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Abstract: The ever increasing growth of the production of high-throughput sequencing data poses
a serious challenge to the storage, processing and transmission of these data. As frequently stated,
it is a data deluge. Compression is essential to address this challenge—it reduces storage space
and processing costs, along with speeding up data transmission. In this paper, we provide a
comprehensive survey of existing compression approaches, that are specialized for biological data,
including protein and DNA sequences. Also, we devote an important part of the paper to the
approaches proposed for the compression of different file formats, such as FASTA, as well as FASTQ
and SAM/BAM, which contain quality scores and metadata, in addition to the biological sequences.
Then, we present a comparison of the performance of several methods, in terms of compression ratio,
memory usage and compression/decompression time. Finally, we present some suggestions for
future research on biological data compression.

Keywords: protein sequence; DNA sequence; reference-free compression; reference-based
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1. Introduction

With the development of high-throughput sequencing (HTS) technologies, huge volumes of
sequencing data are produced everyday, fast and cheaply, that can lead to upgrading the scientific
knowledge of genome sequence information as well as facilitating the diagnosis and therapy.
Along with these advantages, three challenges exist to deal with this data deluge: storage, processing
and transmission. Also, the costs associated with the storage, processing and transmission of HTS
data are higher compared to sequence generation, that makes the situation more complicated [1].
Compression is a solution that is able to overcome these challenges, by reducing the storage size and
processing costs, such as I/O bandwidth, as well as increasing transmission speed [2–4].

In addition to storage space, processing costs and transmission speed reduction, genomic data
compression has two other main applications. First, the performance of de novo assembly, for example
employing de Bruijn graphs [5] to create (parts of) a genome from raw sequence reads without
the aid of a reference genome, can be improved by decreasing the memory usage by one order of
magnitude [6,7]; Second, through compression, expert models can be trained on a specific sequence
and later be exploited in a similar sequence, to produce higher quality aligners [3,8].

Several genomic data compression methods have been presented in the last two decades.
In general, each one favours one or some of the parameters usually associated with the compression,
such as compression ratio, compression time, decompression time, compression memory usage and
decompression memory usage. In this paper, we review a broad range of these approaches. They were
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tested on various test datasets, take into consideration various compression parameters and work on
various file formats.

The rest of this paper is organized as follows: In Section 2, we review the methods proposed for
the compression of protein sequences. Since these sequences are shown to be difficult to compress,
there is not a large number of algorithms for compressing them. In Section 3, we discuss the
contributions to the compression of genome sequences, that are divided into two main categories:
(i) reference-free compression methods, that exploit structural and statistical properties of the sequences;
and (ii) reference-based methods, that compress the sequences with the aid of a (set of) reference
sequence(s). In Section 4, we review the methods proposed for the compression of the most widely
used file formats, which are FASTA/Multi-FASTA, FASTQ and SAM/BAM. In Section 5, we test several
genomic data compression algorithms with various datasets and compare their performance in terms of
compression ratio, compression/decompression time and memory usage. Finally, in Sections 6 and 7
we draw conclusions and give some directions for future research on the compression of biological data.

2. Protein Sequence Compression

Proteins play a fundamental role in all organisms, due to their involvement in the control of
their development [9–11]. Protein sequences are represented by a 20-symbol alphabet of amino
acids. Since there is a high number of different amino acids in these sequences, with an intrinsically
disordered nature, they are considered to be complex in terms of compression [12–14].

Protein and DNA sequences have different natures. In a biological context, according to the central
dogma, protein sequences are outcomes of genomic sequences, with increasing complexity. This means
that from DNA sequences we can retrieve protein sequences, although the opposite is not valid.
The importance of protein sequences has increased in the last years, namely with the introduction of
the Human Proteome Project [15], having a substantial impact in personalized medicine. Although
reference-free compression of proteins is known to be hard, it is not the case for reference-based
compression. In the past, almost-complete proteomes were very scarce. Nowadays, this has changed.
For example, the three sequenced Neanderthal genomes [16] also include the protein sequences, where
each one has 24 MB of data. If compressed individually, each Neanderthal protein sequence, with a 7z
compressor, would need 15.9 MB to be stored. However, when compressing the three files together,
only 8.6 MB are needed. Therefore, with the increasing number of sequenced genomes and availability
of multiple-proteomes, reference-based compression of proteins will play a key role. In the following
paragraphs, several reference-free protein compression methods are described.

In [9,13,17], the probability of contexts and statistical models are exploited. In [17],
the CP (Compress Protein) scheme is proposed, as the first protein compression algorithm,
which employs probability to weight all contexts with the maximum of a certain length, based on their
similarity to the current context. The XM (eXpert Model) method, presented in [9], encodes each symbol
by estimating the probability based on previous symbols. When a symbol is recognized as part of
a repeat, the previous occurrences are used to find that symbol’s probability distribution; then, it is
encoded using arithmetic coding. In [13], three statistical models are proposed based on analysing the
correlations between amino acids at a short and medium range.

“Approximate repeats” are utilized in the methods presented in [18,19]. In [18], an algorithm
is proposed which considers palindromes (reverse complements) and approximate repeats as two
characteristic structures. In this method, an LZ77-type algorithm is used to encode long approximate
repeats and the CTW algorithm [20] is used to encode short approximate repeats. Heuristics are also
used to improve compression ratios. The ProtComp algorithm, presented in [19], exploits approximate
repeats and mutation probability for amino-acids to build an optimal substitution probability matrix
(including the mutation probabilities).

Exploiting the “dictionary” is taken into consideration in the methods proposed in [10,21,22].
In [21], the ProtCompSecS method is presented, which considers the encoding of protein sequences in
connection with their annotated secondary structure information. This method is the combination of



Information 2016, 7, 56 3 of 23

the ProtComp algorithm [19] and a dictionary based method, which uses the DSSP (Dictionary of Protein
Secondary Structure) database [23]. The CaBLASTP algorithm, proposed in [22], introduces a course
database to store unique data that comes from the original protein sequence database. In this method,
sequence segments that align to previously seen sequences are added to a link index. CaBLASTP is
the combination of a dictionary-based compression algorithm and a sequence alignment algorithm.
In [10], a dictionary-based scheme is proposed, which is based on random or repeated protein sequence
reduction and ASCII replacement.

A heuristic method is introduced in [24], that exploits protein domain compositions. In this
method, a hyper-graph is built for the proteome, based on evolutionary mechanisms of gene
duplication and fusion. Then, on the basis of a minimum spanning tree, a cost function is minimized
to compress the proteome.

