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ABSTRACT The sixth generation (6G) wireless communication network presents itself as a promising
technique that can be utilized to provide a fully data-driven network evaluating and optimizing the end-
to-end behavior and big volumes of a real-time network within a data rate of Tb/s. In addition, 6G adopts an
average of 1000+massive number of connections per person in one decade (2030 virtually instantaneously).
The data-driven network is a novel service paradigm that offers a new application for the future of 6Gwireless
communication and network architecture. It enables ultra-reliable and low latency communication (URLLC)
enhancing information transmission up to around 1 Tb/s data rate while achieving a 0.1 millisecond transmis-
sion latency. The main limitation of this technique is the computational power available for distributing with
big data and greatly designed artificial neural networks. The work carried out in this paper aims to highlight
improvements to the multi-level architecture by enabling artificial intelligence (AI) in URLLC providing a
new technique in designing wireless networks. This is done through the application of learning, predicting,
and decision-making to manage the stream of individuals trained by big data. The secondary aim of this
research paper is to improve a multi-level architecture. This enables user level for device intelligence, cell
level for edge intelligence, and cloud intelligence for URLLC. The improvement mainly depends on using
the training process in unsupervised learning by developing data-driven resource management. In addition,
improving amulti-level architecture for URLLC through deep learning (DL) would facilitate the creation of a
data-driven AI system, 6G networks for intelligent devices, and technologies based on an effective learning
capability. These investigational problems are essential in addressing the requirements in the creation of
future smart networks. Moreover, this work provides further ideas on several research gaps between DL and
6G that are up-to-date unknown.

INDEX TERMS Artificial neural networks, artificial intelligence, Internet of Things, sixth-generation
wireless communication and network architecture, URLLC.
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I. INTRODUCTION

The role of artificial intelligence (AI) in the development
of intelligence-enabled edge computing, connections in the
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process of edge intelligence, intelligent devices for mobile
users (MUs), and edge infrastructure components is a driving
force behind the development of the sixth generation (6G)
of wireless communications [1], [2]. The novel generation is
expected to employ wide frequency bands to provide big data.
Through the implementation of high AI technology and a

large bandwidth of terahertz (0.1-10 THz), the 6G is expected
to provide a high data rate of 1,000 Gbps, and a user experi-
ence data rate of 1 Gbps. Moreover, the large bandwidth of
THz offers high-data rates, which act as the driving force in
optimizing 6Gwireless networks, includingmachine learning
(ML) and deep learning (DL). However, 5G wireless net-
works have recently led to the development of several com-
ponents of 6G, whereas the 6G is expected to fully support
AI, enhanced mobile broadband, massive Internet-of-Things
(IoT), cell-free communications, holographic beamforming,
as well as high data analytics. The ultimate goal in creating
6G, namely, providing a fully-immersive user experience that
serves as a fully intelligent system, has not yet been achieved.
The 6G needs to increase capacity, not only in terms of
bandwidth, but also in terms of coverage. It might potentially
offer more perspectives in terms of brain-computer interfaces,
making it viable to "use devices via our brain. Additionally,
the 5G system is not guaranteed to enhance all communi-
cation services among people and things, due to the fact
that ultra-reliable and low latency communication (URLLC)
has become a critical performance criterion. The open 6G
network is able to provide sufficient communication services
from people to things and from things to things, based on
utilizing the connection intelligence for leveraging terminal
and concentrated intelligence.

A. 6G TECHNOLOGY

To support a high rate and reliability, the abundant band-
width of THz must be utilized. On the other hand,
the 5G network supports various applications such as a Gbps
speed of an enhanced mobile broadband (eMBB), massive
machine-type communication (mMTC), and a microsecond
delay of 99.99% of the level of URLLC transmissions to
meet the needs of the information civilization through 6G
technology [3]–[6]. However, a guarantee of high reliabil-
ity depends on redesigning the physical layer and enabling
technologies, including packet and frame structure [7]–[11].
Among the major challenges in developing 6G wireless net-
works is supporting the ultra-broadband to increase the sys-
tem’s capacity by augmenting the system bandwidth to THz
and improving the spectrum efficiency by decreasing the
propagation loss [12]–[15]. The THz band is projected to
grant a Tbps data speed to fulfill extremely high URLLC,
providing 6G wireless networks with better resolution in
sensing, and greater accuracy in positioning. The more the
bandwidth capacity increases, the greater the big data in 6G,
which can theoretically be obtained by applying a sub-THz
radio spectrum over 90GHz. On the other hand, the design
of 6G wireless networks is estimated to provide big data
rates with low latency through employing intelligence. 6G is

expected to be a paradigm shift by introducing a complete
control of transmission, estimation, caching and resource
areas [1], [16]–[18]. Due to its rapid development, 6G is
expected to support high-quality services and satisfy the
demand for improved aspects of wireless networks, includ-
ing Internet of Everything (IoE), massive connectivity, low
latency, high security, eMBB and reliable connectivity.

The internet protocol, new holographicmedia, and network
architecture were all established to facilitate the development
of 6G by contributing to the study of wireless equipment, and
the standard improvement in the International Telecommu-
nication Union (ITU) [19]. 6G technology is predicted to
have far-reaching impacts, beyond the sphere of the mobile
internet, such as supporting AI by improving protocols and
architectures. The connecting networks in wireless communi-
cation depend on associate intelligence with ML capabilities.
Recent developments in AI have solved some of the most
daunting bottlenecks in technology in areas such as route
management, topology control, security, and secrecy of the
transmission network. One of the essential challenges in 6G
research is the efficient utilization of transmitting up to 1 Tbps
per user. The radio spectrum from 0.1 THz to 10 THz offers
opportunities for massive signal bandwidths, exceptionally
enhancing 6G’s wireless transmission capacity [19], [20].

B. KEY CONTRIBUTIONS

This survey focuses primarily on DL for URLLC that pro-
vides a critical performance criterion 6G networks. It also
provides a detailed discussion of multi-level architecture by
enabling AI. Furthermore, it presents a multi-level archi-
tecture for URLLC through DL to create a data-driven AI
system, 6G networks for intelligent devices, and technolo-
gies based on practical learning capability. Finally, we high-
light future research based on application scenarios and a
multi-level architecture that enables a data-driven DL. The
contributions of this survey can be summarized as follows:

� We highlight the key requirements of URLLC and the
challenges currently threatening the vision of 6G wire-
less networks. This vision was adopted from the recent
literature on sharing directions for the 6G by incorpo-
rating achievable AI in advanced ML techniques.

� We provide a detailed discussion of the advanta-
geous new services that will be offered by 6G wire-
less networks, including their fundamental principles
and general applications such as holographic radio,
advanced wireless channel coding, massive IoTs, inte-
grated and haptic communication, and Tactile Internet
for URLLC.

� We discuss the significant challenges that need to be
addressed regardingDL’s developments to provide high
computation efficiency.

� We identify the research challenges and determine the
fundamental concepts and technologies that 6G ML
algorithms should adopt, including supervised learn-
ing, unsupervised learning, and reinforcement learning
for big data. Moreover, more attention has been on
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TABLE 1. List of abbreviations in alphabetical order.

a URLLC design that enables precise predictions of
channels and high traffic data speed, which is essen-
tially predictive and controls the new development
in DL.

� We suggest several future research directions that
enable a data-driven DL to support slices in 6G net-
works, thus improving network performance based on
its effective learning capabilities.

C. PAPER ORGANIZATION

The work is further structured as shown in Fig. 1. We begin
by discussing the importance of URLLC for 6G networks
compared to 5G networks, based on AI-enabled technology.
In Section II, we present the literature of prior work on smart
data-driven base in URLLC using DL. Section III discusses
the requirements, frame, and packet structures of URLLC.
Section IV presents the potential key technologies and new
services that 6G offers. Section V discusses the various types

of ML-enabled intelligent 6G networks. Section VI explains
themulti-level architecture that enables a data-driven network
for URLLC. Future research directions for AI technologies
that are predicted to improve 6G network performance are
outlined in Section VII. Finally, Section VIII concludes the
paper.

II. RELATED WORKS

There a number of previous studies have been conducted on
the development of a smart data-driven base for improving
traffic-flow prediction. Besides, DL plays an important role in
URLLC through addressing the critical applications scenario.
This development in smart data-driven networks depends on
applying the short-term correlation prediction to the intel-
ligent Internet of Things (IoTs) and control architecture to
achieve URLLC.

A. CURRENT RESEARCH PROGRESS FOR URLLC

TOWARDS 6G

Increased management of traffic flow provides efficient, reli-
able data-driven predictions for transmitting packets in real-
time networks to improve the multi-level architecture for
data-driven networks. In addition, it allows for transmitting
packets by learning from data-traffic demand predictions
under a non-stationary and predictable environment based on
URLLC, as proposed in [21]. The multi-level architecture
of URLLC for IoT devices is forced to rely on unnecessary
power and process capabilities that are unsuitable for the
lifetime of IoT devices [16], [17], [19]. However, the peak
throughput and DL networks improved the data-driven net-
work based on a large quantity of training data, to enhance the
parameters of training samples by implementing allocated,
intelligent wireless computing, as proposed in [22], [23].

The greater the number of devices that IoTs are able to pro-
vide, the more suitable the small power devices, and the more
they provide high reliability for long-range communication.
Furthermore, based on the high number of collisions in the
IoT access network, the developing ultra-dense IoT networks
are able to addressML to enable devices to regularly learn the
random-access channel in cellular IoT networks [23]–[25].
The AI in question is an advanced ML technique, optimized
edge computing networks based on the proposed advance-
ment of URLLC, as well as the distributed AI, which all
work together to achieve high reliability and throughput in
the URLLC [26], [27].

