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With the wide deployments of heterogeneous networks, huge amounts
of data with characteristics of high volume, high variety, high veloc-
ity, and high veracity are generated. These data, referred to multimodal
big data, contain abundant intermodality and cross-modality informa-
tion and pose vast challenges on traditional data fusion methods. In this
review, we present some pioneering deep learning models to fuse these
multimodal big data. With the increasing exploration of the multimodal
big data, there are still some challenges to be addressed. Thus, this
review presents a survey on deep learning for multimodal data fu-
sion to provide readers, regardless of their original community, with
the fundamentals of multimodal deep learning fusion method and to
motivate new multimodal data fusion techniques of deep learning.
Specifically, representative architectures that are widely used are summa-
rized as fundamental to the understanding of multimodal deep learning.
Then the current pioneering multimodal data fusion deep learning mod-
els are summarized. Finally, some challenges and future topics of multi-
modal data fusion deep learning models are described.
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1 Introduction

Recently, many heterogeneous networks have been successfully deployed
in both low-layer and high-layer applications, including Internet of Things,
vehicular networks, and social networks (Zhang, Patras, & Haddadi, 2019;
Meng, Li, Zhang, & Zhu, 2019; Qiu, Chen, Li, Atiquzzaman, & Zhao, 2018).
With the wide deployment of heterogeneous networks, increasing amounts
of data are being generated and collected at an unprecedented speed. These
data, often referred to as big data, hold such characteristics as high volume,
high variety, high velocity, and high veracity (Gao, Li, & Chen, 2019; Lv,
Song, Val, Steed, & Jo, 2017). Also, these huge data that contain structured,
semistructured, and unstructured data are multiple-modality/multimodal.
And each modality of different source, type, and distribution contains
modality-specific information (Li, Yang, & Zhang, 2019; Gao, Li, & Li, 2016).
For example, a sports news web page uses images to record the scenes of
the sport and texts to describe content of the sport. These images and texts
are the descriptions of one event with different raw forms. The reasonable
fusion of these multimodal data can help us better understand the event
of interest, especially when one modality is incomplete (Khaleghi, Khamis,
Karray, & Razavi, 2013; Lahat, Adali, & Jutten, 2015). Thus, with the in-
creasing availibility and accessibility of multimodal data, the fusion of the
information in multimodal data is a vital topic in big data research, which
provides opportunities to better understand cross-modality and shared-
modality information.

Multimodal data fusion, a fundamental method of multimodal data
mining, aims to integrate the data of different distributions, sources, and
types into a global space in which both intermodality and cross-modality
can be represented in a uniform manner (Bramon et al., 2012; Bronstein,
Bronstein, Michel, & Paragios, 2010; Poria, Cambria, Bajpai, & Hussain,
2017). It can provide richer information than a single modality by lever-
aging modality-specific information (Biessmann, Plis, Meinecke, Eichele, &
Muller, 2011; Wagner, Andre, Lingenfelser, & Kim, 2011). In the past, some
multimodal data fusion methods were presented to explore the comple-
mentary and cross-modality information between modalities (Sui, Adali,
Yu, Chen, & Calhoun, 2012). For example, Kettenring (1971) proposed
the multimodal canonical correlation analysis for the linear intermodal-
ity relationship as well as the cross-modality generalization information.
Martinez-Montes, Valdes-Sosa, Miwakeichi, Goldman, and Cohen (2004)
proposed the partial least squares model linear relationships over multiple
variables, discovering the variables from the multi-source data sets. Groves,
Beckmann, Smith, and Woolrich (2011) presented a multimodal indepen-
dent component analysis that is a probabilistic model using the Bayesian
framework to combine the independent variables of each different modal-
ity. These multimodal data fusion methods are limited to big multimodal
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data of high volume, high velocity, high variety, and high veracity since
they are based on the shallow feature that cannot capture intrinsic internal
structures and external relationships in multimodal data (Li, Chen, Yang,
Zhang, & Deen, 2018; Zhang, Yang, & Chen, 2016). Thus, fully mining
the patterns in the multimodal data requires new multimodal computing
techniques.

Multimodal big data, similar to traditional big data, are of high volume,
variety, velocity and veracity. However, the variety of the multimodal big
data is more prominent than the other characteristics. In particular, multi-
modal big data are composed of several modalities that contain part of the
description of the same things of interest with each modality-independent
distribution. There are also complex correlations between modalities. The
full modeling of the fusion representations hidden in the intermodality and
cross-modality can further improve the performance of various multimodal
applications.

Deep learning, a hierarchical computation model, learns the multilevel
abstract representation of the data (LeCun, Bengio, & Hinton, 2015). It
uses the the backpropagation algorithm to train its parameters, which can
transfer raw inputs to effective task-specific representations. There are sev-
eral well-known deep architectures: convolutional neural networks (CNN),
recurrent neural networks (RNN), and generative adversarial networks
(GAN) (Bengio, Courville, & Vincent, 2013; Chen & Lin, 2014). These deep
learning methods have made great progress in both generative and dis-
criminative tasks based on supervised and unsupervised training strategies
(Guo et al., 2016). For example, Han, Kim, and Kim (2017) presented a deep
pyramidal residual network by introducing a new residual strategy, which
is a representative discriminative task. This pyramidal residual network can
learn effective and robust abstract representations in which the task-specific
factors are amplified and the irrelevant factors are suppressed, outper-
forming the state-of-the-art pattern recognition accuracy. A representative
generative example is the generative adversarial network that is a game
theory paradigm of deep learning (Goodfellow et al., 2014). The genera-
tive adversarial network can capture the intrinsic input structure based on
the Nash equilibrium between the generator and the discriminator, recon-
structing input objects. Also, there are some pioneering deep learning mod-
els in multimodal data fusion domains, such as cross-modality retrieval,
image annotation, and assistant diagnosis. Although the multimodal data
fusion deep learning model has made some progress, it is still in a prelim-
inary stage. Thus, we review the representative multimodal deep learn-
ing models to motivate new paradigms of multimodal data fusion deep
learning.

In the recent past, enormous amounts of multimodal big data were gen-
erated from widely deployed heterogeneous networks. Traditional mul-
timodal data fusion methods cannot properly capture the intermodality
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representations and the cross-modality complementary correlations of the
multimodal big data, since these are shallow models that cannot learn the
intrinsic representation of data. Some pioneering work inspired by deep
learning methods has proposed exploring the fusion of multimodal data.
These deep learning–based multimodal methods have made some progress
in various domains, including language translation, image annotation, and
medical assistant diagnosis. But the research of deep learning for multi-
modal data fusion is still in a preliminary stage, and there is no work that
reviews multimodal deep learning models. This review of deep learning
for multimodal data fusion will provide readers with the fundamentals
of the multimodal deep learning fusion method and motivate new mul-
timodal deep learning fusion methods. The representative architectures—
DBN, SAE, CNN, and RNN—are summarized because they are fundamen-
tal to understanding multimodal deep learning fusion models. Next, the
pioneering multimodal deep learning fusion models are summarized from
the task, model framework, and data set perspectives. They are grouped
by the deep learning architecture used. Finally, some challenges and future
topics of deep learning for multimodal data fusion are described.

