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Brain–computer interfaces (BCIs) utilizing machine learning techniques are an emerging

technology that enables a communication pathway between a user and an external

system, such as a computer. Owing to its practicality, electroencephalography (EEG)

is one of the most widely used measurements for BCI. However, EEG has complex

patterns and EEG-based BCIs mostly involve a cost/time-consuming calibration phase;

thus, acquiring sufficient EEG data is rarely possible. Recently, deep learning (DL)

has had a theoretical/practical impact on BCI research because of its use in learning

representations of complex patterns inherent in EEG. Moreover, algorithmic advances

in DL facilitate short/zero-calibration in BCI, thereby suppressing the data acquisition

phase. Those advancements include data augmentation (DA), increasing the number

of training samples without acquiring additional data, and transfer learning (TL), taking

advantage of representative knowledge obtained from one dataset to address the

so-called data insufficiency problem in other datasets. In this study, we review DL-based

short/zero-calibration methods for BCI. Further, we elaborate methodological/algorithmic

trends, highlight intriguing approaches in the literature, and discuss directions for

further research. In particular, we search for generative model-based and geometric

manipulation-based DAmethods. Additionally, we categorize TL techniques in DL-based

BCIs into explicit and implicit methods. Our systematization reveals advances in

the DA and TL methods. Among the studies reviewed herein, ∼45% of DA

studies used generative model-based techniques, whereas ∼45% of TL studies used

explicit knowledge transferring strategy. Moreover, based on our literature review, we

recommend an appropriate DA strategy for DL-based BCIs and discuss trends of TLs

used in DL-based BCIs.
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1. INTRODUCTION

1.1. Overview
Brain–computer interfaces (BCIs) (Dornhege et al., 2007; Lotte
et al., 2018; Roy et al., 2019) provide communication pathways
between a user and an external device (e.g., robotic arm, speller,
seizure alarm system, etc.) by measuring and analyzing brain
signals. Owing to its practicality, non-invasive BCIs based on
electroencephalography (EEG) are commonly exploited (Suk and
Lee, 2012; Roy et al., 2019). The real-world impact of BCIs is
promising because they can identify intention-reflected brain
activities. In the past decade, human-centered BCIs, such as those
in mental fatigue detection tasks (Binias et al., 2020; Ko et al.,
2020b), emotion recognition (Qing et al., 2019), and controlling
exoskeletons (Lee et al., 2017) have shed light on the success of
improving human ability. An active BCI (Fahimi et al., 2020)
recognizes complex patterns from EEG spontaneously caused by
a user’s intention independent of external stimuli, and a reactive
BCI (Won et al., 2019) identifies brain activities in reaction to
external events. A Passive BCI (Ko et al., 2020b) is exploited to
acquire implicit information of a user’s cognitive status without
any voluntary control.

EEG-based BCIs generally benefit from machine learning
techniques (Lotte et al., 2018). Specifically, EEG features of
various paradigms are crafted usingmachine learning algorithms,
such as common spatial pattern (CSP) (Ramoser et al., 2000)
and canonical correlation analysis (Lin et al., 2006), including
preprocessing techniques. Further, the extracted EEG features
are discriminated by successful machine learning algorithms
used in classification tasks, e.g., support vector machines (Bishop,
2006). These feature extraction and classification algorithms
have shown their ability in EEG-based BCIs but have also been
limited because of the lack of representation power for complex
EEG patterns (Schirrmeister et al., 2017). In addition, since
feature extractions using these machine learning methods are
widely performed in a hand-crafted manner (Lawhern et al.,
2018), it is difficult for unskilled personnel to develop a novel
BCI framework.

Deep learning (DL) methodologies (Schirrmeister et al., 2017;
Sakhavi et al., 2018; Zhang et al., 2019c; Ko et al., 2020a) have
become the core of BCI research owing to their representational
power for complex patterns in EEG. Specifically, DL significantly
simplifies the EEG analysis pipeline (Lawhern et al., 2018) by
learning preprocessing, feature representation, and decision-
making in an end-to-end manner. Furthermore, architectural
developments in DL have been very successful in representing
complicated patterns. DL learns the hierarchical representations
of input data through stacked non-linear transformations
(LeCun et al., 2015). In DL, stacked layers apply a linear
transformation to the input, and the transformation is fed
through non-linear activation. The parameters of these stacked
layers are automatically learned by exploiting an objective
function. In the machine learning field, various DL architectures
have been developed. Examples include convolutional neural
networks (CNNs), which have been well-suited for structural
pattern representation and are thus widely used to learn spatio-
spectral-temporal patterns of EEG (Schirrmeister et al., 2017; Ko

et al., 2020a). Additionally, owing to the ability of sequential
data modeling, recurrent neural networks and their variants,
e.g., long short-term memory (LSTM) networks, have achieved
considerable success in the temporal embedding of EEG (Zhang
et al., 2019c; Freer and Yang, 2020). Moreover, recent research
has shown interest in hybrid forms of recurrent layers and
convolutional layers (Ko et al., 2018; Zhang et al., 2019a).

Although DL has been demonstrated to be a powerful tool in
EEG analysis, there are some limitations. First, typically available
EEG datasets contain substantially fewer training samples than
do other datasets that are commonly used in DL-based computer
vision or natural language processing task development. However,
EEG acquisition is an expensive and time-consuming task.
Further, data accessibility is often hindered because of privacy
concerns, especially in the clinical domain. Thus, collecting large
amounts of training EEG samples for DL training is rarely
possible. Owing to the nature of EEG properties, such as low
signal-to-noise ratio and inter/intra-variability (Jayaram et al.,
2016), DL-based BCIs are rarely trained only with a different
user’s or even multiple users’ training EEG samples.

To address the aforementioned problems, recent research has
focused on data augmentation (DA) (Luo and Lu, 2018; Zhang
et al., 2019d; Fahimi et al., 2020) and transfer learning (TL)
(Jayaram et al., 2016; Kwon et al., 2019; Jeon et al., 2020). The use
of DL has shown the possibility of synthesizing high-dimensional
image data (Goodfellow et al., 2014), audio data (Donahue et al.,
2019), and EEG data (Hartmann et al., 2018). Further, traditional
DA techniques used in DL fields, such as image rotation have
demonstrated their own efficiency and effectiveness (Simonyan
and Zisserman, 2014). By exploiting these DA techniques, DL-
based BCIs have improved the performance with a short-
calibration phase producing little data (Fahimi et al., 2020; Zhang
et al., 2020b). In terms of TL, DL has also been widely used to
suppress the training EEG data acquisition phase (Chai et al.,
2016; Jeon et al., 2020; Tang and Zhang, 2020). In particular, DL-
based BCIs can be designed in a short/zero-calibration manner
by appropriately conducting 2-fold TL strategies, i.e., explicit TL
and implicit TL.

Overall, several DL methods have been proven to improve
existing EEG processing techniques. The end-to-end strategy
allows DL to simply learn existing EEG analysis pipelines,
reducing paradigm-specific processing and feature extraction.
Objective function-based automatic learning requires only raw
or minimally preprocessed EEG data. The feature representation
of DL can also be more effective and richer than features
engineered by humans. Moreover, DL can pave the way for
methodological advances in EEG analysis, such as generative
modeling (Goodfellow et al., 2014) and knowledge transfer
(Jayaram et al., 2016) to handle the lack of EEG data problems
and the data variability issue.

1.2. Our Contributions
In this study, we review DL-based BCI studies that mostly
focused on suppressing the EEG calibration phase. Unlike
recent survey papers for EEG-based BCIs that are mostly
focused on introducing machine learning/DL algorithms for
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FIGURE 1 | Overview of DL-based short/zero calibration approaches.

BCIs (Lotte et al., 2018; Craik et al., 2019; Zhang et al., 2020d),
summarizing EEG analysis studies (Roy et al., 2019), providing
comprehensive information on EEG-based BCIs, including
sensing technology and healthcare systems (Gu et al., 2020), and
surveying application of machine learning/DL-based TLs (Zhang
et al., 2020c), our review aims to address short-/zero-calibration
techniques for EEG-based BCIs. In detail, we categorize these
studies into two different groups, based on the manner of
increasing the number of training samples: (i) manipulating the
given training data without using an additional one and (ii)
exploiting other subjects/sessions’ EEG samples. Specifically, (i)
is further categorized into generative model-based and geometric
manipulation-based methods, and (ii) is classified into explicit
and implicit knowledge transfer. In the case of (i), 45% of the
studies proposed generative model (Goodfellow et al., 2014;
Kingma and Welling, 2014)-based DA methodologies, whereas
45% of the case of (ii) developed explicit knowledge transfer
strategies. Further, we recommend a training technique for DL-
based BCI models with a generative model-based DA based on
our literature review and discuss trends of recent knowledge
transfer methods. We summarize the taxonomy of our review in
Figure 1.

The remainder of this paper is organized as follows. In section
2, we describe DL methods to augment training samples and
review the methods proposed in various BCI studies. In section 3,
we discuss and review DL methods for transferring knowledge of
other subjects/sessions’ samples in BCIs. For both sections 2 and
3, we summarize our review in Tables 1–4. Section 4 presents our
discussion and recommendations for DA-based short-calibration
techniques to develop a new DL-based BCI system. Further,
section 4 details trends of recent knowledge transfer methods in
DL research. Finally, section 5 provides concluding statements.