3. Genomic Sequence Compression

Many studies have been carried out on the topic of genomic sequence compression, taking into
account the characteristics of these sequences, such as small alphabet size (i.e., four, namely the
nucleotides A (adenine), T (thymine), C (cytosine) and G (guanine)), repeats and palindromes [25–28].
In this section, two categories of reference-free methods, that are based only on the characteristics
of the target sequences, and reference-based methods, that exploit a (set of) reference sequence(s),
are considered for describing these studies.

3.1. Reference-Free Methods

The basic idea of reference-free genomic sequence compression is exploiting structural properties,
e.g., palindromes, as well as statistical properties of the sequences [25]. The first algorithm which
was specifically proposed for genomic sequences compression is biocompress [29]. In this algorithm,
that is based on the Ziv and Lempel compression method [30], factors (repeats) and complementary
factors (palindromes) in the target sequence are detected and then they are encoded using the length
and the position of their earliest occurrences. The biocompress-2 algorithm [31], an extension of
biocompress [29], exploits the same methodology, as well as the use of arithmetic coding of order-2
when it cannot find any significant repetition.

The Cfact algorithm [32] consists of two phases, namely (i) the parsing; and (ii) the encoding.
In the parsing phase, the most significant repeats, i.e., the repeats which are able to be encoded for
achieving local compression gain, are selected. In order to select such repeats, a suffix tree data
structure [33] is exploited to find the longest repeats. In the encoding phase, all non-repeats and first
occurrences of repeats are encoded using two bits for each base. Also, the next occurrences of repeats
are encoded using pointers to their first occurrences, in the form of (position, length).

The use of “approximate repeats” in the target sequences began with the GenCompress
algorithm [34] and was followed by the DNACompress algorithm [35]. In GenCompress [34], the position
and the length of non-initial occurrences of repeats are used for encoding them. In DNACompress [35],
two phases are considered: (i) finding all approximate repeats containing palindromes, for which
the PatternHunter search tool [36] is used; and (ii) encoding approximate repeats and non-repeats,
for which the Ziv and Lempel compression method [30] is exploited.

NMLComp [37] and GeNML [38] are two methods which utilize the normalized maximum likelihood
(NML) model. The NMLComp algorithm [37] proposes a version of the NML model for discrete regression,
for the purpose of encoding the approximate repeats, and then combines it with a first order Markov
model. The GeNML algorithm [38] presents the following improvements to the methodology used in
the NMLComp method: (i) restricting the approximate repeats matches to reduce the cost of search for
the previous matches as well as obtaining a more efficient NML model; (ii) choosing the block sizes
which are used in parsing the target sequence; and (iii) introducing scalable forgetting factors for the
memory model.
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Encoding by word-based tagged code (WBTC) [39] is used in the DNACompact algorithm [40]. In the
first phase of this method, the target sequence is converted into words in a way that A, T, C and G
bases are replaced with A, C, <space>A and <space>C, respectively, i.e., the four symbol space is
transformed into a three symbol space. In the second phase, the obtained sequence is encoded by WBTC.
The advantage of WBTC is that it does not require saving frequencies or codewords with the compressed
stream, since the code of words only rely on ranks.

In [41], considering the statistical characteristics of the genomic sequence, the DNAEnc3 method
is proposed, which employs several competing Markov models of different orders to obtain the
probability distribution of symbols in the sequences, for the aim of compression. The advantages of
this method include: (i) exploiting a flexible programming technique that provides the ability to handle
the models of order up to sixteen; (ii) handling the inverted repeats; and (iii) providing probability
estimates that cover the broad range of context depths used.

An adaptive particle swarm optimization-based memetic algorithm, POMA, is proposed in [42],
which is based on comprehensive learning particle swarm optimization (CLPSO) [43,44] and on
an adaptive intelligent single particle optimizer (AdpISPO)-based local search. In this method,
an approximate repeat vector (ARV) codebook is designed and then optimized using CLPSO as well as
AdpISPO, for compressing the target sequence. The approximate repeats which have the fewest base
variations exploit the candidate ARV codebooks encoded as particles to achieve the optimal solution
in POMA. Thereafter, the weighted fitness values are used to select the leader particles in the swarm.
Finally, an AdpISPO-based local search is exploited to fine-tune the leader particles.

The DNA-COMPACT (DNA COMpression based on a Pattern-Aware Contextual modeling Technique)
algorithm [45] exploits complementary contextual models and consists of two phases. In the first phase,
the exact repeats and palindromes are searched and then represented by a compact quadruplet. In the
second phase, the non-sequential contextual models are introduced in order to exploit the features
of DNA sequences; then, the predictions of these models are synthesized using the logistic regression
model. In this method, logistic regression is shown to lead to less biased results, rather than Bayesian
averaging. It is worth noting that DNA-COMPACT can handle both reference-free and reference-based
genome compression.

Transforming genomic sequences into images, where the one-dimensional space is substituted
by a two-dimensional space, is an approach that is taken into consideration by [46,47]. In [46], firstly,
the Hilbert space-filling curve is exploited to map the target sequence into an image. Secondly,
a context weighting model is used for encoding the image. In [47], the CoGI (Compressing Genomes as
an Image) algorithm is proposed, which initially transforms the genomic sequence into a binary image
(or bitmap); then, it uses a rectangular partition coding method [48] to compress that image. Finally,
it exploits entropy coding for further compression of the encoded image as well as the mismatches.

An optimized context weighting method is proposed in [49]. In this method, it is initially shown
that the weighting of context models is the same as the weighting of their description lengths; then,
on the basis of the minimum description length, the weight optimization algorithm is proposed. Finally,
the least squares algorithm is employed for weight optimization.

The GeCo algorithm [50], derived from [51,52], exploits a combination of context models of several
orders for reference-free, as well as for reference-based genomic sequence compression. In this method,
extended finite-context models (XFCMs), that are tolerant against substitution errors, are introduced.
Furthermore, cache-hashes are employed in high order models to make the implementation of GeCo
more flexible. The cache-hash uses a fixed hash function to simulate a specific structure, which is a
middle point between a dictionary and a probabilistic model. In order to make GeCo more flexible,
in terms of memory optimization, the cache-hash takes into consideration only the last hashed entries
in memory. This way, the quantification of memory that is required to run in any sequence will be
flexible and predictable.

