involved in the informa-

tion flow. The latter three are V2V/I2V-hybrid information 

flow topologies, where the roadway  infrastructure element 

(e.g., traffic signal, variable speed limit, etc.) either sends its 

information to the leader of a vehicle platoon, or broadcasts 

it to all vehicles in the platoon. Red color vehicles in those to-

pologies denote CAVs that are in the “broadcast” mode, which 

not only directly send their own parameters to their immedi-

ate followers, but also share to some other following vehicles 

in the platoon. It should be noted that different information 

flow topologies may introduce various issues with respect to 

communication and string stability, which are reviewed and 

discussed in Section IV.

C. Localization Module
The localization module of a CAV system typically consists 

of two different hardware components: GNSS & INS (i.e., 

global navigation satellite system and inertial navigation 

system) and the coupled map matching component.

The GNSS & INS component serves as a combined sat-

ellite & inertial-based navigation system, which can be 

optionally augmented by terrestrial reference stations 

[10]. This component can provide precise position, move-

ment, and posture measurements for the self-localization 

and attitude determination of CAVs by differential correc-

tion. It should be noted that the relative positioning accu-

racy between the ego CAV and other equipped objects (i.e., 

other CAVs and/or infrastructure features) is not solely de-

termined by the GNSS update frequency. It is also based 

on the accuracy of the GNSS position measurements, and 

communication delay. Considering the aforementioned 
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factors, a GNSS update rate of 10 Hz is sufficient for general 

cooperative automation applications, and a faster sampling 

rate based on GNSS & INS integrated measurements will 

reduce positioning errors at higher vehicle speeds [17].

Map matching is important to a CAV system, especially 

for some of the applications where the ego CAV needs to ad-

just its longitudinal speed to merge with other CAVs coming 

from another lane at an intersection or a highway ramp. The 

correct assignment of CAVs to lanes is important, as well as 

their relative longitudinal gaps. Therefore, a map of the im-

plementation environment can be built a priori, and match 

with the vehicle coordinates (i.e., longitude, latitude, head-

ing) received from the GNSS & INS component. To compute 

distances between the ego vehicle and other vehicles, traffic 

signals, merging points or other objects, those objects need 

to be adjusted to their closest lanes by retrieving the nearest 

neighbor GNSS track vertex [10]. Each object’s coordinates 

can then be matched onto the associated lane to obtain its 

projection point, and then the relative longitudinal distance 

between two objects can be derived by summing the seg-

ment lengths falling in between those projection points on 

the same GNSS track (if they are on the same lane), or by 

calculating the difference of distances to the merging point 

of two GNSS tracks.

D. Planning Module
The planning module processes data received from the 

communication module, the localization module, as well as 

the perception module, and sends motion commands (of the 

ego vehicle) to the control module. The planning module of 

a CAV system usually includes the following components: 

sensor fusion, a vehicle controller area network (CAN bus), 

and a state estimator.

The sensor fusion component processes all sensing data 

received from the perception sensors and the communication 

module of the CAV system, and sends it to the state estima-

tor component. Unlike more highly automated vehicle (AV) 

systems that require the entire surrounding environment to 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG 2 Typical information flow topologies: (a) predecessor-following (PF), (b) predecessor-leader-following (PLF), (c) multiple-predecessor-following 
(MPF), (d) bidirectional (BD), (e) PF with the infrastructure sending information to the leader, (f) PLF with the infrastructure sending information to the 
leader, and (g) PF with the infrastructure broadcasting information.
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be precisely measured by multiple perception sensors, coop-

erative longitudinal motion control discussed in this paper 

requires less information regarding the surrounding environ-

ment, and therefore less data is fused in the sensor fusion com-

ponent. However, this component is crucial in harnessing the 

complementary nature of the vehicle’s sensors and communi-

cation systems, based on the following issues that Kianfar et al. 

encountered during the development of their CAV system [11]: 

1) When the ego-CAV is under tunnels or bridges, information

from GNSS will be unreliable. Therefore, in addition to the INS,

the position of the CAV can also be improved by using the sens-

ing data measured by the perception sensors if it can be associ-

ated with a reference map; 2) When the V2V communications

are impaired, the data measured by perception sensors will still 

be available to estimate the relative position, speed, and accel-

eration of the immediately preceding vehicle.

Although the GNSS & INS component is able to provide 

the speed of the ego-CAV, its measurement is highly affect-

ed by the GNSS connection and precision. For example, if 

the ego-CAV is traveling through a tunnel, speed informa-

tion will not be available from GNSS. More accurate and 

timely speed measurements should be obtained from the 

wheel-speed sensors that are an integral element of pro-

duction anti-lock braking and traction control systems. 

Therefore, wheel speed measured from the ABS system on 

the CAN bus is much more accurate and reliable. The CAN 

bus also allows the planning module of the CAV system to 

get access to many other vehicle sensors and states.

The state estimator component receives data from the 

sensor fusion, CAN bus, as well as map matching, processes 

the data with preset filters, and then computes a desired mo-

tion of the ego-CAV for the control module to realize. Motion 

planning has been developed in various ways for high-level 

AVs, including graph search-based planners, sampling-based 

planners, interpolating curve planners, and numerical opti-

mization approaches [18]. However, since we only focus on 

the longitudinal motion of CAVs in this paper, the planning 

process in the state estimator component becomes much eas-

ier: To simply choose when and by how much to accelerate or 

decelerate, or else to keep the current longitudinal speed. As 

mentioned in the CAV system developed by Martensson et al. 
[9], the accuracy of the state estimation highly depends on 

the quality of the available data (e.g., the accuracy, latency or 

the outage duration of the GNSS measurements or V2V com-

munication, and the performance of the perception sensors 

under the existing environmental conditions), and also the 

quality of the process estimation models.

E. Control Module
The control module of CAV systems consists of a software 

part and a hardware part: A controller component that in-

tegrates the motion control algorithms of the CAV, and the 

physical actuators of the CAV that actuate the longitudinal 

and/or lateral commands generated by the controller com-

ponent. Although lateral control is not within the scope of 

this paper, it is still illustrated in Fig. 1 to make the CAV 

system architecture complete.

The controller component in this control module receives 

the ego-CAV’s desired motion from the planning module, 

which includes information such as the reference trajectory 

or desired path of the CAV [19], the decision whether to join 

or leave a vehicle platoon [9], the desired position of the ego 

CAV in the vehicle platoon [11], or the desired arrival time at 

a specific location (e.g., traffic signal stop bar or ramp merg-

ing point) [20]. The cooperative longitudinal motion control, 

which is the major topic of this paper, will be developed and 

implemented in this controller component to determine the 

reference acceleration or speed at each time step. This ref-

erence value will then be converted into longitudinal com-

mands for the accelerate/brake pedal of the CAV, thereby 

allowing it to achieve the desired motion determined by the 

planning module [13].