2. ADVANCES IN DATA AUGMENTATION

2.1. What Is Data Augmentation?
Recently, DL-based BCIs have shown promising results in both
active and passive BCI applications. However, a sufficient number
of training EEG samples are required to train DL-based BCIs to

avoid overfitting problems. DA is one way to address the data
insufficiency problem. Specifically, DA increases the amount of
data by synthesizing samples from the existing training data.
Thus, DL models cannot overfit all samples and are forced to
generalize well. Commonly, in the DL-based computer vision
field (Simonyan and Zisserman, 2014; He et al., 2016), image
samples are rotated/shifted/rescaled/flipped/sheared/stretched to
be augmented. Further, generating extra samples from the
existing ones by exploiting DL-based generative models is one
of the most important strategies in DA. Because DA techniques
help reduce the necessity of acquiring new EEG data, which
is hindered by its cost-/time-consuming properties (Hartmann
et al., 2018; Freer and Yang, 2020), they have gained significant
attention in the BCI field. Here, we review the DAmethodologies
used for improving the performance of DL-based BCIs.

2.2. Challenges in Data Augmentation
A major difference between EEG data and image data is
translational invariance, a property that an output value is
invariant with respect to positional transformations of an input.
Common computer vision tasks have to solve the problems
of viewpoint, lightness, background, scale, etc. Therefore, in
the computer vision field, widely used DA techniques, such
as translation and rotation, are designed to improve the
translational invariance of the training dataset. Further, those
computer vision methods mostly use CNNs that exploit two-
dimensional (height × width) and/or three-dimensional (height
× width × depth) convolutional kernels. A CNN learns
local features by sharing kernel weights, thus translational
invariance is naturally followed. In other words, it represents
patterns regardless of the position of the object in an input
image. In contrast, for raw EEG analysis, DL-based BCIs
(Schirrmeister et al., 2017; Lawhern et al., 2018; Ko et al.,
2020a) are widely designed to extract features of EEG by
using one-dimensional (temporal or spatial) convolution kernels.
Furthermore, retraining the spatio-spectral-temporal information
of raw EEG is also important for these DL-based BCIs. Hence,
commonly used DA methods in computer vision tasks, e.g.,
rotating, cropping, scaling, are rarely applicable to DL-based
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BCIs, because those methods may harm the spectro-spatio-
temporal information in EEG signals. In other words, we cannot
augment raw EEG signals using simple techniques. Moreover,
labeling augmented EEG samples via geometric manipulation
is also difficult. In this regard, many DL methods for DL-
based BCIs apply geometric manipulation to spectrogram images
estimated from raw EEGs (Shovon et al., 2019; Zhang et al.,
2020b), or cropped EEGs using a sliding window (Schirrmeister
et al., 2017; Ko et al., 2018; Majidov and Whangbo, 2019).
Meanwhile, other DA methods for DL-based BCIs (Hartmann
et al., 2018; Luo and Lu, 2018; Hwang et al., 2019) have focused
on synthesizing EEG signals from existing ones. These works
generally introduce DL-based generative models (Goodfellow
et al., 2014; Kingma and Welling, 2014)-based augmenting
methods. However, as synthesized signals are not sufficiently
realistic to be used as training samples, many studies have tried
to improve the generation ability, i.e., the quality of augmented
samples by regularizing their generative models (Arjovsky et al.,
2017).

2.3. Approaches in Data Augmentation
DA methods in BCI can be categorized into two groups—
geometric manipulation-based and deep generative model-
based methods—depending on modifying existing samples and
synthesizing novel training samples with an additional deep
generative model, respectively. First, as the direct application of
data modification used in computer vision to DL-based BCIs
is somewhat difficult, Lotte et al. (2018) showed that geometric
manipulation-based EEG DA can improve the BCI performance
of linear machine learning models. Inspired by these intriguing
results, in case of the geometric manipulation-based group,
it was hypothesized that traditional DA techniques used in
computer vision can be extended to DL-based BCIs. Further,
some pioneering studies (Liu et al., 2016; Zhang et al., 2019d)
have attempted to learn the intrinsic mode, i.e., subspaces of the
training data, and controlled them to generate new data. Second,
generative model-based approaches have gained attention from
the BCI society with algorithmic advancements of generative
models. DL-based generative model explicitly, e.g., variational
autoencoder (VAE) (Kingma and Welling, 2014), or implicitly,
e.g., generative adversarial network (GAN) (Goodfellow et al.,
2014), learn the distribution of input data as well as output
result. Generation of synthetic data in the input data space is
possible by sampling from the learned distribution. The size of
the training dataset can be considerably expanded by adopting
deep generative model for BCI methods, using a limited number
of samples, i.e., less than hundreds (Hartmann et al., 2018; Roy
et al., 2020). In addition, some studies (Ko et al., 2019; Panwar
et al., 2019a) usemin-max game-based training algorithms, a core
of GAN for DL-based BCI model training, thereby improving the
BCI performance even with fewer training samples.

2.3.1. Geometric Manipulation-Based Data

Augmentation Methods
Geometric manipulation is one of the most simple and efficient
DA ways. It modifies data without additional learning, hence
is applicable directly and intuitively. Geometric manipulation-
based DA methods show promising results for performance

FIGURE 2 | Cropping strategy using a sliding window (Schirrmeister et al.,
2017; Ko et al., 2018). For a raw EEG signal, a sliding window with a length
shorter than that of the signal moves on EEG with a predefined stride.
Subsequently, the window crops a part of signal for augmentation.

improvements in several computer vision tasks (Simonyan and
Zisserman, 2014; He et al., 2016); thus, many attempts have
been made to apply similar approaches to EEG data. In this
section, we review many interesting DL-based BCI methods
that take traditional DA strategies developed in computer vision
tasks, such as geometric transformation (Schirrmeister et al.,
2017), noise addition (Parvan et al., 2019), and mixup (Kostas
and Rudzicz, 2020). Some studies used the segmentation and
recombination approach for DA (Freer and Yang, 2020), whereas
other studies learned the intrinsic modes of EEG data and
generated novel samples by modifying the learned modes (Liu
et al., 2016).

2.3.1.1. Raw Data Modification
A straightforward means of raw data modification is geometric
transformation, which includes rotating, shifting, flipping,
lightening, zooming, and cropping. As geometric transformation
is easily applicable, many DL-based BCI methods use it as
DA, based on Lotte et al. (2018)’s pioneering approaches,
e.g., segmentation and recombination of EEG signals. For
instance, Zhang et al. (2020b) performed three different
geometric transformation-based DAs. First, Zhang et al. rotated
spectrogram images of EEG signals estimated by using short-time
Fourier transform (STFT). Further, they shifted the spectrogram
and filled the remaining space with random noise and finally,
perturbed the RGB values of the STFT image in the color space.
Shovon et al. (2019) also performed DA by rotating, flipping,
zooming, and brightening spectrogram images of motor imagery
EEG signals. Moreover, as depicted in Figure 2, Schirrmeister
et al. (2017), Ko et al. (2018), and Majidov and Whangbo
(2019) used similar approaches to augment raw motor imagery
EEG samples; they cropped EEG signals from an EEG epoch
by using a sliding window having a shorter time length than
that of the epoch. Freer and Yang (2020) performed flipping
raw motor imagery samples to augment their training data.
Furthermore, Mousavi et al. (2019) conducted a sliding window-
based DA technique to increase the number of training EEG
samples for sleep stage recognition. Supratak andGuo (2020) also
focused on the sleep stage classification task but augmented the
training dataset using the shifting technique. Finally, Sakai et al.
(2017) used shifting to augment their cognition classification
task, classifying EEG signals acquired at motivated status and
unmotivated statuses.

Similar to the geometric transformation method, a noise
addition-based DA technique has also been widely used in
many successful DL-based computer vision studies (Simonyan
and Zisserman, 2014; He et al., 2016). The noise addition
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facilitates DA by adding randomly sampled noise values to
the original samples. In terms of DA for EEG, Zhang et al.
(2020b) augmented spectrogram images of motor imagery EEG
by adding Gaussian noise. Similarly, Parvan et al. (2019) and
Freer and Yang (2020) performed noise addition using uniform
distribution and Gaussian distribution to augment raw motor
imagery EEG samples, respectively. Finally, Wang F. et al. (2018)
added Gaussian noise to differential entropy values estimated
from emotion EEG signals for the DA. Interestingly, all DL-
based BCIs that exploit the noise addition method use Gaussian
distribution to sample noise, with a mean value of 0 and a small
standard deviation value, e.g., 0.01 or 0.001.

Another intuitive geometric manipulation is segmenting and
recombining the EEG samples (Lotte et al., 2018). There are
two methods for the segmentation and recombination methods.
First, let us denote the ith epoch of EEG samples as xi. Then,
with the predefined segmentation hyperparameter, T, the given
trial is segmented to xi1, x

i
2, ..., x

i
T . Finally, these segments are

recombined with other segments from the other EEG epoch, i.e.,
xj,∀i 6= j. Thus, the augmented new sample, xaug, can be made as,
for instance, xaug = Concat(x11, x

6
2, ..., x

4
T), where Concat denotes

a concatenation operation. Refer to Figure 3 for the concept
of temporal signal segmentation and recombination. The other
method includes spectral transformation, such as STFT. In this
case, EEG samples are mapped into the spectro-temporal domain
by a transformation method, segmented, and recombined.
Subsequently, the augmented combinations of spectrogram
segments are mapped into the temporal domain using an
inverse transformation method. Recently, Cho et al. (2020), Dai
et al. (2020), Freer and Yang (2020), and Huang et al. (2020)
used segmentation and recombination in a temporal manner,
i.e., without STFT, to augment their raw motor imagery EEG.
Additionally, Huang et al. performed the same augmentation
method in a spectro-temporal manner. Specifically, Huang et al.
swapped entire segments in a specific frequency band of two
randomly sampled EEG signals. Further, Fahimi et al. (2020)
performed both segmentation and recombination methods, i.e.,
both temporal and spectral methods, to augment the motor
execution EEG samples. Zhao X. et al. (2020) also effectively
acquired artificial ictal EEG samples with a discrete cosine
transform (DCT)-based spectral transformation. Finally, Fan
et al. (2020) and Supratak and Guo (2020) performed the
temporal segmentation and recombination-based DA technique
to increase the training data for the sleep stage classification.