It is worth pointing out that two of the protein compression methods mentioned before, XM [9] and
the method proposed in [18], are able to be employed as reference-free genome sequence compressors.
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3.2. Reference-Based Methods

The key idea of reference-based genome sequence compression is exploiting the similarity between
a target sequence and a (set of) reference sequence(s). For this purpose, the target is aligned to the
reference and the mismatches between these sequences are encoded. Since the decompressor has
access to the reference sequence(s), the reference-based methods can obtain very high compression
rates [26,28,53,54].

The DNAzip algorithm [55] was presented for compressing James Watson’s genome, considering
the high similarity between human genomes, implying that only the variation is required to be
saved. In this method, variation data are considered in three parts: (i) SNPs (single nucleotide
polymorphisms), which are saved as a position value on a chromosome and a single nucleotide letter
of the polymorphism; (ii) insertions of multiple nucleotides, which are saved as position values and
the sequence of nucleotide letters to be inserted; and (iii) deletions of multiple nucleotides, which are
saved as position values and the length of the deletion. Finally, the following techniques are used to
further compress the target genome: variable integers for positions (VINT), delta positions (DELTA),
SNP mapping (DBSNP) and k-mer partitioning (KMER).

In the RLZ algorithm [56], each genome is greedily parsed into factors, using the LZ77 approach [30].
Then, through a single pass over the collection, the compression is done relative to the reference
sequence, which is used as a dictionary. It is worth pointing out that RLZ supports random access
to arbitrary substrings. Later, in [57], the authors presented an improved version of the RLZ
method, which firstly, uses non-greedy parsing; and secondly, exploits the correlation between
the starting points of long factors and their positions in the reference sequence, to improve the
compression performance.

The GRS algorithm [58], which is based on the diff utility in Unix, finds the longest subsequences
that are identical in the reference and the target sequences. In this method, a similarity measure is
calculated and if it has a larger value than an identified threshold, the difference between the reference
and the target sequences are compressed with Huffman encoding [59]; otherwise, the reference and
the target sequences are divided into smaller pieces and the same strategy, i.e., comparing the value of
the similarity measure with an identified threshold, is used to compress these pieces.

A statistical compression method, GReEn (Genome Re-sequencing Encoding), is proposed in [60],
which exploits a probabilistic copy model. In this method, the probability distribution of each symbol
in the target sequence is estimated using an adaptive model (the copy model), which assumes that
the symbols of the target sequence are a copy of the reference sequence, or a static model, relying on
the frequencies of the symbols of the target sequence. These probability distributions are then sent to
an arithmetic encoder [61]. GReEn includes two parameters that can be used to alter the performance:
(i) the size of the k-mer used for searching copy models; and (ii) the number of prediction failures that
the copy model can tolerate, before it is restarted.

The GDC (Genome Differential Compressor) method [62], that is based on the LZ77 approach [30],
considers multiple genomes of the same species. In this method, a number of extra reference phrases,
that are extracted from other sequences, along with an LZ-parsing for detection of approximate repeats
are used. The GDC has several variations including normal, fast, advanced, advanced-R and ultra. In the
GDC-ultra, that provides the maximum compression ratio among other variations, multiple references
are exploited. The GDC 2 method [63], that is an improved version of the GDC, exploits two-level LZSS
factoring [64] to encode the sequences as a list of matches and literals. The advantage of this method
in comparison to GDC is considering short matches after some longer ones. It is worth pointing out that
both the GDC and GDC 2 methods support random access to an individual sequence.

In [53], an adaptive method is proposed, which first divides the reference sequence into fixed
length blocks; then, it exploits the compressed suffix tree [65], that have already been computed for
each block, to find the longest prefix-suffix matches between the reference and the target sequences
of the same species. It is worth pointing out that for the purpose of implementing this method,
it is possible to use parallelization on multiple cores.
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COMRAD (COMpression using RedundAncy of DNA) [66] is a dictionary construction method,
in which a disk-based technique, RAY [67], is exploited to identify exact repeats in large DNA datasets.
In this method, the collection is frequently scanned to identify repeated substrings, and then use
them to construct a corpus-wide dictionary. An advantage of COMRAD is supporting random access to
individual sequences and subsequences, which resolves the need for decoding the whole data set.

The fragments of nucleotides with the hierarchical tree structure are exploited in [68]. In this
method, the difference between the reference and the target sequences is taken into consideration, in the
sense that the sizes of sub-fragments and matching offsets are flexible to the stepped size structure.
Finally, the difference sequence, the sub-fragment size and the matching offset, are compressed using a
coding scheme, which is based on the PPM method [69].

The DNA-COMPACT method [45], which can be used for both reference-free and reference-based
genome compression, includes two phases. In the first phase, an adaptive mechanism, rLZ, is presented
which firstly, considers a sliding window for the subsequences of the reference sequence; and secondly,
searches for the longest exact repeats in the current fragment of the target sequence, in a bi-directional
manner. In the second phase, the non-sequential contextual models are introduced and then their
predictions are synthesized exploiting the logistic regression model.

In the FRESCO (Framework for REferential Sequence COmpression) method [70], a compressed
suffix tree [65] of the reference sequence is exploited to match the prefixes of an input string with
substrings of the reference sequence. In addition, three techniques are used to improve the compression
performance: (i) selecting a good reference; (ii) rewriting the reference sequence; and (iii) second-order
compression, that is reference-based compressing of an already referentially compressed sequence.

Taking miniaturized devices into consideration, a genome compression method, based on
Distributed Source Coding, is proposed in [71]. In this method, a low-complexity Slepian-Wolf
coding [72] is used for the non-repeats, and the adaptive length hash coding is used for the exact
repeats. Then, a factor graph model is introduced to detect insertion, deletion and substitution between
the reference sequence and the target sequence.

The ERGC (Efficient Referential Genome Compressor) method, based on a divide and conquer
strategy, is proposed in [73]. In this method, first, the reference sequence and the target sequence are
divided into some parts with equal sizes; Then, a greedy algorithm, which is based on hashing, is used
to find one-to-one maps of similar regions between the two sequences; Finally, the identical maps,
as well as dissimilar regions of the target sequence, are fed into the PPMD compressor [74] for further
compression of the results.

The iDoComp algorithm [75] consists of three phases. In the first phase, named mapping generation,
the suffix arrays are exploited to parse the target sequence into the reference sequence. In the second
phase, named post-processing of the mapping, the consecutive matches, which can be merged together
to form an approximate match, are found and used for reducing the size of mapping. Finally, in the
third phase, named entropy encoding, an adaptive arithmetic encoder is used for further compression
of the mapping and then generation of the compressed file.