The ultra-dense IoT networks are able to process intermit-
tent transmissions, a large number of data packet transmis-
sions, and unsuitable transmission scheduling, by utilizing
a distributed cache of IoT devices to manage their irreg-
ular transmissions. The high throughput and reliability are
improved by enabling modern random access for IoT sys-
tems based on advanced signal processing and increasing the
intelligence to fulfill the least long-term costs up to 56% in
improvement in 6G to provide big data [28]–[32]. The DL
uses reliable predictive models of URLLC to enhance the
implementation of space air-ground by selecting the correct
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FIGURE 1. Diagrammatic view of survey structure.

paths and increasing the big data communication require-
ments, and supporting DL in the physical layer network.
The high quality of service (QoS) and capacity depend on
the rate and latency-reliability space that supports the con-
nectivity for a large number of devices in physical environ-
ments. However, the improved QoS for MU depends on the
implementation of intelligence for ML in 6G to provide high
throughput and ultra-low latency [16]–[18], [31]–[34]–[45].
This study aims to fill the gaps found in the application sce-
narios of multi-level architectures for 6G networks, includ-
ing mobility and traffic prediction for all MU, scheduler
design at each access point, user connection in a multi-access
point [46]–[49], [50]–[53], [54]–[58], and multi-level archi-
tecture for URLLC in DL [18], [65], [61]. This involves car-
rying out the following steps: providing a fresh and in-depth
look at URLLC based on the AI-enabled intelligence active
in 6G networks; highlighting the importance of URLLC; dis-
cussing the efficiency of the developing network that can pro-
cess large quantities of data with the smallest delay possible
and addressing the challenges faced in application scenarios,
and discussing six key technologies that provide a survey
on various ML techniques that are realistically capable of
improving communication. Table 2 displays the summary of
several related works to the URLLC.
In the process, this review also provides a comprehen-

sive discussion of DL systems for several reasons. First,
the lack of proposing different enabled AI technologies for
use in URLLC that should provide the community with an
important research area to embark upon for the vision for
6G wireless networks. The second reason is to shed light
on 6G technologies such as holographic radio, advanced
wireless channel coding, massive integrated IoT, and haptic

communication and tactile internet that enhance the predic-
tive leveraging of new developments in ML. Third, we high-
light the challenges underlying 6G, which is necessary for
designing an efficient AI in the framework based on the
effective learning capability and a multi-level architecture.
Also, the implementation of the training process in an unsu-
pervised learning setting is vital to enhance performance
and enable a data-driven network in the AI based on the
proposed DL. Finally, the final reason is to identify the
strategies used to evaluate, and the disciplinary techniques for
supervised, unsupervised, and reinforcement learning (RL)
through improving the multi-level architecture to decrease
the treating time and prevent delays. The capability of ML
to provide accurate traffic packets for URLLC depends on
efficient distributed training for computation complexity, and
guarantees the QoS requirements on the end-to-end (E2E)
latency and reliability for every user.

B. MOTIVATION AND CHALLENGES

Recently, the 5G wireless network was developed to sup-
port eMBB, mMTC, and URLLC, based on the report of
ITU-R [2]. Based on such excellent characteristics of 5G,
it has opened new opportunities towards developing appli-
cations. The main drawback of 5G is its low data rate if
implemented within AI technology. However, the 6G com-
munication technologies will unveil certain unique features,
namely ultrahigh data rate, broadbandmultiple services, scal-
able bandwidth, and flexible communications for manifold
end-users, which requires higher data rates of Tb/s, than
augmented reality and impending virtual reality. So to fulfill
the noted unique features of the network, AI with a high level
of intelligence will be the main driver of mobile technology
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TABLE 2. A Summary of several works reared to URLLC.

for the design and optimization of 6G networks which 5G
cannot fulfill due to its low data rates drawback as compared
to 6G as shown in Table 3.

To achieve the targeted key performance indicators (KPIs)
concerning networks, the reliability and latency should be
improved. The improvement can be achieved by including
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TABLE 3. Key AI performance comparison between 5G and 6G
networks [67]–[72].

hyperparameters to the self-organizing networks (SON) algo-
rithms and algorithms mobility for the purpose of coordi-
nation algorithms. To achieve E2E delay less than 1ms and
the overall packet loss probability less than 10−5, the whole
system needs to be developed to provide a multi-level archi-
tecture that enables device intelligence. The task of SON is to
transform data into more illegal information, whereas the DL
is used to predict, analyze and able to regulate the probability
of future events. Moreover, the AI in SON optimizes some
targeted networkKPIs.Whereas the SON is a type of artificial
ANN that is trained using unsupervised learning that enables
the developing data to learn from regular unlabeled data so
as to improve the QoS [73], [74]. In addition, high E2E
reliability and low E2E latency is guaranteed by applying
allocated power and resource allocation of users based on the
proposed model-free deep-RL framework for URLLC [75].
The model-free deep-RL can go better performed in terms
of delay and reliability by achieving the minimum decoding
error probability and controlling jitter caused by signal pro-
cessing in the network.

Revisit analysis tools and design methodologies in a wire-
less network are very important factors to achieve the targeted
KPIs, and these can be satisfied by achieving the KPI as
follows:

1) ANALYSIS TOOLS

The performance of wireless networks in terms of a variety of
theoretical tools is enhanced based on reducing the transmis-
sion delay and channel coding with the help of short block

length channel codes in URLLC as suggested by [76], [77].
Improving the reliability of the cellular network reduces the
probability of error or, in other words, an increase in the
data rate depends on when the block length is shorted, it too
depends on when the decoding error probability does not dis-
appear for randomly limited SNR. As suggested by [75], this
work proposes a deep-RL framework based on the balancing
of the tradeoff between reliability, latency, and data rate to
each end-user. This is done to reduce power problems under
E2E reliability, E2E latency, and rate constraint in terms of a
deep-RL based resource allocation scheme.

2) OPTIMIZATION CROSS-LAYER

Performing cross-layer optimization frameworks in thewhole
system needs to be optimized in different layers of open sys-
tems interconnection such as physical- and link-layer and the
optimization depending on reducing E2E delay and the over-
all packet loss probability. To achieve a better E2E regarding
wireless network in terms of delay components and packet
losses in different layer, the optimization of cross-layer algo-
rithms is implemented based on several issues as;

1- adjust resource allocation regularly due to channel fad-
ing and traffic load variations,

2- persistent problems are created due to difficult models
from different layers and cross-layer optimization problems;
from different layers, which are usually non-convex or non-
deterministic polynomial time, which take a long tim to
implement non-deterministic polynomial time and become
hardly be implemented in real-time.

3) DEEP LEARNING

The radio resources are allocated in each Transmission
Time Interval (TTI) with a duration of 0.125 ms to 1 ms.
According to the 6G requirements, to support emerging
mission-critical applications, the E2E delay is expected to
be less than 1 ms and the E2E reliability in terms of packet
loss probability less than 10−5 [62]. Transmission delay, such
as queueing delay and processing delay only donates to a
small fraction of the E2E delay. These delays are important
bottlenecks for achieving URLLC. According to some review
articles [1], [42], [78], the deep-RL with 6G new radio (NR)
has resulted in high potential to address radio resources allo-
cated within every TTI ( 0.125 ∼ 1 ms). The basic idea
is proposed by enabling DL to be obtained in the DNN
output every TTI by approximating the optimal policy with
a DNN. As given by [79] the processing delay and queueing
delay must be less than the duration of one TTI so as to
optimize the framework for URLLC. Apply supervised DL
within URLLC-6G and optimizing offloading probabilities
subjects to the reliability requirement which will be able to
minimize E2E computing delay for short packets [34]. More-
over, applying a deep-RL algorithm to schedule the URLLC
transmissions results in the improvement of QoS, as sug-
gested by [80]. A two-phase-framework, including eMBB
resource allocation and URLLC scheduling is obtained due
to the dynamic nature of both URLLC traffic and channel
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FIGURE 2. Five latency components of URLLC.

variations which is proposed to maximize the average data
rate. The trail probability of delay in URLLC is evaluated
based on a collection of the estimated parameters taken from
each end-user in terms of Federated learning. In addition,
Federated learning is an empowered wireless technology to
support devices to be connected within 6G networks to run
a variety of intelligent applications; the Federated learning
model in the wireless networks system optimizes a global
model by repeating the processes of users and update the
trained weights to the access point. This proposed algorithm
which is used to train a Federated learning is capable to
provides a good expression of the convergence rate, which
takes into account the transmission scheduling policy and
inter-cell interference [81].

III. URLLC

In future 6G networks, the provision of URLLC, a novel
service paradigm, is predicted to allow for the establishment
of emerging mission-critical applications that have more
stringent requirements for both the E2E latencies and the
reliability aspect. Reliability refers to achieving its target
function sufficiently for a specified duration, while latency
refers to the time required for a packet of data [63], [64]. The
URLLC is able to schedule a packet design by reducing the
latency in terms of packet processing and the time needed
to acquire a packet and to check for errors. The multiple
transmissions should be unified to achieve reliable latency
when the specific transmission buffer allows all users to have

reliable latency [65]. Tomeet the stringent delay requirements
of URLLC, designing a short packet transmission system
with low latency is taken into account for resource allocation.
A deep-RL-based learning algorithm is used to intelligently
distribute the URLLC traffic across the ongoing eMBB trans-
mission users. Providing high data rate, low latency and more
reliability to the traffic with shorter packet sizes depend on
applying deep-RL for URLLC.