The synthetic minority oversampling technique (SMOTE)
(Chawla et al., 2002) is one of the most widely used oversampling
techniques to address the class imbalance problem in machine
learning fields. Let us assume that A is a minority class set and
its elements are xi ∈ A. Subsequently, for each sample xi, we

obtain its k-nearest neighbors, x(k)i , with some distance metrics,
for example, Euclidean distance. Then, a new augmented sample

is acquired by using xi,aug = xi + ǫ|xi − x
(k)
i | for ∀k, where ǫ ∼

Uniform(0, 1) denotes a random number drawn from a uniform
distribution. Owing to its simplicity and power, some DL-based
BCI studies have used SMOTE to augment the imbalanced
training data. Lee T. et al. (2020) oversampled raw target class

EEG samples that generally belong to the minority class in
the event-related potential (ERP) paradigm. Similarly, Romaissa
et al. (2019) used SMOTE (Chawla et al., 2002) to oversample
ictal EEG signals. Interestingly, Romaissa et al. first extracted
the spectral features of EEG signals and performed SMOTE on
the spectral domain. Sun et al. (2019) also oversampled minor
epochs in the sleep stage classification by conducting SMOTE on
hand-crafted features.

In addition, some studies amplified given EEG samples to
augment them. Amplification-based DA can be performed by
using xaug = (1±C)x, whereC ∈ R is a predefined amplification-
control hyperparameter. Freer and Yang (2020) amplified raw
motor imagery samples with C = 0.02, 0.05, 0.1, and 0.2.
Furthermore, Sakai et al. (2017) amplified EEG signals with C =

0.1. Sakai et al. established a 2-fold strategy of amplifying (i) all-
time data and (ii) near-peak data. In the second strategy, Sakai
et al. only multiplied (1± C) to near-peak data.

Mixup (Zhang et al., 2018b) is a recently proposed DA
technique for computer vision tasks. For two given training
samples xi and xj, ∀i 6= j with labels yi and yj, respectively,
an augmented sample is then estimated by using xaug = λxi +

(1 − λ)xj, and its label is defined as yaug = λyi + (1 − λ)yj,
where λ ∈ [0, 1] is a random number. In case of DL-based
BCI, Kostas and Rudzicz (2020) used mixup to augment raw
motor imagery/ERP/rapid serial visual presentation (RSVP) EEG
samples and improved the BCI performance.

Raw data modification-based DA methods are easily
applicable and do not require any further networks optimization.
Meanwhile, because of the EEG data’s spectro-spatio-temporal
properties, these methods barely improve the performance and
make model interpretation complicated.

2.3.1.2. Intrinsic Mode Decomposition
As EEG is a very non-stationary and non-linear time-series
data, empirical mode decomposition (EMD) (Flandrin et al.,
2004), illustrated in Figure 4, can be an appropriate spatio-
temporal analysis method. To be specific, EEG is partitioned
intomodes called intrinsic mode functions (IMFs) without leaving
the time domain by EMD. Similar to the segmentation and
recombination, EMD-based DA first estimates IMFs of EEG
signals, and IMFs are then recombined to create artificial EEG
samples. Importantly, the mode of each IMF used in the DA does
not overlap. Dinarès-Ferran et al. (2018) and Zhang et al. (2019d)
performed EMD to acquire IMFs of motor imagery EEG samples
and generated artificial samples by recombining IMFs. Kalaganis
et al. (2020) created spatio-temporal graphs by using EEG signals
acquired from cognitive tasks and estimated graph IMFs using
EMD. Subsequently, Kalaganis et al. recombined these graph
IMFs to augment the training data.

Another way to learn the intrinsic modes of the data is the
self-organizing map (SOM) (Kohonen, 1990), which discretizes
the training samples to amap. SOM training utilizes competitive
learning. For a given training sample fed into a neural network,
the Euclidean distance between each weight vector and the
input data is estimated. Then, a neuron having the shortest
distance is called the best matching unit (BMU). The weights
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FIGURE 3 | EEG segmentation and recombination method (referred to Dai et al., 2020). EEG samples are segmented into constant lengths. The divided pieces are
then randomly recombined to generate new signals.

FIGURE 4 | Illustration of empirical mode decomposition (EMD) (Flandrin et al., 2004) which decomposes modes, i.e., intrinsic mode function (IMF) of the input signal
(re-illustrated from Dinarès-Ferran et al., 2018).

of the BMU and neurons that are close to it in the SOM grid
are adjusted to the input data. When adjusting, the magnitude
of the change decreases with time and the grid-distance from
the BMU. In this regard, Liu et al. (2016) applied a variant
of SOM, named adaptive subspace SOM (ASSOM), trained it
with predefined numbers, N, of quadratic modules and achieved
N subspace representations of data x. Finally, N numbers of
synthetic samples could be obtained by inversely transforming
the representations. Even though intrinsic mode decomposition-
based DAs effectively learn internal modes of EEG data, they
still show limitations. For instance, they introduce additional
hyperparameters to be found, e.g., the number of IMFs and
BMUs, thus require extra tuning phase. We summarize our
review of the geometric manipulation-based DA methods in
Table 1.

2.3.2. Generative Model-Based Data Augmentation

Methods
A characteristic of generative model-based DA methods is
exploiting additional DL for synthesizing training samples.
Among recent successes of deep generative models, GAN
(Goodfellow et al., 2014) and VAE (Kingma and Welling,
2014) demonstrate their caliber by showing practical use with
sound theoretical foundations. We herein review the advances

in GAN-based DA methods for BCIs (Hartmann et al., 2018;
Hwang et al., 2019; Ko et al., 2019; Luo et al., 2020). These
methods exploit GAN and its variants (Radford et al., 2015;
Arjovsky et al., 2017; Mao et al., 2017) to learn the distribution
of training samples. Those GAN-based DA methods can
effectively generate artificial samples and stabilize DL-based
BCI training. The autoencoder (AE) (Ballard, 1987) and VAE
are also used for learning the latent space of the training
dataset. Subsequently, some DL-based BCIs (Fahimi et al.,
2020; Zhang et al., 2020b) are employed to generate artificial
samples from the learned latent space, thereby augmenting
the data.

2.3.2.1. Generative Adversarial Network
Recently, Goodfellow et al. (2014) proposed a DL-based
generative model named GAN to learn deep representations of
data distribution without extensively annotated training data. As
depicted in Figure 5, GAN comprises two networks: a generator
and a discriminator. In GAN, generator G tries to generate a
realistic sample, G(z), from a latent code vector, z. Discriminator
D tries to discriminate the real sample, x, from the generated
one and outputs a probability of whether the input is real. To
simultaneously train those two networks, i.e., the generator and
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TABLE 1 | Geometric manipulation data augmentation methods.

Approach References Paradigm Summary

Raw data
modification

Geometric
transformation

Zhang et al., 2020b

Motor imagery

Rotated (180◦), shifted, and changed RGB
values of STFT images estimated from raw
EEGs

Shovon et al., 2019 Rotated (5◦), flipped, zoomed, brightened
(±30%) STFT images estimated from raw EEGs

Schirrmeister et al., 2017 Cropped raw EEG using a sliding window

Ko et al., 2018 Cropped raw EEG using a sliding window

Majidov and Whangbo,
2019

Cropped raw EEG using a sliding window

Freer and Yang, 2020 Flipped raw EEG

Mousavi et al., 2019
Sleep

Cropped raw EEG using a sliding window

Supratak and Guo, 2020 Shifted raw EEG

Sakai et al., 2017 Cognition Shifted raw EEG

Noise addition

Zhang et al., 2020b

Motor imagery

Added Gaussian noise (std of 0.1)

Freer and Yang, 2020 Used uniform noise ([−0.5, 0.5])

Wang F. et al., 2018 Emotion Added Gaussian noise (std of 0.001 ∼ 0.5)

Recombination

Freer and Yang, 2020

Motor imagery

Segmented and recombined raw EEGs

Cho et al., 2020 Segmented and recombined raw EEGs

Dai et al., 2020 Segmented and recombined raw EEGs

Huang et al., 2020 Segmented and recombined STFT images

Fahimi et al., 2020 Motor Segmented and recombined both raw EEGs
and STFT images

Zhao X. et al., 2020 Seizure Segmented and recombined DCT images

Fan et al., 2020
Sleep

Segmented and recombined raw EEGs;
compared synthesizing qualities to other DA
methods

Supratak and Guo, 2020 Segmented and recombined raw EEGs

SMOTE
(Chawla et al., 2002)

Lee T. et al., 2020 ERP Used borderline-SMOTE algorithm to raw EEGs

Sun et al., 2019 Sleep Used SMOTE algorithm to hand-crafted
features

Amplifying
Freer and Yang, 2020 Motor imagery Amplified raw EEG ±2 ∼ 20%

Sakai et al., 2017 Cognition Amplified raw EEG ±10%

Mixup
(Zhang et al., 2018b) Kostas and Rudzicz, 2020 Multi Conducted mixup algorithm to raw EEGs;

experimented TL experiments

Intrinsic mode
decomposition

EMD
(Flandrin et al., 2004)

Zhang et al., 2019d
Motor imagery

Estimated and recombined IMFs of raw EEGs

Dinarès-Ferran et al., 2018 Estimated and recombined IMFs of raw EEGs

Kalaganis et al., 2020 Cognition Estimated and recombined IMFs of graphs
estimated by raw EEGs

SOM (Kohonen, 1990) Liu et al., 2016 Drowsy Conducted ASSOM algorithm

the discriminator, GAN uses a min-max objective function:

max
D

Epx [logD(x)]+ Epz [log(1−D(G(z)))]

and min
G

Epz [log(1−D(G(z)))], (1)

where px and pz denote the distribution of real samples and
latent code, respectively. In Equation (1), the Jensen-Shannon
distance (JSD) is used for estimating the distance between the
real sample distribution and the generated sample distribution.
Here, G is minimized when D(G(z)) → 1, i.e., the generator tries
to make realistic samples, and D is maximized when D(x) → 1

and D(G(z)) → 0; thus, D determines the real and fake
samples correctly.