III. Cooperative Longitudinal Motion Control Applications
The cooperative automation of CAVs can introduce benefits to

current transportation systems with respect to safety, mobility,

and environmental sustainability [21]. As one of its major tasks,

cooperative longitudinal motion control of multiple  vehicles has 

been widely studied. Many researchers have been focusing on

the mathematical modeling and software simulation of cooper-

ative longitudinal motion control under different cases in trans-

portation systems, while others have been contributing a good

deal of effort to the test of such systems on full-scale vehicles

to verify their effectiveness in realistic traffic conditions. In this

section, relevant studies are categorized into five different oper-

ational concepts: 1) cooperative adaptive cruise control (CACC)

and platooning, 2) cooperative merging at highway on-ramps,

3) speed harmonization on highways, 4) cooperative eco-driv-

ing at signalized intersections, and 5) automated coordination at 

non-signalized intersections. In this survey paper, we consider

both simulation-based theoretical work and experimental work.

As shown in the performance matrix (see TABLE I), upon 

finishing this survey, we qualitatively evaluated these five op-

erational concepts based on five different criteria: 1) The extent 

of theoretical research reported to date; 2) The extent of experi-

mental research reported to date; 3) The potential transporta-

tion safety benefits; 4) The potential mobility benefits; and 5) 

The potential environmental benefits. The first two criteria are 

independent from the latter three criteria, so we differentiate 

them by different markings in the performance matrix.

A. Cooperative Adaptive Cruise Control (CACC) and Platooning

1) Overview of the Operational Concept
Cooperative adaptive cruise control and platooning are terms

that have been adopted and utilized relatively loosely dur-

ing recent years, such that different researchers visualize

different functions and capabilities when discussing CACC
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or platoon-based systems. At the heart of the concept is the 

merging of adaptive cruise control (ACC), a subset of the 

broader class of automated longitudinal speed control sys-

tems, with a cooperative module enabled with V2V commu-

nication and/or I2V communication [5]. In this subsection, 

only V2V communication-based CACC and “platoon” studies 

are discussed, while some I2V communication-based CACC 

studies are covered in some of the latter subsections.

By applying cooperative longitudinal motion control al-

gorithms, CACC and platooning allow CAVs to form vehicle 

strings or platoons with shorter inter-vehicle distances, 

leading to increases of roadway capacity, decreases of en-

ergy consumption due to the mitigation of aerodynamic 

drag and unnecessary speed fluctuations, and also possi-

bly in the long-term labor cost savings due to the elimina-

tion of human drivers in the following CAVs. A significant 

amount of work has been conducted so far to study cooper-

ative longitudinal motion control in CACC and platooning, 

both theoretically and experimentally.  Some researchers 

have also looked into the extreme operational case of CACC 

and platooning, when multiple CAVs conduct coordinated 

active brake control to avoid longitudinal collisions, and 

meanwhile mitigate the relative kinetic energy density be-

tween any pair of CAVs in the platoon [22]–[24].

The differences between CACC and platooning should be 

clarified to minimize confusion. CACC is a simple extension 

of ACC, based on the addition of information communicat-

ed among vehicles and/or between vehicles and the road-

way infrastructure. Drivers may choose to enter and leave 

strings of CACC vehicles at will, and there are no special re-

sponsibilities for the driver or the control system of the first 

vehicle in the string. Platoons are more formally organized 

sequences of vehicles using cooperative longitudinal motion 

control, in which joining and leaving the platoon are man-

aged by the control system or the driver of the first vehicle. 

The car following control discipline (i.e., spacing policy) of 

CACC systems is generally based on maintaining a constant 

time gap, while the discipline for platoons is more likely to 

be based on a constant clearance distance, which makes it 

more challenging to achieve string stability [5].

2) Theoretical Research and Simulations
Extensive research has been conducted in the field of CACC, 

where the literature reviews conducted by Dey et al. and

Wang et al. covered several different aspects of this opera-

tional concept of CAVs [25, 26]. Specifically, cooperative lon-

gitudinal motion control is considered as the core of a CACC 

system, since it keeps the string stability of a CACC string

and avoids rear-end collisions of multiple CAVs.

Linear feedback control has been widely adopted as the 

key cooperative methodology for much previous CACC work. 

Van Arem et al. developed a feedback control algorithm to 

compute the reference acceleration, so it can be further con-

verted to a position of accelerate/brake pedal by the vehicle 

model and control the motion of the CAV [27]. This proposed 

methodology was simulated in the microscopic traffic simu-

lation model MIXIC to examine the impact of CACC on the 

traffic flow. Double-integrator consensus algorithms have 

been adopted widely for cooperative longitudinal motion con-

trol of CACC vehicle strings. Similar to van Arem et al., many 

other double-integrator consensus algorithms also compute 

a reference acceleration based on the speed and position of 

the ego-CAV and its predecessor [28]–[30]. Wang et al. further 

proposed a lookup table-based approach to select the damp-

ing gain of the double-integrator consensus algorithm, satis-

fying different constraints of CACC strings [31].

Optimal control has been considered as another ma-

jor approach for the longitudinal cooperation in a CACC 

string by many research studies. In general, the design of 

an optimal controller can be equivalently formulated as a 

structured convex optimization problem with multiple ob-

jectives (e.g., minimizing energy consumption) and system 

constraints. Unlike most linear feedback control approaches 

that only consider vehicle speed and position as inputs, op-

timal control approaches often take nonlinearity and con-

straints into account, such as powertrain characteristics and 

Extent of Work Using CAVs Potential Benefit to Transportation Systems

Theoretical Work Experimental Work Safety Benefit Mobility Benefit Environment Benefit

A. Cooperative adaptive cruise control 

and platooning

B. Cooperative merging at highway 

on-ramps

C. Speed harmonization on highways

D. Cooperative eco-driving at signalized 

intersections 

E. Automated coordination 

at non-signalized intersections

 Table I. Performance matrix of different cooperative longitudinal motion control operational concepts.
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vehicle aerodynamics. Van de Hoef et al. formulated a con-

vex optimization problem with vehicle dynamics constraints 

for a group consisting of a coordination leader and its co-

ordination followers, aiming to maximize the fuel savings 

[32]. Wang et al. proposed a platoon-wide Eco-CACC system, 

aiming to minimize the platoon-wide energy consumption 

and pollutant emissions with vehicle dynamics constraints 

at different stages of the CACC operation [33]. A further 

study about the intra-platoon vehicle sequence was con-

ducted by optimization methodology [34]. Turri et al. studied 

the cooperative look-ahead control of a heavy-duty CACC 

system, where the fuel calculation of vehicles is formulated 

as an optimal control problem to find the optimal engine 

speed to minimize fuel consumption with traffic safety and 

mobility constraints [35].

It should be noted that, besides the aforementioned two 

primary cooperative longitudinal motion control method-

ologies, there are many other control approaches of CACC 

and platooning, including model predictive control (MPC) 

[11], [110]–[113], H3  control [114]–[118], sliding mode con-

trol (SMC) [119], and other methodologies [120]–[125]. Their 

advantages and disadvantages will be analyzed in Section 

IV, categorized by separate control issues.