The CoGI method [47] can be used for reference-free as well as for reference-based genome
compression. Considering the latter case, at first, a proper reference genome is selected using two
techniques based on base co-occurrence entropy and multi-scale entropy [76–78]. Next, the sequences
are converted to bit-streams, using a static coding scheme, and then the XOR (exclusive or) operation
is applied between each target and the reference bit-streams. In the next step, the whole bit-streams
are transformed into bit matrices like binary images (or bitmaps). Finally, the images are compressed
exploiting a rectangular partition coding method [48].

4. File Formats

The methods described in this section have been designed for compressing files in one or more of
the FASTA/Multi-FASTA, FASTQ and SAM/BAM formats. In these file formats, other information,
such as identifiers and quality scores, are added to the raw genomic or protein sequences. It is worth
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noting that there are other formats for storing biological data, such as Illumina Export format, but they
were developed for targeting a specific technology [4].

Also, the Multiple Alignment Format (MAF) is a file type containing alignments between entire
genomes of several species, represented in a two-dimensional style. Some algorithms have been
proposed for their lossy and lossless compression [79–81]. Moreover, the Variant Call Format (VCF) is a
generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural
variants, together with rich annotations [82]. Its compression has been addressed recently in [83].

4.1. FASTA/Multi-FASTA

“FASTA” is a text-based format which represents nucleotides or amino acids with single-letter
codes [84]. A sequence in this format has two parts: (i) the description, that starts with the “>”
symbol; and (ii) the sequence data. The “Multi-FASTA” format, as shown in Figure 1, is the
concatenation of different single sequence FASTA files. In this section, several methods for compressing
FASTA/Multi-FASTA files are described.

>VIT_201s0011g03530.1

AATTAAGCATAAATACTCACTCTTACCCCCTTATTTTCTTATCTCTCATCACTTTTGGTGCGAAG

GACCATGAGAACAAGCTGCAATGGGTGTAGGGTTCTTCGCAAGGCATGCAGCCAAGACTGCATCA

>VIT_201s0011g03540.1

CAGGTAGCGTGAAGTTAAACCCTAGCGCTTTAGACAAACAGCTGTAGTCACCGCCCACAAACACC

AGCCTCTGAGACACCACCTCAAACCTTTCCACTTAAATACACATCCCTCACACCCTTTTCAATTC

>VIT_201s0011g03550.1

CATGCAAAGCTGAACGCGATGCTGTGATTGGTGGTAAGTGGTAGTTGAGTAAATTTGACAGTGAA

GCCGAAATGGTAAAAGACTAAGGCTAGAAGTAGAATACCACTGTTCTTCTCATCACGTGGGCCCA

Sequence
Header

Sequence
Header

Sequence
Header

Figure 1. A sample of the Multi-FASTA file.

The BIND algorithm [85] employs 7-Zip for compressing the sequence headers. Also, for the DNA
reads, it uses bit-level encoding for the four nucleotide bases (A, T, C and G) and then splits the codes
into two data streams. Next, it uses a unary coding scheme to represent the repeat patterns in these
two data streams in a “block-length encoded” format. Finally, BIND uses the LZMA [86] algorithm to
compress the block-length files.

The DELIMINATE (a combination of Delta encoding and progressive ELIMINATion of nuclEotide
characters) method, proposed in [87], performs the compression in two phases. In the first phase,
all non-ATGC, as well as all lower-case characters, are recorded, and then a file without these
characters is transferred to the next step. In the second phase, the positions of the two most frequent
nucleotide bases are delta encoded; then, the two other bases are represented by a binary code. Finally,
all generated files are further compressed with the 7-Zip archiver.

In [88], a method is presented in which the information of mismatch between the reference and the
target genome sequences is employed for the compression. This information includes the distance to the
next mismatch, the mismatch type (insertion, deletion or replacement) and the difference nucleotides,
that are combined in the form of triplets (differential length, mismatch type, nucleotide). It is worth pointing
out that in this method Fibonacci codes [89] are exploited in order to encode each “differential length”.

The MFCompress method [90] exploits finite-context models, which are probabilistic models that
select the probability distribution by estimating the probability of the next symbol in the sequence
based on the k previous symbols (order-k context). MFCompress encodes the sequence headers using
single finite-context models and encodes the DNA sequences using multiple competing finite-context
models [41], along with arithmetic coding.

“Assembly principles” are utilized in the LEON method [91], that is based on a reference
probabilistic de Bruijn Graph. This graph is built de novo from the reads and saved in a Bloom filter [92].
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In this method, the reads are considered as the paths in the de Bruijn Graph and compressed by
memorizing the anchoring k-mers and the list of bifurcations. Since the LEON scheme can exploit the
same probabilistic de Bruijn Graph for encoding the quality scores, this method is able to be used for
FASTQ files, too.

In [93], a de novo parallelized software, MetaCRAM, is proposed. It integrates taxonomy
identification, alignment, assembly and compression. For the taxonomy identification, it exploits
the Kraken method [94] to identify the mixture of species included in the sample. Also, for the
alignment and assembly, at first, MetaCRAM uses Bowtie2 [95] to align reads to the reference genomes,
and then it uses IDBA-UD [96] to find reference genomes for unaligned reads. Finally, MetaCRAM
exploits Huffman [59], Golomb [97], and Extended Golomb encodings [98] for compressing the reads,
and QualComp [99] for compressing the quality scores. Unaligned reads are compressed with the
reference-free MFCompress compression method [90]. The MetaCRAM method is also able to support the
FASTQ file format.

4.2. FASTQ

“FASTQ” is a text-based format which represents biological sequences and their corresponding
quality scores with ASCII characters. This file format is considered as the de facto standard for storing
the output of high-throughput sequencing instruments [100]. A sequence in FASTQ format, as shown
in Figure 2, has four parts: (i) the sequence identifier; (ii) the raw sequence letters; (iii) a “+” character,
optionally followed by the same sequence identifier; and (iv) the quality scores. The following methods
support the compression of FASTQ files.

@SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50

TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT

+

hhhhhhhhhhghhghhhhhfhhhhhfffffe‘ee[‘X]b[d[ed‘[Y[^Y

@SRR566546.971 HWUSI-EAS1673_11067_FC7070M:4:1:2374:1108 length=50

GATTTGTATGAAAGTATACAACTAAAACTGCAGGTGGATCAGAGTAAGTC

+

hhhhgfhhcghghggfcffdhfehhhhcehdchhdhahehffffde‘bVdQuality scores
‘+’ sign

Sequence
Identifier

Quality scores
‘+’ sign

Sequence
Identifier

Figure 2. A sample of the FASTQ file.