Based on the use of GAN (Goodfellow et al., 2014), some
DL-based BCIs use GAN as the DA method. Roy et al. (2020)
proposed a GAN-based motor imagery EEG augmentation
method, named MIEEG-GAN. Roy et al. developed an LSTM-
based generator and an LSTM-based discriminator to augment
both raw motor imagery EEG signals and spectrum images
generated by STFT. Further, Roy et al. analyzed generated
samples both qualitatively and quantitatively. Similarly, Krishna
et al. (2020) constructed a gated recurrent unit (GRU) (Chung
et al., 2014)-based generator and a GRU-based discriminator
with the GAN loss function, i.e., Equation (1). Thus, Krishna
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FIGURE 5 | Illustration of generative adversarial network (GAN) (Goodfellow et al., 2014). Generator G outputs generated data G(z) using a random noise vector z.
Then, discriminator D distinguishes generated data G(z) from real data x.

et al. augmented EEG data for speech recognition and achieved
performance improvement. Although these studies showed
promising results for GAN-based DA, there is still room for
improvement with a minor modification of the GAN loss
function (Arjovsky et al., 2017); thus, many DL-based BCIs that
use GAN for the DA exploited variants of GAN.

In this regard, Mao et al. (2017) proposed a modified version
of the GAN loss function. They minimized the Pearson-χ2

distance between the real distribution and the generated data
distribution instead of the JSD used for the original GAN loss
function (Goodfellow et al., 2014). Thus, Mao et al. modified the
loss to:

min
D

1

2
Epx [log(D(x)− 1)2]+

1

2
Epz[log(D(G(z))− 0)2]

and min
G

1

2
Epz [log(D(G(z))− 1)2], (2)

and named their method least-squares GAN (LSGAN). This
LSGAN objective function gives a larger gradient to fake
samples farther from the real samples decision boundary, thereby
suppressing the gradient vanishing phenomenon. In case of
DA for BCI, Pascual et al. (2019) adopted LSGAN to epileptic
EEG DA. Specifically, Pascual et al. used a conditional vector
(Mirza and Osindero, 2014) in their model to generate ictal
EEG samples from given inter-ictal EEG samples. They also
exploited U-Net (Ronneberger et al., 2015) for both the generator
and the discriminator. By doing so, Pascual et al. synthesized
numerous ictal samples and improved the performance with the
generated samples.

Meanwhile, Radford et al. (2015) focused on solving the min-
max objective of GAN (Goodfellow et al., 2014) as inherently
unstable. With exhaustive attempts to design a stable CNN-based
GAN from scratch, Radford et al. showed that the generator of
a deconvolutional network without fully-connected layers and
pooling layers and the discriminator of a convolutional network
without pooling layers makes GAN robust. Their successful
achievement is commonly called deep convolutional GAN
(DCGAN). In a BCI society, DCGAN is also widely used for DA.
For instance, Zhang et al. (2020b) augmented spectrograms of
motor imagery EEG estimated by applying STFT using DCGAN.

Zhang and Liu (2018) also showed improved motor imagery-
based BCI performance by DA using DCGAN. Fahimi et al.
(2020) generated raw EEG signals using DCGAN and analyzed
the generated signals using t-stochastic neighbor embedding
(Maaten and Hinton, 2008) and STFT. Additionally, Lee Y.
E. et al. (2020) reconstructed ERP signals using DCGAN for
mobile BCI. They also showed the performance of reconstructed
ERP signals and visualized the generated samples. Truong et al.
(2019a,b) appliedDA to STFT transforms of epileptic EEG signals
using DCGAN. Finally, Fan et al. (2020) performed the DA using
DCGAN to tackle a class imbalance problem in sleep staging
tasks and demonstrated the validity of GAN-based DA.

Similar to LSGAN (Mao et al., 2017), Arjovsky et al. (2017)
focused on changing the JSD to the Wasserstein distance.
Arjovsky et al. showed that the Wasserstein distance can be
applied to GAN in a theoretically rigorous manner and proposed
a modified version of the objective function:

min
G

max
D

Epx [D(x)]− Epz [D(G(z))]. (3)

To satisfy a constraint, i.e., to restrict the discriminator to
the Lipschitz function, Arjovsky et al. used weight clipping
on discriminator D. However, Gulrajani et al. (2017) removed
the weight clipping by adding a gradient penalty regularization
to the objective function and made the training stable. These
methods are widely known as Wasserstein GAN (WGAN).
Several researchers of DL-based BCIs showed interest in a
WGAN-based DA method. Ko et al. (2019) exploited WGAN
with a gradient penalty to improve the BCI performance inmotor
imagery. They used WGAN, rather than the DA method, for
DL-based BCI model training, and improved performance even
with fewer training datasets. In addition, Hartmann et al. (2018)
proposed EEG-GAN which is a modified version of WGAN to
generate artificial raw EEG data. Aznan et al. (2019) also used
WGAN to augment steady-state visual evoked potential (SSVEP)
and improved the BCI performance. Panwar et al. (2019a,b)
exploited WGAN with the gradient penalty to generate raw EEG
data of RSVP and drowsiness and significantly improved the BCI
performance. Luo and Lu (2018) and Luo et al. (2020) modified
WGAN and synthesized differential entropy values calculated
from emotion EEG signals. As the aforementioned methods
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require a calibration phase, Hwang et al. (2019) tried to introduce
zero-calibration. They used WGAN to generate raw EEG data
acquired from a protocol of watching natural objects, such as a
pizza and a banana. GAN-based DA methods synthesize realistic
EEG samples by learning the data distribution implicitly, thereby
showing great opportunity for DA. Nevertheless, these methods
need (relatively) large amounts of data to train to network
modules, i.e., the generator and the discriminator.

2.3.2.2. Variational Autoencoder
As GAN (Goodfellow et al., 2014) and its variants (Radford
et al., 2015; Arjovsky et al., 2017; Mao et al., 2017) demonstrated
their ability in DA, some studies focused on learning a latent
representation of EEG data distribution in an explicit manner.
AE (Ballard, 1987) is a neural network trained to replicate the
input and the output data. AE has an encoder and a decoder; the
encoder describes a code that is used for representing the input
data, and the decoder reconstructs the input data from the code.
Modern AE models have tried to generalize the encoder and the
decoder functions to learn the distribution of the input data and
the code. In particular, as depicted in Figure 6, VAE, which is a
type of AE, learns encoder Q and decoder P through variational
inference. The VAE (Kingma andWelling, 2014) is trained by the
objective function:

min
P,Q

−EQ[log(P(x|z))]+ KLD(Q(z|x)||P(z)). (4)

where KLD denotes the Kullback-Leibler divergence (KLD). In
Equation (4), the first term represents a negative log-likelihood
of the latent code, z, and can be considered as a reconstruction
error. The second term is a regularization term to constrain
the variational distribution, Q(z|x), to be similar to P(z). Based
on the objective function in Equation (4), the VAE effectively
represents the latent space of the data distribution and can
generate novel samples from the learned latent distribution.

In this regard, some DL-based BCIs use AEs (Ballard, 1987)
and VAEs (Kingma and Welling, 2014) for DA. For example,
Zhang et al. (2020b) transformed EEG signals into spectrograms
using STFT and reconstructed them using both an AE and a
VAE. By reconstructing STFT images from the learned code,
Zhang et al. could effectively acquire novel training samples.
Fahimi et al. (2020) exploited a VAE to synthesize artificial
motor EEG signals. Furthermore, Aznan et al. (2019) performed
DA of SSVEP EEG signals using a VAE. Finally, to augment
the raw emotion EEG signals, Luo et al. (2020) learned the
latent space of the data distribution and generated artificial
samples using a VAE. Even though VAE-based DAs learn the
training data distribution and generate augmentation samples,
the synthesizing quality still lacks. We summarize our review of
both the GAN and VAE-based DA methods in Table 2.

3. ADVANCES IN TRANSFER LEARNING

3.1. What Is Transfer Learning?
In recent years, efforts have been made to take advantage of other
real EEG samples (i.e., from a session or a subject) to train deep
neural networks that decode EEG samples, thereby mitigating
the data insufficiency problem (Chai et al., 2016; Andreotti et al.,

2018; Fahimi et al., 2019; Özdenizci et al., 2020). These studies
known as TL have focused on transferring knowledge from
one dataset to another one. Generally, the TL methods aim to
learn well-generalized representation among different tasks (e.g.,
classification, regression, clustering, etc.) or multiple datasets
following different but similar distributions (i.e., domains) in
other fields. Meanwhile, various TL-based BCIs have leveraged
other subjects’ or sessions’ data to solve the same task. The
representation trained from those TL methods can be applied to
the seen domains (e.g., domain adaptation) or an unseen domain
(e.g., domain generalization) in a short/zero-calibration manner.
Hence, we mainly focus on domain adaptation/generalization-
based TL approaches in this study.