3) Experimental Implementation
The earlier research on cooperative longitudinal motion

control emphasized closely-coupled platooning with high-

er levels of automation, including the automatic steering

control designed by University of California at Berkeley’s

PATH Program at San Diego, California, in 1997 [36], [37].

More recent research has come from the opposite direc-

tion, building on production ACC systems that only auto-

mate vehicle following, while the drivers perform the other 

functions. PATH prototyped the first such cooperative ACC

system in the early 2000s [38] and used it for a series of

experiments with drivers from the general public to deter-

mine their preferences for use of the available time gaps

between 0.6 s and 1.1 s in public freeway traffic [39]. A

second-generation CACC system was prototyped by PATH

and Nissan on four Infiniti M56 vehicles and was tested

under a variety of conditions to ensure string stability of

the multiple-vehicle string [13]. Research on these vehicles

also showed the stability enhancements and performance

improvements of the CACC system compared to conven-

tional ACC and to an ACC controller based on the popular

IDM+ vehicle following model. The car-following dynamic

responses of these ACC and CACC systems were used to de-

rive simplified car-following models for incorporation into

traffic microsimulations [40], and those models have been

applied to several studies showing the potential for CACC

to dramatically improve traffic flow at higher market pen-

etrations and traffic volumes [41]–[43]. Besides the related

work conducted by the PATH program, a good deal of pio-

neering work has also been accomplished by researchers

from the Netherlands. The Netherlands Organization for 

Applied Scientific Research (TNO) equipped several Toy-

ota Prius with CACC functions to conduct highway vehicle 

platooning [44]. Advanced vehicle platooning projects were 

completed in the GCDC held in the Netherlands in 2011 

[45]. This challenge aimed to support and accelerate the 

introduction of CAVs in everyday traffic, and competitions 

like this provide public visibility about the practical case of 

vehicle platooning based on theoretical studies.

Note that a large portion of cooperative control work 

on CACC has been developed for heavy-duty trucks, which 

are likely to have the best business case for early adop-

tion of the technology. These are typically referred to as 

“truck platooning” experiments, where an illustration of 

the truck platooning on highways is shown as Fig. 3. In the 

U.S., the PATH Program has developed three generations

of proof-of-concept prototype truck platooning systems, in-

cluding the first two based on Freightliner Century model

tractors, and the third based on Volvo tractors [46]. Differ-

ent cooperative operational concepts were developed and

tested, including string formation, steady-state cruising,

string split maneuvers, and managing faults or abnormal

operating conditions [47]. Peloton Technology has focused

on two-truck platooning product development since the

company’s founding in 2011, where its system has reported

a 4.5% energy savings for the lead truck and 10% for the

following truck [48]. In Japan, the Energy ITS project led to

the development of an automated truck platooning system,

which achieved a 14% energy saving when the trucks are

empty-loaded and the gap is 10 m, and a 15% energy sav-

ing when the trucks are ordinarily loaded and the gap is

4 m [49]. In Europe, similar work was conducted by RWTH

Aachen University’s “KONVOI” project, where the field test

was conducted on German highways with one leading hu-

man-driven truck and three following trucks using CACC

speed control and automatic steering [50].

Truck platooning mainly aims at reducing air drag and 

thereby energy consumption, which is slightly different from 

passenger vehicle platooning which primarily aims at im-

proving traffic flow efficiency. In the longer term, truck pla-

tooning system developers are aiming to achieve higher level 

automation of the following trucks so that they can be operat-

ed without drivers, which will lead to major labor cost savings 

and some relief from the current shortage of truck drivers.

V2V Communication

Truck Platooning

With Predecessor-Leader-Following Topology

FIG 3 CACC for heavy-duty trucks: “Truck platooning”.
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B. Cooperative Merging at Highway On-Ramps

1) Overview of the Operational Concept
Traffic merging at highway on-ramps is a major conflict

that generates safety and mobility concerns. The difficulty

arises for the driver along the on-ramp where he/she has

to discern whether to accelerate or decelerate to enter the

main line safely and may not have a clear line of sight to the

mainline traffic.

Meanwhile, the drivers on the mainline highway may have 

to modify their speeds to permit the entrance of merging ve-

hicles, thus affecting the traffic flow [51]. To address these is-

sues, cooperative automation of CAVs has been studied and 

applied to the highway on-ramp merging case, where different 

control algorithms have been proposed and implemented to 

allow CAVs to merge with each other in a cooperative manner. 

Existing related work was reviewed by Rios-Torres et al. [7], 

Scarinci et al. [52], and Zhao et al. [53], respectively. Two points 

need to be noted for the merging case:

 ■ The “merging” maneuver usually denotes a lane change 

behavior, which involves the lateral motion control of

CAVs. However, within the scope of this survey, we are

interested in longitudinal control that adopts V2V and/

or I2V communication to regulate vehicle longitudinal

gaps before they conduct the lane change rather than

focusing on the lateral motion maneuver.

 ■ The majority of the literature in this survey focuses on

cooperative longitudinal motion control of CAVs. How-

ever, a few of them also considered the planning  process,

which formulated the cooperative merging into a schedul-

ing problem. Only if all upcoming CAVs are strategically

scheduled into certain merging sequences, their devel-

oped cooperative longitudinal motion controllers can be

applied to control CAVs before they reach the conflict zone.

2) Theoretical Research and Simulation
The concept of utilizing virtual vehicles of a CACC system in the

highway on-ramps cooperative merging case was originated

from Uno et al. [54]. The proposed approach maps a virtual 

vehicle onto the highway main line before the actual merg-

ing happens, allowing vehicles to perform safer and smoother 

merging maneuver. Lu et al. applied a similar idea in their 

system, where they first formulated the merging problem dif-

ferently with respect to two different geometric layouts of the 

road (i.e., either with or without a parallel acceleration lane), 

and then proposed a speed based closed-loop adaptive control 

method to control the longitudinal speed of merging CAVs [55]. 

Chou et al. further investigated the virtual vehicle method in 

cooperative merging using a high-fidelity traffic microscopic 

model, where its effects were simulated for a baseline case with 

conventional manual merging as well as cases with 50%, 60%, 

75% and 100% market penetration of CAVs [56].

Wang et al. proposed a distributed cooperative highway 

on-ramp merging system using both V2V communication 

and I2V communication, where two vehicle strings are 

formed on the main line and on-ramp, respectively [57]. As 

shown in Fig. 4, CAVs will be assigned with sequence IDs 

based on their arrival times at the merging point through 

I2V communication, and will cooperate with their neigh-

boring vehicles (either real ones on the same lane or virtual 

ones on the other lane) through V2V communication. The 

distributed consensus algorithm was proposed to control 

the longitudinal motion of CAVs in this proposed system. 

In addition to that, agent-based modeling and simulation 

of the proposed on-ramp merging system were further con-

ducted in the game engine Unity [58].

Other than the virtual vehicle concept, many other ap-

proaches were also proposed to realize the cooperative merg-

ing case. Specifically, Dao et al. proposed a distributed control 

protocol to assign vehicles into vehicle strings in the merg-

ing scenario [59]. Rios-Torres et al. presented an optimization 

framework and an analytical closed-form  solution that allowed 

online coordination of CAVs at on-ramp merging zones [60]. 