2 The Representative Deep Learning Architectures

In this section, we introduce representative deep learning architectures of
the multimodal data fusion deep learning models. Specifically, the defini-
tion, feedforward computing, and backpropagation computing of deep ar-
chitectures, as well as the typical variants, are presented. The representative
models are summarized in Table 1.

2.1 The Deep Belief Net (DBN). The restricted Boltzmann machine
(RBM) is the basic block of the deep belief net (Zhang, Ding, Zhang, & Xue,
2018; Bengio, 2009). The RBM is a special variant of the Boltzmann machine
(see Figure 1). It consists of a visible layer and a hidden layer; there are fully
connected connections between units of the visible layer and units of the
hidden layer and but no connections of units in the same layer. The RBM
is also a generative graphic model that uses the energy function to capture
the probability distribution between visible units and hidden units in the
following form,

P (x, h) = e−E(x,h)

Z
, (2.1)

with the normalizing function Z calculated as

Z =
∑

x

∑
h

e−E(x,h), (2.2)
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Table 1: Summary of the Representative Deep Learning Models.

Architecture Representative Models Model Features

Deep belief net RBM (Zhang et al.,
2018)

A generative graphic model that uses the
energy to capture the probability
distribution between visible units and
hidden units.

SRBM (Chen et al., 2017) A sparse variant that each hidden unit
connects to part of the visible units,
preventing the model overfitting based
on hierarchical latent tree analysis.

FRBM (Ning et al., 2018) A fast variant trained by the lean CD
algorithm in which the bounds-based
filtering and delta product reduce the
redundant dot product calculations.

TTRBM (Ju et al., 2019) A compact variant that the parameters
between the visible layer and hidden
layer are reduced by transforming into
the tensor-train format.

Stacked
autoencoder

AE (Michael et al., 2018) A basic fully connected network that uses
the encoder-decoder strategy in an
unsupervised manner to learn intrinsic
features of data.

DAE (Vincent et al.,
2008)

A denoising variant that reconstructs the
clear data from the noising data.

SAE (Makhzani & Frey,
2013)

A sparse variant that captures the sparse
representations of the input by adding
the constraint into the loss function.

GAE (Hou et al., 2019) An adversarial variant that the decoder
subnetwork that is also regarded as the
generator, adopting game theory to
more consistent features with input
data.

FAE (Ashfahani et al.,
2019)

An evolving variant that constructs an
adaptive network structure in the
learning of representations, based on
the network significance.

BAE (Angshul, 2019) An evolving variant adding the path-loss
term in the loss function based on
dictionary learning.

Convolutional
neural
network

Alexnet (Krizhevsky,
Sutskever, & Hinton,
2012)

The nonsaturating neurons and the
dropout are adopted in the nonlinear
computational layers, based on a GPU
implementation, respectively.

ResNet (He et al., 2016) A shortcut connection is used to cross
several layers to back propagate the
network loss to previous layers.

Inception (Christian
et al., 2017)

A deeper and wider network is designed
by using the uniform grid size for the
blocks with auxiliary information.
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Table 1: Continued.

Architecture Representative Models Model Features

SEnet (Cao et al., 2019) Informational embedding and adaption
recalibration are regarded as
self-attention operations.

ECNN (Sandler et al.,
2018)

The low-rank convolution replaces the
full-rank convolution to improve the
learning efficiency without much
accuracy loss.

Recurrent
neural
network

RNN (Zhang et al.,
2014)

A fully connected network where the
self-connection between hidden layers
is used to model the time dependency.

BiRNN (Schuster &
Paliwal, 1997)

Two independent computing processes
are used to encode the forward and the
backward dependency.

LSTM (Hochreiter &
Schmidhuber, 1997)

The memory block is introduced to model
the long-time dependency well.

SRNN (Lei et al., 2018) A fast variant in which the light recurrence
and highway network are proposed to
improve the learning efficiency for a
parallelized implementation.

VRNN (Jang et al., 2019) A variational variant that uses the
variational encoder-decoder strategy to
model the temporal intrinsic features.

Notes: RBM: restricted Boltzmann machine; SRBM: sparse restricted Boltzmann ma-
chine; FRBM: fast restricted Boltzmann machine; TTRBM: tensor-train restricted Boltz-
mann machine; AE: autoencoder; DAE: denoising autoencoder; SAE: K-sparse autoen-
coder; GAE: generative autoencoder; FAE: fast autoencoder; BAE: blind autoencoder;
Alexnet: Alex convolutional net; ResNet: residual convolutional net; Inception: Inception;
SEnet: squeeze excitation network; ECNN: efficient convolutional neural network; RNN:
recurrent neural network; BiRNN: bidirectional recurrent neural network; LSTM: long
short-term memory; SRNN: slight recurrent neural network; VRNN: variational recurrent
neural network.

where x is the visible unit, h represents the hidden unit, and E () is the energy
function. The energy function is expressed in the following,

E (x, h) = −
∑

j

c jx j −
∑

i

bihi −
∑

j

∑
i

hiwi jx j, (2.3)

where wi j denotes the weight and c j and bi denote the RBM biases.
The visible and hidden marginal distributions of the RBM can be com-

puted as follows:

Pθ (x) =
∑

h

Pθ (x, h) = 1
Z

∑
h

e−E(x,h), (2.4)
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Figure 1: The paradigm of the deep belief net. (a) Deep belief network. (b) Re-
stricted Boltzmann machine.

Pθ (h) =
∑

x

Pθ (x, h) = 1
Z

∑
x

e−E(x,h). (2.5)

Thus, according to Bayes theory, the conditional distributions of the visible
and hidden units in the RBM are calculated as follows:

Pθ (h|x) = P (x, h)
P (x)

= e−E(x,h)∑
h

e−E(x,h)
=

∏
i

P (hi|x), (2.6)

Pθ (x|h) = P (x, h)
P (h)

= e−E(x,h)∑
x

e−E(x,h)
=

∏
i

P (xi|h). (2.7)

More specifically, in the case where the visible and hidden units are bi-
nary, the conditional distributions of the visible and hidden units in the
RBM are calculated as follows,

Pθ (hk = 1|x) = f

(
bk +

I∑
i=1

wikxi

)
, (2.8)

Pθ (xk = 1|h) = f

⎛
⎝ck +

J∑
j=1

wk jh j

⎞
⎠ , (2.9)

where f is the sigmoid function, w is the weight matrix, b is the visible bias,
c is the hidden bias, and I is the number of the visible units, while J is the
number of the hidden units.
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To model the probability distribution of the training data, the RBM is
trained to maximize the marginal probability based on the maximum like-
lihood principle (Hinton, 2012), with the following loss function:

Lθ =
nx∏

i=1

P
(
xi), (2.10)

where nx is the number of the training objects. To maximize that loss func-
tion, the gradient ascent algorithm is adopted to update the model param-
eters as follows:

θ := θ + η
∂ ln Lθ

∂θ
, (2.11)

where η is the learning rate. And the parameter update ∂ ln Lθ /∂θ is calcu-
lated as follows:

∂ ln Lθ

∂θ
=

nx∑
i=1

∂ ln P
(
xi

)
∂θ

=
∑

h

P (h|x)
(

−∂E (x, h)
∂θ

)
−

∑
x,h

P (x, h)
(

−∂E (x, h)
∂θ

)
. (2.12)

To maximize the loss function, equation 2.12 is set to zero. Then the gra-
dients of the weight, the visible bias, and the hidden bias are computed in
the following forms:

∂ ln Lθ

wi j
= P (hi = 1|x) x j −

∑
x

P (x)P (hi = 1|x) x j, (2.13)

∂ ln Lθ

b j
= x j −

∑
x

P (x)x j, (2.14)

∂ ln Lθ

ci
= P (hi = 1|x) −

∑
x

P (x)P (hi = 1|x) . (2.15)

Unfortunately, in those gradient-computing equations, the probability∑
x P (x)P (hi = 1|x) is difficult to compute (Hinton, Osindero, & Teh, 2006).

In fact, the Markov chain Monte Carlo (MCMC) method is used to approx-
imate the probability, such as the contrastive divergence algorithm.

Recently, some advanced RBMs have been proposed to improve perfor-
mance. For instance, to avoid network overfitting, Chen, Zhang, Yeung,
and Chen (2017) designed the sparse Boltzmann machine that learns the
network structure based the hierarchical latent tree. Ning, Pittman, and
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Shen (2018) introduced fast contrastive-divergence algorithms to RBMs,
where the bounds-based filtering and delta product are used to reduce
the redundant dot product calculations in computations. To protect the
internal structure of multidimensional data, Ju et al. (2019) proposed the
tensor RBM, learning the high-level distribution hidden in multidimen-
sional data, in which tensor decomposition is used to avoid the dimensional
disaster.

The DBM, a typical deep architecture, is constructed by stacking several
RBMs (Hinton & Salakhutdinov, 2006). It is a kind of generative model that
can use the energy to capture the joint distribution between the visible ob-
jects and the corresponding labels, based on a pretraining and fine-tuning
training strategy. In pretraining, each hidden layer is greedily modeled as
an RBM trained in the unsupervised strategy. Afterward, each hidden layer
is further trained by the discriminative information of training labels in the
supervised strategy. DBN has been employed to address problems in many
domains, for example, data dimension reduction, representation learning,
and semantic hashing. A representative DBM is shown in Figure 1.

As shown in Figure 1, a DBN with l hidden layers represents the complex
correlation in the following form,

P
(
x, h1, h2, . . . , hl) = P

(
x|h1) P

(
h1|h2)

· · · P
(
hl−2|hl−1) P

(
hl−1, hl) , (2.16)

where x denotes the input object, P
(
hl−1|hl

)
represents the conditional dis-

tribution of the lth RBM that is composed of the (l − 1)th and lth layers in
the DBN, and P

(
hl−1, hl

)
is the joint distribution of the top RBM containing

the last two layers of the DBN. In equation 2.16, DBN uses the condi-
tional distribution P

(
hl−1|hl

)
to extract the directed high-level representa-

tion and the joint distribution P
(
hl−1, hl

)
to learn the undirected associative

memory.
To obtain conditional and joint distributions, DBN is trained by the un-

supervised learning in a layer-wise manner. In other words, each hidden
layer is modeled as an RBM. The output of the lower RBM is inputed to the
upper one. In detail, the first hidden layer is modeled as an RBM that takes
the training data as input, resulting in the empirical distribution of the first
DBN hidden layer being approximated by the distribution captured by the
RBM. Then the captured approximation distribution is fed to the RBM, that
is, the second DBN hidden layer, to further capture the distribution in the
training data in the same way. This process is repeated until the last hidden
layer is trained.

After unsupervised learning, these parameters—the weights W and hid-
den biases b—are employed to initialize a deep discriminative neural net-
work of the same architecture, which gives rise to the initialized weights
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Figure 2: The paradigm of the stacked autoencoder.

near a good local minimum of the training objects. Then the deep discrimi-
native model generally is further trained by the stochastic gradient descent
algorithm to learn the discriminative knowledge in object labels (Wang,
Wang, Santoso, Chiang, & Wu, 2018).

2.2 The Stacked Autoencoder (SAE). A stacked autoencoder (SAE) is a
typical deep learning model of the encoder-decoder architecture (Michael,
Olivier, & Mario, 2018; Weng, Lu, Tan, & Zhou, 2016). It can capture succinct
features of the input by transforming the raw input into the intermediate
representations in an unsupervised-supervised manner. The SAE has been
widely used in many fields, including dimension reduction (Wang, Yao, &
Zhao, 2016), image recognition (Jia, Shao, Li, Zhao, & Fu, 2018), and text
classification (Chen & Zaki, 2017). A representative SAE is demonstrated in
Figure 2.

As shown in Figure 2, SAE is stacked by several basic autoencoders. A
basic autoencoder consists of an input layer, a hidden layer, and an out-
put layer. The input layer obtains the raw signal, the intermediate hid-
den layer encodes the input into a compact hidden representation, and the
output layer reconstructs the input signal. In particular, given the data set
{x1, x2, . . . , xn}, the basic autoencoder encodes the raw signal into the com-
pact representation at the hidden layer as follows:

yh = f (Wex + b) . (2.17)

The basic autoencoder then decodes the intermediate representation using

yo = f (Wdx + b) , (2.18)
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where y is the activation, W denotes the weight, and b represents the bias.
f is the nonlinear function.

To make the autoencoder reconstruct the raw input, the parameters of
the autoencoder are optimized by minimizing the average reconstruction
error (Zhang, Yang, Chen, & Li, 2018) as follows:

w, b = arg min
1
n

w,b

∥∥xi − yi
o

∥∥2
. (2.19)

To achieve this minimizing, the stochastic gradient descent strategy is
adopted to compute those parameter updates. Those weight updates are
computed in the following way,

∂

∂Wl
i j

J (W, b) = 1
m

m∑
i=1

yl
j

⎛
⎝ sl+1∑

j=1

Wl
jiδ

l+1
j

⎞
⎠ f ′ (zl

i

) + λWl
i j, (2.20)

where δ and λ denote the backpropagation loss and weight decay, respec-
tively. Similarly, the bias update is obtained in the following form:

∂

∂bl
i

J (W, b) = δl+1
i . (2.21)