3.2. Challenges in Transfer Learning
When designing transfer methods in BCI, there are two major
concerns: (i) intra- and inter-subject variabilities and (ii) negative
transfer. First, as brain signals contain their inherent background
activities and vary according to their conditions, e.g., fatigue,
drowsiness, excitation, and agitation, high variabilities have been
observed for different subjects and even for sessions of the
same subjects (Jayaram et al., 2016), which are regarded as
non-stationary EEG characteristics (Chai et al., 2016; Raza and
Samothrakis, 2019). In this respect, when training a DL-based
BCI method with samples of one subject or session, the trained
DL method cannot be deployed to another subject or session
directly, because unseen data (from new subject or session)
can be misaligned with the training data in the trained feature
space, referred to as a domain shift (Ganin et al., 2016). In
other words, owing to the large discrepancy between training
and unseen data, the trained DL-based BCI can be degraded
drastically in testing unseen data. Domain adaptation (Wang
and Deng, 2018) is proposed to diminish the domain shift in
other fields, such as computer vision. Owing to its goal, domain
adaptation-based approaches have been widely used in DL-based
BCIs (Jeon et al., 2019; Özdenizci et al., 2020; Wei et al., 2020a;
Zhao H. et al., 2020). Each subject or session is regarded as
one domain in most studies. Recent studies have introduced a
question: what should be transferred between various domains?
Although the domain-invariant features can be obtained through
TL, mainly via domain adaptation techniques, it can also induce
degradation of unseen data because all information is not
equally transferable (Lin and Jung, 2017; Wang and Deng, 2018;
Peng et al., 2019; Jeon et al., 2020), which is denoted as a
negative transfer.

3.3. Approaches in Transfer Learning
TL methods in BCI can be categorized into two approaches—
explicit TL and implicit TL—depending on whether to explicitly
use a discrepancy between two domains in the objective
function. Explicit TL-based approaches have commonly focused
on minimizing a divergence between multiple domains during
the training process. These methods have been fundamentally
devised according to domain theory (Ben-David et al., 2010).
In domain theory, when training a model with a labeled
source domain and an unlabeled target domain, the expected
error of the target domain is upper bounded as the sum of
the error of the labeled source domain and the discrepancy
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FIGURE 6 | Illustration of variational autoencoder (VAE) (Kingma and Welling, 2014). Encoder Q learns latent space of input data x. From the learned latent space,
latent code z is sampled and input to decoder P. Finally, decoder P reconstructs input data x̂.

TABLE 2 | Deep generative data augmentation methods.

Approach References Paradigm Summary

GAN

GAN
(Goodfellow et al., 2014)

Roy et al., 2020 Motor imagery Devised LSTM-based generator and discriminator; qualitatively
analyzed generated signals

Krishna et al., 2020 Speech Devised GRU-based generator and discriminator

LSGAN
(Mao et al., 2017)

Pascual et al., 2019 Seizure Devised U-Net-based generator and discriminator; used
conditional GAN concept

DCGAN
(Radford et al., 2015)

Zhang et al., 2020b

Motor imagery

Generated STFT images estimated from raw EEGs; compared
synthesizing quality to other DA methods

Zhang and Liu, 2018 Compared classification accuracy of testing dataset for different
ratio of raw data and artificial data; used conditional GAN concept

Fahimi et al., 2020 Motor Used feature vector with the random noise for the generator input

Lee Y. E. et al., 2020 ERP Used features of EEG signals during walking as the generator
input to reconstruct EEG signals similar to ones during standing

Truong et al., 2019a
Seizure

Generated STFT images estimated from raw EEGs

Truong et al., 2019b Generated STFT images estimated from raw EEGs

Fan et al., 2020 Sleep Compared synthesizing quality to other DA methods

WGAN
(Arjovsky et al., 2017)

Ko et al., 2019 Motor imagery Conducted gradient penalty rather than weight clipping; used
semi-supervised GAN concept

Hartmann et al., 2018 Motor Conducted gradient penalty rather than weight clipping

Aznan et al., 2019 SSVEP Compared synthesizing quality to VAE-based DA methods;
experimented TL setting

Panwar et al., 2019b RSVP Conducted gradient penalty rather than weight clipping; used
conditional GAN concept

Luo et al., 2020

Emotion

Conducted gradient penalty rather than weight clipping; used
conditional GAN concept

Luo and Lu, 2018 Conducted gradient penalty rather than weight clipping; used
conditional GAN concept

Panwar et al., 2019a Drowsy Conducted gradient penalty rather than weight clipping

Hwang et al., 2019 Cognition Designed zero-calibration experiments

VAE

AE
(Ballard, 1987)

Zhang et al., 2020b Motor imagery Generated STFT images estimated from raw EEGs; compared
synthesizing quality to other DA methods

VAE
(Kingma and Welling, 2014)

Zhang et al., 2020b Motor imagery Generated STFT images estimated from raw EEGs; compared
synthesizing quality to other DA methods

Fahimi et al., 2020 Motor Compared synthesizing quality to other DA methods

Aznan et al., 2019 SSVEP Compared synthesizing quality to VAE-based DA methods;
experimented TL setting

Luo et al., 2020 Emotion Compared synthesizing quality to VAE-based DA methods

between the source and target domains. In other words,
minimizing the divergence between multiple domains is key
regardless of the labels in the target domain. The question
here is why TL can be considered as an effort to reduce

cost/time-consuming calibration. Most studies assumed that the
subject-invariant feature space can be directly applied with zero
or short-calibrations for new subjects’ EEG data (Jeon et al., 2020;
Özdenizci et al., 2020).
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FIGURE 7 | Concept of explicit TL-based methods. The alignment can be
achieved by minimizing a divergence between different domains.

Contrary to explicit TL-based methods, implicit TL-based
approaches follow the hypothesis that their method can
train domain-invariant feature spaces on the basis of only
their internal architectures without explicitly minimizing the
discrepancy. For instance, they merely perform fine-tuning with
a new dataset (Andreotti et al., 2018; Fahimi et al., 2019;
Zhang et al., 2021) or applied meta-learning framework (An
et al., 2020; Duan et al., 2020). Furthermore, well-trained
feature representation capturing multi-scale discriminative EEG
patterns or focusing more discriminative temporal regions can
be employed to evaluate new datasets (Kwon et al., 2019; Zhang
et al., 2019a, 2020a; Ko et al., 2020a). We describe deep TL
methods for zero/short-calibrations in more detail.

3.3.1. Explicit Transfer Learning Methods
Explicit TL-based methods define the distributional discrepancy
between multiple domains, i.e., subjects or sessions, and then
minimize the discrepancy during the training by appropriately
designing their objective functions, thereby achieving an
alignment in the feature space. We have witnessed the success
of TLs that exploit subspace alignment methods in DL-based
BCIs (Chai et al., 2016; Zhang et al., 2017; Özdenizci et al.,
2020; Wei et al., 2020b; Wang et al., 2021). These methods
can require additional DLs (adversarial learning) or not (non-
parametric). Non-parametric alignment-based methods define a
distributional discrepancy between different domains at various
distances (Gretton et al., 2012; He and Wu, 2019) and then
minimize it during optimization. Therefore, this minimization
term is considered to be a regularization on a latent feature
space. In contrast, adversarial learning-based methods require at
least one neural network. Subsequently, the additional network
identifies the domain from which the input data is sampled and
denotes it as a domain discriminator. Through the min-max
game between the domain discriminator and a feature extractor,
adversarial learning induces domain-invariant features (Ganin
et al., 2016). The conceptual schematization of the explicit TL is
shown in Figure 7.

3.3.1.1. Non-parametric Alignment
To align features between different domains, three divergences
are mainly introduced in DL-based BCIs: (i) maximum mean
discrepancy (MMD) (Chai et al., 2016; Hang et al., 2019), (ii)
KLD (Zhang et al., 2017), and (iii) Euclidean distance (Kostas

and Rudzicz, 2020). First, MMD is the distance between two
distributions S and T in a kernel embedding space and is defined
as follows:

MMD(S,T) =

∣

∣
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(5)
where φ denotes a mapping function for reproducing kernel
Hilbert space (RKHS) and || · ||H is the RKHS norm (Gretton
et al., 2006). Here, nS and nT denote the number of samples
drawn from the S and T distributions, respectively. In terms of
TL for DL-based BCIs, Hang et al. utilized MMD to minimize
the distance between the source and target domains in features
extracted from fully-connected layers after convolutional layers.
They deployed another loss function named the center-based
discriminative feature learning (CDFL) method. CDFL is referred
to as a regularization technique, that compels the distance
between each sample feature and the corresponding class center
point to become less than thresholds for better separability
between different classes. As a result, Hang et al. acquired a
domain-invariant feature of motor imagery EEG signals at the
class level by minimizing MMD as well as CDFL. Chai et al. also
minimized MMD in a hidden feature space among source and
target samples during training an AE and obtained a domain-
invariant subspace for the emotion recognition task. However,
the classifier was not jointly trained with the AE.

Similar to Chai et al. (2016)’s work, Zhang et al. (2017)
constrained a hidden space in their AE to train a subject-invariant
feature of the sleep EEG. However, according to the existing
AE-based TL method (Zhuang et al., 2015), they only reduced
a symmetric KLD between the source and target features by
using an identity function as φ in Equation (5). In other words,
they did not transform their features to another space during
training. Although they trained all parameters of the AE and the
classifier in an end-to-endmanner, their method diminished only
the marginal distribution difference, disregarding the conditional
distributions of the two domains in classification (Ding et al.,
2018).