In addition, Liu et al. investigated the impact of CACC vehicle 

string operation on the on-ramp merging areas [42]. Their 

study revealed that the highway capacity increases greatly as 
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FIG 4 V2X-based distributed cooperative on-ramp merging system [57].
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the CACC market penetration rate increases, with a maximum 

value of 3080 veh/hr/lane at a 100% market penetration.

3) Experimental Implementation
While the aforementioned simulations are encouraging,

their transition to experimental implementations are far

from straightforward. Experiments need to be conducted

on closed test courses with suitable road geometry (merg-

ing on-ramps and merge transition lanes of suitable length) 

and the experiments pose significant safety challenges be-

cause faulty control of vehicle speed or lane changing can

lead to serious crashes. Therefore, much less experimental 

implementations of cooperative merging have been con-

ducted by researchers worldwide.

Researchers from the PATH program conducted experi-

mental tests on their cooperative automated merging sys-

tems both on their RFS test track and on the Crows Landing 

test track [61]. The proposed general real-time algorithm 

was successfully implemented on their CAVs using V2V com-

munications to negotiate the maneuvers and coordinate the 

speed control of the vehicles. Milanes et al. proposed a fuzzy 

logic-based controller to act on the CAV’s longitudinal motion 

control actuators (i.e., engine and brake controls), following 

the references set by a decision algorithm [51]. A local con-

trol station (LCS) was developed to serve as an infrastruc-

ture, which receives information from the CAVs in its domain, 

analyzes this information to determine when a potentially 

risky situation may arise, and notifies the CAVs of suggested 

maneuvers through I2V communication. Their experimental 

implementation emulated a congested traffic situation by al-

lowing a Citroen to use ACC to follow another one at a low 

speed. Another Citroen came from the ramp and merged be-

tween these two vehicles, which was decided by LCS. This 

work was part of the AUTOPIA program, which aimed to de-

velop highly AVs using production vehicles and tested them 

in the real-world traffic [62].

Recently, FHWA conducted an experimental implemen-

tation of a connected and automated lane change maneuver 

using two CAVs and a manually driven lead vehicle [63]. A 

simplified PID controller was developed to coordinate the 

longitudinal distance and speed of different vehicles, and 

the results from their test at the Federal Law Enforcement 

Training Center in Cheltenham, MD showed its effective-

ness in cut-in, front-join and back-join scenarios, respec-

tively. Researchers from University of Minnesota [64], as 

well as East Tennessee State University [65], [66] also con-

ducted similar experimental implementations on highway 

on-ramp merging scenarios using V2V communication.

C. Speed Harmonization on Highways

1) Overview of the Operational Concept
Speed harmonization is the shorthand term often applied

to the group of highway traffic management strategies that

aims to reduce temporal and spatial variations of traffic 

speed, so as to increase safety and mobility of the transporta-

tion systems, meanwhile reducing negative impacts on the 

environment [67]. Within the scope of this survey, we review 

cooperative longitudinal motion control applications that 

seek to automatically adjust vehicle speeds on highways.

2) Theoretical Research and Simulation
Most of the foundational research efforts in this topic area (e.g.,

[68], [69]) focused on displaying mandatory speeds on infra-

structure-mounted variable speed limit (VSL) signs (which are 

legally equivalent to fixed speed limit signs), or sharing speed

harmonization information with connected vehicles (CVs) and

allowing their drivers to respond to that information. Within

the scope of this survey, we also review the speed harmoni-

zation cases where the longitudinal  motions of multiple CAVs

are controlled by  cooperative  longitudinal motion control

methods. Taking advantage of CAV technology, Ghiasi et al.

proposed a speed harmonization algorithm that smooths the

speed trajectories of vehicles to improve traffic mobility and

reduce energy consumption [70]. Their proposed algorithm

is also applicable to mixed-traffic environments where only a

portion of vehicles are CAVs. Malikopoulos et al. developed an

optimal control-based speed harmonization for CAVs, and the

proposed method was estimated to reduce 19–22% fuel con-

sumption for each vehicle compared to the baseline scenario,

in which human-driven vehicles were considered [71].

As one of the traffic control approaches of speed harmo-

nization on highways, VSL can be applied based on a variety 

of strategies that seek to modify different aspects of traf-

fic flow. Some researchers combined VSL with some other 

cooperative longitudinal motion control design to achieve 

a better system performance. Wang et al. developed a VSL 

based longitudinal motion control algorithm for CAVs using 

I2V communication, predicting that this speed harmonization 
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FIG 5 Conceptual illustration of a CACC-enabled VSL system.
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approach reduces total travel time and average energy con-

sumption [72]. Kondaker et al. established an I2V-based VSL 

system, where CAVs with CACC functions can receive down-

stream information much in advance [73]. The sensitivity 

analysis predicted that the developed approach will outper-

form the uncontrolled scenario by 20% in travel time reduc-

tions, 6–11% in safety improvements, and 5–16% in energy 

consumption reductions, respectively.

3) Experimental Implementation
Although there were quite a few practices and field tests

of speed harmonization cases worldwide during the past

decade, such as the ones conducted in the U.S., Germany

[74], France [75], Sweden [76], and Greece [67], none of these 

used CAV technology. More recently, there were only a very

few experimental implementations of CAV-based speed har-

monization cases. FHWA conducted a speed harmonization

implementation on I-66 near Washington, DC with three

CAVs that were equipped with I2V communication, and

three more probe vehicles [67]. A simplified speed harmo-

nization algorithm was proposed to control the longitudinal

motion of the CAVs, where those three CAVs were positioned

next to each other to regulate the upstream traffic speed

along the highway. The impacts of this speed harmoniza-

tion implementation were measured by those three probe

vehicles and roadside traffic speed detectors, showing that

the traffic stream trajectories after this speed harmoniza-

tion approach reduced oscillatory behavior as characterized 

using the power spectral densities of the measurements.

D. Cooperative Eco-Driving at Signalized Intersections

1) Overview of the Operational Concept
Cooperative eco-driving at signalized intersections using

I2V communication has been a research interest for  multiple

research organizations globally, including “Eco-Approach

and Departure” application proposed in the U.S. [77], and

“GLOSA” application proposed in the U.K. [78]. In their ap-

plications, the SPaT information is sent to the approaching

CAV, so itself can plan its longitudinal speed trajectory to

avoid unnecessary speed changes or full stops in order to 

reduce energy use and emissions.

Based on the original single-vehicle eco-driving applica-

tion, some researchers proposed to also add V2V communica-

tion in the loop, aiming to increase the system-wide benefits. 

As illustrated in Fig. 6, the leader of a CACC vehicle string can 

receive SPaT information from the roadside equipment unit, 

and share it with its following CAVs while traveling along sig-

nalized corridors [79]. A typical scenario of this case will be 

that, when the leading CAV decides to decelerate and slowly 

approach the intersection to avoid a full stop at the intersec-

tion during the red phase, upstream CAVs can also follow its 

maneuver through V2V communication based on their coop-

erative longitudinal motion controllers to save energy.

