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Introduction

Over the time, the type of applications has evolved from batch, compute or memory 

intensive applications to streaming or even interactive applications. As a result, appli-

cations are getting more complex and become long-running. Such applications might 

require frequent-access to multiple distributed data sources. During application deploy-

ment and provisioning, the user can face various issues such as (i) where to effectively 

place both the data and the computation; (ii) how to achieve required objectives while 

reducing the overall application running cost. Data could be generated from various 

sources, including a multitude of devices over IoT environments that can generate a 

huge amount of data, while the applications are running. An application can further pro-

duce a large amount of data. In general, data of such size is usually referred to as Big 

Data. In general, Big Data is characterised by five properties  [1, 2]. �ese are volume, 

velocity (means rapid update and propagation of data), variety (means different kinds of 
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data parts), veracity (related to the trustworthiness, authenticity and protection (degree) 

of the data) and value (the main added-value and the importance of the data to the busi-

ness). A large set of different data types generated from various sources can hold enor-

mous information (in the form of relationships [3], system access logs, and also as the 

quality of services (QoSs)). Such knowledge can be critical for improving both products 

and services. �us, to retrieve the underlying knowledge from such big sized data sets an 

efficient data processing ecosystem and knowledge filtering methodologies are needed.

In general, Cloud-based technology offers different solutions over different levels of 

abstractions to build and dynamically provision user applications. �e Cloud offers suit-

able frameworks for the clustering of Big Data as well as efficiently distributed data-

bases for their storage and placement. However, the native Cloud facilities have a lack 

of guidance on how to combine and integrate services in terms of holistic frameworks 

which could enable users to properly manage both their applications and the data. While 

there exist some promising efforts that fit well under the term Big Data-as-a-service 

(BDaaS), most of them still lack adequate support for: data-privacy [4–6], query optimi-

sation [7], robust data analytics [8] and data-related service level objective management 

for increased (Big Data) application quality [9]. Currently, the application placement and 

management over multi or cross-Clouds is being researched. However, the additional 

dimension of Big Data management does raise significantly the complexity of finding 

adequate and realistic solutions.

�e primary goal of this survey is to present the current state-of-affairs in Cloud com-

puting with respect to the Big Data management (mainly storage and placement) from 

the application’s administration point-of-view. To this end, we have thoroughly reviewed 

the proposed solutions based on the placement and storage of Big Data through the 

use of a carefully designed set of criteria. Such criteria were devised under the prism of 

non-functional properties. �is was performed in an attempt to unveil those solutions 

which can be deemed suitable for the better management of different kinds of applica-

tions (while taking into consideration non-functional aspects). In the end, the prospec-

tive readers (such as Big Data application owners, DevOps) can be guided towards the 

selection of those solutions in each Big Data management lifecycle phase (focused in this 

article) that satisfy in a better way their non-functional application requirements. �e 

analysis finally concludes with the identification of certain gaps. Based on the latter, a set 

of challenges for the two Big Data management phases covered as well as for Big Data 

management as a whole are supplied towards assisting in the evolution of respective 

solutions and paving the way for the actual directions that the research should follow.

Based on the above analysis, it is clear that this article aims at providing guidance to 

potential adopters concerning the most appropriate solution for both placing and stor-

ing Big Data (according to the distinctive requirements of the application domain). To 

this end, our work can be considered as complementary to other relevant surveys that 

attempt to review Big Data technologies. In particular, the past surveys have focused 

on the deployment of data-intensive applications in the Cloud  [10], on assessing vari-

ous database management tools for storing Big Data [11], on evaluating the technologies 

developed for Big Data applications [12], on Cloud-centric distributed database manage-

ment systems (primarily on NoSQL storage models)  [13], on design principles for in-

memory Big Data management and processing [14] and on research challenges related 
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to Big Data in the Cloud ecosystem [15]. However, the primary focus of these surveys 

is mainly on functional aspects examined under the prism of analysing different dimen-

sions and technology types related to Big Data. Further, there is no clear discussion on 

management aspects in the context of the whole Big Data management lifecycle as usu-

ally the focus seems to be merely on the Big Data storage phase. Interestingly, our survey 

deeply analyses those phases in the Big Data management lifecycle that are the most 

crucial in the context of satisfying application non-functional requirements.

�e remaining part of this manuscript is structured as follows: "Data lifecycle manage-

ment (DLM)" section explicates how data modelling can be performed, analyses various 

data management lifecycle models and comes up with an ideal one which is presented 

along with the proper architecture to support it. Next, "Methodology" section attempts 

to explain this survey’s main methodology. "Non-functional data management features" 

section details the main non-functional features of focus in this article. Based on these 

features, the review of Big Data storage systems and distributed file systems are supplied 

in "Data storage systems" section. Similarly, the review of state-of-the-art data place-

ment techniques is performed in "Data placement techniques" section. Next, "Lessons 

learned and future research directions" section presents relevant lessons learned as well 

as certain directions for future research work and finally "Concluding remarks" section 

concludes the survey paper.

Data lifecycle management (DLM)

Data lifecycle models

�ere exist two types of data lifecycle models focusing on either general data or Big Data 

management. �e generic data management lifecycles usually cover activities such as 

generation, collection (curation), storage, publishing, discovery, processing and analysis 

of data [16].

In general, Big Data lifecycle models primarily comprises activities (such as data col-

lection, data loading, data processing, data analysis and data visualisation [17, 18]). It is 

worth to note that apart from the data visualisation, they do share many identical activi-

ties with the generic ones. However, such models do not mention the value of data.

To counter this, the NIST reference model  [19] suggests four data management 

phases: collection, preparation, analysis and action, where the action phase is related to 

using synthesised knowledge to create value (represents analytics and visualisation of 

knowledge). Furthermore, focusing more on the data value, OECD  [20] has proposed 

a data value cycle model comprising six phases: datafication and data collection, Big 

Data, data analytics, knowledge base, decision making and valued-added for growth and 

well-being. �e model forms an iterative, closed feedback loop where results from Big 

Data analytics are fed back to the respective database. Later, the work in [21] exposed 

the main drawbacks of OECD and proposed a new reference model that adds two addi-

tional components, the business intelligence (BI) system and the environment, into the 

OECD model. �e data interaction and analysis formulates a short closed loop in the 

model. A greater loop is also endorsed via the BI’s iterative interaction and observation 

of its environment. Finally, it is claimed that the management of Big Data for value crea-

tion is also linked to the BI management. In this way, Big Data management is related 
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directly to the activities of data integration, analysis, interaction and effectuation along 

with the successful management of the emergent knowledge via data intelligence.

Data modelling

�e data needs to be described in an appropriate form prior to any kind of usage. 

�e information used for the data description is termed as metadata (i.e., data about 

data)  [22–24]. �e use of metadata enriches data management so that it can properly 

support and improve any data management activity. Two major issues related to meta-

data management are:

• How should metadata be described (or characterised)? �e description of a metadata 

schema which can be exploited to efficiently place a certain Big Data application in 

multiple Clouds by respecting both user constraints and requirements. Such a meta-

data schema has been proposed partially in [25] or completely in [26].

• How should metadata be efficiently managed and stored for better retrieval and 

exploitation? �e design of appropriate languages [27, 28] that focus on the descrip-

tion of how Big Data applications and data should be placed and migrated across dif-

ferent multiple Cloud resources.

For a better description of metadata, the authors in [22] identify available Cloud services 

and analyse some of their main characteristics following a tree-structured taxonomy. 

Another relevant effort is the DICE project [25] that focuses on the quality-driven devel-

opment of Big Data applications. It offers a UML profile along with the appropriate tools 

that may assist software designers to reason about the reliability, safety and efficiency of 

data-intensive applications. Specifically, it has introduced a metamodel for describing 

certain aspects of Big Data-intensive applications.

Most of these efforts do not offer a direct support for expressing significant aspects 

of Big Data, such as data origin, location, volume, transfer rates or even aspects of the 

operations that transfer data between Cloud resources. One effort that tries to cover the 

requirements for a proper and complete metadata description is the Melodic metadata 

schema [26]. �is schema refers to a taxonomy of concepts, properties and relationships 

that can be exploited for supporting Big Data management as well as application deploy-

ment reasoning. �e schema is clustered into three parts: (i) one focusing on specifying 

Cloud service requirements and capabilities to support application deployment reason-

ing; (ii) another focusing on defining Big Data features and constraints to support Big 

Data management; (iii) a final one concentrating on supplying Big Data security-related 

concepts to drive the data access control.

With respect to the second direction of work, although several languages are cur-

rently used for capturing application placement and reconfiguration requirements (e.g., 

TOSCA  [27]), a lack of distinct support for describing placement and management 

requirements for Big Data can be observed. However, if such languages are extended 

through the possible use of a metadata schema, then they could be able to achieve this 

purpose. �is has been performed in  [26], where a classical, state-of-the-art Cloud 

description language called CAMEL [29] has been extended to enable the description of 

Big Data placement and management requirements by following a feature-model-based 
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approach where requirements are expressed as features or attributes that are annotated 

via elements from the metadata schema.

