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Abstract: The number of people who suffer from diabetes in the world has been considerably
increasing recently. It affects people of all ages. People who have had diabetes for a long time
are affected by a condition called Diabetic Retinopathy (DR), which damages the eyes. Automatic
detection using new technologies for early detection can help avoid complications such as the loss of
vision. Currently, with the development of Artificial Intelligence (AI) techniques, especially Deep
Learning (DL), DL-based methods are widely preferred for developing DR detection systems. For this
purpose, this study surveyed the existing literature on diabetic retinopathy diagnoses from fundus
images using deep learning and provides a brief description of the current DL techniques that are
used by researchers in this field. After that, this study lists some of the commonly used datasets. This
is followed by a performance comparison of these reviewed methods with respect to some commonly
used metrics in computer vision tasks.

Keywords: diabetic retinopathy grading; diabetic retinopathy detection; deep learning; convolutional
neural network; retinal fundus images

1. Introduction

During the past two decades, the number of people affected by diabetes has increased
alarmingly. According to the IDF Diabetes Atlas [1], almost half a billion people of all ages
have been diagnosed with it across the globe. This is expected to reach seven-hundred
million by 2045. It is a global health concern. The IDF Diabetes Atlas also warns that,
by 2040, one in three diabetes patients will develop Diabetic Retinopathy (DR). DR is a
condition that can be identified by the presence of injured blood vessels behind the retina.
This may result in serious complications such as the loss of vision when it goes undetected
for a long time, hence the importance of addressing this issue. At present, doctors manually
examine the fundus images of the eye to assess the severity of DR. This consumes much
time, and there is a shortage of available medical professionals with respect to the actual
number of patients. Due to these reasons, many patients do not receive medical care in a
timely manner. Even though patients suffering from diabetes are advised by physicians to
receive regular medical screenings of their fundus, many cases are left undetected until the
disease becomes severe [2]. Hence, it is desirable to have an automated system to help in
the detection of diabetic retinopathy.

Most studies in this field use fundus images, which provide visual records that docu-
ment the present ophthalmic appearance of a person’s retina. The presence of DR symptoms
in these fundus images can be used to classify it using several steps such as retinal blood
vessel segmentation, lesion segmentation, and DR detection [3]. The detection of DR and its
current stage can be determined by investigating the presence/absence of several lesions.
Some of the lesions are microaneurysms (MAs), superficial retinal hemorrhages (SRHs), ex-
udates (Exs)—both soft exudates (SEs) and hard exudates (HEs)—intraretinal hemorrhages
(IHEs), and cotton wool spots (CWSs). Figure 1 shows a comparison between a healthy
retina and an unhealthy retina.
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Figure 1. Visualization of a healthy retina and an unhealthy retina (https://neoretina.com/blog/
diabetic-retinopathy-can-it-be-reversed/, accessed on 1 August 2022).

With the development of AI techniques, including machine learning and deep learning,
high-performance detection and grading of the retina to detect and segment the infected
parts of the retina become possible. Machine learning approaches are widely used for DR
classification and grading. Nazir et al. [4] used a new way to represent fundus images
called the “tetragonal local octa pattern (T-LOP) features”. Later, this classification was
performed using extreme learning machine. Three ML classifiers—support vector machine
(SVM), random forest, and J48—were used by the authors in [5]. The Gabor wavelet method
followed by the AdaBoost classifier were used by the authors in [6] to grade DR. Recently,
many deep learning techniques have been utilized by researchers to perform these tasks.
This study provides a review of the present literature in this area with a focus on how DL
is being used for DR detection and grading from fundus images. DL is a branch of AI that
makes use of artificial neural networks with multiple processing layers to gradually extract
the high-level features from the data. In this paper, we also summarize the DL architectures
that have been used by the different reviewed studies.

However, significant research in this field using DL is also being carried out using
optical coherence tomography (OCT) images, which have a higher resolution [7–9]. OCT
images are more suitable than fundus images for developing systems that require microm-
eter resolution and a penetration depth of millimeters, which is why they are used by
researchers for DR diagnosis, especially at the early stages [7].

The paper is organized as follows. The related works on DR detection and DR grading
are presented in Section 2. Section 3 describes some of the preprocessing techniques that
are used. Section 4 describes the datasets used. A comparison and discussion of the
experiments are provided in Section 5. Some of future directions are provided in Section 6
The conclusion is presented in Section 7.

2. Literature Review

The diagnosis of diabetic retinopathy can be performed using two techniques: de-
tection and grading. The detection of diabetic retinopathy is performed using binary
classification (DR or normal retina), while diabetic retinopathy grading consists of detect-
ing and annotating the infected parts, including the types of infection: mild, moderate, or
severe. Figure 2 summarizes these two different types of DR studies. This section describes
these studies by categorizing them into diabetic-retinopathy-detection-based studies and
DR-grading-based studies. All these studies are summarized in Table 1.

https://neoretina.com/blog/diabetic-retinopathy-can-it-be-reversed/
https://neoretina.com/blog/diabetic-retinopathy-can-it-be-reversed/
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2.1. DR-Detection-Based Studies

The diabetic retinopathy detection studies perform binary classification of the input
images as healthy or DR. Here, we focus on deep-learning-based methods, which are the
most effective approaches compared with other machine-learning-based or traditional
techniques. For example, Kazakh-British et al. [10] proposed a simple convolutional neural
network (CNN) to automatically classify DR. They used the original images and images
filtered using an anisotropic diffusion filter in the experiments. From the obtained results,
the authors found that the use of the anisotropic diffusion filter improved the performance.
In the same context, the authors in [11–14] used CNN architectures to perform binary
classification to identify the presence of diabetic retinopathy. After applying the Wiener
filter to the fundus images and using OTSU for the segmentation, the authors of [15]
proposed a deep CNN for multi-class classification of the fundus images into those having
several vision-threatening diseases such as DR and the normal fundus images.
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Figure 2. Types of diabetic retinopathy studies.