2) Theoretical Research and Simulation
Yang et al. developed a cooperative longitudinal motion

control algorithm for CAVs traveling through isolated sig-

nalized intersections, where the optimal longitudinal

speed trajectory was computed to minimize the energy

consumption, ensuring that each approaching CAV arrives

at the intersection as soon as the last CAV in the queue is

discharged [80]. Microscopic traffic simulation showed that

the proposed system can produce vehicle energy savings

up to 40% when the CAV market penetration rate is 100%.

Wang et al. proposed a novel cluster-wise cooperative sys-

tem to reduce energy consumption of CAVs traveling along

signalized corridors [81]. All CAVs approaching a particular

intersection are grouped into different clusters with deter-

ministic sequences based on their estimated time-to-arrival

at the intersection. Each vehicle cluster consists of several

CACC platoons in different lanes, and different CACC pla-

toons are coupled by the coordination among platoon lead-

ers. The longitudinal speeds of all CAVs in this system were

controlled by separate cooperative longitudinal motion

controllers. The numerical simulation showed that the pro-

posed cluster-wise system can reduce the energy consump-

tion by 11%, and reduce the pollutant emissions by 18%,

respectively, compared to the baseline scenario with 100%

conventional vehicles in the system.

In addition to the aforementioned literature, some re-

searchers also put their efforts into this case by considering 

the mixed traffic environment, i.e., the penetration rate of 

CAVs is not 100%. Zhao et al. developed a cooperative eco-

driving longitudinal motion control scheme for a group of 

vehicles with mixed CAVs and conventional vehicles [82]. A 

complicated interaction scheme was developed by them to 

allow CAVs and conventional vehicles to cooperate with each 

other, and the numerical simulations with different penetra-

tion rates showed the overall energy consumption continues 

to drop as the penetration rate of CAVs increases. Wang et al. 

proposed a cooperative eco-driving system whose idea can 

be simply illustrated by Fig. 6 [83]. Microscopic simulation 

was conducted using real-world traffic data (traffic count FIG 6 CACC-enabled cooperative eco-driving at signalized corridors [83].
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and SPaT), and the results showed that under a certain pen-

etration rate of CAVs in the traffic environment, the proposed 

cooperative eco-driving application may even introduce neg-

ative energy impact on the traffic environment, due to the 

conservative driving behavior of CAVs and the lack of coop-

eration between a CAV and a conventional vehicle.

Another scenario at signalized intersections in which 

cooperative longitudinal motion control can make a sig-

nificant difference is likely to be the coordinated start of 

CAVs. Shladover et al. specified in their work that, even 

if the I2V communication is not adopted in this scenario, 

the first CAV stopped at a signal in a queue can broadcast 

its state information so that any following CAVs can accel-

erate in a synchronized fashion [5]. It was expected that 

cooperative longitudinal motion control of multiple CAVs 

in the string will enable a much quicker clearance of the 

queue at the signal, increasing the intersection throughput 

or facilitating the selection of shorter signal cycles without 

sacrificing throughput.

A higher dimension of CAVs conducting cooperative 

eco-driving at signalized intersections is the joint optimiza-

tion of SPaT information and vehicle trajectories to find the 

global optimum for the combined traffic and vehicle control 

problem [84]–[87]. In those studies, different numerical and 

microscopic traffic simulation results showed that greater 

environmental benefit and/or mobility benefit of the signal-

ized intersections can be gained than from the aforemen-

tioned approaches, where only cooperation among multiple 

CAVs is considered. However, such studies may not be appli-

cable to our current traffic environment, since many of them 

made the assumption that all vehicles in the system are CAVs 

[88], or all traffic signals have fixed cycle lengths [89].

3) Experimental Implementation
A pioneering work of eco-driving at signalized intersec-

tions was jointly conducted by University of California,

Riverside, BMW Group and PATH in FHWA’s exploratory

advanced research (EAR) program in 2012 [90]. It was fo-

cused on providing advice to the driver about the recom-

mended speed to approach the signalized intersection in a

smoother way, and hence to reduce fuel consumption. This

basic concept was then extended to the AERIS Project’s

Eco-Signal Operations scenario [91], [92], and some recent

eco-driving projects as well [93]. The Multi-Modal Intel-

ligent Traffic Signal System (MMITSS) project developed a

family of intersection signal control applications for CAVs,

with goals of eco-driving and improving efficiency and

throughput of the transportation systems [94]. When CAVs

reach a high market penetration and cooperative longitu-

dinal motion control can be applied, the general intelligent 

traffic signal control (ISIG) can ensure that CACC strings

are not broken by signal phase changes, allowing all CAVs

in the string to travel through the intersection within the

same green phase.

Although there were several projects focused on the coop-

erative control of a single CAV with respect to traffic signals, 

to this stage, there is no published experimental implementa-

tion about the cooperative control of multiple CAVs and traf-

fic signals. However, including the AERIS, MMITSS, the U.S. 

Department of Energy’s SMART Mobility project [95], and the 

FHWA’s TOSCo project [96], there are several ongoing proj-

ects in the U.S. that are looking into testing this use case with 

realistic CAVs. It can be expected that more experimental im-

plementations on cooperative eco-driving at signalized inter-

sections will be conducted by public agencies and research 

organizations worldwide in the coming years.

E. Automated Coordination at Non-Signalized Intersections

1) Overview of the Operational Concept
The cooperative automation of CAVs at non-signalized inter-

sections has been another popular topic in the research field

of intelligent transportation systems for a long time. Since in-

tersections are one of the most common traffic conflict situa-

tions, much work has been conducted to increase traffic safety

and improve traffic flow by applying V2V communication and/

or I2V communication. Specifically, approaching CAVs can be

assigned specific sequences by the proposed planning/sched-

uling algorithms, and their motions will be controlled by the

proposed cooperative longitudinal motion controllers once

the planning/scheduling is finished.

Although the concept has been appealing for research-

ers, who have produced many simulation studies, there are 

serious impediments to practical realization of the concept: 

It ignores the needs of pedestrians and cyclists; It requires 

a 100% market penetration of highly automated vehicles; It 

is severely fault intolerant, since even minor errors in the 

motion of a vehicle are likely to cause severe crossing-path 

crashes with vehicles traveling in the orthogonal direction.

2) Theoretical Research and Simulation
Pioneering work of automated coordination of multiple CAVs 

at non-signalized intersections were conducted by research-

ers in University of Texas at Austin. Dresner et al. proposed

a multi-agent automated intersection system, where the res-

ervation-based approach was shown to outperform current

intersection with either traffic lights or stop signs in a simu-

lation study [97]. On top of that, Fajardo et al. developed a

first-come-first-served reservation system for CAVs traveling

through the intersection, and a comprehensive microscopic

traffic simulation showed that it would significantly outper-

form a traditional traffic signal in minimizing delay [98].