In the past few years, several representative variants have been proposed
(Erhan et al., 2010). For example, Vincent, Larochelle, Bengio, and Manzagol
(2008) proposed a denoising encoder to learn robust representations from
the corrupted inputs. Specifically, each initial input is corrupted into the
noising one. The autoencoder takes the corrupted input and reconstructs
the clear input as follows:

yh = f (Wxn + b) ,

yo = f (Wyh + b) , (2.22)

where xn is the corrupted input. Furthermore, to emphasize the corrupted
dimensions, a linear combination of the corrupted and uncorrupted recon-
struction errors is used to train the denoising model as follows:

L2 (x, y) = α

⎛
⎝ ∑

i∈c(x)

(xi − yi)

⎞
⎠ + β

⎛
⎝ ∑

i/∈c(x)

(xi − yi)

⎞
⎠ , (2.23)

where c (x) denotes the subset of the corrupted inputs. Another represen-
tative variant is the sparse autoencoder (Makhzani & Frey, 2013), which
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captures the sparse representations of the input by adding the constraint
into the loss function as follows:

L2 (x, y) = 1
m

m∑
j=1

(
x j − y j

)2 +
n∑

i=1

KL
(
ρ||ρ ′), (2.24)

where n is the number of neurons in the hidden layer and KL (ρ||ρ ′) is the
KL-divergence given by

KL
(
ρ||ρ ′) = ρ log

ρ

ρ ′ + (1 − ρ) log
1−ρ

1−ρ ′ . (2.25)

To improve the performance of the autoencoder, some adversarial net-
works are proposed by adopting game theory, in which the decoder is
regarded as the generator that tries to trick the discriminator. Those ad-
versarial variants can produce more consistent features with input data
(Hou, Sun, Shen, & Qiu, 2019). To analyze stream data, Ashfahani, Pratama,
Lughofer, and Ong (2019) proposed a deep evolving denoising autoencoder
that constructs an adaptive network structure in the learning of representa-
tions, based on the network significance. To model robust features of inputs,
Angshul designed a blind denoising autoencoder by adding the path-loss
term in the loss function based on dictionary learning (Angshul, 2019). More
autoencoder variants can be found in Michael et al. (2018).

As shown in Figure 2, the stacked autoencoder, the most typical fully
connected neural network, consists of an input layer, an output layer, and
several hidden layers (Sun, Zhang, Hamme, & Zheng, 2016). To learn the
compact features of the input, SAE is trained with a two-stage strategy.
In the first pretraining, each hidden layer is trained as a basic autoen-
coder to reconstruct its inputs in the unsupervised manner. For exam-
ple, the ith hidden layer is initialized as the ith autoencoder. It takes the
activations of the (i − 1)th hidden layer as input. Then it uses the back-
propagation algorithm to adjust its parameters by reconstructing the acti-
vation of the (i − 1)th hidden layer. After each of hidden layers is pretrained
these above unsupervised way, the stacked autoencoder uses the discrim-
inative knowledge contained in the data labels to fine-tune the parame-
ters to learn task-specific representations. This two-stage training makes the
stacked autoencoder avoid local optimal solutions, converging to a better
performance.

2.3 The Convolutional Neural Network (CNN). DBN and SAE are
fully connected neural networks. In these two networks, each neuron in
the hidden layer connects to every neuron of the previous layer, a topology
that produces a great number of connections. To train the weights of these
connections, the fully connected neural network requires a great number

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/neco_a_01273 by guest on 21 August 2022



A Survey on Deep Learning for Multimodal Data Fusion 841

Figure 3: The paradigm of the convolutional neural network.

of training objects to avoid overfitting and underfitting, which is computa-
tionally intensive. Also, the fully connected topology does not consider the
location information of features contained between neurons. Thus, the fully
connected deep neural network—DBN, SAE, and their variants—cannot
deal with the high-dimensional data, especially large image and large audio
data.

A convolutional neural network is a special kind of deep network that
considers the local topology of data (Li, Xia, Du, Lin, & Samat, 2017; Sze,
Chen, Yang, & Emer, 2017). A convolutional neural network includes the
fully connected network and the constrained network that includes the con-
volutional and pooling layers. The constrained network use the convolution
and pooling operations to achieve the local receptive field and parameter
reduction. Like DBN and SAE, the convolutional neural network is also
trained by the stochastic gradient descent algorithm. It has made much
progress in medical image recognition (Maggiori, Tarabalka, Charpiat, &
Alliez, 2017) and semantic analysis (Hu, Lu, Li, & Chen, 2014). A represen-
tative CNN is shown in Figure 3.

As shown in Figure 3, given the training objects {x1, x2, . . . xN} with la-
bels

{
y1, y2, . . . yN

}
, the CNN uses the convolutional layer to transfer input

pattern maps to output feature maps as follows:

FMo = f (FMi ∗ K + b) , (2.26)
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where ∗ represents the convolution operation and FMo and FMi are the out-
put and input, respectively. K denotes the convolutional kernel. The con-
volutional layer uses the convolutional operation to force the neuron to
perceive a local receptive field of input feature maps. By using this field,
the CNN can greatly decrease network parameters.

After each convolutional layer, CNN uses the pooling layer to further
deal with the output feature maps. Typically, the max pooling layer is the
representative layer that models input maps, as follows,

FMo = f (max (FMI )) , (2.27)

where the max() captures the obvious pattern in its receptive field. The max
operation achieves the shift invariance.

Finally, CNN uses the fully connected layers to map the hidden features
to its corresponding class with the following function,

Y = f (wI + b) , (2.28)

where w and b are the network parameters.
Similar to the fully connected architecture, the CNN is also trained to fit

the training data, using the same algorithm (LeCun et al., 1989; LeCun, Bot-
tou, Bengio, & Haffner, 1998; Zeiler & Fergus, 2014). There are three propa-
gation stages in the back-propagation process. At the beginning, the loss is
computed in the same way as with the fully connected architecture.

The second stage is the backpropagation of the loss of the convolutional
layer, where the loss is backpropagated to the previous hidden layer as
follows:

∂J

∂zl−1
i, j

=
∑

m

∑
n

wl−1
m,nδ

l
i+m, j+n f ′

(
zl−1

i, j

)
, (2.29)

where δ denotes the loss. The update of the kernel weight is computed using

∂J
∂wl

i, j

=
∑

m

∑
n

δl
m,nal−1

i+m, j+n, (2.30)

where a is the activation.
The final stage is the backpropagation of the loss of the pooling layer.