Instead of using simple convolutional neural networks, some authors have used pre-
trained models (backbones) for transfer learning or for feature extraction to implement
their methods. These are shown in Figure 3. For example, InceptionV3 was used by the
authors in [16] to classify DR on RGB and textures features. Umapathy et al. [17] used a
pre-trained InceptionV3 to perform DR classification. A binary CNN (BCNN) was proposed
by the authors in [18] for DR classification to reduce memory consumption and improve
runtime. Both binomial classification and multinomial classification of fundus images were
performed by the authors in [19] using the MobileNetV2 architecture since this architecture
requires less training time and can be used in mobile systems. Saranya et al. [20] used
the DenseNet-121 model to detect DR from fundus images, while transfer learning using
EfficientNet-B0, EfficientNet-B4, and EfficientNet-B7 were exploited to detect DR in [21].
The same backbones were used in [22] to classify DR into referable/vision-threatening DR.
The EfficientNet-B3 backbone initialized with ImageNet weights and fully connected layers
initialized with HE initialization were used for training by the author in [23]. From the
experiments, the EfficientNet model gave good results compared to the ground-truth.

Another Backbone was used by Sudarmadji et al. [24] for diabetic retinopathy detection.
The proposed method used the VGG network for feature extraction to implement the
proposed CNN-based model. Boral and Thorat [25] used a transfer learning approach
using InceptionV3 followed by SVM to perform DR classification. In another paper, five
transfer learning models, Xception, InceptionResNetV2, MobileNetV2, DenseNet-121, and
NASNetMobile, were used by the authors in [26] to perform binary classification of DR.
DenseNet-121 was used as the transfer-learning-based method by the authors in [27] to
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identify MAs, Exs, and hemorrhages from the input images to detect DR. Furthermore,
transfer learning, VGG, AlexNet, Inception, GoogleNet, DenseNet, and ResNet were
used by the authors in [28]. Another study [29] involved a comparison of three types
of deep-learning-based architectures including Transformer-based networks, CNNs, and
multi-layered perceptrons (MLPs) for DR classification. Different models included in the
study were EfficientNet, ResNet, Swin-Transformer, Vision-Transformer (ViT), and MLP-
Mixer. The models that are based on the transformer architecture were found to have the
best accuracy among these. An ensemble model consisting of three CNN models was used
by the authors in [30] for DR classification. It was based on stack generalization. ResNet-50
and VGG-16 were also used. Four vital features of using the CNN for DR classification,
different architectures of the CNN, preprocessing techniques, class imbalance, and fine-
tuning were evaluated by the authors in [31]. AlexNet, ResNet-50, and VGG-16 were
employed for this purpose. The performances of twenty-eight deep hybrid architectures
for binary classification of DR into referable DR and non-referable DR were empirically
evaluated by the authors of [32]. This was compared with end-to-end deep learning (DL)
architectures. A hybrid architecture using the SVM classifier and MobileNetV2 for feature
extraction was found to be the best-performing among these. A three-class classification of
fundus images into normal, glaucomatous, and diabetic retinopathy eyes was performed
by the authors in [33]. Multiple CNN models—MobileNetV2, DenseNet-121, InceptionV3,
InceptionResNetV2, ResNet-50, and VGG-16—were used for DR classification.
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Figure 3. Backbones used for diabetic retinopathy detection studies.

A model based on ResNet with gradient-weighted class activation mapping (Grad-
CAM) was used by the authors of [34] for lesion detection and DR classification. The lesions
included MAs, HEs, hemorrhages, and CWSs. Quellec et al. [35] found that, when training
for image-level classification was used with ConvNet, it became capable of performing
lesion detection. The training was performed with a simplification of the back-propagation
method. The images were classified into non-referable DR and referable DR. A new neural
network called the lesion-guided network (LGN) was proposed by Tang et al. [36] to
diagnose DR. For lesion detection, the backbone was RetinaNet with ResNet-50. A lesion-
aware module (LAM) was also used to improve the rough lesion maps. Enhanced DR
detection was performed by using the Harris hawks optimization (HHO) algorithm along
with a DCNN by the authors of [37]. Gunasekaran et al. [38] used a deep RNN (DRNN) to
perform early detection of DR. A CNN-based method was proposed in [39] to detect DR. A
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very recent work [40] used seven different CNNs for DR diagnosis. Experiments in this
study included single-modality and joint fusion strategies.

2.2. DR-Grading-Based Studies

As per the International Clinical Diabetic Retinopathy (ICDR) [41] scale, diabetic
retinopathy can be graded into separate grades: no apparent retinopathy, mild non-
proliferative diabetic retinopathy (NPDR), moderate NPDR, severe NPDR, and proliferative
diabetic retinopathy (PDR). An example of each grade is presented in Figure 4. Many stud-
ies have been proposed for multi-class classification and grading of fundus images into the
above-mentioned five stages.

(a) Normal (b) Mild (c) Moderate

(d) Severe (e) DR

Figure 4. The five types of diabetic retinopathy.