In 2004, Neuendorf et al. adopted the virtual platoon con-

cept to propose a decentralized cooperative longitudinal mo-

tion controller for CAVs at automated intersections, where 

the general idea can be illustrated by Fig. 7 [99]. Medina et 

al. further developed an automated intersection system for 

CAVs using a similar approach, which consists of a bi-level 
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 architecture: a supervisory level with subsystems target vehi-

cle assignment and control reconfiguration; and an execution 

level with cooperative vehicle motion control design [100]. Xu 

et al. also adopted the virtual platoon methodology to project 

vehicles approaching from different directions of an intersec-

tion into a virtual lane [101]. Jin et al. proposed a multi-agent 

motion management protocol for CAVs to form virtual pla-

toons based on V2V communication before approaching the 

non-signalized intersection [102]. Compared to the conven-

tional traffic signal control system, the proposed system was 

predicted to shorten the average travel time by 30% and to 

reduce the energy consumption by 23%.

3) Experimental Implementation
For the use case of automated coordination at non-signal-

ized intersections, there were a few experimental imple-

mentations conducted by European research organizations,

such as the Cybercars and Cybercars-2 projects in France

[103], [104]. However, including the aforementioned two

projects, most test projects put their research focus on the

motion planning of CAVs, i.e., how to plan the trajectories of

CAVs so they will not collide with each other while travel-

ling through the intersection. Very limited literature can be

found that discussed the motion control of CAVs in their im-

plementations of automated coordination at non-signalized

intersections, since it is a relatively easier task compared to

the scheduling and coordination of multiple CAVs.

IV. Control Issues
In the aforementioned case studies, multiple CAVs need to

be coordinated to maintain safe inter-vehicle distances while 

accomplishing specific cooperative driving tasks, such as

speed regulation, car following, lane changing, and overtak-

ing. In these tasks, cooperative longitudinal motion control

plays a significant role to improve system performance and

ensure vehicle safety. This topic has been heavily studied in 

a variety of research, in which not only control performance 

(e.g., internal stability, string stability, scalability, and robust-

ness), but also operational performance (e.g., safety, fuel 

economy, and riding comfort) was considered.

In cooperative longitudinal motion control of multiple 

CAVs, some problems still need to be addressed. In terms of 

vehicle dynamics, due to the existence of nonlinear com-

ponents (e.g., engine, transmission, tire resistance, and 

aerodynamic drag), longitudinal vehicle dynamics are in-

herently nonlinear and heterogeneous. In terms of wireless 

communication networks, due to the uncertain reliability 

of wireless communication links, communication time de-

lays and packet losses are unavoidable in the information 

sharing process among vehicles. With these time-delayed 

and partially missing measurements of system states, the 

controllers of CAV systems need to be carefully designed 

to reduce the adverse impact of vulnerable feedback chan-

nels on system performance. Moreover, CAV systems are 

expected to not only improve their own performance but 

also help smooth the entire traffic flow. In a CACC string 

(or a vehicular platoon), a typical application of cooperative 

longitudinal motion control of CAVs, it is required that the 

car-following errors should not be amplified when propa-

gating upstream, which is called string stability.

To address the issues mentioned above, different types of 

control methods have been proposed, e.g., distributed con-

sensus control [27]–[30], [44], [105]–[109] distributed opti-

mal control [33], [34], distributed model predictive control 

(DMPC) [11], [110]–[113], distributed  H3  control [114]–[118], 

distributed sliding mode control (DSMC) [119], and some 

other approaches [120]–[125]. Since some of the existing lit-

erature already reviews different control methods used in 

cooperative longitudinal motion control, e.g., [1], [6], [25], 

[26], [126], in this paper, we mainly focus on the solutions 

for three typical control issues, i.e., dynamics heterogeneity, 

communication issues, and string stability.

A. Dynamics Heterogeneity
To simplify the problem of cooperative longitudinal motion 

control, many studies assume that the dynamics of multiple 

CAVs are homogeneous, which facilitates the modeling and 

analysis of CAV systems. For example, in [16], a CAV system 

was treated as a homogeneous multi-agent system so that it 

can be decomposed into N  (the number of vehicles) subsys-

tems with the same dimension as a vehicle’s dynamics mod-

el. This method was also used in [118], [127] to synthesize 

robust  H3  platoon controllers. However, the assumption of 

homogeneity is not realistic in practice due to the diversity 

of vehicle models and types and the individual differences in 

powertrain components. Therefore, dynamics heterogeneity 

should be considered in the control design process.

For CAV systems with heterogeneous vehicle dynam-

ics, a simple information flow topology will facilitate the FIG 7 Virtual platoon coordination at a non-signalized intersection.
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 system modeling and analysis. For example, [128], [129] 

consider CACC systems with the predecessor-following 

(PF) topology. In this case, the CAV system naturally has 

a cascade structure, so that we only need to consider two 

consecutive vehicles, which can be taken as the basic ele-

ment of a CACC system. However, when it comes to complex 

information flow topologies, these cascade structures may 

no longer exist. In this case, the effects of heterogeneous 

dynamics are coupled by the complex information flow to-

pologies, which need to be properly addressed.

In the literature, one typical approach to address dynam-

ics heterogeneity is to treat it as a type of heterogeneous 

model uncertainties imposed on nominal homogeneous 

systems. By doing so, the main task is reduced to control-

ler design with robustness to these heterogeneous model 

uncertainties. For example, in [114], vehicles’ dynamics 

heterogeneity was treated as a type of additive uncer-

tainties ,A Bi iT TR^ h imposed on linear vehicle dynamics 

, ,A BR^ h  then the heterogeneous dynamics model becomes 

, , , .A B A B A Bi i i iT TR R R= +^ ^ ^h h h  In contrast to this, ve-

hicles’ dynamics heterogeneity was modeled as productive 

uncertainties in [115]–[117], where the transfer function 

from control input u si ^ h to vehicle acceleration a si ^ h was 

modeled as /G s a s u s P s s1 Ωi i i iT= = +^ ^ ^ ^ ^ ^h h h h h h with 

nominal model P s^ h and model perturbation .sΩ iT^ h  

Based on these models, distributed  H3  control method can 

be used for system stabilization as well as to minimize the 

impact of heterogeneous uncertainties on nominal systems. 

In particular, as suggested by [117], the eigenvalue decom-

position and linear transformation method can be used to 

address the coupling of controllers induced by complex 

information flow topologies, thus the design of distributed 

controllers does not rely on the scale of CAV systems.

Another approach to address dynamics heterogeneity is to 

drive the heterogeneous dynamics to a homogeneous refer-

ence model with guaranteed control performance. By doing 

so, the closed-loop behaviors of heterogeneous vehicles will 

converge to the homogeneous reference models, for which 

control methods for homogeneous CAV systems can be ap-

plied. For example, [130] applied model reference adaptive 

control (MRAC) to CAV systems subject to parametric uncer-

tainties so that vehicles’ heterogeneous dynamics converge to 

string stable reference dynamics. Adaptive sliding mode con-

trol was used in [131] to drive vehicle acceleration to a given 

homogeneous sliding surface so that vehicles behave homo-

geneously when sliding variables converge to zero. Similar 

techniques were also used in [132] to address heterogeneous 

parameter mismatches in nonlinear vehicle dynamics.