Taking the max pooling layer as an example, the loss is computed as follows:

∂J

∂zl−1
max

= δl . (2.31)

There are no parameters that need to be trained in the pooling layer.
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There are some representative CNNs. The most representative one is
Alexnet (Krizhevsky, Sutskever, & Hinton, 2012). In Alexnet, the nonsat-
urating neurons and the dropout technique are adopted in the nonlinear
computational layers to improve its performance. Furthermore, a GPU im-
plementation is used to speed up the convolutional layer. He, Zhang, Ren,
and Sun (2016) introduced ResNet to solve the accuracy degradation with
the increase of depth. In ResNet, a resident block is designed by adding
a shortcut connection to a network with several layers, which introduces
the identity concept without extra computational cost. By using the resi-
dent module, the CNN depth is up to 1000 layers, which greatly contributes
to image feature learning. Another example is the Inception-V4, in which
a deeper and wider network is designed by using the uniform grid size
for the blocks (Christian, Sergey, Vincent, & Alexander, 2017). To explic-
itly model channel interdependencies, some Squeeze-and-Excitation net-
works are introduced by using the global informational embedding and
adaption recalibration operations, which are regarded as self-attention net-
works on local-and-global information (Jie, Li, & Sun, 2018; Cao, Xu, Lin,
Wei, & Hu, 2019). To improve learning efficiency, some fast convolutional
networks are designed by replacing the full-rank convolution with several
low-rank convolutions. Those fast implementations can improve learning
efficiency without much loss of accuracy (Sandler, Howard, Zhu, Zhmogi-
nov, & Chen, 2018; Zhang, Zhou, Lin, & Sun, 2018). More convolutional
variants are in Gu et al. (2018).

2.4 The Recurrent Neural Network (RNN). A recurrent neural net-
work is a type of neural computing architecture that deals with serial data
(Martens & Sutskever, 2011; Sutskever, Martens, & Hinton, 2011). Unlike
deep forward architectures (i.e., DBN, SAE, and CNN), it not only maps the
input patterns to the output results but also transfers the hidden states to the
outputs by employing the connections between the hidden units (Graves &
Schmidhuber, 2008). By using these hidden connections, the RNN models
temporal dependency, which results in the sharing of parameters between
objects along the time dimension. It has been applied in various domains,
such as speech analysis (Mulder, Bethard, & Moens, 2015), image caption
(Xu et al., 2015), and language translation (Graves & Jaitly, 2014), achiev-
ing outperforming performance. Similar to deep forward architectures, its
computing also consists of the forward-pass and backpropagation stages. In
forward-pass computing, RNN takes both the input and the hidden state.
In backpropagation computing, it uses the backpropagation-through-time
algorithm to backpropagate the loss through the time steps. Figure 4 shows
a representative RNN.

In Figure 4, given a training object
(
x1, . . . , xt−1, xt, xt+1, . . . , xn

)
with the

label
(
y1, . . . , yt−1, yt, yt+1, . . . , yn

)
, the mapping of the RNN is expressed as

follows:
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Figure 4: The paradigm of the recurrent neural network.

ot = f
(
Vst + b

)
,

st = g
(
Uxt + Wst−1 + b

)
, (2.32)

where f and g are nonlinear functions, b is the bias, and V , U, and W rep-
resent the weight parameters. Specifically, the matrix V weights activations
of hidden nodes, the matrix U encodes the current inputs, and the matrix W
transfers the previous hidden state that contains the temporal dependency.

To fit the sequential training object well, RNN uses the backpropagation-
through-time algorithm to train its parameters (Hermans & Schrauwen,
2013; Zheng et al., 2015). In particular, it backpropagates the loss along the
time direction via

δT
k = δT

t

t−1∏
i=k

Wdig
[

f ‘ (zi)
]
. (2.33)

Each element of the matrix W updates as follows:

∂J
∂w ji

=
t∑

k=1

∂J
∂wk

ji

=
t∑

k=1

δk
j h

k−1
i . (2.34)

The RNN backpropagates the loss to the previous layer as follows,

(
δl−1

t

)T = (
δl

t

)T
Udig

[
f ‘l−1 (

zl−1
t

)]
, (2.35)

with each element of the matrix U updating as follows:

∂J
∂uji

=
t∑

k=1

∂J
∂uk

ji

=
t∑

k=1

δk
j x

k−1
i . (2.36)
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The matrix V is updated in the same way with the weight of the fully con-
nected layer.

Some well-known variants of the RNN have achieved impressive perfor-
mance (Zhang, Wang, & Liu, 2014). For example, to model the bidirectional
dependency of the sequential data, Schuster and Paliwal (1997) proposed
the bidirectional RNN, where there are two independent computing pro-
cesses that encode the forward dependency and the backward dependency.
Another representative variant is LSTM (Hochreiter & Schmidhuber, 1997).
This variant can effectively address the limitation that the standard RNN ar-
chitecture cannot well model the long-time dependency by introducing the
memory blocks. To speed up the training of RNNs, Lei, Zhang, Wang, Dai,
and Artzi (2018) proposed a light recurrent unit, in which the light recur-
rence component is used to disentangle the dependency in the state com-
putation and the highway network component is introduced to adaptively
combine input and states. Jang, Seo, and Kang (2019) designed the seman-
tic variational recurrent autoencoder to model the global text features in a
sentence-to-sentence manner.

The deep RNN is stacked by several recurrent hidden layers with the
cyclic connection. Thus, it can capture the deep features of the object direc-
tion, as well as the deep features along the time direction.

3 Deep Learning for Multimodal Data Fusion

In this section, we review the most representative multimodal data fusion
deep learning models from the perspectives of the model task, model frame-
work, and evaluating data set. They are grouped into four categories based
on the deep learning architecture that is used. The representative multi-
modal deep learning models are summarized in Table 2.

3.1 The Deep Belief Net-Based Multimodal Data Fusion

3.1.1 Example 1. Srivastava and Salakhutdinov (2012) proposed a mul-
timodal generative model based on the deep Boltzmann learning model,
learning multimodal representations by fitting the joint distributions of
multimodal data over the various modalities, such as image, text, and au-
dio. In this example, the good multimodal representation is defined as
follows:

• It should be similar to the raw inputs in the concept.
• It should be easy to get even with certain modalities absent and easy

to fill in the lost modalities.
• It should improve classification accuracy and the retrieval tasks of

both unified and multiple modalities.

To achieve a multimodal representation that satisfies these three prop-
erties, the image-text representation learning is taken as an example.
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Figure 5: The multimodal deep belief net.

Two modality-specific models are used to transfer the raw-level, high-
dimensional image and text into the corresponding high-abstract represen-
tations, respectively, since the joint correlations are implicit in the raw-level,
high-dimensional inputs. Also, each modality is with a different statisti-
cal distribution. After obtaining each high-abstract representation of each
modality, a deep Boltzmann model is used to learn the joint distribution
over each modality, as shown in Figure 5. In detail, a two-layer deep belief
model in which the gaussian RBM and the binary RBM are the first and sec-
ond hidden layers, respectively, is used to model the image modality, as is
a two-layer DBN that is a combination of a replicated softmax layer and an
RBM layer to learn text features. Then the one-layer RBM is used to capture
the joint representation by feeding the concatenated vector of each learned
representation with the following form:

P (vm|θ ) =
∑
h1,h2

P
(
vm, h1, h2|θ)

. (3.1)

Each module of the proposed multimodal DBN is initialized by the un-
supervised layer-wise manner, and an MCMC-based approximate method
is adopted for model training.