The GenCompress method [101], first, maps short sequences to a reference genome; then, it encodes
the addresses of the short sequences, their length and their probable substitutions, using entropy
coding algorithms, e.g., Golomb [97], Elias Gamma [102], MOV (Monotone Value) [103] or Huffman
coding [59]. Similar to GenCompress, the G-SQZ scheme [104] employs Huffman coding; however,
it does compression without altering the relative order. Also, G-SQZ supports random access to the
compressed data.

Dividing the input file into blocks is an approach used in the DSRC [54] and DSRC 2 [105] methods.
The DSRC method [54] groups blocks into superblocks; then, using the statistics of blocks inside
each superblock, it encodes the superblocks, independently. In this method, LZ77-style encoding,
order-0 as well as order-1 Huffman encodings are used for compressing the identifiers, the DNA
reads, and the quality scores, respectively. DSRC 2 [105] is an improved version of DSRC, implemented
using multi-threading. In this approach, Huffman encoding, as well as arithmetic encoding [106],
were added to the existing algorithm used for compressing athe DNA reads in DSRC. Also, in this method,
the quality scores can be compressed arithmetically.

In [107], a method is proposed which at first parses the identifiers into repeating and variable
components and then uses adaptive arithmetic coding for the compression of the variable components.
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In the next step, it exploits Markov encoding as well as the methods based on repeat finding to
compress the DNA reads. Finally, it uses run length-based methods for compressing the quality scores.

In the Quip scheme [108], arithmetic coding associated with models based on order-3 and
high-order Markov chains are exploited for compressing the read identifiers, the nucleotide sequences
and the quality scores. This method has some variations, including “Quip -r” and “Quip -a”,
that perform reference-based and assembly-based compression, respectively. In the assembly-based
compression, the first 2.5 million reads are employed to assemble contigs that can be used instead of a
reference sequence database. It is worth pointing out that Quip also supports the SAM/BAM file format.

A boosting scheme, SCALCE, is proposed in [109], which re-organizes the reads to obtain higher
compression ratio and speed. In order to perform this re-organization, the long “core” substrings,
derived from the locally consistent parsing (LCP) method [110–112], that are shared between the
reads, are considered. Finally, these reads are “bucketed” and compressed together, using Lempel-Ziv
variants in each bucket.

The SeqDB scheme [113] performs the compression in two phases. In the first phase, a byte-packing
method, named SeqPack, is proposed, which interleaves DNA reads with their corresponding quality
scores by exploiting a 2D array. Using this array, only one byte is required to store the information
of reads and quality scores, instead of the two bytes used by FASTQ. In the second phase, the Blosc
method [114] is exploited to compress the interleaved data. This method benefits from two optimization
approaches, namely multi-threading and cache-aware blocking, and parallelization through SIMD
vectorization [115].

In [116], two methods, named Fqzcomp and Fastqz, are proposed for compressing the files in
FASTQ format. The Fqzcomp method exploits a byte-wise arithmetic coder [117] as well as context
models that are tuned to the type of data. The Fastqz method employs the “libzpaq” compression
library to specify the context models in ZPAQ format [118]. The ZPAQ is based on PAQ [119], which
combines the bit-wise predictions of several context models, adaptively.

The ORCOM (Overlapping Reads COmpression with Minimizers) method [120], utilizes the concept
of distributing the data into disk bins and compressing each bin. Also, it uses “minimizers” [121]
to pass similar (overlapping) DNA reads into the same bin [94,122–125]. In order to compress the streams
of data, on bin-by-bin basis, ORCOM employs a context-based compressor, PPMd [126], or an arithmetic
coder [106].

A light-weight compression method, named LW-FQZip, is presented in [127], which eliminates
redundancy from a FASTQ file at first step. Then, it employs incremental and run-length-limited
methods for compressing the identifier and the quality scores, respectively. Next, in order to encode
the reads, a light-weight mapping model is introduced which maps them against a reference sequence.
Finally, the LZMA [86] algorithm is utilized to compress all the processed data.

4.3. SAM/BAM

“SAM” (Sequence Alignment/Map) is a text-based format which represents biological sequences
that are aligned to a reference sequence. A sequence in SAM format, as shown in Figure 3, contains two
parts: (i) the header, that starts with an “@” character; and (ii) the alignment section, that has 11 fields,
such as QNAME, CIGAR, SEQ and QUAL. It is worth pointing out that a “BAM” file is the binary version of
a SAM file, that is compressed with the BGZF (Blocked GNU Zip Format) tool [3,128,129]. In this section,
several methods proposed for compressing the SAM/BAM files are described.

In [130], a method is proposed in which the starting position of a read, with respect to the reference
sequence, is encoded with the Golomb algorithm [97]. Also, in the case of a non-perfect match between
the read and the reference, a list of variations, including position on the read and type (substitution,
insertion and deletion), is stored and a part of it is then encoded using the Golomb and Gamma coding
algorithms [97,102]. In this method, the amount of quality information that is stored can be changed,
in order to increase the efficiency.
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@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGAT *

r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGG *

r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCT * SA:Z:ref,29,-,6H5M,17,0;

r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCA *

r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;

r001 147 ref 37 30 9M = 7 -39 CAGCGGC * NM:i:1

Figure 3. A sample of the SAM file.

The Goby approach [131] introduces multiple techniques for compressing structured
high-throughput sequencing (HTS) data. These techniques include: (i) field reordering; (ii) field
modeling; (iii) template compression; and (iv) domain modeling. Also, Goby employs a number of
engineering techniques, such as: the protocol buffers [132] middleware, a multi-tier data organization,
and a storage protocol for structured messages.

The NGC method [133] introduces a lossless approach for compressing read bases, namely vertical
difference run-length encoding (VDRLE), which utilizes the features of multiple mapped reads instead
of considering each read individually. As a result, the number of required code words is reduced.
Also, NGC introduces a lossy approach for compressing quality values, which maps all quality values
within an interval to a single value. In addition, for the compression of read names (stream QNAME) NGC
uses the longest common prefix of the last n reads.

The Samcomp method [116] has two variations, Samcomp1 and Samcomp2. In Samcomp1, the same
method as Fqzcomp [116] is used to compress the identifier and the quality scores. Also, for compressing
the reads, a per-coordinate model is used. In Samcomp2, that can read SAM files in any order, instead of
the per-position model a reference difference model is exploited in which a history of previous bases
matching the context is used.