The novel physical layer such as channel code design,
full-duplex transmission, and multi-access are established for
spectrally-effective URLLC. Tactile internet and self-driving
cars have improved based on using the feasibility of URLLC.
The packet transmission time must be on the order of tens to
hundreds of microseconds for a mission-critical application,
while the time it takes for the human reaction is on the stabil-
ity of tens of milliseconds. Improving the software-defined
network and virtual network slicing in a wireless communi-
cation system will reduce the E2E latency and increase the
robustness of data transmission, based on creating a private
connection to dedicated URLLC.

Designing short packet transmission or efficient low-
latency transmission over 0.1ms to support URLLC depends
on the control signaling and scheduling information for a
large portion of the transmit latency and redesign of the
physical layer. A guarantee of high reliability depends on
redesigning the physical layer and enabling technologies,
including packet and frame structure, as shown in Fig. 2. The
physical layer latency τl for URLLC NR in [66], [82], [83]
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can be divided into five components, as shown in Fig.2.

τl = τt + τprop + τproc + τret + τsig. (1)

where τl represent the physical layer latency, τt is the time
to transmit latency, τprop is signal propagation time, τproc is
the time to achieve precoding and decoding, τret is the time
is taken by retransmission, and τsig represent pre- processing
time. The average latency of URLLC in 5G is more flexible
in terms of packet transmission time τt to provide a 99.99%
reliability and latency within 1ms in 5G, or less than < 1ms
in 6G. E2E delivery of data with reliability and minimum
latency include aspects of URLLC and cloud-computing
intelligence, which in turn improve the quality of the packet
arrival rate for all MUs.
The application of URLLC is the key ingredient and is

essential in efficiently processing the IoT devices based on
generating short data packets in irregular and unpredictable
behaviors [23], [24], [84]. The expected QoS requirements
for URLLC are shown in Table 4.

TABLE 4. Requirements of QoS for URLLC [23], [85].

A. URLLC EQUIRMENTS

Most challenges are caused by conflicting latency, reliability
and co-existence with other services simultaneously, which
affect the physical layer design of the URLLC. The URLLC
requirements can be classified into two sections, which are as
follows:

1) LOW LATENCY

From (1) the physical layer latency τl for URLLC must
not be over 0.5ms. This depends on the time required for
transmitting the packet by applying the new frame structure of
the physical layer to support URLLC. In addition, the latency
requirement of URLLC cannot be achieved when the time-
to-transmit latency τt is fixed to 1ms. However, the processing
time for channel estimation τproc is equal to latency because
the data must be transmitted again with a small code rate.
To meet the requirement of low latency, the data transmit-
ted to the user without waiting for the full retransmission.
The new frame structure of the time-to-transmit latency τt
in 5G must be short block-length channel codes by avoiding
scheduled delays, depending on the network management for
random and dynamic interference models. The diversity of
various traffic characteristics and theQoS ofURLLC services
need to take into consideration the physical layer for URLLC.
The scheduling granted to the users is enhanced and allows
more accurate modulation and coding selection based on the

joined resource allocation framework and the physical layer
control channel.

2) ULTRA- HIGH RELIABILITY

In the 5G system, the reliability requirement is 10−5. This
is achieved by channel coding and improving the channel
estimation accuracy, since the channel coding gain is small
for short packets. Improving the reliability in terms of latency
depends on recourses such as retransmission, parity, packet
design, and other error control mechanisms causing increased
latency [66], [82]–[84]. Enhancing automated factories and
control are based on obtaining ultra-high reliability in terms
of successful packet rate delivery to 1 − 10−5. The error
probability in the one-shot transmission is:

Pe = 1 − (1 − Pc) (1 − Pd) , (2)

where Pe represents the error probability of transmission,
Pc represents the error probability of the physical downlink
control channel (PDCCH), and Pd represents the error prob-
ability of the physical downlink shared channel (PDSCH).
From (2), the aim is to achieve a new application of URLLC
that can support the reliability requirements such as the
probability of packet loss between 10−5 ∼ 10−7 and error
probability of PDSCH and PDCCH less than 10−6. The
sophisticated value depends on the design of control and data
channel, whereas when the complication of the channel is
reduced by one retransmission [51], [84], [86], [87], the suc-
cessful probability is:

P = PcPd1 + (1 − Pc)PcPd1PDTX + Pc (1 − Pd1)

×PNPcPd2. (3)

where Pd1 represents the successful probability of a single
PDSCH, Pd2 the successful probability of retransmitted
PDSCH, PDTX the successful probability of discontinuous
transmission (DTX) or negative acknowledgment (NAK)
detection if no acknowledgment (ACK) ACK/NAK is sent
by the UE, and PN the successful probability of DTX or
ACK guarantees high reliability of data packet delivery if
NAK is sent by the user. The long length of time of the
training sample is not adequate if the packet arrival rate
of a device is low, which requires the application of AI in
URLLC to transmit more packets in the real-time network
to improve the multi-level architecture for the data-driven
network [18], [33]. The secure URLLC in 6G could poten-
tially advance the mMTC, and it is more flexible in terms
of requiring reliability greater than 99.99%, and latency less
than 1ms. Increasing the throughput and reliability is difficult
in the case of transmitting a long packet in URLLC. It is also
difficult due to the stringent delay requirements, especially
when the number of URLLC devices is exceedingly large.
In contrast, the long packet must be transmitted directly, with
minimal delay. On the other hand, URLLC easily provides
a high achievable data rate when transmitting a short packet
[84], [86], since several techniques are employed to ensure
reliability and low latency use more resources and enhance

VOLUME 9, 2021 55105



A. Salh et al.: Survey on DL for URLLCs Challenges on 6G Wireless Systems

FIGURE 3. Frame structure and packet of URLLC: a) packet structure for URLLC; b) frame structure for URLLC.

reliability without violation, and the data rate requirement
is not overly strict. Moreover, designing the physical layer
for URLLC is increasingly complicated using interaction
with throughput, latency, and reliability. The high reliabil-
ity in URLLC depends on exploring the link between the
multi-level architecture for DL. In addition, developing a
multi-level architecture for URLLC can improve prediction
within the network and enables real-time between high-speed
train connectivity and smart industry applications [87]. Addi-
tionally, well-designed models for using DL in URLLC and
theoretical methods in wireless networking are useful for a
variety of other applications [33].

B. FRAME AND PACKET STRUCTURES FOR URLLC

Among the main goals in 5G and 6G is designing a joined
frame structure to ensure a wide range frequency band.

From (1), the issue in URLLC packet design needs improve-
ment by decreasing the processing latency τproc and the
time-to-transmit latency τt. To reduce the processing latency
τproc, the flexible structure should be grouped mutually to
create a pipelined processing of pilot of acquired channel
information, data detection, and scheduling information,
as shown in Fig. 3(a). The processing latency τproc contains
the processing of the channel achievement, control channel,
and data detection.

Improving the flexible frame structure for the URLLC
depends on reducing the time-to-transmit latency τt, which is
able to support future mission-critical treatments, self-driving
cars, and remote control devices. The author in [83]
proposed a flexible frame structure to reduce the trans-
mission delay and transmitter and receiver processing
delay. A frequency band above 6GHz is estimated to
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FIGURE 4. a) Performance latency and reliability for URLLC scheduling; b) Latency and reliability requirements of URLLC and eMBB.

reduce the path loss at the base station based on set
users.
The retransmission is applied to improve packet success

probability by controlling the subcarrier. The cell reduc-
tion could be smaller based on controlling the subcar-
rier spacing for the channel delay, which will be small,
as shown in Fig.3(b). Using the mini-slot level (142, 241µs)
shown in Fig.3(b), the time to transmit latency τt decreases.
Therefore, controlling the symbol period and number of
symbols inside the packet τt more than 1ms depends on
instant scheduling for data transmission to advance a flexi-
ble frame structure. From Fig.3(b), 2x and 4x represent the
base numerology for sub-frame and slot in time to transmit
latency τt.
Fig. 4(a) shows the packet error rate (PER) versus signal-

noise ratio (SNR). The performance latency and reliabil-
ity depend on the sparse vector coding technique (SVC) to
reduce the error rate by managing the interference more than
the convolution code (CC) and polar code (PC). The reduced
error rate depends on controlling the symbol period and
number of symbols within the packet τt over 1ms. Moreover,
the reliability improved in URLLC with Pc, Pd1, Pd2, PDTX
and PN by decoding PDCCH and PDSCH in the beginning
transmission, as shown in (3). This is done by enabling the
location of a user and receive ACK/NACK for PDSCH from
the user. The URLLC is relatively easy to maintain at the link
level in the managed environments, and it is implemented at
the network level. Meanwhile, it is particularly not easy to
maintain over a wide area and in remote scenarios [64], [65].

This is primarily due to the intermediate nodes suffering
from latency in their application over wide areas. The 6G
communication network eMBB with URLLC, by replacing
the eMBB in 5G bases, and by providing a more efficient
and improved cellular communication system in terms of
security, privacy, interference, handover as well as huge data
transmission and processing as shown in Fig. 4(b).

IV. EMERGING TECHNOLOGIES

A. NEW SERVICES OF 6G

The potential key technologies required for achieving the
aforementioned 6G networks would involve the features
shown in Fig. 5. The new services offered by 6G are orga-
nized into four types of new technologies of examining
nature,namely, holographic radio, advanced wireless channel
coding, massive IoT integrated and haptic communication,
and tactile internet. In addition, 6G is achieved by concen-
trating on the important technologies that are considered
too immature for 5G, and need new KPIs, as displayed
in Table 5. Based on AI-driven studies on the holographic
radio, advanced wireless channel coding, and massive IoT,
integrated and haptic communication for virtual augmented
reality enables new services in 6G networks.