To evaluate the learned multimodal representation, extensive tasks are
carried out, such as the generating missing modality task, the inferring joint
representation task, and the discriminative task. Experiments verify that the
learned multimodal representation meets the required properties.
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3.1.2 Example 2. To effectively diagnose Alzheimer’s disease at an early
phase, Suk, Lee, Shen, and the Alzheimer’s Disease Neuroimaging Initia-
tive (2014) proposed a multimodal Boltzmann model that can fuse the com-
plementary knowledge from the multimodal data. Specifically, to address
the limitations caused by the shallow feature learning methods, a DBN is
used to learn the deep representations of each modality by transferring the
domain-specific representation to the hierarchical abstract representation.
Then a one-layer RBM is built on the concatenated vector that is the linear
combination of the hierarchical abstract representations from each modal-
ity. It is used to learn the multimodal representation by constructing the
joint distribution over the different multimodal features. Finally, the pro-
posed model is extensively assessed on the ADNI data set in terms of three
typical diagnoses, achieving state-of-the-art diagnosis accuracy.

3.1.3 Example 3. To accurately estimate human poses, Ouyang, Chu, and
Wang (2014) designed a multisource deep learning model that learns mul-
timodal representation from mixture type, appearance score, and deforma-
tion modalities by extracting the joint distribution of the body pattern in
high-order space. In the human-pose multisource deep model, the three
widely used modalities are extracted from the pictorial structure models,
which combine parts of the body based on conditional random field the-
ory. To get the multimodal data, the pictorial structure model is trained
by the linear support vector machine. After that, each of these three fea-
tures is fed into a two-layer restricted Boltzmann model to capture abstract
representations of the high-order pose space from the feature-specific rep-
resentations. With the unsupervised initialization, each modality-specific
restricted Boltzmann model captures the inherent representation of the
global space. Then an RBM is used to further learn the human pose repre-
sentation based on the concatenated vector of the high-level mixture type,
appearance score, and deformation representations. To train the proposed
multisource deep learning model, a task-specific objective function is de-
signed that considers both body locations and human detection. The pre-
sented model is verified on LSP, PARSE and UIUC, and yields up to 8.6%
improvement.

Recently some new DBN-based models for multimodal feature learn-
ing have been proposed. For instance, Amer, Shields, Siddiquie, and Tam-
rakar (2018) proposed a hybrid method for sequential event detection, in
which the conditional RBM is adopted to extract the intermodality and
cross-modality features with additional discriminative label information.
Al-Waisy, Qahwaji, Ipson, and Al-Fahdawi (2018) introduced a multimodal
method to recognize faces. In this method, a DBN-based model is used to
model the multimodal distribution over the local handcrafted features cap-
tured by the Curvelet transform, which can merge the advantages of the
local and deep features (Al-Waisy et al., 2018).
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Table 3: Setting of Multimodal Learning.

Feature Learning Supervised Training Testing

Classic deep learning Audio Audio Audio
Video Video Video

Multimodal fusion A + V A + V A + V
Cross-modality learning A + V Video Video

A + V Audio Audio
Shared representation learning A + V Audio Video

A + V Video Audio

3.1.4 Summary. Those DBN-based multimodal models use the proba-
bilistic graphical network to transfer the modality-specific representations
into the semantic features in the shared space. Then the joint distribution
over modalities is modeled based on the features of the shared space. Those
DBN-based multimodal models are more flexible and robust in unsuper-
vised, semisupervised, and supervised learning strategies. They are well
suited to capture informative features of input data. However, they neglect
the spatial and temporal topologies of the multimodal data.

3.2 The Stacked Autoencoder-Based Multimodal Data Fusion

3.2.1 Example 4. Multimodal deep learning, presented by Ngiam et al.
(2011) is the most representative deep learning model based on the stacked
autoencoder (SAE) for multimodal data fusion. This deep learning model
aims to address two data-fusion problems: cross-modality and shared-
modality representational learning. The former aims to capture better
single-modality representations, leveraging knowledge from other modal-
ities, while the latter learns the complex correlation between modalities at
a midlevel. To achieve these, three learning scenarios—multiple-modality,
cross-modality, and shared-modality learning—are designed, as depicted
in Table 3 and Figure 6. Furthermore, in each scenario, to learn better rep-
resentations, sparse coding is used by penalizing the loss function with the
sparse constraints of the following form:

min
θ

−
∑

log P (v, h) + λ
∑ ∣∣∣∣p − 1

m

∑
E(h|v )2

∣∣∣∣. (3.2)

In a multiple-modality learning scenario, the audio spectrogram and the
video frame are concatenated into vectors in a linear manner. The concate-
nated vector is fed into a sparse restricted Boltzmann machine (SRBM), to
learn the correlation between audio and video. This model can learn only
the shadow joint representation of multiple modalities since the correla-
tion is implicit in the raw-level high-dimensional representations and the
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Figure 6: The architectures of the multiple-modality, cross-modality, and
shared-modality learning.

one-layer SRBM cannot model them. Motivated by this, the concatenated
vector of the midlevel representations is fed into SRBM to model the corre-
lation of multiple modalities, which shows better performance.

In the cross-modality learning scenario, a deep stacked multimodal au-
toencoder is proposed to explicitly learn the correlation between modali-
ties. Specifically, both audio and video are presented as input in the feature
learning, and only one of them is fed into the model in the supervised train-
ing and testing. This model is initialized in the way of multimodal learning
and can model the cross-modality relationship well.

In the shared-modality representation, a modality-specific deep stacked
multimodal autoencoder is introduced, motivated by the denoising au-
toencoder, to explore the joint representation between modalities, espe-
cially, when one modality is absent. The training data set that is enlarged
by replacing one of modalities with zeros is fed into the model in feature
learning.

Finally, detailed experiments are conducted on the CUAVE and AVLet-
ters data sets to evaluate the performance of the multimodal deep learning
for task-specific feature learning.
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3.2.2 Example 5. To generate visually and semantically effective human
skeletons from a series of images, especially videos, Hong, Yu, Wan, Tao,
and Wang (2015) proposed a multimodal deep autoencoder to capture the
fusion relationship between images and poses. In particular, the proposed
multimodal deep autoencoder is trained by a three-stage strategy to con-
struct the nonlinear mapping between two-dimensional images and three-
dimensional poses. In the feature fusion stage, the multiview hypergraph
low-rank representation is used to construct the inner two-dimensional rep-
resentation from a series of image features, such as histograms of oriented
gradients and shape context, based on manifold learning. In the second
stage, a one-layer autoencoder is trained to learn the abstract representa-
tion that is used to recover the three-dimensional pose by reconstructing
the two-dimensional interimage features. At the same time, a one-layer au-
toencoder is trained in a similar way to learn the abstract representation of
three-dimensional poses. After obtaining the abstract representation of each
single modality, a neural network is used to learn the multimodal correla-
tion between the two-dimensional image and the three-dimensional pose
by minimizing the squared Euclidean distance between the interrepresen-
tation of the two modalities. The learning of the presented multimodal deep
autoencoder is composed of the initialization and the fine-tuning phases.
In the initialization, the parameters of each subpart of the multimodal
deep autoencoder are copied from the corresponding autoencoder and the
neural network. Then the parameters of the whole model are further fine-
tuned by the stochastic gradient descent algorithm to construct the three-
dimensional pose from the corresponding two-dimensional image.