Data lifecycle management systems

Traditional data lifecycle management systems (DLMSs) focus more on the way data is 

managed and not on how they are processed. In particular, the actual main services that 

they offer are data storage planning (and provisioning) and data placement (and execu-

tion support) via efficient data management policies. On the other hand, it seems that 

data processing is covered by other tools or systems as it is regarded as application-spe-

cific. Traditionally in Cloud, Big Data processing is offered as a separate service, while 

the resource management is usually handled by other tools, such as Apache Mesos or 

YARN. Figure 1 depicts the architecture of a system that completely addresses the data 

management lifecycle, as inscribed in the previous sub-section. �is system comprises 

six primary components.

• Metadata management takes care of maintaining information which concerns both 

the static and dynamic characteristics of data. It is the cornerstone for enabling effi-

cient data management.

• Data placement encapsulates the main methods for efficient data placement and data 

replication while satisfying user requirements.

• Data storage is responsible for proper (transactional) storage and efficient data 

retrieval support.

• Data ingestion enables importing and exporting the data over the respective system.

• Big Data processing supports the efficient and clustered processing of Big Data by 

executing the main logic of the user application(s).

• Resource management is responsible for the proper and efficient management of 

computational resources.

In this article, our focus is mainly on the Data storage and Data placement parts of 

the above architecture. Our rationale is that the integration of such parts (or Big Data 

lifecycle management phases) covers the core of a DLMS. An application’s data access 

workflow in the Cloud is presented in Fig. 2. As a first step, the application checks the 

availability of the input data. In general, the data needs to be known by the system to 

optimally handle it. It maps to two main cases: (i) data already exist and have been regis-

tered; (ii) data do not exist and must be registered. In the latter case, metadata is needed 
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Fig. 1 A high-level block diagram of a Big Data management system
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to register the data into the system (thus mapping to the data-registration process). Dur-

ing the data modelling (see "Data modelling" sub-section), the metadata are maintained 

via a data catalogue (i.e., a special realisation of Metadata management component). 

Such an approach can guarantee the efficient maintenance of application data through-

out the application’s lifecycle by both knowing and dynamically altering the values of 

data features (such as data type, size, location, data format, user preference, data replica 

numbers, cost constraints) whenever needed. In the next phase, based on the employed 

data placement methodology, the data is placed/migrated next to the application or both 

the data and application code is collocated. Here, the underlying scheduler (realising 

the Data placement component) acquires the up-to-date data knowledge to achieve an 

efficient data placement during both the initial application deployment and its runtime. 

Such an approach can restrain unnecessary data movement and reduces cost (at runt-

ime) [30–32]. Next, during the application execution, two situations may arise: (i) new 

data sets are generated; (ii) data sets are transformed into another form (such as data 

compression). Furthermore, temporary data may also need to be handled. Finally, once 

application execution ends, the generated or transformed data needs to be stored (or 

backed up) as per user instructions.

In general, a hierarchical storage management  [33] could be considered as a DLMS 

tool. In recent times, cognitive data management (CDM) has gained industrial sup-

port for automated data management together with high-grade efficiency. �e CDM 

DLMS Workflow

Start Data Registration

Submit User
Application 

Pre-process Data

NO

YES

Data Modelling

Goto Data
Catalogue

Metadata 
Exists

NO

YES

Data Placement/Migration

Output 
(Data)

Is Placement of  
Data Near Computation

Needed  
(Migration)? 

NO

Done?

 Migrate the data

YES

Call Resource
Scheduler

Application
Running

Failed?

Saving data for future jobs

Failure and Backup

Application/
Hardware

Failure

Fixed/Done?

Completion

Exit

Data Store

Input Datasets
(URI/URL)

Data Exists  
Locally 

Fig. 2 Standard workflow of application data lifecycle



Page 7 of 37Mazumdar et al. J Big Data            (2019) 6:15 

(e.g.,  Stronglink1) is generally the amalgamation of intelligent (artificial-intelligence2/

machine learning-based approach) distributed storage including resource management 

together with a more sophisticated DLMS component. �e CDM works on the data-

base-as-a-service (DBaaS) layer which instructs the data to be used by the scheduler 

with an efficient management approach including the exploitation of the data catalogue 

via data modelling.

Methodology

We have conducted a systematic literature review (SLR) on Big Data placement and 

storage methods in the Cloud, following the guidelines proposed in [34]. Such an SLR 

comprises three main phases: (i) SLR planning, (ii) SLR conduction and (iii) SLR report-

ing. In this section, we briefly discuss the first two phases. While the remaining part of 

this manuscript focuses on the presenting the survey, the identification of the remaining 

research issues and the potential challenges for current and future work.

SLR planning

�is phase comprises three main steps: (i) SLR need identification, (ii) research ques-

tions identification and (iii) SLR protocol formation.

SLR need identi�cation

Here, we are advocating to add more focus on the Big Data storage and placement phases 

of the respective Big Data management lifecycle. �us be able to confront the respective 

challenges that Big Data place on them. Such phases are also the most crucial in the 

attempt to satisfy the non-functional requirements of Big Data applications. �e primary 

focus of this survey is over storage and placement phases. It is an attempt to examine 

if they are efficiently and effectively realised by current solutions and approaches. �e 

twofold advantage of identifying the efficient ways to manage and store Big Data are: (i) 

practitioners can select the most suitable Big Data management solutions for satisfying 

both their functional and non-functional needs; (ii) researchers can fully comprehend 

the research area and identify the most interesting directions to follow. To this end, we 

are countering both the data placement and the storage issues focusing on the Big Data 

management lifecycle and Cloud computing under the prism of non-functional aspects. 

In contrast to previous surveys that have concentrated mainly on the Big Data storage 

issues in the context of functional aspects.

Research questions identi�cation

�is survey has the ambition to supply suitable and convincing answers to:

1. What are the most suitable (big) data storage technologies and how do they compete 

with each other according to certain criteria related to non-functional aspects?

2. What are the most suitable and sophisticated (big) data placement methods that can 

be followed to (optimally) place and/or migrate Big Data?

1 https ://stron gboxd ata.com/produ cts/stron glink /.
2 https ://www.ibm.com/servi ces/artifi cial -intel ligen ce.

https://strongboxdata.com/products/stronglink/
https://www.ibm.com/services/artificial-intelligence


Page 8 of 37Mazumdar et al. J Big Data            (2019) 6:15 

SLR protocol formation

It is a composite step related to the identification of (i) (data) sources—here we have pri-

marily consulted the Web of Science and Scopus, and (ii) the actual terms for querying 

these (data) sources—here, we focus on population, intervention and outcome as men-

tioned in [34]. It is worth to note that such data sources supply nice structured searching 

capabilities which enabled us to better pose the respective query terms. �e population 

mainly concerns target user groups in the research area or certain application domains. 

�e intervention means the specific method employed to address a certain issue (used 

terms include: methodology, method, algorithm, approach, survey and study). Lastly, the 

outcome relates to the final result of the application of the respective approach (such 

as management, placement, positioning, allocation, storage). Based on these terms, the 

abstract query concretised in the context of the two data sources can be seen in Table 1.

SLR conduction

Systematic literature review conduction includes the following steps: (i) study selection 

criteria; (ii) quality assessment criteria; (iii) study selection procedure. All these steps are 

analysed in the following three paragraphs.

Study selection

�e study selection was performed via a certain set of inclusion and exclusion criteria. 

�e inclusion criteria included the following:

• Peer-reviewed articles.

• Latest articles only (last 8 years).

• In case of equivalent studies, only the one published in the highest rated journal 

or conference is selected to sustain only a high-quality set of articles on which the 

review is conducted.

• Articles which supply methodologies, methods or approaches for Big Data manage-

ment.

• Articles which study or propose Big Data storage management systems or databases.

• Articles which propose Big Data placement methodologies or algorithms.

While the exclusion criteria were the following:

• Inaccessible articles.

• Articles in a different language than English.

• Short papers, posters or other kinds of small in contribution articles.

• Articles which deal with the management of data in general and do not focus on Big 

Data.

Table 1 Search query

(Big Data) AND (METHODOLOGY OR METHOD OR ALGORITHM OR APPROACH OR SURVEY OR STUDY)

AND (MANAGEMENT OR PLACEMENT OR POSITION OR ALLOCATION OR STORAGE) WITH TIME SPAN:2010–2018
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• Articles that focus on studying or proposing normal database management systems.

• Articles that focus on studying or proposing normal file management systems.

• Articles that focus on the supply of Big Data processing techniques or algorithms. As 

the focus in this article is mainly on how to manage the data and not how to process 

them to achieve a certain result.

Quality assessment criteria

Apart from the above criteria, quality assessment criteria were also employed to enable 

prioritising the review as well as possibly excluding some articles not reaching certain 

quality standards. In the context of this work, the following criteria were considered:

• Presentation of the article is clear and there is no great effort needed to comprehend 

it.

• Any kind of validation is offered especially in the context of the proposal of certain 

algorithms, methods, systems or databases.

• �e advancement over the state-of-the-art is clarified as well as the main limitations 

of the proposed work.

• �e objectives of the study are well covered by the approach that is being employed.

Study selection procedure

It has been decided to employ two surveyors for each main article topic which were 

given a different portion of the respective reviewing work depending on their expertise. 

In each topic, the selection results of one author were assessed by the other one. In case 

of disagreement, a respective discussion was conducted. If this discussion was not hav-

ing a positive outcome, the respective decision was delegated to the principal author 

which has been unanimously selected by all authors from the very beginning.