1) HOLOGRAPHIC RADIO

Holographic radio is a technology that improves the effi-
ciency of spatial multiplexing, decreases the hardware costs,
and achieves a holographic imaging level of 6G wireless
networks. URLLC, which includes holographic calling, is an
advancement of transmitting holographic videos that require
a high spectrum bandwidth available in THz bands in 6G.
The holographic data and video use a high bandwidth and
require transmission over reliable network links. In addi-
tion, the holography calling consists of massive holographic
input and output and 3D spectral holography that is able to
use exceedingly intelligent surfaces by controlling the entire
physical space and the full closed-loop during spatial-spectral
holography. Support holographic and great precision trans-
missions require applying two drivers for 6G networks for the
mobile internet and the IoE. Due to the lack of a fundamental
breakthrough, the physical layer has not yet been devel-
oped. A major conceptual breakthrough has recently allowed
for increasing popularity in holographic communication,
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FIGURE 5. AI-driven for achieving the aforementioned 6G networks.

which enables the creation of a low-cost transformative wire-
less communication network. In addition, holographic com-
munication can manipulate data transmissions by reducing
the electron magnetic or dielectric scattering particles that
affect electromagnetic waves at any time. This manipula-
tion aims to reduce low-cost and low-power consumption
by generating the desired THz wave. However, the chal-
lenges related to spatial-spectral efficiency in 6G networks
need frequency spectrum bands to transfer the data-traffic
volume of holographic videos. Meanwhile, the data-transfer
traffic volume of holographic videos needs a spectrum

bandwidth that is currently inaccessible in the mm-wave
spectrum [114]–[117].

Achieving the greatest transparency and highest data traffic
depends on a junction with high bandwidth between the
network links. On the other hand, the high bandwidth enables
the attainment of data rates of terabit-per-second across the
MUs, with low bit error rates in the order of 10−5 in a low-
mobility environment. The interfaces during inline play-back
of holographic videos are established by applying a require-
ment of high data bandwidth from 100 Gbps ∼ 1 Tbps
through a limited network that involves a high bandwidth.
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TABLE 5. KPI comparison between 5G and 6G wireless communication
systems [1], [12], [13, [60], [93].

Ultra-high-resolution spatial multiplexing improves the effi-
ciency of spatial multiplexing and advanced breakthrough
technologies in holographic radios for 6G [91], [92]. In addi-
tion, through improving, receiving, and determining the
continuous waveform based on the expected values, the
holographic record sensor for aperture antenna arrays is to
maximize low costs and lower power consumption for radio
frequency chains when the number of antennas is infinite. The
large bandwidths (∼40GHz) for coupled antenna arrays form
a continuous aperture of the optimal antenna array to achieve
a nearly infinite number.

2) WIRELESS CHANNEL MODELING FOR 6G

Novel channel estimation techniques for directional transmis-
sions are a key component of actualizing the 6G communica-
tions system at mm-waves and THz frequencies. Supporting
accurate predictions of channels in URLLC depends on the
essential predictive leveraging of the new developments in
ML. Control systems will be used in the wireless channel
dynamics of 6G to support communication for the learn-
ing data samples, so that URLLC can treat the repeated
packet errors or disruptions caused by losses, as shown in
Section III. Under the control system posed by a URLLC
network, perfect reliability is enacted when the transmission
rate is lower than the channel capacity. 5G systems offer
a high data rate (20Gb/s) based on the medium selection
regarding the propagation channel of the electromagnetic
waves by selecting an optimal antenna from a large number

of connected devices [94]. Providing high connectivity for a
device anytime and anywhere cannot be achieved in 5G. This
task requires the new technologies applied in 6G. Therefore,
6G systems are in need of new channel estimation techniques
to provide high connectivity. The suitable immersion into
a distance depends on using holographic communication to
guarantee the performance of the high interaction [95]–[97].
Increasing the big data rate exponentially is based on enabling
full channel state information (CSI), where channel modeling
is comprehensively discovered through transmitting infor-
mation between transmitting and receiving antennas [98].
Moreover, the application of ML for synergetic transmis-
sion and interference controlling allows for the prediction,
enhancement, and management of CSI, which will apprecia-
bly decrease the pilot overhead for achieving CSI [99].

The optimization and enactment analysis of a channel
model provides a big data rate during the transmitting of
a signal based on the proposed distribution of the channel.
This distribution uses DL techniques for reproductive mod-
els as intelligent frames for exhibiting the geometric distri-
bution of channel measurements [100], [101]. In addition,
improving the beams and the proposed propagation channels
is based on applying time-varying CSI by applying config-
urable intelligent antennas and train DNNs for transmission
prediction [102]. AI uses the long block-length codes for
channel decoding based on using the tanner graph learned
for DNNs, to ensure the accuracy of the CSI and develop the
conjunction with conventional training data and performance
gains [103]–[105].

3) MASSIVE IOT CELLULAR TECHNOLOGY

The IoT is a great enabling device. It senses several devices,
data storage, and data processing capacities that are inter-
connected with AI. Combining AI with the IoT is able to
provide better visibility and regulation for the wide array
of devices associated with the internet. Applying substantial
IoT in 6G cellular networks is needed to perform various
highly-demanding functions such as diminishing latency-
sensitive, ubiquitous connectivity, performing extensive big
data analytics, achieving a great level of low device complex-
ity, and reducing energy consumption in multiple mobiles
with a wider coverage [106]. Real-time IoT is able to work
through the integration of the tactile internet to provide
big data sets for mission-critical IoT devices with reliabil-
ity and low-latency requirements [107]–[109]. Furthermore,
supporting intelligent processing data before transmission
is able to provide better services to users by supporting
extensive quantities of IoT devices through wireless power
transfers, which augments the battery-power life of mobile
devices.

The latest massive cellular technologies like IoT, which
are driving growth in narrowband IoT (NB-IoT) and long-
term evaluation-machine (LTE-M) for multiple mobile IoT
communications, provide highly efficient connectivity that is
needed to support 6G networks [110]. The NB-IoT increases
multicast transmission and capacity and supports random
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access for non-anchor carriers to improve the accuracy of
the position of users. Delivering perfect computation and
efficient transmission for a massive IoT makes 6G capable of
supporting big data in real-time processing. The efficiency of
wireless power provides big data that depends on applying a
massive number of IoT instances to increase the performance
of sustainable 6G cellular networks [111]. The IoT adopts big
data analytics that depends on the distributed DL framework.
In addition, the proposed taxonomy of the ML algorithm
for IoT varies in terms of location and time in massive IoT,
depending on intelligent processing for big data [112]. Smart
manufacturing, smart objects, humans, and physical environ-
ments are enhanced in 6G through the use of DL, where it has
a vital role in designing smart IoT [113], [114].

4) HAPTIC COMMUNICATION AND TACTILE INTERNET

Haptic communication is among the most interesting immer-
sive aspects of 6G, which will become a driver for economic
growth when the low-latency network is able to provide
enough haptic traces in real-time. The big data of wire-
less communications continue to rise and generally operate
when the latency becomes low enough to support haptic
communication for virtual augmented reality objects, which
can be applied to many situations in our lives. The hap-
tic communication in massive URLLC is able to provide
high-quality video and audio traffic within conventional mul-
timedia services in real-time. The typical massive URLLC
services will vary in terms of haptic information such as
packet size, video, and audio. The QoS must be delivered
within a sub-millisecond E2E latency. The holographic com-
munication of a virtual vision in 6G enables the control of
the physical communication in nearly-actual sights of envi-
ronments in the tactile internet, in real-time [115], [116].
The tactile internet is the next evolution that will enable
the control of IoT in real-time. In addition, it will combine
ultra-low latency with extremely high availability, reliability,
and security. It will also add a new dimension to human-
to-machine interaction by enabling tactile and haptic features.
Improving multi-access MEC will lead to solving prob-

lems in haptic communication by extensively predicting its
propagation under the influence of widespread multi-access
edge computing delays. The AI allows humans and machines
to cooperate within their environment to recognize remote
commission locations in real-time, at a 1-ms granular-
ity [117]. Humans are not able to distinguish different laten-
cies within the URLLC system in extended reality [118].
The AI-enhanced multi-access edge computing proximity
(Mobile Edge-Cloud) can keep humans largely out of the
loop (tactile internet) and provide predictable data traffic by
proposing the knowledge and identity of the changing haptic
trace [119]. Through applyingDL in themULLRC, the tactile
internet can predict the mobility of the tactile device based
on using the fully connected DNNs that are trained from the
training samples [120]. Additionally, it controls the machine
operation in real-time and improves the interconnection of
smart devices.

This high accessibility in the tactile internet could poten-
tially enhance 6G cellular networks’ ability to provide a
big data rate and a low round-trip latency through effec-
tive enabling interaction between environments [121], [122].
Enabling the democratization of skills for the tactile inter-
net’s long-term future provides suitable haptic equipment for
the edge-cloud and edge-AI capabilities of communications
networks. Furthermore, current virtual and augmented real-
ity (VAR) applications provide the tactile internet with high
ultra-responsive connectivity in 6G [123].

V. ML ENABLED INTELLIGENT 6G NETWORKS

This section discusses the hypotheses of the possible achieve-
ments of 6G wireless networks if they were enabled through
alternate AI in URLLC. This enables AI for URLLC to
improve the learning efficiency for MU and MEC. Over-
coming the challenge of providing 6G requires providing a
comprehensive survey on various ML techniques that can
realistically support communication networking and envision
the ways of applying AI to create a 6G wireless network.