A simple CNN model was used by the authors in [42] after applying a green channel
filter to assess the stage of DR from fundus images. A CNN, which combined multi-view
fundus images, was used along with attention mechanisms by the authors in [43]. It
was called MVDRNet and used VGG-16 as the basic network. A locally collected dataset
containing multi-view fundus images was employed for this. Another study that used a
locally collected dataset from the University Hospital Saint Joan, Tarragona, Spain, is [44].
The CNN model used had batch normalization followed by the ReLU function. This was
followed by a linear classifier and a softmax function. Two datasets—a balanced dataset
with no augmentation and another one with augmentation—were used by the authors
in [45]. A CNN was used to demonstrate the improvement in accuracy in DR grading
due to the augmentation. Agustin and Sunyoto [46] performed a comparison of different
regularization methods regarding how they reduce the overfitting of CNNs when used
for DR severity grading. Dropout regularization was found to reduce overfitting and to
increase accuracy.
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Table 1. Retinopathy-grading-based studies during the period 2017–2020.

Method Year Method Dataset(s)

Li et al. [47] 2017 CNN-based transfer learning, SVM DR1 and MESSIDOR

Ardiyanto et al. [48] 2017 Deep-DR-Net FINDeRS

Kwasigroch et al. [49] 2018 Transfer learning and VGG Kaggle EyePACS

Wang et al. [50] 2018 AlexNet, VGG-16, and InceptionV3 Kaggle EyePACS

Zhou et al. [51] 2018 Inception-ResNet-v2, BaseNet Kaggle EyePACS

Shrivastava and Joshi [52] 2018 InceptionV3, SVM Kaggle EyePACS

Arora and Pandey [53] 2019 AlexNet, VGG-16, and InceptionV3 Kaggle EyePACS

Kassani et al. [54] 2019 InceptionV3, MobileNet, and ResNet-50 Kaggle APTOS

Hathwar and Srinivasa [55] 2019 Inception-ResNet-V2, and Xception Kaggle EyePACS, IDRiD
Bellemo et al. [56] 2019 Ensemble of Adapted VGG and ResNet Kitwe Central Hospital, Zambia

Kumar [57] 2019 Ensemble of GoogleNet, AlexNet, and ResNet-50 Kaggle EyePACS

Thota and Reddy [58] 2020 Pre-trained VGG-16 Kaggle EyePACS

Nguyen et al. [59] 2020 VGG-16 and VGG-19 Kaggle EyePACS

Lavanya et al. [60] 2020 ImageNet Kaggle DR

Elzennary et al. [61] 2020 DenseNet-121 Kaggle APTOS

Barhate et al. [62] 2020 Autoencoder and VGG Kaggle EyePACs

Wang et al. [63] 2020 Multichannel-based semisupervised GAN MESSIDOR

Khaled et al. [64] 2020 VGG-16 Kaggle EyePACS

Islam et al. [65] 2020 Transfer Learning and VGG-16 Kaggle APTOS

Wang et al. [66] 2020 Hierarchical multi-task deep learning framework Shenzhen, Guangdong, China

AbdelMaksoud et al. [67] 2020 E-DenseNet Kaggle EyePACS, Kaggle APTOS

Yaqoob et al. [68] 2020 ResNet-50 MESSIDOR-2 and Kaggle EyePACS

Taufiqurrahman et al. [69] 2020 MobileNetV2, SVM Kaggle APTOS

Vaishnavi et al. [70] 2020 AlexNet Kaggle EyePACS

Shankar et al. [71] 2020 Synergic deep Learning (SDL) model MESSIDOR

Karki and Kulkarni [72] 2021 EfficientNet Kaggle APTOS

Qian et al. [73] 2021 Res2Net and DenseNet Kaggle EyePACS

Shorfuzzaman et al. [74] 2021 CNN Kaggle APTOS, MESSIDOR, IDRiD

Sugeno et al [75] 2021 EfficientNet-B3 Kaggle APTOS, DIARETDB1

Lee and Ke [76] 2021 VGG-16 and ResNet-50 IDRiD

Nazir et al. [77] 2021 DenseNet-100, CenterNet Kaggle APTOS, IDRiD

Xiao et al. [78] 2021 SE-MIDNet Kaggle EyePACS

Li et al. [79] 2021 SAGN, GCNN Kaggle APTOS, Kaggle EyePACS

Martinez-Murcia et al. [80] 2021 ResNet-18 and ResNet-50 MESSIDOR

Rajkumar et al. [81] 2021 ResNet-50 Kaggle EyePACS

Swedhaasri et al. [82] 2021 SE-ResNet-50, EfficientNet Kaggle APTOS

Reguant et al. [83] 2021 InceptionV3, ResNet50, and Xception Kaggle EyePACS, DIARETDB1

Hari et al. [84] 2021 Xception, InceptionV3, and DenseNet-169 Kaggle EyePACS

Saeed et al. [85] 2021 VGG-19, ResNet, and DPN107 Kaggle EyePACS, MESSIDOR

Jabbar et al. [86] 2022 VGG Kaggle EyePACS

Shaik and Cherukuri [87] 2022 HA-Net Kaggle APTOS, IDRiD

Chandrasekaran and Loganathan [88] 2022 ResNet and AlexNet Kaggle EyePACS

Oulhadj et al. [89] 2022 DenseNet, InceptionV3, and ResNet-50 Kaggle APTOS

Nair et al. [90] 2022 VGG-16, ResNet-50, and EfficientNet-B5 Kaggle APTOS

Deepa et al. [91] 2022 Xception, InceptionV3, and ResNet-50 Kaggle DR, DIARETDB, STARE

Farag et al. [92] 2022 DenseNet-169 with CBAM Kaggle APTOS
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Table 1. Cont.