Non‑functional data management features

For effective Big Data management, current data management systems (DMSs), includ-

ing distributed file systems (DFSs) and distributed database management systems 

(DDBMSs) need to provide a set of non-functional features to cater the storage, manage-

ment and access of the continuously growing data. �is section introduces a classifica-

tion of the non-functional features (see Fig. 3) of DMSs in the Big Data domain extracted 

from [10, 13, 35–37].

Non-functional
Requirements

ConsistencyElasticityScalabilityPerformance Availability Big Data
Processing

Fig. 3 Non-functional features of data management systems
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Figure 3 provides an overview of the relevant non-functional features while the follow-

ing subsections attempt to analyse each of them.

Performance

Performance is typically referred to as one of the most important non-functional fea-

tures. It directly relates to the execution of requests by the DMSs [38, 39]. Typical per-

formance metrics are throughput and latency.

Scalability

Scalability focuses on the general ability to process arbitrary workloads. A definition of 

scalability for distributed systems in general and with respect to DDBMSs is provided 

by Agrawal et al. [40], where the terms scale-up, scale-down, scale-out and scale-in are 

defined focusing on the management of growing workloads. Vertical as well as horizon-

tal scaling techniques are applied to distributed DBMSs and can also be applied to DFSs. 

Vertical scaling applies by adding more computing resources to a single node. While 

horizontal scaling applies by adding nodes to a cluster (or in general to the instances of a 

certain application component).

Elasticity

Elasticity is tightly coupled to the horizontal scaling and helps to overcome the sudden 

workload fluctuations by scaling the respective cluster without any downtime. Agrawal 

et al. [40] formally define it by focusing on DDBMSs as follows “Elasticity, i.e. the ability 

to deal with load variations by adding more resources during high load or consolidating 

the tenants to fewer nodes when the load decreases, all in a live system without service 

disruption, is therefore critical for these systems”. While elasticity has become a common 

feature for DDBMSs, it is still in an early stage for DFSs [41].

Availability

�e availability tier builds upon the scalability and elasticity as these tiers are exploited 

to handle request fluctuations [42]. Availability represents the degree to which a system 

is operational and accessible when required. �e availability of a DMS can be affected 

by overloading at the DMS layer and/or failures at the resource layer. During overload-

ing, a high number of concurrent client requests overload the system such that these 

requests are either handled with a non-acceptable latency or not handled at all. On the 

other hand, a node can fail due to a resource failure (such as network outage or disk fail-

ure). An intuitive way to deal with overload is to scale-out the system. Distributed DMSs 

apply data replication to handle such resource failures.

Consistency

To support high availability (HA), consistency becomes an even more important and 

challenging non-functional feature. However, there is a trade-off among consistency, 

availability and partitioning guarantees, inscribed by the well-known CAP theorem [43]. 

�is means that different kinds of consistency guarantees could be offered by a DMS. 

According to [44] consistency can be considered from both the client and data perspec-

tives (i.e., from the DMS administrator perspective). �e client-centric consistency can 
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be classified further into staleness and ordering [44]. Staleness defines the lagging of rep-

lica behind its master. It can be measured either in time or versions. Ordering defines 

that all requests must be executed on all replicas in the same chronological order. Data-

centric consistency focuses on the synchronization processes among replicas and the 

internal ordering of operations.

Big Data processing

�e need of native integration of (big) data processing frameworks into the DMSs arises 

along with the number of recently advanced Big Data processing frameworks, such as 

Hadoop MapReduce, Apache Spark, and their specific internal data models. Hence, the 

DMSs need to provide native drivers for Big Data processing frameworks which can 

automate the transformation of DMS data models into the respective Big Data process-

ing framework storage models. Further, these native drivers can exploit data locality fea-

tures of the DMSs as well. Please note that such a feature is also needed based on the 

respective DLMS architecture that has been presented in "Data lifecycle management 

(DLM)" section as a Big Data processing framework needs to be placed on top of the 

data management component.

Data storage systems

A DLMS in the Big Data domain requires both the storage and the management of het-

erogeneous data structures. Consequently, a sophisticated DLMS would need to support 

a diverse set of DMSs. DMSs can be classified into file systems for storing unstructured 

data and DBMSs (database management systems) for storing semi-structured and struc-

tured data. However, the variety of semi-structured and structured data requires suitable 

data models (see Fig. 4) to increase the flexibility of DBMSs. Following these require-

ments, the DBMS landscape is constantly evolving and becomes more heterogeneous.3 

�e following sub-sections provides (i) an overview of related work on DBMS classifica-

tions; (ii) a holistic and up-to-date classification of current DBMS data models; (iii) a 

qualitative analysis of selected DBMSs; (iv) a classification and analysis of relevant DFSs.

Database management systems

�e classification of the different data models (see Fig. 4) for semi-structured data has 

been in the focus since the last decade [37] as heterogeneous systems (such as Dynamo, 

Cassandra [45] and BigTable [46]) appeared on the DBMS landscape. Consequently, the 

term NoSQL evolved, which summarizes the heterogeneous data models for semi-struc-

tured data. Similar, the structured data model evolved with the NewSQL DBMSs  [13, 

47].

Several surveys have reviewed NoSQL and NewSQL data models over the last years 

and analyze the existing DBMS with respect to their data models and the specific non-

functional features [11, 13, 35–37, 48, 49]. In addition, dedicated surveys focus explic-

itly specific data models (such as the time series data model [50, 51]) or specific DBMS 

architectures (such as in-memory DBMS [14]).

3 http://nosql -datab ase.org/ lists over 225 DBMS for semi-structured data.

http://nosql-database.org/
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Cloud-centric challenges for operating distributed DBMS are analysed by  [13], con-

siders the following: horizontal scaling, handling elastic workload patterns and fault 

tolerance. It also classifies nineteen DDBMSs against features, such as partitioning, rep-

lication, consistency and security.

Recent surveys on NoSQL-based systems [35, 49] derive both, the functional and the 

non-functional NoSQL and NewSQL features and correlated them with distribution 

mechanisms (such as sharding, replication, storage management and query process-

ing). However, the implications of Cloud resources or the challenges of Big Data applica-

tions were not considered. Another conceptual analysis of NoSQL DBMS is carried out 

by [48]. It outlines many storage models (such as key-value, document, column-oriented 

and graph-based) and also analyses current NoSQL implementations against persis-

tence, replication, sharding, consistency and query capability. However, recent DDBMSs 

(such as time-series DBMSs or NewSQL DBMSs) are not analysed from Big Data as well 

as the Cloud context. A survey on DBMS support for Big Data with the focus on data 

storage models, architectures and consistency models is presented by  [11]. Here, the 

Database Management
Systems

Relational
Storage

Non-Relational
Storage

RDBMS
MySQL
PostgreSQL

New SQL

VoltDB
CockroachDB

Key-Value
Redis
Riak

Document

Wide-Column

Graph

Multi-Model

MongoDB
Couchbase

Cassandra
HBase

InfluxDB 
Prometheus

Neo4J
JanusGraph

Time-Series

ArangoDB
OrientDB

Fig. 4 DBMS data model classification
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relevant DBMSs are analysed towards their suitability for Big Data applications, but the 

Cloud service models and evolving DBMSs (such as time-series databases) are also not 

considered.

An analysis of the challenges and opportunities for DBMSs in the Cloud is presented 

by  [52]. Here, the relaxed consistency guarantees (for DDBMS) and heterogeneity, as 

well as the different level of Cloud resource failures are explained. Moreover, it is also 

explicated that HA mechanism is needed to overcome failures. However, the HA and 

horizontal scalability come with the weaker consistency model (e.g., BASE  [53]) com-

pared to ACID [43].

In the following, we distil and join existing data model classifications (refer to Fig. 4) 

into an up-to-date classification of the still-evolving DBMS landscape. Hereby, we select 

relevant details for the DLMS of Big Data applications, while we refer the interested 

reader to the presented surveys for an in-depth analysis of specific data models. Analo-

gously, we apply a qualitative analysis of currently relevant DBMS based on the general 

DLMS features (see "Non-functional data management features" section), while in-depth 

analysis of specific features can be found in the presented surveys. Hereby, we select two 

common DBMS4 of each data model for our analysis.

Relational data models

�e relational data model stores data as tuples forming an ordered set of attributes; 

which can be extended to extract more meaningful information [54]. A relation forms a 

table and tables are defined using a static, normalised data schema. SQL is a generic data 

definition, manipulation and query language for relational data. Popular representative 

DBMSs with a relational data model are MySQL and PostgreSQL.

NewSQL

�e traditional relational data model provides limited data partitioning, horizontal scal-

ability and elasticity support. NewSQL DBMSs [55] aim at bridging this gap and build 

upon the relational data model and SQL. However, NewSQL relaxes relational features 

to enable horizontal scalability and elasticity  [13]. It is worth to note that only a few 

NewSQL DBMSs, such as VoltDB5 and CockroachDB,6 are built upon such architectures 

with the focus on scalability and elasticity as most NewSQL DBMSs are constructed out 

of existing DBMSs [47].