ML techniques offer new abilities for modeling and ana-
lyzing mobile wireless communication systems. ML and AI
are revolutionary innovations that improve system-level solu-
tions in 6G networks and the IoT. The flexible requirements
for E2E delay and reliability depend on the integration of DL
in URLLC. Developments in 6G focus on ubiquitous wireless
intelligence, a multi-level architecture that empowers device
intelligence and improves their process based on training
DNNs and evaluating the latency and reliability in URLLC.
Designing new techniques of future wireless communica-
tion networks can be improved by in-depth discussions on
connecting DL with AI. Using the DL with AI, enabling
edge intelligence, the intelligence of context-aware smart
services, cloud intelligence, and knowledge gained from
research depend on using the prediction of the probability
of error [124]–[127]. The powerful hardware and software
are highly important to enable ML in mobile communication
based on using support training and reducing interference
in complex designs by training and inference processes that
use large quantities of matrix multiplications such as parallel
computing, optimization algorithms, and distributed ML.

The majority of surveys are concerned with implementing
intelligence for ML techniques in wireless communica-
tion [128]–[133]. On the other hand, improving through-
put in mobile communication is based on exploiting the
power of the graphics processing unit (GPUs). The GPU
is a highly inefficient method of providing low latency,
high memory bandwidth, high-performance video games,
and graphics. New techniques such as compute unified
device architecture (CUDA) andCUDAdeep neural networks
(CUDNN) [134], [135] were developed byNVIDIA to reduce
the complex hardware and permit users to adapt their usage
for exact purposes.

ML techniques are used to support a high level of intel-
ligence by assisting a large quantity of data generated to
achieve self-sustenance for connected devices in wireless
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cellular networks such as sensors in autonomous vehicles.
This AI is expected to play a key role in the edge of the
network, based on predictions provided by the smart radio
mobile and self-optimization for practical network learning.
The design plan is for an intelligent radio that is able to inde-
pendently access the obtainable spectrum through the support
of learning. Meanwhile, ML equips systems with the ability
to learn automatically, and it supports high data rates in 6G.
It is able to provide a high degree of correlation, depending
on the input vectors and the probability of the arrangement.
Also, this technique is able to be deployed for modeling
several technical problems inherent in next-generation 6G.
This is important since there is no exact mathematical model
that provides high training efficiency of the data rate that is
currently being investigated, which slows the varying time
of the system model. The challenges appear at the transfer
data rate in the transceiver system, which requires working
with high THz frequencies to achieve high-speed data rates.
Moreover, the THz wireless bandwidth provides a terabit-
per-second data rate at a high THz band. The high prop-
agation loss is caused by the relatively long distance for
data transfer. The smart device connected to 6G is able to
develop self-sustaining and adaptive networks based on the
deployment of ML.
The high quality of data not only comes from the math-

ematical model, but also depends on the management of
preceding transmission data. The growth of fully data-driven
networks depends on the exact ML approach, such as DL
algorithms that activate the learning process and guarantee
the accuracy of large data sets corresponding to an increase
of available data [31], [32], [39]. The developed data-driven
approach depends on the application of DL to the physical
layer, which increases the massive quantity of data in wireless
communication systems and reduces the power consump-
tion by analyzing the data detection, localization, and chan-
nel estimation, as demonstrated by [35], [42], [136], [137].
Furthermore, developed data-driven networks depend on the
management of the physical layer by the employment of DL
to achieve radio-resource allocation at the physical layer, with
the smallest possible complexity [37], [41]. The supervised
DL and the deep-RL in URLLC improve the data-driven net-
work based on an advanced multi-level design that supports
device and cloud intelligence. The data-driven network must
complete an adequate training phase and an accurate number
of training sessions to guarantee the reliability required for
real-time processing. Meanwhile, every DL is consistent in
the number of resources it consumes and gives a predictable
output [34]. The DL algorithms allow the DL to perform in
the cloud/edge intelligence locally, which provides high-data
videos that are more driven and intelligent to augment the
reality of the devices and network data usage.
The trade-off between high accuracy and low latency

depends on improving the compromises made between
videos and prediction abilities by increasing the reality
for DL, such as in shopping malls. Obtaining more intel-
ligent videos by enabling DL, namely, ones that choose

remote implementation, requires implementing the optimal
tradeoff between network utilization and prediction qual-
ity [36], [43], [45], [138], [46]. Therefore, increasing the
amount of exploding mobile traffic depends on the gap
between the efficient employment of DL architecture in
the mobile networks domain by managing the increased
amount of big data and algorithm-driven treatments. The
high data traffic in mobile networks is improved by using
traditional deep-RL. These developments can solve problems
that mobile networks face by reinforcing the training demon-
stration that uses an alternative learning model to inform the
agent what should be implemented under specific interpreta-
tions during the training [47], [139]–[141], [50].

The conventional mathematical model is classified based
on operating the network in a truly autonomous fashion and
structure for ML algorithms and the conforming functions
corresponding to the classification of supervised, unsuper-
vised, and reinforcement learning [142]. However, adopting
heterogeneous hardware in ML requires the development of
transfer learning for the communication system by determin-
ing the demonstrated effectiveness in producing purposeful
intelligent communications. The new challenges in 6G wire-
less communication for ML in mobile devices that need to
be addressed by processing data locally and high storage
power are related to securing efficient distributed training
for computation complexity. Meanwhile, the ML is used to
develop big data analytics and professional estimation of dif-
ferent layers of wireless networks [14]. The big data obtained
by investigating ML strategies that are able to evaluate and
discipline techniques include supervised, unsupervised, and
reinforcement learning.

In this section, the ML is introduced in the context of
widely used mobile and wireless communication networks.

A. SUPERVISED LEARNING

Supervised learning has adopted the motivation of several
conditions in wireless networks, based on the labeled training
data availability and real-time processing potential. This tech-
nique also applies an ultra-wideband in real-time to discover
problems based on predictions for the multiclass hypoth-
esis. In addition, to improve general capability, predicting
path loss, low error on the training set, channel estimation,
and robustness of the response to channel distortions in the
physical layer of development, networks rely on supervised
learning. The self-sustaining and proactive wireless networks
respond more robustly to channel distortions and efficient
approaches to the physical layer. These are efficient advances
for the physical layer in MIMO system approval for making
real-time network decisions and achieving a big data rate
when their capacity is proportional to the complexity based
on training data under channel non-linearity [143]–[145].

The wireless networks need to use a higher number of
training samples to select the optimal state decision based
on the historical data of traffic packs and using the super-
vised learning for URLLC. Conversely, supervised learning
for URLLC makes traffic and mobility predictions based on
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information sharing to approve real-time network decisions
through estimating the time-sequence models of the channel
such as Markov chain models, which cannot provide suf-
ficiently accurate traffic packs for URLLC to support 6G
networks. Therefore, providing sufficiently accurate traffic
packs for URLLC depends upon improving the precision of
accuracy data in the supervised learning environment to avoid
leaving a large number of training samples unlabeled. This
must be avoided in order to achieve the long-term dependency
of data and guarantee the QoS requirements of URLLC.
Large interference and huge communication collisions are
created at the beginning of each prediction and failure in
detecting probability due to the long training of prediction
errors that were incurred through using supervised DL in
URLLC. Through the use of SON, the high traffic demands
improved and achieved high reliability and low latency by
avoiding scheduled delays, depending on using the network
management for random and dynamic interference models.
Supervised learning is used for self-optimization, intelli-

gently extracting valuable information from massive data,
and increasing capabilities to sufficiently lower the costs
and elevate the data rates. However, the effect on reliabil-
ity depends on a variety of factors, namely, whether the
enablers of URLLC are able to mitigate the interference
caused by users in neighboring channels, the use of a large
number of training sessions, or collisions with other users
due to uncoordinated channel access. The importance aware
scheduling decisions for efficient edge learning is based on
multiple beams via multiple RF (MBMRF), achievement
channel diversity and data diversity, and data sample signal
is defined as follows:

vk,n =
1

√
P
K

(

y

‖ k‖2

)

, (4)

where the y is the received signal, is the Gaussian random
variable k ∼ CN (0, 1) and P is the transmitting power. The
noise ratio for the real of the combined signal for processing
data for ML at transmitted data, video is given as follows:

SNRk =
2P

σ 2
| k |2 , (5)

where σ represents the noise in the real dimension with
variance. The optimized data importance is difficult due to
a shortage of tractable mapping from noisy data importance.
The data importance learning is typically measured by its
uncertainty, as viewed by the model for efficient edge learn-
ing based on MBMRF. The training of MBMRF at the edge
intelligent devices for the k th local dataset of the edge intel-
ligent devices and SNR.

Nevertheless, in a mobile cellular network, ML provides
adaptability to the accurate path-loss estimation and high
throughput, depending on the use of the predicted perfor-
mance learning-based dynamic frequency and the bandwidth
allocation. A predictive estimate of the path-loss for every
user is provided based on the applied vector regression to pro-
vide a QoS accordingly [146]–[149]. The channel-learning

FIGURE 6. Edge Learning performance for importance-aware
scheduling [150], [151].

framework in wireless communication performs the require-
ments of URLLC with a target (block error rate BLER)
through accurate location information of CSI. The exploited
location information depends on channel learning, which
builds a supervised learning framework in multi-tier net-
works, [150], [151] as shown in Fig.6. In addition, aware
importance scheduling reduces the effect of channel fading
and noise on the predictable received data sample, where the
SNRk and vk,n are SNR and the nth of a data sample of the kth
users. The importance aware from multi- level edge devices
is expressed as follows:

k = argmax
k

(

1
/

SNRk
)

+ vk,n. (6)

The localization information for a channel is generally
expensive and utilizes the angle-of-arrival (AoA) and time-
of-arrival (ToA) due to multi-path propagation as well as a
small bandwidth. Software-defined networking (SDN) in the
ML mechanism is used to provide 10 gigabits in a modern
broadband hybrid optical wireless network and multiple long
term evolution (LTE) radio communication by controlling the
proper pattern based on the traffic dynamics in the whole
hybrid network [152], [153].