Method Year Method Dataset(s)

Canayaz [93] 2022 EfficientNet-B0, DenseNet-121 Kaggle APTOS

Bilal et al. [94] 2022 U-Net Kaggle EyePACS, MESSIDOR-2

Murugappan et al. [95] 2022 DRNet Kaggle APTOS

Chen and Chang [96] 2022 InceptionV3 and EfficientNet Kaggle APTOS

Butt et al. [97] 2022 ResNet-18 and GoogleNet Kaggle APTOS

Elwin et al. [98] 2022 DCNN, ShCNN IDRiD, DDR

Deepa et al. [99] 2022 DCNN Kaggle EyePACS, DIARETDB, STARE

A deep CNN model called DR|GRADUATE was presented by the authors in [100]. It
was a new DL approach for DR grading, which could give a pathologically explainable
description to support its judgment. It also provided an assessment of the ambiguity of
its prediction. Feature extraction using a multipath CNN was used by the authors in [5].
After this, DR was graded using three different ML classifiers, SVM, random forest, and
J48. Sugeno et al. [75] used the EfficientNet model to grade DR after using morphological
operations and image processing for lesion detection. A multi-task model with EfficientNet-
B5 was used by the authors of [101] for DR grading. Feature extraction performed with
the EfficientNet backbone was fed to the dropout layer, which was followed by an ordinal
regression section and a classification section. Shankar et al. [71] proposed a deep CNN
model called the synergic deep learning (SDL) model to grade DR. Histogram-based
segmentation was performed before this.

A pre-trained VGG-16 was used by the authors of [58] to train their proposed CNN
to improve the accuracy of DR grading. VGG-16 and VGG-19 were used by the authors
of [59] to grade DR. They mirrored and rotated the images to augment the dataset. The
VGG-16 and ResNet-50 models were modified and used by the authors in [76] to grade
DR with the help of the dropout concept. A cascaded model consisting of two VGG-16
models was used by the authors of [64]. The first model outputs “yes” or “no” to detect
DR, and the second model classifies the fundus images into four different DR stages. Shaik
and Cherukuri [87] used a model named “Hinge Attention Network (HA-Net)” which has
multiple attention stages for DR severity grading. Initial spatial representations from the
input images were extracted using a pre-trained VGG-16 base.

An automated DR detection system using a Raspberry Pi was developed by the authors
of [60]. They used ImageNet for DR grading. Elzennary et al. [61] used the DenseNet-121
neural network architecture with the aid of transfer learning to determine the severity of
DR. Both of these studies used the Python framework called Flask to create interfaces that
can be used by doctors to detect DR. A custom CenterNet with DenseNet-100 support was
used by the authors of [77] to detect eye diseases from retinal images. This study graded
the severity of DR by separating the fundus images according to the lesions present.

Another classification network for DR-SE-MIDNet was introduced by the authors
of [78]. It was built using an enhanced Inception module along with the squeeze-and-
excitation (SE) module for grading. With the SE module, global information for the feature
map on each channel was found. Feature extraction using InceptionV3 was performed using
a hierarchical approach by the authors in [52]. The first layer was for binary classification
into DR/no DR. The next one was to grade DR into the five DR stages. SVM with the
radial basis function (RBF) kernel was utilized for classification. Wang et al. [63] used a
multichannel-based semi-supervised GAN (SSGAN) for DR grading, which was capable
of using labeled and unlabeled data as the training data. They used feature extraction to
reduce the noise of the input images and for extracting the features of lesions. They also
graded the lesions into three levels.

A new DL algorithm called Deep-DR-Net capable of being fit onto a small embedded
board was introduced by the authors of [48] to grade DR. For this, they arranged a cascaded
encoder–classifier network with a residual style to ensure that it was small in size. Li
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et al. [79] proposed a semi-supervised auto-encoder graph network (SAGN) to diagnose
DR. In this, an autoencoder was used for feature learning. After this, the RBF was used
to calculate neighbor correlations. Finally, a graph CNN (GCNN) was used to grade DR.
A graph neural network (GNN), which extracts lesion ROI sub-images to emphasize only
lesions in fundus images, was proposed by Sakaguchi et al. [102]. A graph is constructed
from these sub-images for DR classification.

Transfer learning and the VGG architecture were used by Kwasigroch et al. [49]. For
this reason, the ImageNet dataset was used to pre-train the VGG architecture. Another DL
model that used transfer learning—VGG-16—was used along with a new color version
preprocessing method by Islam et al. [65] for DR grading. ResNet-18 and ResNet-50 were
used along with residual transfer learning by Martinez-Murcia et al. [80] for the same.
Another transfer learning approach—the ResNet-50 architecture trained on the ImageNet
dataset—was used for DR classification and grading by the authors in [81]. Another study
that used transfer learning by fine-tuning using a well-annotated ImageNet dataset to
train Inception-ResNet-V2 and Xception models was given in [55]. The latter was found to
have better performance. CNN-based transfer learning followed by SVM were used by the
authors of [47]. AlexNet and VGG were pre-trained using the ImageNet dataset. Features
extracted with the help of transfer learning were provided to SVM for DR grading. An
ensemble model consisting of SE-ResNeXt50, EfficientNet-B4, and EfficientNet-B5 along
with transfer learning was used by the authors of [82] for DR grading. The InceptionV3,
ResNet-50, InceptionResNet50, and Xception models were used for DR grading by the
authors in [83]. The parameters were initialized using transfer learning. They created
visualization maps to investigate the clinical significance of the decisions made by the
CNN models. Wang et al. [50] used AlexNet, VGG-16, and InceptionV3 along with transfer
learning for DR grading. InceptionV3 was found to provide the best accuracy in their study.
Jabbar et al. [86] used a transfer-learning-based VGG architecture for DR grading. Various
data augmentation techniques were used to balance the classes in the training data.