Key-value

�e key-value data model relates to the hash tables of programming languages. �e data 

records are tuples consisting of key-value pairs. While the key uniquely identifies an 

entry, the value is an arbitrary chunk of data. Operations are usually limited to simple 

put or get operations. Popular key-value DBMSs are Riak7 and Redis.8

4 https ://db-engin es.com/en/ranki ng.
5 https ://www.voltd b.com/.
6 https ://www.cockr oachl abs.com/.
7 http://basho .com/produ cts/riak-kv/.
8 https ://redis .io/.

https://db-engines.com/en/ranking
https://www.voltdb.com/
https://www.cockroachlabs.com/
http://basho.com/products/riak-kv/
https://redis.io/
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Document

�e document data model is similar to the key-value data model. However, it defines 

a structure on the values in certain formats, such as XML or JSON. �ese values are 

referred to as documents, but usually without fixed schema definitions. Compared to 

key-value stores, the document data model allows for more complex queries as docu-

ment properties can be used for indexing and querying. MongoDB9 and Couchbase10 

represent the common DBMSs with a document data model.

Wide-column

�e column-oriented data model stores data by columns rather than by rows. It ena-

bles both storing large amounts of data in bulk and efficiently querying over very large 

structured data sets. A column-oriented data model does not rely on a fixed schema. It 

provides nestable, map-like structures for data items which improve flexibility over fixed 

schema [46]. �e common representatives of column-oriented DBMSs are Apache Cas-

sandra11 and Apache HBase.12

Graph

�e graph data model primarily uses graph structures, usually including elements like 

nodes and edges, for data modelling. Nodes are often used for the main data entities, 

while edges between nodes are used to describe relationships between entities. Query-

ing is typically executed by traversing the graph. Typical graph-based DBMS are Neo4J13 

and JanusGraph.14

Time-series

�e time-series data model  [50] is driven by the needs of sensor storage within the 

Cloud and Big Data context. �e time-series DBMSs are typically built upon existing 

non-relational data models (preferably key-value or column-oriented), and add a dedi-

cated time-series data model on top. �e data model is built upon data points which 

comprise a time stamp, an associated numeric value and a customisable set of metadata. 

Time-series DBMSs offers analytical query capabilities, which cover statistical functions 

and aggregations. Well-known time-series DBMSs are InfluxDB15 and Prometheus.16

Multi-model

A multi-model address the problem of polyglot persistence [56] which signifies that each 

of the existing non-relational data models addresses a specific use case. Hence, multi-

model DBMSs combine different data models into a single DBMS while build upon one 

storage backend to improve flexibility (e.g., providing the document and graph data 

11 http://cassa ndra.apach e.org/.
12 https ://hbase .apach e.org/.
13 https ://neo4j .com/.
14 http://janus graph .org/.
15 https ://www.influ xdata .com/
16 https ://prome theus .io/.

9 https ://www.mongo db.com/.
10 https ://www.couch base.com/.

http://cassandra.apache.org/
https://hbase.apache.org/
https://neo4j.com/
http://janusgraph.org/
https://www.influxdata.com/
https://prometheus.io/
https://www.mongodb.com/
https://www.couchbase.com/
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model via a unified query interface). Common multi-model DBMSs are ArangoDB17 and 

OrientDB.18

Comparison of selected DBMSs

In this section, we analyse already mentioned DBMSs in the context of Big Data appli-

cations (see Table  2). To perform this, we first analyse already mentioned DBMS (of 

the previously introduced data models) with respect to their features and supported 

Cloud service models. Next, we provide a qualitative analysis with respect to the non-

functional features of the DMSs (refer to "Non-functional data management features" 

section). For quantitative analysis of these non-functional requirements, we refer the 

interested reader to the existing work focused on DBMS evaluation frameworks [44, 57–

60] and evaluation results [42, 61, 62].

Qualitative criteria

In the Table 2, the first three columns present each DBMS and its data model, followed 

by the technical features and the service models supported. �e analysis only considers 

the standard version of a DBMS.

In the following, we attempt to explicate each of the technical features considered. 

�e DBMS architecture is classified into single, master–slave and multi-master architec-

tures [56]. �e sharding strategies are analysed based on the DBMS architectures; they 

can be supported manually as well as automatically in a hash- or range-based manner. 

�e elasticity feature relies on a distributed architecture and relates to whether a DBMS 

supports adding and/or removing nodes from the cluster at runtime without a down-

time. For consistency and availability guarantees, each DBMS is analysed with respect 

to its consistency (C), availability (A) and partition tolerance (P) properties within the 

CAP theorem (i.e., CA, CP, AC or AP) [43]. However, it should be highlighted that we 

did not consider fine-grained configuration options that might be offered for a DBMS to 

vary the CAP properties. Next, the replication mechanisms are analysed in terms of both 

cluster and cross-cluster replication (also known as geo-distribution). Consequently, a 

DBMS supporting cross-cluster replication implicitly supports cluster replication. �e 

interested reader might consider [63] for more fine-grained analysis of replication mech-

anisms of DDBMSs. �e Big Data adapter is analysed by evaluating native and/or third-

party drivers for Big Data processing frameworks. Finally, the DDBMSs are classified 

based on their offering as community editions, enterprise commercial editions or man-

aged DBaaS. One exemplary provider is presented if the DBMS is offered as a DBaaS.

Qualitative analysis

�e resulting Table 2 represents the evolving landscape of the DBMSs. �e implemented 

features of existing DBMSs significantly differ (except the RDBMSs) even within one 

data model. �e heterogeneity of analysed DBMSs is even more obvious across data 

models. Further, the heterogeneous DBMS landscape offers a variety of potential DBMS 

solutions for Big Data.

17 https ://www.arang odb.com/.
18 https ://orien tdb.com/.

https://www.arangodb.com/
https://orientdb.com/
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�e feature analysis provides a baseline for the qualitative analysis of the non-func-

tional features. From the (horizontal) scalability point-of-view, a DBMS with a multi-

master architecture is supposed to provide scalability for write and read workloads, 

while a master–slave architecture is supposed to provide read scalability. Due to the 

differences between the DBMSs, the impact of elasticity requires additional qualitative 

evaluations [42].

�e consistency guarantees correlate to the classification in the CAP theorem. Table 2 

clearly shows the heterogeneity compared to the consistency guarantees. Generally, 

the single-master or master–slave architectures provide strong consistency guarantees. 

Multi-master architectures cannot be exactly classified into the CAP theorem as their 

consistency guarantees heavily depend on the DBMS runtime configuration [64]. Addi-

tional evaluations of the consistency for the selected DBMSs are required for strong con-

sistency (so as to ensure scalability, elasticity and availability) [44, 62].

Providing HA directly relates to the supported replication mechanisms to overcome 

failures. �e analysis shows that all DBMSs support cluster-level replication, while 

cross-cluster replication is supported by ten out of the sixteen DBMSs. Big Data pro-

cessing relates to the technical feature of Big Data adapters. Table 2 clearly shows that 

seven DBMSs provide native adapters and nine DBMS enable it via third-party adapt-

ers to support Big Data processing. �e service model of all the DBMSs is either avail-

able as a self-hosted community or enterprise version. In addition, both RDBMS and six 

NoSQL DBMS are offered as managed DBaaS. While the DBaaS offerings are abstract-

ing all operational aspects of the DBMS, an additional analysis might be required with 

respect to their non-functional features and cost models [65].

Cloudi�cation of DMS

Traditional on-premise DBMS offerings are still popular, but the current trend shows 

that DDBMSs running in the Cloud are also well-accepted. Especially, as Big Data 

imposes new challenges such as scalability, the diversity of data management or the 

usage of Cloud resources, towards the massive storage of data [66]. In general, the dis-

tributed architecture of DMSs evolved their focus over exploiting the Cloud features 

and catering the 5Vs of Big Data  [67]. Data-as-a-service (DaaS) mostly handles the 

data aggregation and management via appropriate web-services, such as RESTful APIs. 

While database-as-a-service (DBaaS) offers database as a service which can include (dis-

tributed) a relational database or a non-relational one. In most of the cases, storage-as-

a-service (STaaS) includes both DaaS and the DBaaS [68]. Furthermore, BDaaS [3] is a 

Cloud service (such as Hadoop-as-a-service) where traditional applications are migrated 

from local installations to the Cloud. BDaaS wraps three primary services. �ey are 

(i) IaaS (for underlying resources), (ii) STaaS (a sub-domain of platform-as-s-service 

(PaaS)) for managing the data via dynamic scaling and (iii) data management (such as 

data placement, replica management).

Distributed �le systems

A distributed file systems (DFS) is an extended networked file system that allows mul-

tiple distributed nodes to internally share data/files without using remote call methods 

or procedures  [69]. A DFS offers scalability, fault-tolerance, concurrent file access and 
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metadata support. However, the design challenges (independent of data size and stor-

age type) of a DFS are transparency, reliability, performance, scalability, and security. In 

general, DFSs do not share storage access at the block level but rather work at the net-

work level. In DFSs, security relies on either access control lists (ACLs) or respectively 

defined capabilities, depending on how the network is designed. DFSs can be broadly 

classified into three models and respective groups (see Fig. 5). First, client–server archi-

tecture based file systems which supply a standardized view of a local file system. Sec-

ond, clustered-distributed file systems which offer multiple nodes to enable concurrent 

access to the same block device. �ird, symmetric file systems, where all nodes have a 

complete view of the disk structure. Below, we briefly analyse each category in a separate 

sub-section while we also supply some strictly open-source members for it.