B. UNSUPERVISED LEARNING

Unsupervised learning for URLLC is used to solve non-
deterministic learning problems and create decisions in real-
time. In addition, it is used to process the training data based
on the labeled training-data set and also assist in achieving
the desired output. Achieving high availability with a small
loss of bandwidth efficiency is attained through the QoS
requirement of URLLC, by learning the hidden function with
unsupervised DL to optimize and train DNN. The transmit
data packets of users depend on authenticating a packet from
a specific signal strength or channel estimation by using
conventional statistics such as the widespread likelihood ratio
analysis in the physical layer protocol. The unsupervised DL
for URLLC guarantees the QoS requirements on the E2E
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latency and reliability for every user in terms of the delay
and total packet loss probability [77], [78], [154]. However,
the flexible transmission time interval is required for the
channel-estimation support vector in ML to detect the data
rate for linear scales and reduce the delay and packet loss
rate of URLLC. The training data uses the learning pro-
cess to improve the transfer of information through con-
volutional neural networks on very big datasets. Enabling
URLLC improves the channel quality based on applying a
low complexity learning-based heuristic process that keeps a
vector machine for user connection. In addition, the efficacy
of unsupervised learning techniques which function to repeat-
edly regulate the number of retransmissions and improve the
BLER, depends upon an analysis of dynamic parameter pre-
diction, traffic control, improvement in the capacity, adjusting
the position of the cellular cells, and mitigating the inter-cell
interference in the ML algorithm [155]–[158].
The ML for artificial neural network (ANNs) is able to

perform tasks in a multi-level architecture as A : z ∈ Z ⊆
Xn → b ∈ B ⊆ Xn, where z is the data vector, b is the output
produced by the ML algorithm, and A is the performance
function to maximize the performance metrics; In z ∈ Xn,
Z and B represent the set of z and b. By utilizing the best acti-
vation function, an,l to sn,l obtains fully joined layers that are
essential for ANNs to be able to reduce the computing delay
and select the activation function of the hidden layers [159].
The processing achieved in every neuron, n, for layer l − th

in the network is then implemented to search for the optimal
decision. The output is the neuron, zl (n) = an,l

(

sn,l
)

, where
the intermediate-term, sn,l = βTn,lzl−1�n,l + ρn,l , is used
to improve the training process in an unsupervised learning
environment by selecting the optimal training for DL to learn
the complex interference in order to reduce loss and acquire
the desired input-output. The an,l is called activation function
of neuron n in layer l. The architecture employed in the DNNs
consists of three hidden layers, as shown in Fig. 7(a), where
the training process optimizes the ANNs by applying the
active function for weight, βTn,l, �n,l , and bias ρn,l terms.

To decrease the loss acquired in the actual output, zTn,l ,
the amount of data required is significantly decreased. ρn,l ∈
Xn represents the bias term of neuron n in layer l, while βTn,l
represents the weight of the connection between the k − th

neuron in layer l − 1 and the n − th neuron in layer l, and
�n,l represents the iterative updating for each iteration onto
one layer of the ANNs and computes �n,l at the output of
k − th to form a hidden layer used in the production of
the final output of the neuron zl (n). Based on the experi-
mental results, the neuron of layer n0 has the dimensional
input vector, z0, and is served to the network through the n0
neurons of the input layer, which passes across the hidden
layer, l − 1. Achieving an increased capacity and a more
achievable big data rate requires utilizing the input data and
training process in an unsupervised learning setting of the
DL-dataset size by developing data-driven resource manage-
ment, with an affinity to the propagation channel, as shown
in Fig.7 (b).

FIGURE 7. (a) DNNs architectures for Joint layer l − th, (b) Achievable rate
vs. the DL training dataset size, and (c) Training loss and validation losses
versus training epoch number in URRLC.

The channel that is perfectly aware of interference for
DNNs can learn to mitigate complex interference based on
affinity propagation clustering in the unsupervised learning
methods. The DL utilizes THz communication to maintain
the perfect channel quality estimation and high prediction
accuracy based on the time-varying channels such as a drone
small cell (DSC) in real-time operational data. The perfect
channel quality estimation and the high prediction accuracy
reduce the loss acquired in the actual output zTn,l by decreasing
the amount of data required to reach the required performance
level.

For the physical layer, the unsupervised DL develops
an E2E optimization transmitter for a single process in a
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communication system by reducing the bit error rate and effi-
cientlymitigating interference by using strategically designed
neural networks. The domain-relevant performance metrics
are enhanced by using the quantitative metrics for a shared
radio communications signal to achieve both data bits and
accurate channel estimation through the current unsuper-
vised learning algorithm [88], [72], [129], [189], [190]. The
improvement of the total cell throughput depends on enabling
the hidden structure of unlabeled data, while the reduction of
energy consumption depends on applying the unsupervised
learning algorithm to ultra-dense small cells. The challenges
depend on the integrated communication in high and large
antenna arrays in a massive multiple-input multiple-output
(MIMO) system that creates complexities in hardware imple-
mentation design when upgrading from 5G to 6G [163].
In addition, the unsupervised learning of the physical layer
improves routing and guarantees message authenticity, traffic
control, parameter prediction, complex networks, and mobil-
ity management.
The proposed ANN implement with l = 5 hidden layers

and having 128, 64, 32, 16, 8 neurons, respectively. To avoid
any redundancy, the two hidden nodes join to the same
input layer with the same activation function and should
have various initial parameters. The activation functions of
the hidden layers include the rectified linear unit (ReLU),
which is proposed to improve neural networks during the
training process. The unsupervised DL for URLLC achieves
the desired performance on the E2E latency and reliability by
decreasing errors quickly and moving towards a very small
value based on the average training loss and validation loss
for the ANN, as shown in Fig. 7(c).
The hidden layers alternate the ReLU function and expo-

nential linear unit activation (ELU) functions to improve the
accuracy and decrease the number of needed neurons. The
initial hidden layer has an ELU activation, the extra hidden
layers alternate ReLU and ELU activation functions. The
output layer uses a linear activation function, which produces
low training error and decreases the output error [159].

C. DEEP REINFORCEMENT LEARNING

Deep-RL is proposed to support model-free URLLC and a
highly dynamic transmission in smart cities and reservation
of reliable wireless connectivity for air networks based on
the resource allocation in 6G networks [164]. In the last
few years, improvements to games, robotics, and natural
language processing have been studied based on develop-
ing DL or DNNs in reinforcement learning. The multi-level
architecture has improved through the decrease in treating
time and delay-prevention that has occurred through enabling
deep-RL in URLLC. The proposed deep-RL features are a
new model-free design for resource management that guar-
antees the balance of long-term reliability and low latency
without explicit prior assumptions on every user who is under
data rate constraints [165].
The improved high-traffic demand and the achieve-

ment of the QoS in 6G depend jointly on optimized

bandwidth allocation and overlapping positions of URLLC
users by using deep-RL for joint scheduling of eMBB
and URLLC [166]. The deep-RL in URLLC enables
a feedback loop among the decision producer and the
physical system by generalizing the arithmetical struc-
ture of the information from the desired input to
the preferred transmitted output. This decision proce-
dure allows the feedback loop to maximize the packet
scheduling and traffic prediction among the Monte Carlo
Method algorithm and Q-learning techniques. These
techniques developed for network management include
Q-learning and Markov choice development in the applica-
tion layer by selecting the optimal active caching, data rate
allocation, and error prediction. The deep-RL and URLLC
jointly enable the autonomous building of symbols, protec-
tion, channel tracking, beamforming, energy harvesting, and
the multi-routing of the complex network layer to provide a
more reliable peak data rate and a low-interface latency.

Table 6 summarizes various ML algorithms with big data
in mobile and wireless communication networks.

The vast amount of automotive technologies deployed
in 6G wireless communication networks help to improve
the reliability of broadcasting and the big data rate between
the ground-based controller and the system communica-
tion such as drone racing [167]–[169]. Moreover, achiev-
ing maximum energy efficiency in wireless communication
networks depends on the good decisions of DNN by using
an emerging deep-RL algorithm together with URLLC to
serve unmanned aerial vehicles [204], [170]. The perfor-
mance channel metric covers a wide of factors that influ-
ence a channel condition and nodal mobility in wireless
networks so that it is not necessary to rely on every individ-
ual factor. The deep-RL algorithms with URLLC apply the
learning-based dynamic channel selection to achieve context
awareness and intelligence [171]. The strong interference
and large transmission collision are reduced through the
application of a prediction error in deep-RL with URLLC.
Therefore, reducing the unlabeled training samples achieves
a high QoS by proposing an approximating feedback deci-
sion. This algorithm applies Q-learning to determine the
state and action of [172] Q-value in deep-RL with URLLC
for immediate reward and to discount the reward from
the output of the DNN [205]. However, the efficient han-
dover management, high capacity, and guaranteed high
QoS in heterogeneous networks that using The Q-learning
algorithm for reinforcement learning achieved [173]
related to load balancing [174]–[177], mobility manage-
ment [178]–[181], user association [182]–[184], and resource
allocation [177], [185], [160], [186]–[190], [191].