Experiments using several deep neural networks (DNNs) were carried out to yield
algorithms that grade DR conforming to the ICDR standards by the authors in [103].
The network was also trained to make several other binary classifications. Synchronized
diagnosis of DR severity, DR features, and referable DR was conducted by the authors
of [66]. A hierarchical multi-task DL framework with a skip connection was utilized
for automatically merging the DR-related feature output with DR severity analysis. An
ensemble of two CNN architectures—a modified VGG and RNN—was utilized for grading
DR by the authors in [56]. Apart from the grading of DR as per the ICDR scale, the
images were classified into referable DR/vision-threatening DR. Xception, InceptionV3,
and DenseNet-169 were used by the authors of [84] for DR grading. They used the Kaggle
DR dataset and created two versions of it: balanced and imbalanced. The Xception model,
which was trained using the imbalanced version of the dataset, was found to have the
best performance. VGG-19, ResNet-152, and DPN107 were used with two-stage transfer
learning by the authors in [85] for grading DR. The initial layers of the pre-trained models
were adjusted for the preceding layers to understand the lesions and also the normal areas.
Zhou et al. [51] used a multi-cell architecture, which could increase the depth of the DNN,
as well as the resolution of the input image. A three-layer architecture that used Inception-
ResNet-v2 and BaseNet to grade DR was proposed. AlexNet, VGG-16, and InceptionV3
were used by the authors in [53] to determine DR stage classification. Image augmentation
techniques were used before training. The DR grading performance of three models, a
shallow CNN, ResNet with soft attention, and AlexNet for DR using a new hyper-analytic
wavelet (HW) phase activation function, was compared by the authors in [88]. AlexNet for
DR was found to show the maximum improvement in performance in their experiments.
Oulhadj et al. [89] applied a deformable registration to the retina and graded DR using four
CNN models, DenseNet-121, Xception, InceptionV3, and ResNet-50. Three pre-trained
models, VGG-16, ResNet-50, and EfficientNet-B5, were used for DR grading by the authors
in [90]. ResNet-50 was found to perform best among the three. The performance of three
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pre-trained models, Xception, InceptionV3, and ResNet-50, in DR grading was compared
by the authors of [91]. Their simulation result found the Xception model to perform better.

ResNet was used by the authors in [104] for feature extraction. After this, they used
SVM, as well as a neural network (NN) pixelwise classifier to grade DR. AD2Net—a new
CNN model having the qualities of Res2Net and DenseNet—was used by the authors
of [73] for DR grading. An attention mechanism was used to make the network concentrate
on understanding useful information from the images. A deep supervision of inception-
residual network (DSIRNet) was used by [105], which was based on the network design
ideas of GoogleNet and ResNet for feature extraction to grade DR. They also used a deep
monitoring method to enhance the thermal classification effect of the training network.
Yaqoob et al. [68] trained an optimized ResNet-50 having features from a canny edge
detector and histogram of gradients to perform the grading of DR using two public datasets.
An ensemble made of GoogleNet, AlexNet, and ResNet-50 was utilized by the authors
of [57]. The images were preprocessed and fed to this ensemble model for DR grading. A
CNN-based DL ensemble framework in which weights from distinct models were merged
to make a solo model, which can extract prominent features from many lesions in the
input images, was used by Shorfuzzaman et al. [74] to grade DR. Some CNN models that
were pre-trained with the ImageNet dataset—the ResNet-50, DenseNet-121, Xception, and
Inception models—were used for this. After preprocessing with CLAHE for segmentation,
Vaishnavi et al. [70] used the AlexNet architecture for feature extraction. Finally, a softmax
layer was utilized to grade the images according to DR severity.

An ensemble of five models from the EfficientNet family was used for DR grading by
the authors in [72] by pre-training on ImageNet. These models were also used indepen-
dently for the same, and EfficientNet-B3 performed better than the ensemble model and
the other four models. A hybrid and effective model, MobileNetV2-SVM, was used by the
authors of [69] to grade DR images. A stack of residual bottleneck layers, which consisted
of a stack of bottleneck residual blocks, was used to construct the MobileNetV2 model.
Jiang et al. [106] used three models—InceptionV3, ResNet-152, and Inception—ResNet-V2
to grade DR. An ensemble model consisting of these models, using the Adaboost algo-
rithm, was also used. Another study used an embedded model consisting of five deep
CNNs—ResNet-50, Xception, InceptionV3, DenseNet-121, and DenseNet-169 [107]. Stacked
individual channels of the image were taken as the input. The forecast from separate mod-
els was averaged and used to fix the final target label. The green channel was found to
give the best performance in grading DR. A novel hybrid DL model known as E-DenseNet
was proposed by the authors of [67] to grade DR. It was a hybrid between a customized
EyeNet and DenseNet based on DenseNet-121. The Xception deep feature extractor was
used by the authors of [54] to advance the capability of the typical Xception architecture in
classifying DR. They also used transfer learning along with hyper-parameter tuning.

A novel CNN model based on the DenseNet-169 architecture combined with a convo-
lutional block attention module (CBAM) was used by the authors of [92] for DR severity
classification. The ResNet-101 model was used for DR grading and to analyze the risk
of macular edema by the authors in [108], and it was found to perform better than the
ResNet-50 model. A heuristically constructed deep neural network was used by the authors
of [109] to determine the severity levels of DR. An architecture consisting of an autoencoder
along with a VGG network was used by the authors of [62] to reduce overfitting during DR
detection. The network was pre-trained in a self-supervised manner.