Client–server model

In the client–server architecture based file system, all communications between servers 

and clients are conducted via remote procedure calls. �e clients maintain the status of 

current operations on a remote file system. Each file server provides a standardized view 

of its local file system. Here, the file read-operations are not mutually exclusive but the 

write operations are. File sharing is based on mounting operations. Only the servers can 

mount directories exported from other servers. Network File System (NFS) and Glus-

terFS19 are two popular open source implementations of the client–server model.

Clustered-distributed model

Clustered-distributed based systems organize the clusters in an application-specific 

manner and are ideal for DCs. �e model supports a huge amount of data; the data is 

stored/partitioned across several servers for parallel access. By design, this DFS model 

Client-Server 

File Systems

Distributed
File Systems

Clustered
Distributed 

Local File
Systems

Symmetric

NFS
GlusterFS

HDFS
CephFS 

Ivy 
PVFS

Fig. 5 Distributed file systems classification

19 https ://docs.glust er.org/en/lates t/.

https://docs.gluster.org/en/latest/
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is fault tolerant as it enables the hosting of a number of replicas. Due to the huge vol-

ume of data, data are appended instead of overwritten. In general, the DNS servers map 

(commonly using round-robin fashion) access requests to the clusters for load-balancing 

purposes. �e Hadoop distributed file system (HDFS) and CephFS20 are two popular 

implementations of such a DFS model.

Symmetric model

Symmetric is a DFS that supports a masterless architecture, where each node has the 

same set of roles. It mainly resembles a peer-to-peer system. In general, the symmetric 

model employs a distributed hash table approach for data distribution and replication 

across systems. Such a model offers higher availability but reduced performance. Ivy [70] 

and the parallel virtual file system (PVFS) [71] are examples of a symmetric DFS model.

DFS evaluation

Similar to DDBMSs, we also compare the open source implementations of DFSs according 

to the same set of technical features or criteria. A summary of this comparison is depicted 

in Table 3. In general, most of the file systems are distributed in nature (except NFS and 

GlusterFS). However, they do exhibit some architectural differences. NFS and GlusterFS are 

both developed focusing on a master–slave approach, while Ivy and PVFS are based on the 

masterless model. Data partitioning (or sharding) is also supported dynamically (featured 

by Ivy and PVFS) or statically via a fixed size (as in case of HDFS) by these DFSs. Elasticity 

or supporting the data scaling is a very important feature for many Big Data applications 

(especially hosted at Cloud). We can thus observe that except NFS all mentioned DFSs sup-

port scalability. Further, HDFS, CephFS, Ivy and PVFS are fault tolerant as well. Replication, 

highly needed for not losing data, is well supported by all DFSs. However, their granularity 

differs from the block to the cluster level. Finally, these DFSs also offer some form of hooks 

(either native or third-party supplied) to be used with Big Data frameworks.

Table 3 Feature analysis of selected DFSs

DFS Version FileSystem Technical features

Architecture Sharding Elasticity CAP Replication Big Data 
adapter

NFS 4.2 Client–
server

Fully-central-
ized

Index/range No CA Block level 3rd party

GlusterFS 4.0 Client–
server

Fully-central-
ized

Automatic Yes CA Node level Native

HDFS 3.0.1 Clustered-
distributed

Less-central-
ized

Fixed size Yes AP Block level Native

CephFS 12.2.5 Clustered-
distributed

Less-central-
ized

Index/range Yes CP Cluster-level Native/3rd 
party

Ivy 0.3 Symmetric Fully-distrib-
uted

DHash Yes AP Block-level –

PVFS 2.0 Symmetric Fully-distrib-
uted

Hash Yes AP – 3rd party

20 http://docs.ceph.com/docs/mimic /cephf s/.

http://docs.ceph.com/docs/mimic/cephfs/
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Data placement techniques

In the Cloud ecosystem, traditional placement algorithms incur a high cost (including 

the time) on storing and transferring data [72]. Placing data while data is partitioned and 

distributed across multiple locations is a challenge [23, 73]. Runtime data migration is an 

expensive affair [30–32] and the complexity increases due to the frequent change of appli-

cations as well as DCs’ behaviour (i.e., resources or latencies) [74]. Placing a large amount 

of data across the Cloud is complex due to issues, such as (i) data storage and transfer cost 

optimisation while maintaining data dependencies; (ii) data availability and replication; (iii) 

privacy policies, such as restricted data storage based on geo-locations. Data replication can 

influence consistency, while it also enhances the scalability and higher availability of data. In 

general, the existing data placement strategies can be grouped based on user-imposed con-

straints, such as data access latency [75], fault tolerance [76], energy-cost awareness [77], 

data dependency [78, 79] and robustness or reliability [80, 81].

Formal de�nition

�e data placement in a distributed computing domain is an instance of NP-hard prob-

lem [82], while it can be reduced to a bin-packing problem instance. Informally, the data 

placement problem can be described as follows: given a certain workflow, the current data 

placement, and a particular infrastructure, find the right position(s) of data within the 

infrastructure to optimise one or more certain criteria, such as the cost of the data transfer.

A formal representation of this problem as follows: suppose that there are N datasets, 

represented as di (where i = 1, . . . ,N  ). Each dataset has a certain size si . Further, suppose 

that there are M computational elements represented as Vj (where j = 1, . . . ,M ). Each 

computational element has a certain storage capacity denoted as cj . Finally, suppose that 

there is a workflow W with T tasks which are represented as tk (where k = 1, . . . ,T  ). Each 

task has a certain input tk .input and output tk .output , where each maps to a set of datasets.

�e main set of decision variables is cij representing the decisions (e.g., based on privacy 

or legal issues) of whether a certain dataset i should be stored in a certain computational 

element j. �us, there is a need to have cij == 1 for each i and a certain j. Two hard con-

straints need to hold: (i) a dataset should be stored in one computational element which 

can be represented as follows: 
∑

j cij = 1 for each i. It is worth to note that this constraint 

holds when no dataset replication is allowed. Otherwise, it would take the following form: 
∑

j cij >= r , where r is the replication factor; (ii) the capacity of a computational element 

should be sufficient for hosting the respective dataset(s) assigned to it. �is is represented 

as follows: 
∑

i cij ∗ si <= cj for each j.

Finally, suppose that the primary aim is to reduce the total amount of data transfers for 

the whole workflow. In this respect, this optimisation objective can be expressed as follows:

where m(di) (which supplies as the output a value in [1, M]) indicates the index of the 

computational element that has been selected for a certain dataset. �is objective adds 

the amount of data transfers per each workflow task which relates to the fact that the 

task will be certainly placed in a specific resource mapping to one of the required input 

(1)
minimise

∑

k

∑

di ,di′
∈tk .input

(

m(di) <> m
(

di′
))
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datasets. �us, during its execution, the data mapping to the rest of the input datasets 

will need to be moved in order to support the respective computation needed.

Data placement methodologies

We broadly classify the proposed data placement methods into data dependency, holis-

tic task and data scheduling and graph-based methods. �e methods in each category 

are analysed in the following subsections.

Data dependency methods

A data-group-aware placement scheme is proposed in  [83] by employing the bond 

energy algorithm (BEA)  [84] to transform the original data dependency matrix into a 

Hadoop cluster. It exploits access patterns to find an optimal data grouping to achieve 

better parallelism and workload balancing. In  [85], a data placement algorithm is pro-

posed for solving the data inter-dependency issue at the VM level. Scalia [86] proposes 

a Cloud storage brokerage scheme that optimises the storage cost by exploiting the real-

time data access patterns. Zhao et al. [87] proposed data placement strategies for both 

initial data placement and relocation using a particle swarm optimization (PSO) algo-

rithm. For fixed data set placement, this method relies on hierarchical data correlation 

and performs data re-allocation during the storage saturation. Yuan et al. [78] propose 

a k-means based dataset clustering algorithm to construct a data dependency matrix 

by exploiting the data dependency and the locality of computation. Later, the depend-

ency matrix is transformed by applying the BEA while items are clustered based on their 

dependencies by following a recursive binary partitioning algorithm. In general, the 

preservation of time locality can significantly impact caching performance while the effi-

cient re-ordering of jobs can improve the resource usage. In [79] authors propose a file 

grouping policy for pre-staging data by preserving time locality and enforcing the role of 

job re-ordering via extracting access patterns.

Task and data scheduling methods

In [88], the authors propose an adaptive (based on multi-objective optimization model) 

data management middleware which collects system-state information and abstracts 

away the complexities of multiple Cloud storage systems. For internet-of-things (IoT) 

data streaming support, Lan et al. [89] proposed a data stream partitioning mechanism 

by exploiting statistical feature extraction. Zhang et al. [90] propose a mixed-integer lin-

ear programming model for modelling the data placement problem. It considers both 

the data access cost as well as the storage limitations of DCs. Hsu et al. [91] proposed a 

Hadoop extension by adding dynamic data re-distribution (by VM profiling) before the 

map phase and VM mapping for reducers based on partition size and VM availability. 

Here, high capacity VMs are assigned for high workload reducers. Xu et al.   [92] pro-

poses a genetic programming approach to optimise the overall number of data transfers. 