D. DEEP LEARNING PLATFORM FOR MOBILE

NETWORKING WITH URLLC

In this section, the main key underpinning of DL network
control and deliberation is presented. The possible explana-
tions of mobile networking problems are mainly unexplored.
Successfully processing big data that stems from several
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TABLE 6. Summary of ML with big data in the mobile and wireless communication networks.
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sources depends on using a DL system with URLLC, which
enables the real-time connection in 6G networks. URLLC
improves network management based on using reaction anal-
ysis and the correlated prediction [87], [191], [199]–[202].
The URLLC design focuses on enabling precise predic-
tions of channels and the high speed of traffic data, which
is essentially predictive, and controlling the new devel-
opment in DL. Furthermore, the high prediction accuracy
in DL with predictive URLLC diminishes the discrepancy
between the practical and predicted losses of the training data
using time-varying channels [203]. Also, the low-latency and
reliable ML supports the data-driven network in the edge
intelligence by decreasing latency and the rate of transmit-
ting device-generated data to the cloud. Creating intelligent
decisions without any human interference allows for accu-
rate predictions in a DNN. Therefore, achieving substantial
improvements in the efficiency of wireless systems depends
on utilizing DL in the decision-making process on the basis of
this information and its approval of risk analysis or prediction.
The strong function mechanism in DL adapts to the high

traffic in the real-time data network by using a routing pro-
tocol. It also employs an empowering intelligent resource
to adopt mobile computing and achieve network intelli-
gence [204]. In this case, it is used to solve the control prob-
lem in mobile networks by acquiring the nearby systematic
applications of advanced ML techniques and unsupervised
DL with predictive URLLC [36], [205].
The expert’s cost functions with inverse reinforcement

learning utilize the initializing policy with behavioral cloning
to improve the learning speed for expert data [206]. The
DL platform for mobile networking with URLLC provides
the optimal action for the multi-agent reinforcement of DL
depend on the data correlates provided by an agent (a learning
machine) continuously with the environment. Meanwhile,
in mobile networking, using DL with URLLC reduces the
problem of teachingwithout the demand for explicit program-
ming. Moreover, designing it will be improved through the
use of generic imitation learning methods [207]. The details
of the inclusion of DL in future wireless communication and
how it can improve the performance in areas of computer
designs discussed in [206]–[211]. Furthermore, in [212],
a study is conducted to show what treatments involving the
IoT have gained from using DL algorithms. IoTs have been
shown to improve on big data and streaming data through
using the DNN architectures [212].
New static tools such as android apps and a smartphone

app-based in the wild were improved by optimizing DL
models. The allocated DL was implemented as an iterative
map reduce, computing on many spark workers to improve
the learning time of deep models and used to increase mas-
sive streaming data in mobile devices such as smartphones
and IoTs [211]. Providing more intelligence with a more
powerful backend, such as video quality, low battery con-
sumption, and high-data usage depends on implementing
DL. These achievements increasingly assure positive results
in 6G wireless mobile. Achieving a variety of domains with

low-dimensional state spaces requires developing a novel
AI agent by using the deep convolutional neural network,
namely, a deep Q-network [213]–[215].

The main objective of this article is to present an up-to-
date analysis of URLLCwhile stressing the importance of the
technical challenges and solutions posed by the generation
partnership project (3GPP). We first describe the multi-level
architecture for URLLC and DL that enables a data-driven
service requirement as illustrated in Fig.8, and then discuss
the performance of 6G networks for device intelligence and
enabling technologies.

VI. MULTI-LEVEL ARCHITECTURE FOR URLLC IN DL

In this section, we address the problem in section (V) by
proposing amulti-level architecture that enables a data-driven
network for URLLC. Developing a multi-level architecture
enables device intelligence, edge intelligence, and cloud
intelligence for URLLC to be the best realized in MU and
MEC. The URLLC is a new application in 6G communica-
tion systems and will be the key enabler for mission-critical
IoTs. Achieving a data-driven DL for URLLC in future
6G networks is very challenging, whereas facilitating
mission-critical IoTs with severe requirements on E2E is a
more readily achievable way to decrease delays and increase
reliability as is studied in [216], [211]. The data-driven DL
has the ability to learn a training data set and the need to
obtain the optimal varied range of policies in wireless com-
munication.Moreover, the reliability requirement depends on
either a wide range of policies or the packet loss probability
of (10−5 ∼ 10−7), achieved through using the long training.
However, securing a sufficient data-driven DL only becomes
possible when the packet arrival rate of a device is high. The
latter is achieved by a long duration of a large number of train-
ing samples to send more than 107 packets [33], [32], [216].
Meanwhile, improvingmulti-access edge computing and data
analytics at the edge of cellular networks in 6G requires an
effective intermediate layer that provides fast and localized
data processing capabilities.

The E2E delay and reliability requirements are the chal-
lenges in 6G and are achieved through deploying the mas-
sive URLLC. However, the E2E delay is much greater than
the transmission delays due to interference; this issue is
solved by using a large number of training samples and
ultimately improve a multi-level architecture for data-driven
DL. In practice, supporting the integrated data transmission
(throughput) in cellular networks depends on two advantages
in 6G IoT. The first is IoT data transmissions of ‘‘massive
IoT’’ in cellular networks that are designed to meet inte-
grated data transmission requirements such as long-range
applications, transmission reliability, spectrum resources, and
strength over long distances. The second one is that the cost of
IoT devices is low and that communication protocols use very
little power during the integration of radio frequency identi-
fication (RFI). RFI is accomplished by eliminating the cross-
interference between IoT devices and MUs and enhancing
sensing capabilities and intelligence. The whole data-driven
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FIGURE 8. ML for enabling mobility management, scalability, and robustness in URLLC.

approaches are developing in 6G by employing a DL and an
integrated ANN that uses the accurate mathematical mod-
els for the initial network in all phases of network design.
Also, data-driven development decreases the amount of live
data required to be learned and calculated in implementing
data-driven techniques. To address this problem, we propose
a multi-level architecture that enables a data-driven DL in the
edge and device intelligence for the MU and MEC servers.

A. PERFORM OF 6G NETWORKS

6G networks are data-driven associations supported bymetic-
ulously prepared unlimited wireless connectivity. The multi-
level architecture that enables a data-driven DL in the edge
and device intelligence represents emerging driving appli-
cations of 6G. The architecture of DL increases the reli-
ability and reduces the delay of URLLC devices. It also
increases the implementation of all involved massive IoT
devices. In addition, DL is very challenging for the reliability
of data transmitting that granted a total of traffic prediction
within the scheduled time duration to satisfy predictions for
futures 6G systems. The data-driven DL has the potential
to provide ultra-high data rates to end-users and generate a
good policy according to the direct cost feedback in wire-
less networks [217], [218]–[222]. Meanwhile, the reliability

requirements and DL in URLLC require a long training phase
and an exorbitant number of training samples. The connection
capability and suitable delivery of a wide coverage depend
on the effective reduction for the signals propagated at these
frequencies [223].

The IoT networks with URLLC are able to seamlessly
integrate data, processes, and physical devices in 6G. This
is because the IoT is often involved in self-organized
decision-making to fill the gap between 5G and market
demand. Therefore, 6G must reinforce URLLC in most or
emergency proceedings with traffic designs and sequential
device densities. URLLC is essential to support intelligent
services, reconfigure intelligent surfaces, and solve problems
in 6G by growth data traffic, increasing battery efficiency, and
increasing data-driven DL for ultra-reliable are summarized
in [59], [60], [224], [225]. The following is needed to address
these challenges 6G.

1) END TO END QUALITY OF SERVICE

The URLLC in 5G systems achieves third generation part-
nership project (3GPP) levels on latency and reliability to
successfully release delay-sensitive information. Meanwhile,
end-to-end (E2E) latency and reliability requirements hardly
improve in 6G networks, which require adjusting the whole
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network according to a short channel code design and an
optimal policy for short packets that supports deep learning
in URLLC. The QoS for E2E must be 10−3 and the relia-
bility of packet loss probability should be less than 10−5.
To obtain ultra-low latency while providing ultra-high reli-
ability, the transmission delays must be short block-length
channel codes, depending on the decoding error probability
in the short block-length system.
5G mobile communication systems had already mini-

mized the E2E service latency for edge AI by optimizing
nearby edge computing techniques and distributedAIwithout
increasing the complexity [30]. But in 6G, the E2E QoS will
be adjusted within the entire network to optimize commu-
nication by improving the scheduling scheme for wireless
channels, queue states of buffers, and workloads of servers
to provide big data-driven DL in URLLC [34]. Therefore,
minimizing the E2E QoS in 6G depends on using URLLC
under the constraint on packet-loss probability. This transfers
short packets enhance offloading probabilities, and updates
network architectures such as optimizing scheduling policies
and evaluating the implementation of the physical layer [226].
Therefore, AI holds a unique importance in wireless net-
works [227], especially the latest advances in deep learning,
in increasing the data available for every user and the preva-
lence of smartphone devices. Edge computing offers one
promising path to decrease the treating time of the local server
of every device and prevent delays using DL in URLLC.