To evaluate the proposed multimodal deep autoencoder, extensive ex-
periments are conducted on three typical image-pose data sets—Walking,
HumanEva-I, and Human 3.6M—outperforming prior models in terms of
pose recovery.

Some other representative models based on SAE are proposed to learn
the joint distribution over modalities. For example, Wang, Zhang, and Zong
(2018) designed a multimodal stacked autoencoder for feature learning of
words, which the association and gating mechanisms are adopted to im-
prove the word features. Khattar, Goud, Gupta, and Varma (2019) designed
a multimodal variational framework based on the encoder-decoder archi-
tecture. This framework is composed of an encoder that models each single-
modality feature, a decoder that reconstructs each modality, and a detector
for the new detection.

3.2.3 Summary. The SAE-based multimodal models use the encoder-
decoder architecture to extract the intrinsic intermodality feature and cross-
modality feature by the reconstruction method in an unsupervised manner.
Since they are based on SAE, which is a fully connected model, a lot of pa-
rameters need to be trained. Also, they neglect the spatial and temporal
topologies in the multimodal data.
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3.3 The Convolutional Neural Network–Based Multimodal Data
Fusion

3.3.1 Example 6. To model the semantic mapping distribution between
images and sentences, Ma, Lu, Shang, and Li (2015) proposed a multimodal
convolutional neural network. To fully capture the semantic correlations, a
three-level fusion strategy—the word level, the phase level, and the sen-
tence level—is designed in an end-to-end architecture. The architecture
consists of the image subnetwork, the matching subnetwork, and the multi-
modal subnetwork. The image subnetwork is a representative deep convo-
lutional neural network, such as Alexnet and Inception, which effectively
encodes the image input into a concise representation. The matching sub-
network models the joint representation that associates the image content
with the word fragments of sentences in the semantic space.

To deeply integrate the image with the sentence, the word-fragment,
phrase-fragment, and sentence-fragment matching networks are devised.
The word-fragment matching network is a convolutional neural network
that takes the word and the concise image representation as inputs by a one-
dimensional convolution and a one-dimensional max-pooling layer with a
two-unit window. This word-fragment matching network can achieve the
local receptive field, share parameters, and reduce the number of free pa-
rameters. The phrase-matching network first transfers the words of each
sentence into the phrase fragment that contains more semantic knowledge
than the word fragment. Then it models the joint multimodal distributions
by using the one-dimensional convolution to combine the phase fragment
with image features. Similarly, the sentence-matching network learns the
semantic representation of each sentence. After that, it combines the seman-
tic representation of sentences with the image representation at the sen-
tence level. The last evaluating subnetwork uses a multilayer perceptron
that evaluates those multimodal joint representations. Finally, an ensem-
ble framework that combines the word, phrase, and sentence multimodal
representations is proposed to mine the cross-modality correlation between
images and texts.

To evaluate the learned multimodal representation, the multimodal con-
volutional neural networks are conducted on the Flickr8K and Flickr30K
for the bidirectional image and sentence retrieval task.

3.3.2 Example 7. To scale the vision recognition system to an unlimited
number of discrete categories, Frome et al. (2013) presented a multimodal
convolutional neural network by leveraging the semantic information from
text data. This network is composed of the language submodel and the vi-
sual submodel. The language submodel is based on the skip-gram model,
which can transfer text information into a dense representation of the se-
mantic space. The visual submodel is a representative convolutional neural
network, such as Alexnet, that is pretrained on a 1000-class ImageNet data
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set to capture visual features. To model the semantic relationship between
images and texts, the language and visual submodels are combined by a lin-
ear projection layer. Each submodel is initialized by parameters from each
single modality. After that, to train this visual-semantic multimodal model,
a novel loss function is proposed by combining the dot-product similarity
and hinge rank loss that can give high similar scores to the correct image
and label pairs. This model can yield state-of-the-art performance on the
ImageNet data set, avoiding the semantically unreasonable results.

There are also some new CNN-based architectures to learn the multi-
modal features. For instance, Hou, Wang, Lai, Chang, and Wang (2018)
proposed a multimodal speech enhancement framework. In the proposed
framework, CNN is used to capture intermodality features in audio and vi-
sual signals. Then a fully connected network models the joint distribution
by reconstructing the raw inputs. Nguyen, Kavuri, and Lee (2019) intro-
duced a multimodal CNN network to classify the emotion of movie clips.
In this multimodal network, the fuzzy logic combined with CNN is used to
model intermodality features from audio, visual, and text modalities.

3.3.3 Summary. The CNN-based multimodal models can learn the local
multimodal feature between modalities by using the local field and pooling
operation. They explicitly model the spatial topologies of the multimodal
data. And they are not fully connected models in which the number of pa-
rameters is greatly reduced.

3.4 The Recurrent Neural Network–Based Multimodal Data Fusion

3.4.1 Example 8. To generate captions for images, Mao et al. (2014) pro-
posed a multimodal recurrent neural architecture. This multimodal re-
current neural network can bridge the probabilistic correlations between
images and sentences. It addresses the limitation of previous work that can-
not generate novel image captions, since previous work retrieves the corre-
sponding caption in the sentence database based on the learned image-text
mappings. Unlike previous work, the multimodal recurrent neural model
(MRNN) learns a joint distribution over the semantic space, based on the
given words and image. When an image comes, it generates the sentences
word by word, based on the captured joint distribution. Specifically, the
multimodal recurrent neural network consists of a language subnetwork,
a vision subnetwork, and a multimodal subnetwork, as shown in Figure 7.
The language subnetwork is composed of a two-layer word embedding part
that captures an effective task-specific representation and a one-layer recur-
rent neural part that models the temporal dependency of the sentence. The
vision subnetwork is essentially a deep convolutional neural network such
as Alexnet, Resnet, or Inception, which encodes the high-dimensional im-
age into a compact representation. Finally, the multimodal subnetwork is a
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Figure 7: The paradigm of the multimodal recurrent neural network.

hidden network that models the joint semantic distribution over the learned
language and vision representation, with the following form:

m (t) = g (vw · w (t) + vr · r (t) + vI · I) . (3.3)

Furthermore, to train the multimodal recurrent neural model, Mao et al.
(2014) use an average log-likelihood loss function based on a standard lan-
guage evaluation method.

After that, the backpropagation algorithm is used to update parameters
of the proposed model. Finally, the image caption, image retrieval, and sen-
tence retrieval tasks are used to evaluate the proposed models on the IAPR
TC-12, Flickr 8K, Flickr 30K, and MS COCO data sets. The results show that
the proposed model outperforms state-of-the-art models.