However, this approach does not consider the DCs’ capacity constraints and the non-

replication constraints of data sets. In  [93], a policy engine is proposed for managing 

both the number of parallel streams (between origin and destination nodes) and the pri-

orities for data staging jobs in scientific workflows. �e policy engine also considers data 

transfers, storage allocation and network resources.
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�e storage resource broker  [23] provides seamless access to the different distrib-

uted data sources (interfacing multiple storages) via its APIs. It works as a middleware 

between the multiple distributed data storages and applications. BitDew  [94] offers 

a programmable environment for data management via metadata exploitation. �e 

data scheduling (DS) service takes care of implicit data movement. Pegasus  [95] pro-

vides a framework that maps complex scientific applications onto distributed resources. 

It stores the newly generated data and also registers them in the metadata catalogue. 

�e replica location service [96] is a distributed, scalable, data management service that 

maps the logical data names to target names. It supports both centralized as well as dis-

tributed resource mapping. Kosar and Livny [81] proposes a data placement that con-

sists of a scheduler, a planner and a resource broker. �e resource broker is responsible 

for matching resources, data identification and decisions related to data movement. �e 

scheduling of data placement jobs relies on the information given by the workflow man-

ager, the resource broker and the data miner. A very interesting feature of the proposed 

sub-system is that it is able to support failure recovery through the application of retry 

semantics.

Graph-based data placement

Yu and Pan [72] proposes the use of sketches to construct a hyper-graph sparsifier of data 

traffic to lower the data placement cost. Such sketches represent data structures that 

approximate properties of a data stream. LeBeane et  al.  [97] proposed on-line graph-

partitioning multiple strategies to optimise data-ingress across heterogeneous clusters. 

SWORD  [98] handles the partitioning and placement for OLTP workloads. Here, the 

workload is represented as a hypergraph and a hyper-graph compression technique is 

employed to reduce the data partitioning overhead. An incremental data re-partitioning 

technique is also proposed that modifies data placement in multiple steps to support 

workload changes. Kayyoor et  al.  [99] propose how to map nodes to a subset of clus-

ters via satisfying user constraints. It minimises the query span for query workloads by 

applying replica selection and data placement algorithms. �e query-based workload is 

represented as hyper-graphs and a hypergraph partitioning algorithm is used to process 

them. Kaya et al. [100] model the workflow as a hypergraph and employ a partitioning 

algorithm to reduce the computational and storage load while trying to minimise the 

total amount of file transfers.

Comparative evaluation

In this section, we have carefully selected a set of criteria to evaluate the methods ana-

lysed in "Data placement methodologies" section. �e curated criteria are: (i) fixed data 

sets—whether the placement of data can be a priori fixed in sight of, e.g., regulations, (ii) 

constraint satisfaction—which constraint solving technique is used, (iii) granularity—

what is the granularity of the resources considered, (iv) intermediate data handling—

whether intermediate data, produced by, e.g., a running workflow, can be also handled, 

(v) multiple application handling—whether the data placement over multiple applica-

tions can be supported, (vi) increasing data size—whether the growth rate of data is 

taken into account, (vii) replication—whether data replication is supported, (viii) optimi-

sation criteria—which optimisation criteria are exploited, (ix) additional system related 
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information—whether additional knowledge is captured which could enable the produc-

tion of better data placement solutions. An overview of the evaluation based on these 

criteria can be observed in comparison Table 4. First of all, we can clearly see that there 

is no approach that covers all the criteria considered. �ree approaches (Yuan et al. [78], 

BitDew [94] and Kosar [81]) can be distinguished, considered also as complementary to 

each other. However, only in  [78] a suitable optimisation/scheduling algorithm for data 

placement has been realised.

Table 4 Comparative summary of existing data placement algorithms

Approach Fixed DS Constraint 
satisfaction

Granul. Interm. 
DS

Mult. 
appl.

Data 
size

Repl. Opt. 
criteria

Add. 
info.

BDAP [85] Yes Meta-heu-
ristic

Fine Yes No No No Comm. 
cost

No

Xu [92] No Meta-heu-
ristic

Coarse No No No No Data 
transf. 
number

No

Yuan [78] Yes Recursive 
binary part.

Coarse Yes Yes Yes No Data 
transf. 
number

No

Kaya [100] No Hypergraph 
part.

Coarse No No No No Data 
transf. 
number

No

Zhao [87] Yes Hierarchical 
part. clust. 
+ PSO

Fine Yes No No No Data 
transf. 
number

No

Wang [83] No Recursive 
clust. + 
ODPA

Fine No No No No Data 
transf. 
number

Yes

Yu [72] No Hypergraph 
part.

Fine No No No No Cut 
weight

Yes

Zhang [90] No Lagrance MIP 
relaxation

Coarse No No No No Data 
access 
cost

No

Hsu [91] No – Fine No No No No Profiling-
related 
metric

Yes

LeBeane [97] No Hypergraph 
part.

Fine No No No No Skew fac-
tor

Yes

Lan [89] No Clustering-
based PSO 
search

Fine No No No No Volatility 
AMA, 
hurst 
distance

Yes

BitDew [94] No Fine Yes Yes No Yes Data dep. 
repl., 
fault tol.

Yes

Kayoor [99] No Hypergraph 
part.

Coarse No No No Yes Avg. 
query 
span

Yes

Kosar [81] Yes Fine Yes Yes No Yes Yes

Scalia [86] No Multi-dimen-
sional 
Knapsack 
problem

Fine No Yes Yes No Storage 
cost

Yes

SWORD [98] Yes Graph parti-
tion

Fine No Yes Conflict-
ing 
transac-
tions

Yes
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Considering now each criterion in isolation, we can observe in Table 4 that very few 

approaches consider the existence of a fixed or semi-fixed location of data sets. Further, 

such approaches seem to prescribe a fixed a-priori solution to the data placement prob-

lem which can lead to a sub-optimal solution. Especially as optimisation opportunities 

are lost in sight of more flexible semi-fixed location constraints. For instance, fixing the 

placement of a dataset to a certain DC might be sub-optimal in case that multiple DCs 

in the same location exist.

�ree main classes of data placement optimisation techniques can be observed: 

(i) meta-search (like PSO)/genetic programming) to more flexibly inspect the avail-

able solution space and efficiently find a near-optimal solution; (ii) hierarchical parti-

tion algorithms (based on BEA) that attempt to group data recursively based on data 

dependencies either to reduce the number or the cost of data transfers. BEA is used as 

the baseline for many of these algorithms. BEA also supports dynamicity. In particu-

lar, new data sets are handled by initially encoding them in a reduced table-based form 

before applying the BEA. After the initial solution is found, the modification can be done 

by adding cluster/VM capacity constraints into the model. (iii) a Big Data placement 

problem can also be encoded via a hypergraph. Here, nodes are data and machines while 

hyper-edges attempt to connect them together. �rough such modelling, traditional or 

extended hypergraph partitioning techniques can be applied to find the best possible 

partitions. �ere can be a trade-off between different parameters or metrics that should 

be explored by all the data placement algorithms irrespectively of the constraint solving 

technique used. However, such a trade-off is not usually explored as in most cases only 

one metric is employed for optimisation.

Granularity constitutes the criterion with less versatility as most of the approaches 

have selected a fine-grained approach for data-to-resource mapping, which is suitable 

for the Cloud ecosystem.

�e real-world applications are dynamic and can have varying load at different points 

of time. Furthermore, applications can produce additional data which can be used for 

next computation steps. �us, data placement should be a continuous process to vali-

date decisions taken at different points in time. However, most approaches in data place-

ment, focus mainly on the initial positioning of Big Data and do not interfere with the 

actual runtime of the applications.

�ere seems also to exist a dependency between this criterion and the fixed data sets 

one. �e majority of the proposed approaches satisfying this criterion also satisfy the 

fixed data set one. �is looks like a logical outcome as dynamicity is highly correlated to 

the need to better handle some inherent data characteristics. Further, a large volume of 

intermediate data can also have a certain gravity effect that could resemble the one con-

cerning fixed data.

�e multi-application criterion is not supported at all. �is can be due to the following 

facts: (i) multi-application support can increase the complexity and the size of the prob-

lem; (ii) it can also impact the solution quality and solution time which can be undesir-

able especially for approaches that already supply sub-optimal solutions.

Only the approach in  [78] caters for data growth via reserving additional space in 

already allocated nodes based on statically specified margins. However, such an approach 

is static in nature and faces two unmet challenges: the support for dynamic data growth 
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monitoring, suitable especially in cases where data can grow fast, and dynamic storage 

capacity determination, through, e.g., data growth prediction, for better supporting pro-

active data allocation. However, if we consider all dynamicity criteria together, we can 

nominate the approach in [78] as the one with the highest level of dynamicity, which is 

another indication of why it can be considered as prominent.

Data replication has been widely researched in the context of distributed systems but 

has not been extensively employed in data placement. �us, we do believe that there 

exists a research gap here. Especially as those few approaches (such as  SWORD  [98], 

Kosar  [81], Kayoor  [99], BitDew  [94]) that do support replication still lack suitable 

details or rely on very simple policies driven by user input.

We can observe that the minimisation of data transfer number or cost is a well-

accepted optimisation criterion. Furthermore, data partitioning related criteria, such as 

skew factor and cut weight, have been mostly employed in the hypergraphs based meth-

ods. In some cases, we can also see multiple criteria to be considered which are: (i) either 

reduced to an overall one; (ii) not handled through any kind of optimisation but just 

considered in terms of policies that should be enforced. In overall, we are not impressed 

by the performance of the state-of-the-art in this comparison criterion. So, there is a 

huge room for potential improvement here.