In [134], the DeeZ method is proposed, which exploits “tokenization” of read names and
compresses them with delta encoding. This method also employs an order-2 arithmetic coding,
in a block-by-block manner, for compressing the quality scores and the mapping locations, and thus
providing the random-access ability. It is worth pointing out that gzip [135] is used in DeeZ, to
compress the other fields.

5. Results

In order to test different genomic data compression methods, we employed several genomes
with different species origins and lengths, from ∼70 Megabytes to ∼200 Gigabytes, which are shown
in Tables 1 and 2. As it is shown in these tables, we have used 11 genomes for the reference-free
compression methods, and six target and six reference genomes for the reference-based compression
methods. These genomes are in three different formats, namely FASTA/Multi-FASTA, FASTQ
and BAM. The results presented in this paper can be replicated using the software available at [136].

The human genome was chosen to incorporate the dataset, because it is one of the most sequenced,
a trend that will certainly continue, due to the personalized medicine paradigm. We choose the
chimpanzee and gorilla, because they are very similar and (not so) similar to the human genome,
respectively. As it will be shown in the experimental results, this variety is important in the evaluation
of reference-based methods. The particular chromosomes used (8, 11 and 16), were chosen randomly.
We have also included the rice genome, because it is not a primate genome and it is commonly
used. Regarding the camera dataset, it is a compilation of multiple organisms, namely prokaryotic.
This compilation has more than 40 GB of data.
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Table 1. Genomic sequence datasets used by reference-free compression methods.

File Format Dataset File Size (MB)

FASTA/Multi-FASTA

Human (GRC) [137] 2,987
Chimpanzee [138] 3,179
Rice5 [139] 166
CAMERA Prokaryotic Nucleotide [140] 43,945

FASTQ

ERR174310_1 [141] 51,373
ERR174310_2 [142] 51,373
ERR194146_1 [143] 209,316
ERR194146_2 [144] 209,316

BAM
NA12877_S1 [145] 74,455
NA12878_S1 [146] 108,290
NA12882_S1 [147] 88,318

Table 2. Genomic sequence datasets used by reference-based compression methods.

File Format Target Genome File Size (MB) Reference Genome File Size (MB)

FASTA/Multi-FASTA

HS8 [148] 138 HSCHM8 [149] 136
HS11 [150] 128 HSCHM11 [151] 125
HS11 [150] 128 PT11 [152] 126
HS11 [150] 128 PA11 [153] 127
HSK16 [154] 71 HS16 [155] 78
Rice5 [156] 166 Rice7 [157] 164

For making a comparison between different compression methods, all of them were executed on
a server running 64-bit Ubuntu with 16-core 2.13 GHz Intel R© Xeon R© CPU E7320 and with 256 GB
of RAM; then, their performance was evaluated based on compression ratio, i.e., the ratio of the
size of original sequence to the size of compressed sequence, compression/decompression time and
compression/decompression memory usage. It is worth pointing out that some of the methods
addressed in this paper are missing from the tables of results, due to several reasons. These reasons
are described in [158].

The results of compressing genomic data sequences using different reference-free as well as
general-purpose methods for FASTA/Multi-FASTA, FASTQ and BAM file formats are reported
in Tables 3–5, respectively. Also, the compression results for the reference-based methods are
shown in Table 6. In all of these tables, C-Ratio, C-Time (min), D-Time (min), C-Mem (MB) and
D-Mem (MB) stand for compression ratio, compression and decompression times in minutes of
CPU time, compression and decompression memory usage in Megabytes, respectively. For the
compression and decompression times, we opted for reporting CPU time instead of real-time, to give a
more accurate idea of the cost in terms of computational resources needed by each of the methods.
Of course, methods that use multi-threading usually require less real-time to run rather than the
corresponding CPU time. Also, for some of the methods, the total memory required depends on the
number of threads used and hence on the particular machine that those methods are running. For all of
the methods, the default parameters were used. It should be noted that in Tables 3–6, the best results
in terms of different compression metrics are shown with bold font.

The results of FASTA/Multi-FASTA file compression with DELIMINATE [87], MFCompress [90],
gzip [135] and LZMA [86] methods, reported in Table 3, show that MFCompress outperforms the other
methods in terms of compression ratio, except for the Rice dataset, which has the smallest size among
the datasets. In terms of other performance parameters, such as compression/decompression time and
compression/decompression memory, gzip outperforms the others.
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Table 3. Reference-free compression results of genomic sequence data for FASTA/Multi-FASTA
file format.

Dataset Method

Metric

C-Ratio C-Time D-Time C-Mem D-Mem
(min) (min) (MB) (MB)

Human (GRC)
DELIMINATE [87] 4.95 15.08 5.90 685.55 73.54

(2.92 GB)
MFCompress [90] 4.96 34.47 29.48 1,240.45 1,266.49
gzip [135] 3.59 8.85 0.50 6.87 6.87
LZMA [86] 4.39 117.70 1.26 199.52 31.58

Chimpanzee
DELIMINATE 5.36 16.64 6.62 683.31 73.55

(3.10 GB)
MFCompress 5.43 33.93 28.55 1,377.85 1,374.18
gzip 3.85 8.79 0.52 6.87 6.87
LZMA 4.68 118.31 1.26 199.52 31.58

Rice5
DELIMINATE 5.22 0.59 0.33 368.11 43.41

(0.16 GB)
MFCompress 5.15 2.15 1.72 1,169.64 1,082.49
gzip 3.28 0.53 0.03 6.87 6.87
LZMA 4.46 6.71 0.07 199.71 25.79

CAMERA
DELIMINATE 5.07 198.24 85.38 684.66 687.44

(42.91 GB)
MFCompress 5.39 571.74 223.61 2,764.16 2,668.16
gzip 3.52 141.33 7.66 6.87 6.87
LZMA 4.51 1,720.09 16.48 199.71 31.58

Table 4. Reference-free compression results of genomic sequence data for FASTQ file format.