3.4.2 Example 9. Aiming to address the limitation that current visual
recognition systems cannot generate rich descriptions for images at a
glance, a multimodal alignment model is presented by bridging the inter-
modal relationship between visual and text data (Karpathy & Li, 2017). To
achieve that, a twofold scheme is proposed. First, a visual-semantic embed-
ding model is designed to generate the multimodal training data set. Then a
multimodal RNN is trained on this data set to generate the rich descriptions
of images.

In the visual-semantic embedding model, the region convolutional neu-
ral network is used to get the rich image representations that contain
enough information on its content corresponding to the sentence. Then a
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bidirectional RNN is used to encode each sentence into a dense vector of the
same dimension with the image representation. Moreover, a multimodal
score function is given to measure the semantic similarity between images
and sentences. Finally, the Markov random field method is used to generate
the multimodal data set.

In the multimodal RNN, a more effective extended model is proposed,
which is based on the text content and image input. This multimodal model
is composed of a convolutional neural network that encodes the image in-
put and a RNN encodes the image feature and the sentence. This model is
also trained by the stochastic gradient descent algorithm. Both of the mul-
timodal models are extensively evaluated on Flickr and Mscoco data sets
and achieve state-of-the-art performance.

There are some new RNN-based multimodal deep learning methods.
For example, Abdulnabi, Shuai, Zuo, Chau, and Wang (2018) designed a
multimodal RNN to label indoor scenes in which the intermodality feature
and cross-modality feature are learned by the RNN and transform layers.
Narayanan, Siravuru, and Dariush (2019) designed the gate recurrent cell
with the multimodal sensor data to model driver behaviors. Sano, Chen,
Lopez-Martinez, Taylor, and Picard (2019) proposed a multimodal BiLSTM
to detect ambulatory sleep in which the BiLSTM is used to extract features
of data collected from wearable devices. Then each intermodality feature is
concatenated by a fully connected network.

3.4.3 Summary. The RNN-based multimodal models are able to analyze
the temporal dependency hidden in the multimodal data with the help of
the explicit state transfer in the computation of hidden units. They use the
backpropagation-through-time algorithm to train parameters. Due to the
computation in the hidden state transfer, it is difficult to parallelize on the
high-performance devices.

4 Summary and Perspectives

Deep learning is an active branch of data mining. Recently, many rep-
resentative deep learning architectures have been proposed to deal with
problems of various domains, such as feature learning, audio compression,
and image generation. These representative architectures have made great
progress, outperforming other methods in corresponding domains pow-
ered by the accessibility of high-volume data. Also, high-performance com-
puting devices, such as, GPU, CPU clusters, and cloud computing platforms
are used to improve training efficiency. This explosion and accessibility of
multimodal data in heterogeneous networks provide us with vast oppor-
tunities to mine the intrinsic knowledge of heterogeneous networks from
multiple aspects. These data pose vast challenges on traditional multimodal
data mining methods due to their high volume, velocity, variety, and verac-
ity. Some pioneering multimodal deep learning models were presented for
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data fusion. In this survey, we summarized several multimodal data fusion
deep learning models, all built on the current representative deep learn-
ing architectures: DBN, SAE, CNN, and RNN. We summarize the models
in four groups of multimodal data deep learning models based on DBN,
SAE, CNN, and RNN. These pioneering models have made some progress;
however, the models are still in the preliminary stage, so there are still
challenges.

First, there are a great number of free weights in the multimodal data
fusion deep learning models, especially, redundant parameters that have
little effect on the task of interest. To train these parameters capturing fea-
ture structures of data, large amounts of data are fed into the multimodal
data fusion deep learning models based on the backpropagation algorithm,
which is computing intensive and time-consuming. To increase weight-
learning efficiency, some parallel variants of the backpropagation algorithm
have been executed on computation-intensive architectures: CPU cluster,
GPU, and cloud platforms. In turn, the scale of multimodal data fusion
deep learning models greatly depends on the computing capability of the
training devices. However, the increased speed of the computing capabil-
ity of the current high-performance devices falls behind that of the multi-
modal data. The multimodal data fusion deep learning models trained on
high-performance computing devices of the current architecture may not
learn feature structures of the multimodal data of increasing volume well.
Therefore, one future research possibility of deep learning on the fusion
feature learning of multimodal data is to design new learning frameworks
with more powerful computing architectures. In addition, the compression
of free parameters, an effective way to enhance training efficiency in deep
learning for single-modality data feature learning has made great progress.
Thus, how to combine the current compression strategy to design new com-
pression methods of multimodal deep learning is also a potential research
direction.

Second, multimodal data contain not only intermodality information
but also abundant cross-modality information. To learn the abundant inter-
modality and crossmodality information of multimodal data, most existing
deep learning models for multimodal data fusion first use a deep model to
capture the private features from each modality, transforming the modality-
specific raw representation to a high-abstraction representation in a cer-
tain global space. Then these high abstraction representations are further
concatenated into a vector that represents the global representation of the
multimodal. Finally, a deep model is used to model high-abstract repre-
sentations from the concatenated vectors. However, by using this method,
the multimodal deep learning models cannot capture the fully semantic
knowledge of the multimodal data. There are no clear explanations why
these single intermodality features, the representations of the same seman-
tic space, which can give rise to the combination of features of different
semantic levels, lose cross-modality information. Also, the intermodality
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representations are concatenated in a linear fashion that cannot fit the com-
plex relationships over multiple modalities. With the exploration of the
multimodal data, three or more modalities are combined to mine the in-
termodality and crossmodality knowledge. The current multimodal data
fusion deep learning models may not achieve the desired results. Thus,
new deep learning models for multimodal data that take semantic relation-
ships into consideration are urgently needed. In addition, some semantic
fusion strategies—for example, multiview fusion, transfer learning fusion,
and probabilistic dependency fusion—have made some progress in the se-
mantic fusion of the multimodal data. Thus, the combination of deep learn-
ing and semantic fusion strategies may be a way to solve the challenges
posed by the exploration of multimodal data.

Third, multimodal data are collected from dynamic environments, indi-
cating that the data are uncertain. That is, these data are dynamic, which
means that the distribution of data is not unchanged. The traditional
method of multimodal deep learning to learn dynamic multimodal data
is to train a new model when the data distribution changes. However, it
takes too much time to train a new deep learning model, and it cannot sat-
isfy online multimodal data applications. Online learning and incremen-
tal learning are the representative real-time strategies that learn the new
knowledge of the new data without much loss of historical knowledge.
Thus, with the explosion of the dynamic multimodal data, the design of
online and incremental multimodal deep learning models for data fusion
must be addressed. Also, the multimodal data are low quality and contain
noise, incomplete data, and outliers. Currently, several deep learning mod-
els are focusing only on single-modality noisy data. With the explosion of
low-quality multimodal data, a deep learning model for low-quality multi-
modal data needs to be addressed urgently.
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