Finally, many of the methods also consider additional input to achieve a better solu-

tion. �e most common extra information that is exploited is data access patterns and 

nodes (VMs or PMs) profiling to, e.g., inspect their (data) processing speed. However, 

while both are important, usually only one from these two is exploited in these methods.

Lessons learned and future research directions

To conclude our survey, in this section we will discuss the issues of the current state-of-

the-art and the research gaps or opportunities related to data storage and placement. 

Further, we also supply research directions towards a complete DLMS system in the Big 

Data-Cloud ecosystem.

Data lifecycle management

Challenges and issues

�is subsection refers to how the discussed data storage and placement challenges can 

be combined and viewed from the perspective of a holistic DLMS of the future. Such 

a DLMS should be able to cope with the optimal data storage and placement in a way 

that considers the Big Data processing required, along with the functional and non-func-

tional variability space of the given Cloud resources at hand, in each application sce-

nario. It implies the ability to consider both private and public Clouds, offered by one 

or several Cloud vendors, according to the specifics of each use cases, while making the 

appropriate decisions on how the data should be stored, placed, processed and eventu-

ally managed.

Just considering the cross-Cloud application deployment for fully exploiting the ben-

efits of the Cloud paradigm hinders the important challenge of data-awareness. �is 

data-awareness refers to the need to support an application deployment process that 

considers the locations of data sources, their volume and velocity characteristics, as well 

as any security and privacy constraints applicable. Of course, from the DLM perspective, 
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this means that there should also be a consideration of the dependencies between appli-

cation components and all data sources. �is has the reasonable implication that the 

components requiring frequent accesses to data artefacts, found at rest in certain data 

stores, cannot be placed in a different Cloud or even in a certain physical and network 

distance from the actual storage location. If such aspects are ignored then application 

performance certainly degrades, as expensive data migrations may incur while legisla-

tion conformance issues might be applicable.

Future research directions

Among the most prominent research directions, we highlighted the design and imple-

mentation of a holistic DLMS, able to cope with all of the above-mentioned aspects on 

the data management, while employing the appropriate strategies for benefiting from 

the multi-Cloud paradigm. It is important to note that data placement in virtualized 

resources is generally subjected to long-term decisions as any potential data migrations 

generally incur immense costs which may be amplified by data gravity aspects that may 

result in subsequent changes in the application placement. Based on this, we consider 

the following aspects that should sketch the main functionality of the DLMS of the 

future that is able to cope with Big Data management and processing by really taking 

advantage of the abundance of resources in the Cloud computing world:

• Use of advanced modelling techniques that consider metadata schemas for setting 

the scope of truly exploitable data modelling artefacts. It refers to managing the 

modelling task in a way that covers the description of all V’s (e.g. velocity, volume, 

value, variety, and veracity) in the characteristics of Big Data to be processed. �e 

proper and multi-dimensional data modelling will allow for an adequate description 

of the data placement problem.

• Perform optimal data placement across multiple Cloud resources based on the data 

modelling and user-defined goals, requirements and constraints.

• Use of efficiently distributed monitoring functionalities for observing the status of 

the Big Data stored or processed and detect any migration or reconfiguration oppor-

tunities.

• Employ the appropriate replication, fail-over and backup techniques by considering 

and exploiting at the same time the already offered functionalities by public Cloud 

providers.

• According to such opportunities, continuously make reconfiguration and migra-

tion decisions by consistently considering the real penalty for the overall application 

reconfiguration, always in sight of the user constraints, goals and requirements that 

should drive the configuration of computational resources and the scheduling of 

application tasks.

• Design and implement security policies in order to guarantee that certain regula-

tions (e.g., General Data Protection Regulation) are constantly and firmly respected 

(e.g., data artefacts should not be stored or processed outside the European Union) 

while at the same time the available Cloud providers’ offerings are exploited accord-

ing to the data owners’ privacy needs (e.g., exploit the data sanitization service when 

migrating or just removing data from a certain Cloud provider).
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Data storage

In this section, we highlight the challenges for holistic data lifecycle management with 

respect to both the current DBMS and DFS systems and propose future research direc-

tions to overcome such challenges.

Challenges and issues

In the recent decade, the DBMS landscape has significantly evolved with respect to the 

data models and supported non-functional features, driven by Big Data and the related 

requirements of Big Data applications (see "Non-functional data management features" 

section). �e resulting heterogeneous DBMS landscape provides a lot of new opportuni-

ties for Big Data management while it simultaneously imposes new challenges as well. 

�e variety of data models offers domain-specific solutions for different kinds of data 

structures. Yet, the vast number of existing DBMSs per data model leads to a complex 

DBMS selection process. Hereby, functional features of potential DBMSs need to be 

carefully evaluated (e.g., NoSQL DBMSs do not offer a common query interface even 

within the same data model). For the non-functional features, the decision process is 

twofold: (i) a qualitative analysis (as carried out in "Comparison of selected DBMSs" sec-

tion) should be conducted to narrow down the potential DBMSs; (ii) quantitative evalu-

ations should be performed over the major non-functional features based on existing 

evaluation frameworks.

While collecting data from many distributed and diverse data sources is a challenge [8] 

modern Big Data applications are typically built upon multiple different data structures. 

Consequently, current DBMSs cater for domain-specific data structures due to the vari-

ety of data models supported, (as shown in our analysis Table 2). However, exploiting 

the variety of data models typically leads to the integration of multiple different DBMSs 

in modern Big Data applications. Consequently, the operation of a DBMS needs to be 

abstracted to ease the integration of different DBMSs into Big Data applications and 

to fully exploit the required features (such as scalability or elasticity). Hereby, research 

approaches in Cloud-based application orchestration can be exploited [101, 102]. While 

the current DBMS landscape already moves towards the Big Data domain, the optimal 

operation of large-scale or even geo-distributed DBMSs still remains a challenge as the 

non-functional features significantly differ for different DBMSs (especially by using 

Cloud resources [42, 61, 103]).

In general, DFS provides scalability, network transparency, fault tolerance, concurrent 

data (I/O) access, and data protection [104]. It is worth noting that in Big Data domain, 

the scalability must be achieved without increasing the degree of replication of stored 

data (particularly for the Cloud ecosystem while combined with the private/local data 

storage systems). �e storage system must increase user data availability but not the 

overheads. While resource sharing is a complex task and the severity can increase many-

folds while managing the Big Data. In today’s Cloud ecosystem, we lack a single/uni-

fied model that offers a single interface to connect multiple Cloud-based storage models 

(such as Amazon S3 objects) and DFSs. Apart from that, the synchronization in DFS 

is also a well-known issue and as the degree of data access concurrency is increasing, 

synchronization could certainly be a performance bottleneck. Moreover, in some cases, 
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it has also been observed that the performance of DFSs is low compared to the local file 

systems [105, 106]. Furthermore, network transparency is also a crucial process related 

to the performance, especially while handling Big Data (because now the Big Data is dis-

tributed across multiple Clouds). Although most DFSs uses transmission control proto-

col or user datagram protocol during the communication process, however, a smarter 

way needs to be devised. In DFS, the fault-tolerance is achieved by lineage, checkpoint, 

and replicating metadata (and data objects)  [104]. While the state-less based DFSs are 

having fewer overheads regarding managing the file states while reconnecting after fail-

ures, the state-full approach is also in use. For DFSs, the failure must be handled very 

fast and seamlessly across the Big Data management infrastructure. On the other side, 

there is no well-accepted approach to data access optimization methods. �e methods 

such as data locality, multi-level caches are used case by case. Finally, securing the data 

in the DFS-Cloud ecosystem is a challenge due to the interconnection of so many diverse 

hardware as well as software components.

Future research directions

To address the identified challenges for the data storage in Big Data lifecycle manage-

ment, novel Big Data-centric evaluations are required that ease the selection and opera-

tion of large-scale DBMS.

• �e growing domain of hybrid transaction/analytical processing workloads needs to 

be considered for the existing data models. Moreover, comparable benchmarks for 

different data models need to be established [107] and qualitative evaluations need to 

be performed across all data model domains as well.

• To select an optimal combination of a distributed DBMS and Cloud resources, eval-

uation frameworks across different DBMS, Cloud resource and workload domains 

are required [108]. Such frameworks ease the DBMS selection and operation for Big 

Data lifecycle management.

• Holistic DBMS evaluation frameworks are required to enable the qualitative analysis 

across all non-functional features in a comparable manner. In order to achieve this, 

frameworks need to support complex DBMS adaptation scenarios, including scaling 

and failure injection.

• DBMS adaptation strategies need to be derived and integrated into the orchestration 

frameworks to enable the automated operation (to cope with workload fluctuations) 

of a distributed DBMS.

• Qualitative DBMS selection guidelines need to be extended with respect to opera-

tional and adaptation features of current DBMS (i.e., support for orchestration 

frameworks to enable automated operation and adaptation and the integration sup-

port into Big Data frameworks).

Similar to the above research directions for DBMSs, we also mention below the research 

directions for DFSs.

• For efficient, resource sharing among multiple Cloud service providers/compo-

nents, a single/unified interface must handle the complex issues, such as seamless 
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workload distribution, improved data access experience and faster read-write syn-

chronizations, together with the increased level of data serialization for DFSs.