Kostas and Rudzicz (2020) performed raw EEG data
alignment from many subjects at the preprocessing step by
applying the Euclidean alignment (EA) method (He and Wu,
2019). As raw EEG signals can be transformed into covariance
matrices, i.e., symmetric positive definite, they can be operated
on a Riemannian manifold (Wang et al., 2021). However, He
and Wu demonstrated that covariance matrix alignment on the
Riemannian space for TL required high computational costs
and showed unstable operations compared with the Euclidean
space. For this reason, Kostas and Rudzicz constrained the mean
covariance matrix to become an identity matrix according to the
EA method and then used the aligned samples as the input of
their TL for the DL-based BCImethod. Thus, Kostas and Rudzicz
developed the TL method for motor imagery, ERP, and RSVP.

These non-parametric alignment-based methods do not
require additional trainable parameters whereas they can be
employed between only two domains. Accordingly, they selected
two subjects (i.e., source and target subject) in their dataset (Chai
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et al., 2016; Hang et al., 2019) or considered the remaining
subjects except for a target subject as one source subject (Zhang
et al., 2017; Kostas and Rudzicz, 2020). Consequently, we cannot
easily utilize their methods in order for a zero-calibration BCI.

3.3.1.2. Adversarial Learning
In the BCI field, many TL methods have applied an adversarial
learning (Goodfellow et al., 2014) concept. Among them, the
adversarial conditional VAE (A-cVAE) (Wang Y. et al., 2018)
and domain adversarial neural network (DANN) (Ganin et al.,
2016) have shown their potential in training domain-invariant
features from cross-subjects or cross-sessions. Özdenizci et al.
(2019) proposed an adversarial neural network to learn subject-
invariant latent representations by using an A-cVAE. They
combined a conditional VAE (cVAE) (Sohn et al., 2015) and an
adversarial network. To be specific, in their network, an encoder
and a decoder were trained to learn latent EEG representations
from multiple subjects under the subjects’ ID, and an adversary
was trained for subject identification. These two steps are
conducted alternatively so that they can learn subject-invariant
EEG representations. Subsequently, the output of the frozen
encoder for the same training samples was fed into a new
classifier for classification. Hence, there still exists a limitation
that both subject-invariant learning class-discriminative learning
did not train in an end-to-end manner.

Most adversarial learning-based methods adopt DANN
(Ganin et al., 2016) for designing their TL frameworks. DANN
comprises three components a feature extractor F, domain
discriminator D, and classifier C, as shown in Figure 8. The
domain discriminator and the classifier identify the domains
or classes to which the incoming features belong, whereas the
feature extractor is trained to minimize the classification loss
and maximize the domain loss through a gradient reversal layer
(GRL) where gradients are multiplied by a negative value during
the back-propagation process. The objective function of the
DANN is defined as follows:

min
F,C

Ex,y∼ps(x,y)CCE(C(F(x)), y) (6)

max
F

min
D

−Ex∼ps(x)[logD(F(x))]− Ex∼pt(x)[log(1−D(F(x)))]

(7)
where x and y denote the input and corresponding labels,
respectively. Here, ps and pt indicate distributions from the
source and target domains, respectively, and CCE is the
categorical cross-entropy loss that is widely used for classification
tasks. Thus, Equation (6) is used to train the feature extractor
F and classifier C to represent the input data and discriminate
it correctly and is considered as the classification loss. In
addition, in Equation (7), similar to the GAN objective function,
i.e., Equation (1), feature extractor F tries to extract domain-
indiscriminative features, whereas the domain discriminator D

focuses on classifying the domains. In this regard, Equation
(7) is commonly referred to as the domain loss. Therefore, the
feature extractor output can be class-discriminative and domain-
invariant by optimizing Equations (6) and (7).

Based on DANN, Özdenizci et al. (2020) introduced an
adversarial learning-based TL network where the domain

discriminator identifies whether features belong to which
subjects, similar to the previous study of using an A-cVAE
(Özdenizci et al., 2019). Özdenizci et al. demonstrated that
any decoding models for EEG can be applied to their DANN-
based methods by considering various CNN-based architectures
(Schirrmeister et al., 2017; Lawhern et al., 2018). In this study,
Özdenizci et al. effectively represented the domain-invariant
features of multiple subjects’ motor imagery signals.

Recently, several methods have shown that the use of only
DANN (Ganin et al., 2016) has some limitations and challenges
(Ma et al., 2019; Nasiri and Clifford, 2020; Tang and Zhang,
2020; Zhao H. et al., 2020). First, Zhao et al. considered a single
subject as a target and the remaining subjects of datasets as
source sets; therefore, the domain discriminator was trained to
distinguish between the target and the sources. Furthermore,
Zhao et al. exploited a classification loss and a center loss
(Wen et al., 2016) for the target subject to strengthen class-
discriminative power by minimizing intra-class compactness and
maximizing inter-class separability. In addition, Tang and Zhang
addressed that DANN cannot capture complex multimodal
structures because even a perfectly trained domain discriminator
cannot ensure perfect alignment between different domains.
In this regard, Tang and Zhang performed an outer product
between the output of the feature extractor and the output of
the classifier (class probabilities) and then fed it into the domain
discriminator for better alignment between the two domains
according to the conditional GAN (Mirza and Osindero, 2014).
Additionally, Ma et al. introduced a domain residual connection
for domain generalization. They assumed that domain-invariant
features and domain-specific features can be separately trained
by using additional parameters in the feature extractor. In
detail, the domain-invariant (denoted as common in Ma et al.’s
work) parameters are shared among all source domains and
the additional parameters are used only for the corresponding
domain samples per domain. Subsequently, the sum between
the domain-invariant outputs and the domain-specific outputs is
taken as inputs of the domain discriminator and classifier. Here,
the common parameters of the feature extractor and the classifier
are activated on testing the unseen target’s data. However, as
there are no decomposition strategies, it does not ensure that
the subject-specific parameters capture the real subject-specific
information regardless of the subject-invariant information.

Further, to mitigate negative transfer, two approaches have
been proposed: (i) source selection (Jeon et al., 2019; Wei et al.,
2020b; Wang et al., 2021) and (ii) transferable attention (Nasiri
and Clifford, 2020). Regarding the source selectionmethods, they
introduced the need to obtain the most similar subjects due
to the high variability between subjects. Specifically, Jeon et al.
assumed that before adapting other subjects’ samples, they first
must select a source subject whose properties were similar to
those of a target subject by performing hierarchical clustering
based on resting-state EEG signal candidates in the source pool.
Although their feature extractor embeds both the source and
target’s EEG samples to the subject-invariant representations
in accordance with DANN (Ganin et al., 2016), each classifier
was separately trained between source and target subjects to
capture the subject-specific characteristics. Similar to Jeon et al.’s
work, Wei et al. selected source subjects based on the target
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FIGURE 8 | Illustration of domain adversarial neural network (DANN) (Ganin et al., 2016). Lclass and Ldomain denote a classification loss and domain loss, respectively.
Through a GRL where gradients of a domain loss are reversed by multiplying a negative value, a domain loss is minimized in a domain discriminator and maximized in
a feature extractor.

subject’s classification performance among the source subject-
specific classifiers. In detail, they first trained different classifiers
for each subject and then evaluated all trained classifiers with
a target subject to rank them with respect to the target subject.
After ranking the performances, they selected the top K subjects
and then used them as a source domain set. Subsequently, the
classification outputs were also regarded as inputs of the domain
discriminator with features in the same manner (Mirza and
Osindero, 2014; Tang and Zhang, 2020). Following Wei et al.’s
source selection strategy, Wang et al. trained their network with
the selected sources’ samples and the target samples. In Wang
et al.’s work, domain adaptation was achieved by using both
adversarial loss and centroid alignment loss. They considered the
geometric means of each class as each class-prototype and then
minimized the discrepancy between the same class-prototypes
among different domains in the Riemannian space.

In the meantime, Nasiri and Clifford (2020) also described
that all features can contain considerably dissimilar information
among various subjects so that they are not necessarily
transferable. To focus on more important or class-relevant
local parts of data, Nasiri and Clifford added channel-wise
domain discriminators and then used their output to generate
attention maps which can be a criterion for transferability by
transforming entropy.

To sum up, these adversarial learning-basedmethods assumed
that the well-trained feature representation can be validated
for unseen domains, thus, they can accomplish the zero-
calibration BCI. However, in the adversarial learning-based
methods, additional trainable parameters are demanded to align
distributions between two or more domains. Moreover, they
can cause any distortion of feature representations on account
of disregarding class-related information between domains (Liu
et al., 2019; Jeon et al., 2020). We summarize our review of
both non-parametric alignment/adversarial learning-based TL
methods in Table 3.

3.3.2. Implicit Transfer Learning Methods
In this section, we describe the implicit TL approaches in
DL-based BCIs. Implicit knowledge transferring methods do
not explicitly minimize the discrepancy objective functions but

only depend on their network (i.e., architecture). Most existing
implicit TL methods have been used in the leave-one subject-
out (LOO) scenario to fine-tune the trained parameters totally
or partially using new target data (Andreotti et al., 2018; Fahimi
et al., 2019; Shovon et al., 2019; Phan et al., 2020; Raghu et al.,
2020; Zhang et al., 2021). Furthermore, various studies have
only focused on enhancing the representational power of EEG
features with only their well-designed architectures (Kwon et al.,
2019; Zhang et al., 2019a; Jeon et al., 2020; Ko et al., 2020a).
The remaining methods of implicit TLs (An et al., 2020; Duan
et al., 2020) are based on meta-learning, which has drawn
increasing attention for few-shot tasks in machine learning fields
(Hospedales et al., 2020).