The binary bat algorithm (BBA), equilibrium optimizer (EO), gravity search algorithm
(GSA), and gray wolf optimizer (GWO) were used as the wrapper methods to select the
best features that were obtained from the EfficientNet-B0 and DenseNet-121 models for
DR grading by the authors in [93]. Transfer-learning-based InceptionV3 was used by the
authors of [94] for DR grading. They used two separate U-Net models for OD and blood
vessel segmentation. Five DL models—DenseNet-121, InceptionV3, ResNet-153, VGG-16,
MobileNet, and InceptionResNet—were used with transfer learning for DR grading by
the authors of [110]. Out of these, the VGG-16 model was found to provide the highest
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accuracy in their experiments. Deepa et al. [99] used a pre-trained Xception model along
with hierarchical clustering of image patches by the Siamese network to grade DR fundus
images. A boosting-based ensemble learning method followed by a CNN was used by the
authors of [111] for DR grading. A novel few-shot classification framework called DRNet
was used by the authors of [95] for DR detection and grading. Episodic training was used
to train the model on few-shot classification tasks. Both DR detection and DR grading were
performed by the authors of [112] using a Bayesian neural network (BNN). Experiments
using nine BNNs were performed to utilize their capability of uncertainty estimation in
classifying DR. Chen and Chang [96] used the InceptionV3 and EfficientNet models to
grade fundus images according to DR severity. A novel hybrid model called E-DenseNet
was used by the authors of [113] for DR grading. It was a combination of the EyeNet and
DenseNet models based on transfer learning. Another study by the authors of [97] used a
similar hybrid model based on transfer learning for the detection and grading of DR. The
model consisted of ResNet-18 and GoogleNet. Ar-HGSO, which is an autoregressive-Henry
gas-sailfish-optimization-enabled deep learning model was used by the authors of [98]. The
DCNN was used for DR detection, and the Shepard CNN (ShCNN) was used for severity
classification. Rajavel et al. [114] introduced a cloud-enabled DR grading system that used
an optimized deep belief network (O-DBN) classifier model. Dimensionality reduction and
noise removal were performed by them using the stochastic neighbor embedding (SNE)
feature extraction approach. LeNet-5 was used by the authors in [115] for DR grading. A
spiking neural network (SNN) was used for DR grading by the authors in [116]. They used
the chimp optimization algorithm with DenseNet (COA-DN) for feature extraction.

Table 1 summarize the studies that were presented in this section.

3. Preprocessing Techniques Used to Grade DR Fundus Images

Image enhancement is performed in most DR studies with the help of several pre-
processing techniques. Preprocessing can consist of several steps such as image variation
attenuation, intensity conversion, denoising, and contrast enhancement [117]. The attenu-
ation of fundus images is required since there will be a wide variation in the color of the
retina of different patients. Intensity conversion is used to make the features clearly visible
in an image. Denoising of fundus images is required since much noise may be introduced
into these images during the image acquisition process. Finally, contrast enhancement is es-
sential since retinal images captured with the help of a fundus camera will have maximum
contrast at the image center, which gradually reduces when moving away from the center.
Other common preprocessing steps include image resizing and performing several image
augmentations using techniques such as rotation, flipping, and zooming.

4. DR Datasets

The success of all these DL studies relies greatly upon the datasets that are used. The
quality of the dataset used and the precision of the annotations will have a huge impact
on the results that will be obtained by these methods. Hence, we created a list of some
commonly used fundus image datasets for DR diagnosis. Table 2 presents this list.

A few of the commonly used publicly available datasets in these studies are STARE,
IDRiD, MESSIDOR, DIARET DB1, the Kaggle APTOS dataset, and the Kaggle EyePACS
dataset. Out of these, Kaggle’s EyePACS and APTOS datasets are the most widely used
datasets for DR detection/grading. However, these contain fundus images taken with
different cameras and settings. The largest among these is the Kaggle EyePACS dataset
with more than 88,000 fundus images, whereas some datasets, such as DIARETDB1, HRF,
and DRiDB, have less than 100 fundus images.

Almost all of them are annotated for DR detection, while some datasets such as
MESSIDOR and Kaggle EyePACS have been annotated also for DR grading. Most of
the studies used different datasets/combinations of datasets for training and validation
purposes since most of the datasets are small in size. However, some studies have used
their own locally collected datasets for their experiments [43,44].
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Table 2. Diabetic retinopathy datasets.

Dataset No. of Images Image Size

STARE 400 700 × 605

IDRiD 516 4288 × 2848

MESSIDOR 1200 Different sizes

HRF 45 3504 × 2336

Kaggle EyePACS 88,702 Different sizes

Kaggle APTOS 2019 5590 Different sizes

MESSIDOR 2 1748 Different sizes

DDR 13,673 Different sizes

5. Discussion

In order to evaluate the diabetic retinopathy detection and grading methods on differ-
ent datasets, a set of metrics is used, including model accuracy, sensitivity, sensitivity, and
the AUC. These metrics are generally the most-used ones for detection and segmentation
in computer vision tasks. In this section, we present the obtained results per dataset using
the cited method for detection and grading methods. These results are reported in tables
and figures in order to show the most-performed techniques using different architectures.