• We also advocate for using smarter replica-assignment policies to achieve better 

workload balance and efficient storage space management.

• To counter the synchronization issue in DFSs, a generic solution could be to cache 

the data in the client or in the local server’s side, but such an approach can become 

the bottleneck for the Big Data management scenario as well. �us, exploratory 

research must be done in this direction.

• As the data diversity and the networks heterogeneity is increasing, an abstract 

communication layer must be in place to address the issue of network transpar-

ency. Such abstraction can handle different types of communications easily and 

efficiently.

• �e standard security mechanisms are in place (such as ACLs) for data security. 

However, after the Cloudification of the file system, the data become more vulner-

able due to the interconnection of diverse distributed, heterogeneous computing 

components. �us, proper security measures must be built-in features of tomorrow’s 

DFSs.

Data placement

�e following data placement challenges and corresponding research directions are in 

line with our analysis in "Comparative evaluation" section.

Challenges and issues

Fixed data set size We have observed data placement methods able to fix the location 

of data sets based on respective (privacy) regulations, laws or user requirements. Such 

requirements indicate that data placement should be restrained within a certain coun-

try, sets of countries or even continents. However, this kind of semi-fixed constraints is 

handled in a rather static way by already pre-selecting the right place for such data sets.

Constraint solving Exhaustive solution techniques are efficient to reach optimal solu-

tions but suffer from scalability issues and higher execution time (especially for medium/

big-sized problem instances). On the other hand, meta-heuristics (such as PSO) seems 

more promising as they can produce near-optimal solutions faster by also achieving bet-

ter scalability. However, they need proper configuration and modelling which can be a 

time-consuming task while it is not always guaranteed that near-optimal solutions can 

be produced.

Granularity Most of the evaluated methods support a fine-grained approach for dataset 

placement. However, all such methods consider that resources are fixed in number. Such 

assumptions are inflexible in the sight of the following issues: (i) a gradual data growth 

can saturate the resources assigned to data. In fact, a whole private storage infrastructure 

could be saturated for this reason; (ii) data should be flexibly (re-)partitioned to tackle the 

workload variability.
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Multiple applications Only three from the evaluated methods (see Table 4) can handle 

multiple applications but also in a very limited fashion. Such handling is challenging, 

especially when different applications are assorted with conflicting requirements. It must 

also be dynamic due to the changes brought by application execution as well as other fac-

tors (e.g., application requirement and Cloud infrastructure changes).

Data growth Data sets can grow over time. Only one method [78] in the previous analy-

sis is able to handle the data size change. It employs a threshold-based approach to check 

when data needs to be moved or when resources are adequate for storing the data to also 

handle their growth. However, no detailed explanation is supplied concerning how the 

threshold is computed.

Data replication It is usually challenging to find the best possible trade-off between cost 

and replication degree to enable cost-effective data replication.

Optimisation criteria Data transfer and replication management is a complex pro-

cess [109] due to the completely distributed nature of the Cloud ecosystem. It further gets 

complicated due to the unequal data access speed. Data transfer number or cost is a well-

accepted criterion for optimising data placement. However, it can be also quite restric-

tive. First, as there can be cases where both of these two metrics need to be considered. 

For instance, suppose that we need to place two datasets, initially situated in one VM, 

to other VMs as this VM will become soon unavailable. If we just consider the transfer 

number, this can lead to the situation where the movement is performed in an arbitrary 

way even migrating data to another DC while there is certainly a place in the current one. 

In the opposite direction, there can be cases where cost could be minimised but this could 

lead to increasing the number of transfers which could impact application performance. 

Second, data placement has been mainly seen in an isolated manner without examining 

user requirements. However, it can greatly affect application performance and cost.

Additional information Apart from extracting data access patterns and node profiles, 

we believe that more information is needed for a better data placement solution.

Future research directions

• Fixed data set size: To guarantee the true, optimal satisfaction of the user require-

ments and optimisation objectives, we suggest the use of semi-fixed constraints in 

a more suitable and flexible manner as a respective non-static part of the location-

aware optimisation problem to be solved.

• Constraint solving: We propose the use of hybrid approaches (i.e., combining exhaus-

tive and meta-search heuristic techniques) so as to rapidly get (within an accept-

able and practically employable execution time) optimal or near-optimal results in 

a scalable fashion. For instance, constraint programming could be combined with 

local search. �e first could be used to find a good initial solution, while the latter 

could be used for neighbourhood search to find a better result. In addition, it might 

be possible that a different and more scalable modelling of the optimisation problem 

could enable to run standard exhaustive solution techniques even with medium-
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sized problem instances. Finally, solution learning from history could be adopted to 

fix parts of the optimisation problem and thus substantially reduce the solution space 

to be examined.

• Granularity: �ere is a need for dynamic approaches for data placement which do 

take into account the workload fluctuation and the data growth to both partition 

data as well as optimally place them in a set of resources with a size that is dynami-

cally identified.

• Multiple applications: To handle applications conflicting requirements and the dyna-

micity of context (e.g., change of infrastructure, application requirements), different 

techniques to solve the (combined) optimisation problem are required. First, soft con-

straints could be used to solve this problem, even if it is over-constrained (e.g., pro-

ducing a solution that violates the least number of these preferences). Next, we could 

prioritise the applications and/or their tasks. �ird, distributed solving techniques 

could be used to produce application-specific optimisation problems of reduced 

complexity. �is would require a transformation of the overall problem into sub-prob-

lems which retains as much as possible the main constraints and requirements of each 

relevant application. Finally, complementary to these distributed solving techniques, 

the measure of replication could also be employed. By using such a measure, we ena-

ble each application to operate over its own copy of the data originally shared. �is 

could actually enable to have complete independence of applications which would 

then allow us to solve data placement individually for each of these applications.

• Data growth: �ere is a need to employ a more sophisticated approach which exploits 

the data (execution) history as well as data size prediction and data (type) similar-

ity techniques to solve the data growth issue. Similarity can be learned by know-

ing the context of data (e.g., by assuming the same context has been employed for 

similar data over time by multiple users), while statistical methods can predict the 

data growth. Such an approach can also be used for new data sets for which no prior 

knowledge exists (known as the cold-start problem).

• Data replication: For data replication, we suggest to dynamically compute the replica-

tion degree by considering the application size, data size, data access pattern, data 

growth rate, user requirements, and the capabilities of Cloud services. Such a solution 

could also rely on a weight calculation method for the determination of the relative 

importance of each of these factors.

• Optimisation criteria: An interesting research direction compiles into exploring ways 

via data placement and task scheduling could be either solved in conjunction or in a 

clever but independent way such that they do take into account the same set of (high-

level) user requirements. �is could lead to producing solutions which are in concert 

and also optimal according to both aspects of data and computation.

• Additional information: We advocate that the additional information required to be 

collected or derived include: (i) co-locating frequently accessing tasks and data; (ii) 

exploiting data dependencies to have effective data partitioning. A similar approach 

is employed by Wang et al.  [83] where data are grouped together at a finer granu-

larity. �ere are also precautions in not storing different data blocks from the same 

data in the same node; (iii) data variability data can be of different forms. Each form 

might require a different machine configuration for optimal storage and processing. 
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In this case, profiling should be extended to also capture this kind of machine perfor-

mance variation which could be quite beneficial for more data-form-focused place-

ment. In fact, we see that whole approaches are dedicated to dealing with different 

data forms. For instance, graph analytics-oriented data placement algorithms exploit 

the fact that data are stored in the form of graphs to more effectively select the right 

techniques and algorithms for solving the data placement problem. While special-

purpose approaches might be suitable for different data forms, they are not the right 

choice for handling different kinds of data. As such, we believe that an important 

future direction should be the ability to more optimally handle data of multiple forms 

to enhance the applicability of a data placement algorithm and make it suitable for 

handling different kinds of applications instead of a single one.

Concluding remarks

�e primary aim of this survey is to provide a holistic overview of the state of the art 

related to both data storage and placement in the Cloud ecosystem. We acknowledge 

that there do exist some surveys on various aspects of Big Data, which focus on the 

functional aspect and mainly on Big Data storage issues. However, this survey plays a 

complementary role with respect to them. In particular, we cover multiple parts of the 

Big Data management architecture (such as DLM, data storage systems, data placement 

techniques), which were neglected in the other surveys, under the prism of non-func-

tional properties. Further, our contribution to Big Data placement is quite unique. In 

addition, the in-depth analysis of each main article section is covered by a well-designed 

set of evaluation criteria. Such an analysis also assists in a better categorization of the 

respective approaches (or technologies, involved in each part).

Our survey enables readers to better understand which solution could be utilized 

under which non-functional requirements. �us, assisting towards the construction of 

user-specific Big Data management systems according to the non-functional require-

ments posted. Subsequently, we have described relevant challenges that can pave the 

way for the proper evolution of such systems in the future. Each challenge prescribed 

in "Lessons learned and future research directions"  section has been drawn from the 

conducted analysis. Lastly, we have supplied a set of interesting and emerging future 

research work directions concerning both the functionalities related to the Big Data 

management (i.e., Big Data storage and placement), as well as the Big Data lifecycle man-

agement as a whole, in order to address the identified challenges.
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