3.3.2.1. Fine-Tuning
Fine-tuning is a retraining strategy to initialize parameters of
a network as learned parameters of another identical network
trained with diverse source datasets to adapt them to the
target dataset. Fine-tuning can be regarded as the most naive
approach to transfer knowledge. In this respect, many studies
have taken advantage of fine-tuning for TL (Andreotti et al.,
2018; Fahimi et al., 2019; Zhao et al., 2019; Raghu et al., 2020;
Zhang et al., 2021). Deep networks have been pre-trained with
multiple subjects’ samples in a large source pool dataset, and
entire parameters or parts of parameters have been fine-tuned to
capture more target-related information. For example, Shovon
et al. (2019) fine-tuned the parameters of the entire network
for transferring knowledge of natural image classification tasks
to motor imagery EEG classification. Specifically, they trained
the pre-trained network with natural images by using STFT
from motor imagery EEGs. Raghu et al. fine-tuned the last
layers that were learned using the source subjects for the seizure
classification task. Aznan et al. (2019) first trained a network
using synthetic SSVEP samples and then fine-tuned the pre-
trained network with real SSVEP samples, which leads to carrying
information of synthetic SSVEP to a real SSVEP classification. In
addition, Vilamala et al. (2017), Phan et al. (2020), and Andreotti
et al. fine-tuned the entire network for sleep stage classification.

On the contrary to those methods, the existing works (Zhao
et al., 2019; Olesen et al., 2020; Zhang et al., 2021) fine-tuned parts
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TABLE 3 | Explicit transfer learning methods.

Approach References Paradigm Summary

Non-parametric
alignment

MMD

Hang et al., 2019 Motor imagery Minimized MMD in a feature level and
introduced CDFL

Chai et al., 2016 Emotion Minimized MMD in a feature level and trained
AE and classifier separately

KLD Zhang et al., 2017 Sleep Minimized KLD in a feature level and trained
with classifier in an end-to-end manner

EA Kostas and Rudzicz, 2020 Multi Constrained that the mean covariance matrix
becomes an identity matrix in a raw data level

Adversarial
learning

A-cVAE
(Wang Y. et al., 2018)

Özdenizci et al., 2019 Motor imagery Added an adversarial network to cVAE, and
trained cVAE and classifier separately

DANN
(Ganin et al., 2016)

Özdenizci et al., 2020

Motor imagery

Devised DANN by exploiting various
CNN-based architectures as their feature
extractor

Zhao H. et al., 2020 Added center loss for target to minimize
intra-class compactness and maximize
inter-class separability

Tang and Zhang, 2020 Fed output of a classifier into a domain
discriminator

Jeon et al., 2019 Selected source based on resting-state EEG
signals

Wei et al., 2020b RSVP Selected sources based on a ranking of
performances in subject-specific classifiers

Wang et al., 2021 Emotion Selected sources based on a ranking of
performances in subject-specific classifiers and
devised centroid alignment loss

Nasiri and Clifford, 2020 Sleep Estimated attention maps using channel-wise
domain discriminators

Ma et al., 2019 Drowsy Trained additional parameters capturing
subject-specific features

of the pre-trained network to transfer knowledge of EEG. For a
new subject, Zhang et al. fine-tuned only the parameters of fully-
connected layers while freezing the previous layers. Especially,
Zhao et al. conducted ablation studies to identify which layers of
their network should be transferred to the target. Whereas, those
methods performed with motor imagery EEGs, Olesen et al. fine-
tuned the last few layers with different samples for sleep stage
classification. However, even though fine-tuning can be easily
implemented, it is not performed within one process and cannot
achieve zero-calibration efficiently. In addition, fine-tuning can
cause over-fitting because of the small amount of target data
(Kostas and Rudzicz, 2020).

3.3.2.2. Enhancing Representational Power
Several studies have focused on learning better EEG
representations to concentrate on more discriminative temporal
slices (Zhang et al., 2018a, 2019a,b, 2020a) or capture multi-scale
spatio-temporal characteristics (Kwon et al., 2019; Ko et al.,
2020a) and to separate class-relevant information (Jeon et al.,
2020) among diverse subjects. First, Zhang et al. investigated
the temporal dynamics of EEG signals based on the attention
mechanism that emphasizes on more informative region on the
basis of self-relationships. In their work, raw EEG signals were
first divided into various slices by applying a sliding window
technique with a window size of a shorter length than the
overall length of the time sequence. Next, the segmented EEG
slices in the form of raw slices (Zhang et al., 2018a, 2019a) or

graphs (Zhang et al., 2019b, 2020a) embedded their features via
the encoding module. Subsequently, Zhang et al. used a self-
attention module to obtain more class-discriminative segments
among those features and then aggregated all slices by means of
a weighted sum with the attention maps (Zhang et al., 2018a).
Further, in order for the attentive temporal dynamics between
those features, Zhang et al. (2019a, 2020a) employed a recurrent
self-attention module (e.g., LSTM). Additionally, Zhang et al.
(2019b) discovered more discriminative EEG channels by
introducing another attention module.

Meanwhile, Kwon et al. (2019) applied band-pass filtering for
various predefined frequency bands to raw EEG samples from
source subjects. Subsequently, by employing a CSP (Ramoser
et al., 2000), they extracted spatio-spectral features for all
frequency bands. They calculated mutual information between
the spatio-spectral features and class labels and then sorted
mutual information of all frequency bands in the descending
order. They selected the top K frequency bands in the list
and then used them as their CNN input. Ko et al. (2020a)
also demonstrated that it is of substantial importance to
discover multi-scale features in terms of frequency/time ranges,
considering spatial patterns. Unlike Kwon et al.’s work, Ko et al.’s
network is composed of only convolutional layers; thus, it can
be trained with raw EEGs in an end-to-end manner. Specifically,
they first extracted spatio-temporal features in multi-scale by
gathering intermediate representations of three convolutional
layers and applying different spatial convolutional layers to them.
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FIGURE 9 | Conceptual illustration of meta-learning in BCI. Meta-learning aims to learn how to quickly adapt to new subjects by updating parameters based on a
variety of tasks acquired from multiple subjects. Subsequently, the trained feature space can be considered as subject-invariant space that can be efficiently applied to
new subjects with short/zero calibrations.

After concatenating the multi-scale features, Ko et al. applied
global average pooling (Lin et al., 2013) to them and fed the
results to a fully-connected layer.

Jeon et al. (2020) proposed an information-theoretic method
that decomposes an intermediate feature of the existing CNN
models (Schirrmeister et al., 2017; Lawhern et al., 2018) into
class-relevant and class-irrelevant features by estimating mutual
information between them to mitigate a negative transfer.
Furthermore, to enrich the representational power of their
features, they maximized mutual information between class-
relevant features and global features, i.e., an output of the
last convolutional layer by regarding it as a more high-
level representation, utilizing two mutual information neural
estimators (MINEs) (Belghazi et al., 2018) from the local and
global viewpoints, inspired by Hjelm et al. (2019). In detail, they
exploited three MINEs (Belghazi et al., 2018); one to ensure
good decomposition between class-relevant features and class-
irrelevant features and the other two to make the global features
contain more class-relevant information.

These methods (Kwon et al., 2019; Zhang et al., 2019a; Jeon
et al., 2020; Ko et al., 2020a) have great significance in the
sense that they showed the importance of exploring better EEG
representation and enabled zero calibration in terms of TL.
However, most of the methods for better EEG representation,
except for (Ko et al., 2020a), focused on the motor imagery EEG
and used the characteristics of it, which can be a limitation to
apply them for other paradigms of EEG.

3.3.2.3. Meta-Learning
Meta-learning is known as learning to learn, which allows a
model to learn a method that enables fast adaptation to a new
task or environment for a few-shot learning task (Hospedales
et al., 2020). After the successful application of meta-learning
in machine learning fields, the meta-learning framework has
recently been applied to DL-based BCIs (An et al., 2020; Duan
et al., 2020). Figure 9 represents a basic concept of meta-
learning with respect to TL in BCIs. As shown in Figure 9,
some researchers assumed that learning to learn a task (e.g.,
classification, regression, etc.) among multiple subjects can result
in a subject-invariant feature space that can be quickly applied
to the target subject. Specifically, Duan et al. deployed a model-
agnostic meta learning (MAML) (Finn et al., 2017) to obtain

optimal parameters that can be rapidly adapted to target data
through gradient-based optimization across multiple subjects.
After dividing various source subjects’ EEG data into many
small groups, they updated the parameters of their network
based on their gradients in two phases, meta-training and
meta-test phase, and then fine-tuned the trained parameters
with a small amount of target data. However, MAML easily
induces over-fitting (Zintgraf et al., 2019), therefore, Duan et al.
designed shallow convolutional layers for feature extraction. For
this reason, their method cannot learn sufficient representation
to capture class-discriminative information, which can be one
of the limitations in applying their method. Another meta-
learning example in BCI is the work of An et al. (2020).
An et al. adopted a metric-based meta-learning framework,
relation network (Sung et al., 2018), to efficiently learn class-
representative features among multiple subjects. An et al.
introduced three components: (i) an embedding module that
extracts multi-scale features for support (labeled samples) and
query (unlabeled samples) sets from source subjects, (ii) an
attention module that generates a class-representative vector
considering class-related importance among support sets, and
(iii) a relation module to estimate the relation score between
each class-representative vector and the query samples. An
et al. optimized all these components by simply minimizing a
cross-entropy loss, i.e., classification loss, and evaluated their
network in 5-, 10-, and 20-shot settings, i.e., 5, 10, and 20
EEG samples per class. Their relational learning with attention
improved the performances of all scenarios compared with a
case with only relation network. However, since this metric-
based meta-learning required a pair-wise input during training
and evaluation, it can show difference performances depending
on the support sets. We summarize our review of the fine-
tuning/enhancing representational power/meta-learning-based
TL methods in Table 4. Furthermore, all acronyms are listed in
Appendix: List of Acronyms.