Dataset Method

Metric

C-Ratio C-Time D-Time C-Mem D-Mem
(min) (min) (MB) (MB)

ERR174310_1

Fqzcomp [116] 4.76 49.58 64.79 77.21 67.31

(50.17 GB)

Quip [108] 4.76 95.36 140.09 395.16 389.22
DSRC [54] 4.64 140.67 177.37 10,608.25 12,227.26
SCALCE [109] 4.97 259.72 75.12 5,270.25 1,053.52
gzip [135] 2.90 119.32 9.48 6.87 6.87
LZMA [86] 3.61 1,731.28 28.59 199.52 31.58

ERR174310_2

Fqzcomp 4.93 51.79 65.47 77.27 67.24

(50.17 GB)

Quip 4.93 94.76 123.29 394.69 391.01
DSRC 4.82 150.67 159.58 11,109.85 11,867.62
SCALCE 5.16 233.46 73.51 5,320.82 1,047.57
gzip 2.98 117.65 9.12 6.87 6.87
LZMA 3.74 1,716.42 27.74 199.71 31.58

ERR194146_1

Fqzcomp 4.87 186.94 234.54 79.36 67.21

(204.41 GB)

Quip 4.78 326.87 438.08 397.96 392.16
DSRC 4.72 490.42 637.80 11,288.26 11,965.20
SCALCE 6.25 956.79 292.31 5,288.01 1,053.46
gzip 3.94 273.20 33.28 6.87 6.87
LZMA 4.84 6,369.49 88.22 199.52 31.58

ERR194146_2

Fqzcomp 4.85 166.93 221.19 61.49 65.18

(204.41 GB)

Quip 4.77 296.14 426.60 396.16 392.41
DSRC 4.70 600.75 672.58 11,306.27 14,600.30
SCALCE 6.18 950.32 291.13 5,336.13 1,058.48
gzip 3.90 272.37 33.69 6.87 6.87
LZMA 4.80 6,295.37 89.15 199.52 31.58
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Table 5. Compression results of genomic sequence data for BAM file format.

Dataset Method

Metric

C-Ratio C-Time D-Time C-Mem D-Mem
(min) (min) (MB) (MB)

NA12877_S1
Deez [134] 1.72 440.80 505.27 2,368.35 5,803.17

(72.71 GB)
Quip [108] 1.41 548.97 584.99 464.84 459.89
gzip [135] 1.00 72.85 12.11 6.87 6.87
LZMA [86] 0.99 865.02 133.36 199.45 31.58

NA12878_S1
Deez 1.73 668.89 752.77 2,586.70 5,584.94

(105.75 GB)
Quip 1.38 802.84 893.90 460.81 459.61
gzip 1.00 109.88 17.68 6.87 6.87
LZMA 0.99 1,261.44 193.97 199.52 31.58

NA12882_S1
Deez 1.79 553.17 641.44 2,699.24 5,773.42

(86.25 GB)
Quip 1.38 665.75 720.99 463.47 459.09
gzip 1.00 86.44 14.40 6.87 6.87
LZMA 0.99 1,024.85 158.24 199.45 31.58

Table 6. Compression results of reference-based methods.

Dataset Method

Metric

C-Ratio a C-Time D-Time C-Mem D-Mem
(min) (min) (MB) (MB)

HS8 (138 MB)

iDoComp [75] 241.77 9.95 28.48 787.58 787.58

Ref b: HSCHM8

GReEn [60] 102.98 242.99 247.32 1,124.38 1,110.83
GeCo [50] 70.65 693.67 579.50 4,897.60 4,897.65
GDC 2 [63] 239.72 2.89 0.07 1,513.25 166.84
ERGC [73] 4.47 3.44 0.22 12,256.34 12,256.34

HS11 (128 MB)

iDoComp 104.08 12.36 17.72 758.23 693.89

Ref: HSCHM11

GReEn 60.74 200.41 233.40 1,061.21 1,042.00
GeCo 67.81 517.44 509.67 4,897.79 4,897.73
GDC 2 110.97 2.78 0.06 1,415.80 111.89
ERGC 4.30 4.16 0.22 11,855.81 11,855.81

HS11 (128 MB)

iDoComp 29.19 29.06 19.15 781.27 781.27

Ref: PT11

GReEn 11.99 252.55 279.45 1,078.43 1,062.30
GeCo 24.77 507.39 520.43 4 897.84 4,897.77
GDC 2 27.49 4.65 0.08 1,434.61 118.70
ERGC 4.30 4.35 0.22 11,853.75 11,853.75

HS11 (128 MB)

iDoComp 6.44 130.77 96.27 1,128.72 1,128.72

Ref: PA11

GReEn 4.21 323.82 278.12 1,065.21 1,060.59
GeCo 12.34 517.65 524.30 4,897.84 4,897.77
GDC 2 6.21 18.45 0.16 1,459.12 310.48
ERGC 4.30 4.16 0.22 11,854.96 11,854.96

HSK16 (71 MB)

iDoComp 173.93 5.56 10.66 461.78 461.78

Ref: HS16

GReEn 45.88 104.35 113.94 765.93 778.14
GeCo 45.37 362.98 296.28 4,897.79 4,897.73
GDC 2 193.34 2.23 0.04 963.97 83.57
ERGC 9.16 1.60 0.06 11,304.26 11,304.26

RICE5 (166 MB)

iDoComp 204.38 28.22 34.50 950.05 950.05

Ref: RICE7

GReEn 169.16 204.66 221.81 1,286.32 1,285.14
GeCo 91.68 616.70 628.95 4,897.79 4,897.73
GDC 2 199.28 1.73 0.08 1,712.41 116.05
ERGC 4.44 5.36 0.27 11,789.49 11,789.49

a The size of the reference sequences has not been included in calculation of the compression ratio
(C-Ratio); b Ref: Reference sequence.
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In Table 4, the FASTQ file compressors, including Fqzcomp [116], Quip [108], DSRC [54],
SCALCE [109], gzip [135] and LZMA [86], have been compared. Based on this table, although the SCALCE
method outperforms the other methods in terms of compression ratio, making use of a non-reversible
reordering of the reads, the Fqzcomp method is the best approach in terms of compression time. Also,
gzip, which is a general-purpose method, has better performance rather than the other methods in
terms of decompression time as well as compression/decompression memory usage.

The compression results of genomic sequences in BAM format is reported in Table 5. This table
shows that the Deez [134] approach provides the best results in terms of compression ratio.
However, in terms of other compression metrics, including compression/decompression time and
compression/decompression memory usage, gzip performs better in comparison to the other methods.
It is worth pointing out that the general-purpose algorithms in this table, i.e., gzip and LZMA, are unable
to compress BAM files, since the representation of BAM files is already in binary and the methods
cannot extract redundancy from the data.

In Table 6, reference-based genome sequence compressors have been compared. Based on
this table, the best result, in terms of compression ratio, is not provided by a single approach.
iDoComp [75] outperforms the other methods, including GReEn [60], GeCo [50] and GDC 2 [63] in three
cases: compressing HS8 with reference HSCHM8, HS11 with reference PT11, and RICE5 with reference
RICE7. Also, GDC 2 provides better results for the compression of HS11 with reference HSCHM11,
as well as HSK16 with reference HS16. Finally, GeCo outperforms the others for compressing HS11 with
reference PA11. In terms of compression/decompression time as well as decompression memory usage,
the GDC 2 approach has the best performance, except for three cases. Also, in terms of compression
memory usage, the iDoComp approach always performs better than the other approaches, except for
one case. It is worth noting that, as it is clearly shown in the table, GDC 2 has a prominent advantage
over the other reference-based methods, that is carrying out the compression and the decompression
of sequences in far less time.