In essence, the aforementioned two approaches are both 

implicit methods, which means dynamics heterogeneity is 

not directly addressed but viewed as equivalent uncertain-

ties or disturbances on homogeneous systems. Actually, they 

are both based on the assumption of limited deviations from 

homogeneous systems. In detail, robust control methods try 

to stabilize nominal homogeneous systems as well as to min-

imize the impact of bounded dynamics heterogeneity, while 

adaptive control methods try to drive a heterogeneous sys-

tem to a homogeneous reference model. In contrast to these 

implicit methods, there are also explicit methods that ad-

dress dynamics heterogeneity directly. One typical method is 

DMPC, or distributed receding horizon control (DRHC). For 

example, in [110], DRHC was applied to CACC systems with 

continuous-time vehicle dynamics and the PF topology. This 

study was further extended to the case of discrete-time ve-

hicle dynamics and general unidirectional topology in [112]. 

In these studies, the formulation of closed-loop dynamics 

was not required in stability analysis, and dynamics hetero-

geneity can be directly considered in the design of local opti-

mization problems. Moreover, for some specific information 

flow topology, linear controllers can also be used to address 

dynamics heterogeneity explicitly. For example, the stability 

criteria of CACC systems with heterogeneous vehicle dy-

namics were analytically derived in [132], where a lower tri-

angular structure due to the directed acyclic graphs (DAGs) 

enables the decomposition of the heterogeneous system. In 

[133], [134], CACC systems with heterogeneous dynamics 

and time headways were studied for the multiple-predeces-

sor-following (MPF) topology, which can be regarded as a 

special case of DAGs. Note that the PF topology is also a spe-

cial case of the MPF topology, so dynamics heterogeneity can 

be easily addressed under the PF topology.

It is argued that the aforementioned approaches all have 

their own advantages and disadvantages. In detail, the first 

two implicit methods provide guaranteed robustness or 

adaptability to dynamics heterogeneity, but inevitably bring 

conservatism in control design since the controller depends 

on the largest deviation of all the vehicles’ heterogeneous 

dynamics from the nominal homogeneous one. The ex-

plicit methods reduce this conservatism but have specific 

requirements on information flow topologies or only apply 

to some limited cases.

B. Communication Issues
As described earlier, vehicles rely on on-board sensors, such as 

cameras and radar, to measure neighboring vehicles’ states. 

With the introduction of V2V communication and I2V com-

munication, CAVs are able to obtain the states of those beyond 

their direct measurement ranges and to obtain information 

that cannot be detected by remote sensors (such as the is-

suance of internal control commands on-board other ve-

hicles). This helps enhance the sensing range of CAVs, and 

may further benefit the whole CAV systems. However, this 

will also bring about various communication issues to CAV 

systems. Fortunately, because the communicated informa-

tion is supplementary to the information obtained from on-

board sensor systems, it is possible for the CAV systems to 

continue operating as AV systems with reduced performance 

when communication problems occur. The extent of the 
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performance reduction depends on the severity of the com-

munication fault, and the specifics of the CAV application, 

and how heavily it depends on the information that cannot 

be obtained from onboard remote sensors.

Firstly, due to the introduction of wireless communica-

tion, different information flow topologies can be employed 

in CAV systems, which may pose challenges to system design 

and analysis, while expanding the range of design choices. 

As suggested by [16], [135], information flow topology can be 

modeled with the algebraic graph theory, with which the main 

property of a type of information flow topology can be char-

acterized by its corresponding Laplacian matrix. Therefore, 

the effects of topology Laplacian matrices, especially their ei-

genvalues, on CAV systems were discussed in detail in most 

of the literature. For example, to avoid a case-by-case study 

on specific information flow topology, [16] studied general 

information flow topology with real eigenvalues, while [127] 

focused on topology with complex eigenvalues. For these two 

cases, the Jordan canonical form and modal canonical form 

were respectively utilized for system decomposition and sta-

bility analysis. Similar methods were also used in [115], [117]. 

Moreover, unknown but eigenvalue-bounded topology was 

considered in [116], [131] to account for system robustness 

under a more realistic communication environment.

The aforementioned studies all assumed a fixed informa-

tion flow topology. In practice, the information flow topol-

ogy of CAV systems is generally time-variant or switching 

due to the loss and recovery of communication links or the 

joining and leaving maneuvers of vehicles. In the literature, 

topology switching can be classified into two types, i.e., re-

stricted switching and arbitrary switching. If a topology can 

be switched to another only when a specific condition is sat-

isfied, e.g., the topology has been maintained for a period of 

time (dwell time), this type of switching is called restricted 

switching; otherwise, it is called arbitrary switching. For 

these two types of topology switching, different methods 

were proposed for system stabilization. For example, [29] 

studied switching networks with finite dwell times and de-

rived a sufficient condition on the pinning gain with respect 

to the leading vehicle. [130] designed an adaptive switched 

controller and used the mode-based average dwell time to 

address the network switching. [136] also considered switch-

ing topology with finite dwell times but applied finite-time 

stabilization theory to CACC systems. Different from these 

studies, [137] considered CACC systems subject to arbitrary 

topology switching. Since the CACC system in consideration 

was stable under each topology, a common Lyapunov func-

tion can be designed for stability analysis.

Beyond the switching of information flow topology, time 

delays in communication will also affect the performance of 

cooperative longitudinal motion control of CAV systems. To 

address this issue, two typical methods for delayed system, 

i.e., the Razumikhin-based method and Krasovskii-based 

method, were both studied in the literature. For example, 

uniform and constant time delays were considered in [114], 

where a Razumikhin-based method was applied to synthe-

size an  H3  controller. In addition to uniform and constant 

time delays, [138] considered multiple time-varying delays 

and used adaptive feedback gains to compensate for the er-

rors arising from outdated information. Linear matrix in-

equality (LMI) based stability conditions were examined and 

the upper bound of time delays was estimated. [28] designed 

a consensus-based CACC controller by using the concept of 

aggregate delay, and a Razumikhin-based method was ap-

plied to stability analysis. Such analysis was further extend-

ed to the case of heterogeneous time delays in [29], [139]. To 

compare the Razumikhin-based and Krasovskii-based meth-

ods, [137] further designed a consensus-based controller and 

demonstrated the less conservatism of the latter method in 

the sense of a greater upper bound of time delays.

As for packet losses in wireless communication, one 

feasible solution is to achieve smooth transition to remove 

the reliance on V2V communication. For example, [140] 

designed an acceleration estimation algorithm using on-

board sensors in the case of communication failures so as 

to achieve seamless transition from CACC to ACC. [130] de-

signed an adaptive switched controller for the transition 

from CACC to ACC to address the network switching due to 

communication failures.

C. String Stability
As a specific example of cooperative longitudinal motion con-

trol of CAVs, CACC is a representative spatiotemporal system, 

which should be not only internally stable, i.e., to maintain 

desired formations, but also string stable, i.e., to attenuate the 

propagation of disturbances/errors in the upstream direction. 