4. DISCUSSION

In section 2, we review many DA methods for DL-based
BCIs. From now on, we directly compare generative model-
based DA methods and geometric manipulation-based DA
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TABLE 4 | Implicit transfer learning methods.

Approach References Paradigm Summary

Fine-tuning

Whole

Shovon et al., 2019 Motor imagery Pre-trained with natural images

Aznan et al., 2019 SSVEP Pre-trained with synthetic SSVEP samples

Andreotti et al., 2018

Sleep

Trained their network with source subjects and
fine-tuned it with target subject (LOO)

Phan et al., 2020 Pre-trained network with different dataset

Vilamala et al., 2017 Pre-trained network with natural images

Fahimi et al., 2019 Cognition Trained their network with source subjects and
fine-tuned it with target subject (LOO)

Partial

Zhang et al., 2021

Motor imagery

Fine-tuned only fully-connected layers

Zhao et al., 2019 Conducted ablation studies to identify which
layer should be transferred target

Raghu et al., 2020 Seizure Fine-tuned the last some layers of pre-trained
network

Olesen et al., 2020 Sleep Fine-tuned parts of parameters

Enhancing
representational
power

Attention

Zhang et al., 2018a

Motor imagery

Designed a self-attention module to find more
class-discriminative segments

Zhang et al., 2019a Designed a recurrent self-attention module

Zhang et al., 2020a Presented raw EEG to a spatial graph and
designed a recurrent self-attention module

Zhang et al., 2019b Presented raw EEG to a spatial graph and
designed two attention modules; one for
attentive temporal dynamics and the other for
attentive channels

Multi-scale features

Kwon et al., 2019 Extracted spatio-spectral features in
multi-frequency bands using CSP and selected
top bands to use them as inputs

Ko et al., 2020a Multi Extracted multi-scale features including
spatio-temporal-spectral patterns

Maximize mutual information Jeon et al., 2020 Motor imagery Decomposed an intermediate feature into a
class-relevant and class-irrelevant feature and
maximized mutual information between
low-level and high-level representations

Meta-learning

MAML (Finn et al., 2017) Duan et al., 2020 Multi Trained optimal parameters through
gradient-based optimization and conducted
fine-tuning with a small amount of target data

Relation (Sung et al., 2018) An et al., 2020 Motor imagery Estimated relation scores between support and
query sets among source subjects in few-shot
scenarios

methods and recommend a DA method for DL-based BCIs.
Approximately 45% of generative model-based DA methods
are reviewed, whereas ∼55% of geometric manipulation-
based methods are reviewed. Interestingly, Zhang et al.
(2020b) and Fahimi et al. (2020) used both generative model
and geometric manipulation-based DA methods. Specifically,
Zhang et al. used geometric transformation, noise addition,
AE (Ballard, 1987), VAE (Kingma and Welling, 2014), and
DCGAN (Radford et al., 2015) to augment motor imagery
data. Zhang et al. conducted classification experiments using
a CNN with various real data to generate data ratio values
of 1:1, 1:3, 1:5, 1:7, and 1:9. Regardless of the ratio,
DCGAN-based DA achieved a high degree of consistency
for the average classification accuracy whereas geometric
transformation and noise addition-based methods mostly
underperform with the baseline, i.e., CNN without any DA
method. In addition, Fahimi et al. conducted motor execution

EEG classification experiments with various augmentation
methods, segmentation and recombination, VAE, and DCGAN.
Similar to Zhang et al.’s work, Fahimi et al. also achieved
the best performance improvement with DCGAN whereas
segmentation and recombination-based augmentation did not
achieve significant improvement. Based on these two results, even
geometric manipulation techniques have room for improvement,
and we recommend a generative model-based DA method for
DL-based BCI research. Furthermore, the Wasserstein distance
can be directly adapted to DCGAN, and it is expected that
the BCI will have performance improvements with DCGAN
trained on the Wasserstine distance (Arjovsky et al., 2017). As
some pioneering studies (Hartmann et al., 2018; Hwang et al.,
2019; Ko et al., 2019) have demonstrated the validity of WGAN,
we anticipate that the WGAN-based DA method with careful
structural design and training can improve many DL-based
BCI methods.
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In section 3, we summarize various TL approaches for DL-
based BCIs. To achieve a short/zero calibration task, many
studies performed TL across different subjects/sessions in a
single dataset (Fahimi et al., 2019; Kwon et al., 2019; Özdenizci
et al., 2020), inter-dataset (Phan et al., 2020), and even different
data paradigms (Vilamala et al., 2017; Aznan et al., 2019).
In our review, explicit TL-based methods account for nearly
45% and the remaining works are categorized as implicit TL-
based methods. With regard to explicit TL-based methods,
there exist two approaches, non-parametric and parametric (i.e.,
adversarial learning) alignment methods, for a feature space
among multiple domains (subjects or sessions) (Jeon et al., 2019;
Nasiri and Clifford, 2020; Özdenizci et al., 2020; Zhao H. et al.,
2020; Wang et al., 2021). In Table 3, we observe that most of
the existing adversarial methods employ DANN (Ganin et al.,
2016). Further, modified adversarial objective functions, such
as WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017) and
LSGAN (Mao et al., 2017), have been employed to stabilize the
training process in adversarial learning-based TL approaches
(Wei et al., 2020b; Zhao H. et al., 2020). In this regard, we
expect that numerous variants of DANN (Tzeng et al., 2017; Xu
et al., 2018; Zhang et al., 2018c; Peng et al., 2019; Wang et al.,
2019) can be applied to DL-based BCI tasks. Although most
implicit TL-based methods fine-tune their pre-trained network
using the new target’s data, there are still few limitations: (i)
fine-tuning cannot reach zero-calibration and (ii) fine-tuning
may lead to an overfitting problem with a small amount of
target data (Kostas and Rudzicz, 2020). An et al. (2020) and
Duan et al. (2020) showed successful applications of common
meta-learning methods (Finn et al., 2017; Sung et al., 2018)
for DL-based BCIs. However, there still remain concerns: (i)
a constraint in architectures of the feature extractor (Duan
et al., 2020) and (ii) variations of performances depending on
varying support samples (An et al., 2020). Meanwhile, a few
methods (Zhang et al., 2018a, 2019a,b, 2020a; Kwon et al., 2019;
Ko et al., 2020a) demonstrated that their intrinsic architectures
are sufficient to cover the new target’s characteristics even in
the zero-calibration scenario. Most of these methods highly
rely on EEG paradigm. In this respect, despite the success of
the implicit TL-based methods, there are still several points
to be considered for practical applications. Hence, when first
trying the short/zero-calibration BCI, we recommend the explicit
TL-based methods.

Based on our survey about many pioneering DA and TL
approaches for BCIs, we conclude that both strategies can be
beneficial to the short- and/or zero-calibration BCIs. Especially,
it can be an interesting future research direction to combine both

DA and TL approaches. For instance, before performing any TL
strategies, a series of DAs would augment the number of samples,
thereby improving the zero-calibration BCIs. Moreover, let us
assume that there exist a large amount of source data samples and
a few target samples. Then, it can be considered, inter alia, some
strategic TL methods to build a good starting backbone network.
Then, DA methods are applied to the target samples to augment
them. Finally, these augmented target samples can fine-tune the
backbone network to improve the short-calibration BCIs.

5. CONCLUSION

In this study, we surveyed recent advances in the field of
DL-based BCIs, especially for short/zero-calibration techniques.
We focused on several important aspects of the short/zero-
calibration techniques. Various generative model-based and
geometric manipulation-based DA methods have demonstrated
their promising potential in the short-calibration technique.
Moreover, we summarized recent trends in TL used in DL-
based BCIs. Overall, explicit TL-based and implicit TL-based TL
strategies significantly improve the zero-calibration BCIs.

Presently, increasing interests in DL have considerably
increased the use of BCI technologies in the real world. Moreover,
advancements in other fields, such as computer vision will benefit
from more practical and powerful DL-based BCIs. We hope
that this review contributes to the BCI field as a good summary
of short/zero-calibration techniques for the design of DL-based
BCI studies.
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APPENDIX: LIST OF ACRONYMS

A-cVAE Adversarial conditional variational autoencoder

AE Autoencoder

ASSOM Adaptive subspace self-organizing map

BCI Brain–computer interface

BMU Best matching unit

BN Batch normalization

CCE Categorical cross-entropy

CDFL Center-based discriminative feature learning

CNN Convolutional neural network

CSP Common spatial pattern

cVAE Conditional variational autoencoder

DA Data augmentation

DANN Domain adversarial neural network

DCGAN Deep convolutional generative adversarial network

DCT Discrete cosine transform

DL Deep learning

EA Euclidean alignment

EEG Electroencephalography

EMD Empirical mode decomposition

ERP Event-related potential

GAN Generative adversarial network

GRL Gradient reversal layer

GRU Gated recurrent unit

IMF Intrinsic mode functions

JSD Jensen-Shannon distance

KLD Kullback-Leibler divergence

LOO Leave-one subject-out

LSGAN Least square generative adversarial network

LSTM Long-short term memory

MAML Model-agnostic meta learning

MINE Mutual information neural estimator

MMD Maximum mean discrepancy

RKHS Reproducing kernel Hilbert space

RSVP Rapid serial visual presentation

SMOTE Synthetic minority oversampling technique

SOM Self-organizing map

SPD Symmetric positive definite

SSVEP Steady-state visual evoked potential

STFT Short-time Fourier transform

TL Transfer learning

VAE Variational autoencoder

WGAN Wasserstein generative adversarial network
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