Tables 3 and 4 and Figures 5 and 6 show a comparison of the results obtained by some
of the studies that have been reviewed. Studies that have used the same publicly available
datasets have been grouped for comparison. Kaggle APTOS and Kale EyePACS are the
largest datasets that have enabled these researchers to perform their experiments.Version December 21, 2022 submitted to Journal Not Specified 13 of 20
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5.1. Diabetic Retinopathy Detection

Diabetic retinopathy detection methods are performed on datasets of two classes that
represent the images with diabetic retinopathy and the images without diabetic retinopathy.
To show that, Table 3 compares some DR-detection-based studies. The most studies used
Kaggle’s APTOS and EyePACS datasets, due to their size, which is large compared to the
others. The binary classification to detect the fundus images that have DR lesions and,
thus, detect the presence of DR is performed by the proposed methods. For that reason,
we can see that all the methods can classify diabetic retinopathy with good performance
in accuracy, while the sensitivity and specificity values were not mentioned in some of
the studies. From the table of the obtained results using the proposed method on the Kaggle
APTOS dataset, we can find that the authors in [11] achieved the best accuracy value of 94%
with a difference of 4% better than the accuracy obtained using [40] and more than 8% for
the other methods. Using the sensitivity and specificity metrics, the method in [22] achieved
the best results. On the MESSIDOR and MESIDOR2 datasets, the methods used in [21,24]
achieved the best accuracy, respectively. However, we can see that, for MESSIDOR2, the
accuracies were lower than the obtained accuracies on MESSIDOR, due to the fact that the
size of MESSDOR2 is larger than MESSIDOR, which can explain the difference between the
accuracy on MESSDOR2 being 91% and 99% on MESSIDOR. The same observation is made
for Kaggle EyePACS, which is a large-scale dataset; the accuracy performances were generally
less than 91%, except for [18,24,25], which achieved an accuracy of up to 97%. For all the
datasets including STARE, HRF, and IDRid, the performance of the proposed methods needs
improvements due to the importance of the topic, as well as the impact of the error if these
techniques are used in real-world diagnostics.
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Table 3. Performance Comparison of diabetic-retinopathy-detection-based studies. The bold and
underlined fonts, respectively, represent first and second place.

Dataset Method Accuracy Sensitivity Specificity

Kaggle APTOS

Anoop et al. [11] 0.946 0.860 0.960

Pamadi et al. [19] 0.780 - -

Saranya et al. [20] 0.830 - -

Chetoui and
Akhloufi [22] - 0.991 0.972

Sanjana et al. [26] 0.861 0.854 0.875

Kumar and
Karthikeyan [29] 0.864 - -

Lahmar and Idri [32] 0.890 - -

El-Ateif and Idri [40] 0.907 0.928 0.893

MESSIDOR

Rêgo et al. [16] - 0.808 0.973

Umapathy et al. [17] 0.944 - -

Sudarmadji et al. [24] 0.997 0.990 0.980

Hossen et al. [27] 0.949 0.926 0.971

Qomariah et al. [28] 0.958 - -

MESSIDOR2

Mudaser et al. [21] 0.910 - -

Sanjana et al. [26] 0.861 0.854 0.875

Lahmar and Idri [32] 0.841 - -

El-Ateif and Idri [40] 0.777 0.310 0.938

Kaggle EyePACS

Saranya et al. [20] 0.830 - -

Jiang et al. [14] 0.757 - -

Kaushik et al. [30] 0.979 - -

Boral and Thorat [25] 0.988 0.977 1.00

Rêgo et al. [16] - 0.808 0.973

Kolla and
Venugopal [18] 0.910 - -

Chetoui and
Akhloufi [22] - 0.981 0.989

Sudarmadji et al. [24] 0.984 0.980 0.970

Lian et al. [31] 0.790 - -

Lahmar and Idri [32] 0.840 - -

Quellec et al. [35] 0.954 - -

STARE
Kazakh-British et

al. [10] 0.600 - -

Umapathy et al. [17] 0.944 - -

HRF Chakrabarty [13] 1.00 1.00 -

Umapathy et al. [17] 0.944 - -

IDRid Nasir et al. [12] 0.960 0.829 -

5.2. Diabetic Retinopathy Grading

Diabetic-retinopathy-grading-based studies comprise another classification category
for diabetic retinopathy analysis. The proposed methods for diabetic retinopathy grading
are based on deep learning using different CNN architectures. For that, transfer learning has
been widely used in the reviewed studies. This is due to the effectiveness of the known back-
bones for the image classification tasks. This includes deep learning architectures/models
such as encoder–decoder, VGG, DenseNet, Inception, Xception, EfficientNet, graph neural
networks, etc. In addition, preprocessing techniques were also used in different studies to
improve performance, as mentioned in Section 3. Grayscale conversion, resizing, CLAHE,
and green channel extraction are some commonly preferred preprocessing techniques.

These techniques aid in improving the feature extraction process by removing unnec-
essary noise from the images.
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In this section, we attempt to present the grading-based methods on popular DR
datasets. The evaluation used a set of metrics including the accuracy, sensitivity, and
specificity. Table 4 presents a comparison of the obtained results using the proposed
method on studies that have used the Kaggle EyePACS, MESSIDOR2, DDR, and IDRid
datasets. Figures 5 and 6 illustrate the experimental results using the proposed methods on
the Kaggle APTOS and MESSIDOR datasets. From Table 4, we can find that the proposed
methods succeeded in achieving high accuracies on MESSIDOR2, DDR, IDRid, reaching up
to 97%. The same observation is made for the other metrics including the sensitivity and
specificity. On Kaggle EyePACS, the proposed method in [5] achieved the best accuracy, as
well as the best specificity metric value, while we can find that the majority of the methods
achieved an accuracy of less than 90%. This is due to the complexity and size of the dataset.
On Kaggle APTOS, from the obtained results represented in Figure 5, we can find that most
methods that used accuracy as an evaluation metric achieved an accuracy of less than 97%,
while only the method in [71] achieved an accuracy of 99%. For the MESSIDOR dataset,
the proposed methods used the accuracy, sensitivity, and specificity metrics to evaluate
their results. The obtained results are presented in Figure 6. It shows that many methods
achieved an accuracy of up to 99% including [5,50,79,116], while the others achieved an
accuracy of up to 92%.