Note that internal stability of a CACC system does not neces-

sarily lead to string stability, since error signals may be am-

plified upstream even if the closed-loop system is internally 

stable. This will eventually result in collisions of consecutive 

vehicles. Therefore, string stability is a basic requirement for 

a cooperative automation system that involves more than two 

vehicles, and deserves careful consideration.

For example, early research on the string stability of 

inter-connected systems includes [141]–[143]. Afterwards, 

numerous studies have been focused on the string stability 

of CACC systems, e.g., [7], [52], [59], [110], [128], [144]–[153]. 

In these studies, the definition of string stability in terms 

of the norms that were used can be classified into several 

types, e.g.,  L2  string stability [128, 154], Lp  string stabil-

ity [129], string stability [143], L3  string stability [155], 

and head-to-tail string stability [156]–[158]. The interested 

readers may refer to [155] for more details.

In the majority of the existing literature, string stability 

is mainly studied case-by-case in terms of the information 

flow topology. The most widely discussed topologies have 

been PF, predecessor-leader-following (PLF), and bidirec-

tional (BD). Recent studies on string stability for general 
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information flow topology are focused on the MPF topology, 

which can cover a large set of topologies since the number 

of predecessors is not fixed. For example, [159] proved that 

the constant spacing policy cannot guarantee string stabil-

ity for CACC systems with the MPF topology. In order to re-

lax the rigid formations, the constant time headway policies 

were extended to the MPF topology. For example, in [160], 

the desired distance between vehicle i  and  i l l i1 # #- ^ h 

was defined as ,d h v l d,i i l k i
i

k1
1

0 #R= +- = -

-  where hk  is the 

headway of vehicle ,k   v0  is the speed of vehicle 0, and d  is 

the homogeneous standstill gap. In [153], [154], it is defined 

that ,d l hv d,i i l i#= +- ^ h  where h is the homogeneous 

time headway, and vi  is the speed of vehicle i , in order to 

remove the requirement of the leading vehicle’s speed. In 

[133], [134], it is defined that ,d h v d,i i l k i
i l

k k k
1

R= +- =

- +  where 

dk  is the heterogeneous standstill gap of vehicle ,k  in order 

to achieve consistent desired inter-vehicle distances, i.e., 

to satisfy that d d d, , ,i k i j j k= +  when .v vj k!  The minimum 

employable time headways were derived in [134], [155], 

[156], to guarantee string stability under the MPF topology.

As suggested by [142], the following conclusions can be 

drawn on the string stability of CACC systems: 1) If the con-

stant spacing policy is adopted, a PF information flow to-

pology cannot guarantee string stability. Broadcasting the 

leader’s information to the following vehicles in the string 

through V2V communication can extend the information 

flow, thus ensuring string stability. 2) Instead of adopting 

a constant spacing policy, the constant time headway pol-

icy can be used to ensure string stability, where the inter-

vehicle distance relies on the relative speed of vehicles, 

and therefore relaxes the formation rigidity of the system.  

3) Asymmetry control under the BD topology is also an ef-

fective approach to achieve string stability.

V. Discussion and Conclusions
This paper presented a literature survey on cooperative 

longitudinal motion control of multiple CAVs from three 

different perspectives:

a) It demonstrated how cooperative longitudinal motion 

control works in CAV systems from a high-level archi-

tecture point of view. The system architecture of CAV 

systems was reviewed by disaggregating them into sub-

systems and their hardware/software components.

b) It described examples of cooperative longitudinal motion 

control, explaining where it can be implemented in the 

transportation systems. Upon demonstrating how coop-

erative longitudinal motion control works, we were also 

interested in where it can work. Therefore, five different 

transportation applications that take advantage of coop-

erative longitudinal motion control of multiple CAVs were 

introduced, with each of them bringing one or more ben-

efits to the transportation systems. Specifically, literature 

was categorized by theoretical research and simulation, 

and experimental implementation for each application.

c) It elaborated on the major control issues of cooperative 

longitudinal motion control of multiple CAVs, pointing out 

what factors should be considered while designing coop-

erative longitudinal motion controllers. Rather than listing 

different cooperative longitudinal motion control method-

ologies of existing CAV systems, we identified major con-

trol issues of cooperative longitudinal motion control and 

categorized them into three types: dynamics heterogeneity, 

communication issues, and string stability. Many related 

literature sources were reviewed under each control issue.

Although many positive results have been reviewed and 

analyzed in this survey, there are still some open ques-

tions that need to be addressed in future work related to 

cooperative longitudinal motion control of multiple CAVs. 

Three specific questions can be asked on top of the afore-

mentioned three conclusions of this survey:

a) How can we build a more reliable architecture for CAV 

systems? Unlike most theoretically proposed CAV systems 

that assume a static setting, a more realistic traffic net-

work will introduce a highly dynamic environment. For 

example, cooperative longitudinal motion control of mul-

tiple CAVs is heavily based on V2V communication, which 

is vulnerable to communication impairments such as time 

delays and packet losses. Also, cyberattacks such as jam-

ming, V2X data injection, and vehicle sensor manipulation 

can also impair the performance of CAV systems. In the 

future development of cooperative longitudinal motion 

control of multiple CAVs, the resilience against system 

impairments or attacks should be considered and studied. 

How to conduct fault detection and isolation regarding 

communication impairments or cyberattacks, how to tem-

porarily but smoothly switch to degraded modes of control 

that are less dependent on the communicated data, and 

how to maintain string stability under those situations can 

be some interesting topics to study and test.

b) How can we identify and close the gap between theoreti-

cal research and experimental implementation? It is true 

that many advanced methodologies have been proposed 

and analyzed in theory, however, the gap between theo-

retically functional and practically functional needs 

to be identified and closed. For example, the theoreti-

cal studies of string stability in most cases ignored the 

destabilizing effect of communication delays. CAV sys-

tems that will appear to be stable based on theoretical 

analyses are not always stable in practical implemen-

tations due to unavoidable delays in communications. 

Therefore, stability analyses need to include realistic 

quantifications of communication delays in order to 

compensate for this gap between theory and practice. 

Theoretical research results need to be tested under 

various realistic conditions to identify this gap, but that 

can be both labor-intensive and time-consuming.

c) How can we develop more ready-to-market cooperative 

control methodologies within a mixed traffic environment? 
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Most of the literature reviewed in this survey made 

strong assumptions that all involved vehicles are CAVs, 

however, it is obvious that we will endure a long period 

during which the traffic environment is mixed with 

different types of vehicles: CAVs, CVs, AVs, and conven-

tional vehicles. Cooperative longitudinal motion con-

trollers that work for a pure CAV environment do not 

necessarily work for a mixed traffic environment, given 

the uncertainties introduced by other vehicle types in 

the environment. In order to facilitate more ready-

to-market CAV applications, the future development of 

cooperative control methodologies may take advantage 

of advanced sensing and communication technology to 

deal with a mixed traffic environment.
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