6. Discussion

The importance of biological data to the future of mankind is unquestionable. It is now
inevitable that huge amounts of data will be produced and will have to flow swiftly, in order to
support the deployment of the personalized and precision medicine paradigms. No doubt, data
compression is a key enabling technology to achieve this goal. A clear manifestation of the importance
that is been given to this subject is the recent interest of the working group of ISO/IEC, MPEG
(Moving Picture Experts Group), in starting standardization efforts in genetic information processing,
particularly compression [3].

Since its inception in the beginning of the 1990s, many algorithms have been proposed for the
compression of the several variants of biological data sequences. However, often we verify that it
is straightforward to encounter datasets in which a given method excels, but it is also not too much
difficult to find out some other datasets for which the same method struggles to provide reasonable
results. Moreover, frequently, datasets less favorable to a certain algorithm are successfully compressed
by some other approach. This shows how rich and diverse are the data produced in this domain and
also that most techniques are still targeting only subsets of the statistical and algorithmic characteristics
of the data. The good news is that, as more different approaches are proposed, the union of these
subsets of statistical and algorithmic characteristics gets larger. On the other hand, it also suggests that,
in order to have compression tools that are effective in a greater number of datasets, multiple techniques
need to be combined appropriately.

The primary goal of most researchers working in this field has been to develop good models
for compressing the data, without giving much attention to problems such as fast random access to
the compressed data, without considering the possibility of operating on average hardware specs or
without taking advantage of relatively accessible massively parallel hardware (e.g., GPUs or FPGAs).
Although there is no doubt that it is fundamental to proceed research towards better data compression
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models—and there is still much to be done in this front—it is also paramount to address all the other
relevant aspects. The effort that the MPEG group is willing to put here may be the glue that is missing.
This should be the opportunity to congregate efforts and to build a widely accepted standard that
will surely impact the future of genomics. Similarly to what has been happening in the field of video
compression, on which the MPEG group has played a major role in producing a standard incorporating
many diverse techniques, we foresee that a winning standard for the compression of genomic data
will certainly integrate many of the ideas that have been put forward for the last 20 years.

Besides the goal of reducing storage needs, compression-based approaches also play other key
roles in the genomics field. Their redundancy extraction characteristic, allows unveiling singularities
or working as compact structures. Several application fields have successfully used data compression.
For example, genotyping, where the main objective is to detect relative singularity, or better,
differences between individuals. For an application, see [159]. Also, retrieving Single Nucleotide
Polymorphisms (SNP) data—detecting and localizing one base mutations on genomic data [160].
Other application is aligning DNA sequences using compression [161]; Using data compression to
detect large transformations between the DNA of different individuals or species, also known as
rearrangement detection, has also been shown to work efficiently [162]; It has also been used for
efficient storage of data structures in pan-genome analysis, namely using de Bruijn graphs [163,164].
Here, the problem is to deal with large amounts of information and its fast retrieval. Finally, is has
been used for measuring complexity of sequences [165] and searching in string collections [166].

7. Conclusions

To overcome the challenges of storage, processing and transmission of biological data, that arise
from the increasing data production of high-throughput sequencing technologies, compression
methods need to be exploited. In this paper, methods concerning the compression of protein and DNA
sequences were reviewed. Moreover, different approaches proposed for compressing FASTA, FASTQ
and SAM/BAM file formats were discussed. Finally, several compression methods were executed
on the same server machine and their performance was compared, in terms of compression ratio,
compression/decompression CPU time and compression/decompression memory usage.

Based on the obtained results, it can be concluded that currently available methods for biological
sequence compression do not allow a one-size-fits-all approach, i.e., a single compression method is
not able to provide the best results in terms of all the parameters evaluated, such as compression ratio,
compression/decompression time or compression/decompression required memory. Nevertheless,
some of the methods are in a level of development that permit already use them as practical and
effective tools.

In the case of FASTA and Multi-FASTA data, it is clear that special purpose methods, such as
DELIMINATE [87] and MFCompress [90] provide an effective increase in compression ratio, although,
as expected, at the cost of some additional computational resources. Also, although both DELIMINATE
and MFCompress seem to provide equivalent performance—usually, DELIMINATE is faster and uses less
memory, but does not compress as good as MFCompress—the choice of MFCompress to integrate a
recent pipeline (MetaCRAM [93]) suggests that MFCompress is the current best choice for FASTA and
Multi-FASTA data compression.

Regarding data in FASTQ format, if the original order of the reads is not important,
then SCALCE [109] clearly seems to be the choice—read reordering is, in fact, a source of
improvement in compression. In the case the original order needs to be preserved, then about
log2 n! ≈ n log2 n − n log2(e) additional bits are required for recovering the initial ordering of n
reads. However, if the aim is to always have the original file after decompression, including read
ordering, then Fqzcomp [116] is the tool that currently offers the best performance, not only in terms
of compression ratio, but also in terms of used resources. As in other cases, gzip [135] is the fastest
method to decompress and also the one requiring less memory to run, but it falls short in terms of
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compression ratio. On the other hand, LZMA [86] is competitive in terms of compression ratio, but at
the cost of very high compression times.

In what concerns the compression of BAM files, the Deez tool seems to be, currently, the best choice.
Although it requires some more memory than Quip, it provides a considerable better compression rate
for equivalent CPU times. Both gzip and LZMA fall short regarding compression ratio.

In the case of reference-based methods, probably the most striking observation is the dramatic
variation of the compression ratio from dataset to dataset. Here, the performance of a method depends
both on the target to compress and the reference used. Particularly, the “proximity” of the target to
the reference seems to be a key factor. For example, for higher “proximity”, both iDoComp [75] and
GDC 2 [63] offer similar compression ratios, with GDC 2 providing very fast decompression. However,
when the “proximity” between the target and the reference is lower, we see GeCo providing about
twice as much compression ratio. One of the challenges here seems to be that it is not always possible
to know beforehand the degree of “proximity” between a certain target and reference. In fact, in a
certain sense, reference-based compression provides an estimate of the degree of “proximity” between
both sequences, which is only available after compression is performed.
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