From the presented results on different datasets, we can conclude that some of the
methods such as [5] succeeded in classifying diabetic retinopathy with grading-based
and detection-based methods with high accuracies, while some of the proposed methods
were good for some datasets and less efficient for others. This makes diabetic retinopathy
classification a challenging task even with the improvements achieved during the last ten
years using different deep learning techniques.
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Table 4. Performance comparison of diabetic-retinopathy-grading-based studies that used the Kag-
gle APTOS, MESSIDOR2, DDR, and IDRid datasets. The bold and underlined fonts, respectively,
represent first and second place.

Dataset Method Accuracy Sensitivity Specificity

MESSIDOR 2 Yaqoob et al. [68] 0.970 - -

Bilal et al. [94] 0.946 0.948 0.944

DDR Rahhal et al. [110] 1.00 - -

Elwin et al. [98] 0.914 0.925 0.905

IDRid

Shorfuzzaman et
al. [74] 0.923 0.980 -

Elswah et al. [104] 0.866 - -

Sakaguchi et al. [102] 0.793 - -

Gayathri et al. [5] 0.990 - 0.997

Lee and Ke [76] 0.972 0.702 0.921

Nazir et al. [77] 0.981 - -

Shaik and
Cherukuri [87] 0.664 - -

Nithiyasri et al. [108] 0.977 0.978 0.989

AbdelMaksoud et
al. [113] 0.930 0.967 0.720

Elwin et al. [98] 0.914 0.925 0.905

Sri et al. [115] 0.970 - -

Kaggle EyePACS

Vaishnavi et al. [70] 0.958 0.920 0.978

Thota and Reddy [58] 0.740 0.800 0.650

Barhate et al. [62] 0.762 - -

Kwasigroch et al. [49] 0.508 - -

Wang et al. [50] 0.632 - -

Zhou et al. [51] 0.632 - -

Shrivastava and
Joshi [52] 0.818 - -

Arora and
Pandey [53] 0.744 - -

Kumar [57] 0.699 - -

Maistry et al. [45] 0.870 - -

Nguyen et al. [59] 0.820 0.800 0.820

Khaled et al. [64] 0.631 - -

Harihanth and
Karthikeyan [107] 0.819 - -

AbdelMaksoud et
al. [113] 0.968 0.983 0.72

Yaqoob et al. [68] 0.979 - -

Qian et al. [73] 0.832 - -

Gayathri et al. [5] 0.999 - 1.00

Xiao et al. [78] 0.882 0.994 0.976

Li et al. [79] 0.944 0.840 0.822

Rajkumar et al. [81] 0.894 0.987 0.999

Reguant et al. [83] 0.950 0.860 0.960

Hari et al. [84] 0.830 - -

Saeed et al. [85] 0.997 0.960 0.998

Jabbar et al. [86] 0.966 - -

Chandrasekaran and
Loganathan [88] 0.980 0.990 -

Bilal et al. [94] 0.979 0.969 0.969

Deepa et al. [99] 0.960 - -



Diagnostics 2023, 13, 345 16 of 22

6. Future Directions

Finally, we would like to provide some future research directions that were identified
during this study. The latest trends such as using interpretable AI and cloud-enabled
systems are also being used by some researchers in this field, as well as in medical imag-
ing analysis [118–121]. Since interpretation will be preferred by doctors to diagnose DR,
more studies on explainable AI may come up in the future such as those by Shorfuzzaman
et al. [74] and Chetoui and Akhloufi [22]. Such DR-diagnosing systems will be able to
help doctors rely on them with more confidence. The use of cloud-enabled systems for
computer-aided DR detection systems such as the one by Rajavel et al. [114] will improve
scalability. This will enable the development of large-scale systems for DR diagnosis.

Furthermore, developing low-cost standalone DR detection systems such as the one
developed by the authors in [60] using a Raspberry Pi will be useful for deployment at
health centers at a lower cost. Similar low-cost systems can also be created by developing
DR diagnosis systems using smartphone-based retinal imaging systems such as the one by
the authors in [122].

Another possible research direction is to develop more automated systems that are
capable of determining more than one condition of the eyes, for example systems capable
of diagnosing DR, as well as other conditions of the eyes such as glaucoma and diabetic
macular edema, such as the one by the authors in [123].

7. Conclusions

In this work, we reviewed recent deep-learning-based approaches for diabetic retinopa-
thy detection/diagnosis performed on fundus images. We classified the studies in this field
into two categories including DR-detection-based studies and DR-severity-grading-based
studies. Most studies graded fundus images into the severity levels suggested by the ICDR.

Almost all of the latest DL networks have been used efficiently by different studies
for DR detection and grading. It was also noticed that there has been a considerable
increase in the number of studies in this field recently. A list of the commonly used retinal
fundus image datasets for DR detection and grading was also created in this study. Similar
studies from each of the two categories of DR studies were compared according to their
performance using the commonly used metrics of accuracy, sensitivity, and specificity. In
future work, we will make a similar survey about the latest DR segmentation and lesion
detection studies that have used DL.
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