2) ACCESSIBLE AND FLEXIBLE CONTROL PLANE

The control plane latency is caused by the random access to
the usual up-a-radio resource control and defines the time
needed for the MU to transmit an efficient state from IDLE
to the start of a continuous data transfer. The future of 6G
networks depends on designing the control plane to distribute
and collect multiple signals to the beginning of incessant to
lead to big data, and the minimum control latency is 10ms
to reach a performance target in 3Gpp. The user plane is the
one-way time in 3Gpp for URLLC, and the minimum user
plane it is 1 ms. Both the control and user planes are silted
in 5G networks. Moreover, big data traffic is spurred by the
IoT through fully flexible and better scalability [228].
The DL algorithms for the control plane are fully central-

ized or distributed through an analysis of the dynamic and
immense data comprised of multiple signals. This data is used
to increase the better scalability and flexibility in 6G. The full
centralization of the control plane in the network increases the
flexibility of treatment based on the control plane intrusion
detection bymanaging the scheduling and resource allocation
for DL. The control plane uses the learning process and trains
the DNNs to guarantee the QoS requirement of URLLC [61].
The short-packet transmission and shorter transmission time
interval are very important for URLLC [229], [230]. Several
critical elements to 6G radio access networks necessitate
fulfilling the service requirements to provide better scal-
ability and flexibility. This is done by designing the net-
work functions for the control plane based on key issues

such as fully centralized, partially centralized, or fully dis-
tributed [228], [231]. Therefore, DL algorithms are able to be
unified and allocated based on network functions.

3) COMPUTING RESOURCES AND MULTI-LEVEL STORAGE

In 6G network transfers, achieving greater data transfers
depend upon the full realization of the IoT and DL in big data
analytics. Incorporating AI into a future 6G network depends
on evaluating storage and computational capacities, which
is very important for multi-level storage usage. 6G enables
scalable MEC through deploying multi-level storage and
computing resources [224]. Edge computing is a very impor-
tant technique in 6G that guarantees ultra-low latency. Using
training data to train DNNs and deploy computing resources
at MUs based on proposed dense high-performance servers in
a high real-time system [232]. TheDL is utilized to learn from
great amounts of supervised data to represent big data analyt-
ics and exploit the availability of huge amounts of data [233].
The multi-level storage and computing services are achieved
by using fog computing, which is able to reduce the latency
in URLLC [217], [234], [235], [173]. Guaranteeing a general
ability of the trained network necessitates the employment of
a large number of training data in DNNs. In addition, high
centralized and high-performance computing resources pro-
vide high capacity backhaul connectivity, big data, and low
latency for URLLC. However, some of the IoT’s device data
will be handled by edge-computing resources. Training the
DNNs depends on the network function, where the IoT device
data is deployed by edge-computing resources for MUs and
MEC servers by integrated intelligence in the network.

The edge-computing resources and mobile-edge com-
puting must be processed to apply more centralized
high-performance computing resources for MUs. In addi-
tion, edge computing achieves a high capacity and improves
accuracy by utilizing predictive data analysis and ML in
real-time for the holistic view of AI. The device mobility
and communication latency are difficult on a massive scale of
IoTs systems. Edge computing allows a real-time framework
for understanding intelligent platform management, which
provides a policy for decentralized IoT system control [236].

B. MULTI-LEVEL ARCHITECTURE

From the above feature in section V, it can be seen that a
significant improvement in 6G wireless network architecture
consists of smart MUs, andMEC at the access point. To guar-
antee the future functionality of 6G, the multi-level archi-
tecture included mobility and traffic prediction for all MUs,
a scheduler design at each access point, and user connection.
These elements of a multi-access point wireless connections
network are considered.

1) USER LEVEL FOR DEVICE INTELLIGENCE

The local prediction information is able to achieve a highly
efficient user-level intelligence and generate decisions based
on mobile device predictions, such as flexibility and traf-
fic state. Maximizing the number of URLLCs depends on
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evaluating the reliability of device intelligence. The MU
provides good decision-making abilities based on a con-
nected device’s network activity by analyzing the probability
error prediction and limiting the predicted information in
device intelligence at the user level. The efficiency of user-
level intelligence depends on the mobility management for
device intelligence technology. This technology selects the
predicted traffic state by enabling the end-user and then
selects the optimal user. The difference between eMBB
and ultra-high reliability will no longer work in reality and
Brain-Computer Interactions. This is because both reality
and Brain-Computer Interactions require not only high reli-
ability and low latency but also an elevated 5G-eMBB of
big data rates. Enabling 6G requires applying any desired
capability within the rate-reliability latency through apply-
ing the new facility such as the mobile broadband URLLC.
This URLLC is based on the predicted traffic state and
reliability with regard to a packet loss probability between
(10−5 to 10−7). Furthermore, the prediction error should
be extremely low to improve the URLLC [139], [47].
The prediction error probabilities depend on neglecting the
hybrid automatic repeat requests, improving mobility pre-
dictions in traffic state, and decoding [140]. Deriving the
prediction error probability allows for the capability to
increase and serve a data-driven DL in an upper bound of
URLLC [46].

2) CELL LEVEL FOR EDGE INTELLIGENCE

The AI used for edge intelligence is functionally essential for
quickly analyzing large quantities of data. Providing efficient
AI for edge-cell levels depends on having a strong demand for
integrating edge computing and AI. Therefore, in edge cell-
level intelligence, deep-RL achieves higher package reliabil-
ity with the lesser cost of industrial equipment and optimizes
the scheduler at the access point with edge intelligence. How-
ever, the cell level for edge intelligence is planned to enable
URLLC to enhance scheduling in computing communication
by keeping advanced AI in edge intelligence by minimizing
E2E delay and achieving high reliability for URLLC. The
proposed ML training entails controller switches, multiple
training processors at the cell level of edge intelligence to
enhance the accounting of transmission overhead and the
channel dynamics [30], [161], [237], [238].
The deep-RL enables access points by estimating the

decoding error probability in the short block length,
the access point able to evaluate the delay, and the reliability
of a clear exploit by transmitting a great number of packets
through the wireless network. The deep-RL minimizes the
average training latency by evaluating the loss and guaran-
teeing target reliability. To address this, the theoretical for-
mulas are applied to evaluate a clean-slate design in terms
of DNN architectures [62], [63] and used practical coding
schemes like polar codes to guarantee and reduce trans-
mission error probability with short, block-length channel
codes [30], [48], [141], [239]–[241].

3) CLOUD INTELLIGENCE AT NETWORK LEVEL

The could intelligence in DNN improves the estimation chan-
nel for large-scale channel gains by guaranteeing a high
packet-arrival rate from all MUs to the access point [33]. The
intelligence-based cloud computing allowsMUs to act as data
collectors that always transmit data to cloud servers through
the access point with controlled data preprocessing capabil-
ities. Because of difficulties in predicting queuing delays,
the DL uses off-line datasets at a central server algorithm
through using the mobility management entity for selecting
the optimal user association in the large-scale channel gains.
This is to guarantee a high packet-arrival rate between the
mobile edge and each access point [242], [51], [217], [61].
This scenario requires a decrease in connection with the
cloud. Its applicability is controlled by the battery capabil-
ities of edge hardware. To address this, the optimal solu-
tion proposed for the training samples through optimization
algorithms depends on when channels change and also on
training the DNNs for optimization. In addition, based on a
highly active network that is entirely updated to the central
cloud through real networks, the excessive communication
overheads are made adequate.

The predictability in a large, central cloud-only area
needs information that is static to prevent big over-
heads [33], [53], [51]. How the AI training is divided between
the edge and the cloud depends on what grants their small
power necessities for devices at the edge of the network and
intelligent phones. Currently, the cloud-centric architectural
model of AI requires end-user devices to transmit data to the
cloud while accruing a high cost for data transmission and
meets delays in achieving the low latency requirements for
URLLC. This requirement possibly reflects the latest infor-
mation on joined learning and allocated learning for edge
devices.

4) INTELLIGENCE SENSE LAYER

Deep learning is used to enhance the stringent requirements
of 6G for an intelligence sense layer to provide high secu-
rity and low latency. The integration of sensing data in
physical environments and high capabilities with mobility
is the most primeval responsibility in 6G networks. The
intelligent-sensing layer was described by independent intel-
ligent sensors and information pertaining to the whole phys-
ical network layer. Established routing protocols are mainly
based on the sensing layer. Moreover, improvements to the
design and flexibility of sensors and innovations in sensing
functions depend on dedicated signal processing. Whereas
sensing is very important in cellular IoT, the highly accu-
rate sensing for the IoT reduces the latency of big data by
transmitting sense information through wireless communi-
cation networks. For example, address spectrum shortage
problems and spectrum efficiency depend on improving the
spectrum sensing technique in the physical network layer
for 6G networks. Conversely, the intelligence sense is very
important for minimizing the average prediction error and
optimizing the sensing decision. This depends on whether
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the base-learner for stochastic-gradient-descent is deployed,
which decreases the operating cost of transmission and data
redundancy through arranged fusion accuracy [162], [243].
Moreover, the intelligence sensing layer is able to help in
interacting with the physical environment and provide an
ultra-reliable transmission between sensors, controllers, and
actuators for a high-definition video transmission among a
remote monitor, a procedure, and another slice [244].
The sensing in the physical layer is able to sense several

physical parameters and provide more integrated services to
collect data using sensors for MUs, which are the crucial
drivers of the IoTs [245]. Avoiding interference and select-
ing higher-layer protocols depend on developing a dynamic
sensing protocol in cross-layer architecture. The intelligent
sensing for both space transmission channel information and
interferences requires using intelligent channel sensing. This
intelligent channel sensing utilizes the cross-layer cogni-
tive networking algorithm and develops to improve system
reliability and reconfigure network protocols at several lay-
ers [246]. Furthermore, the lack of data transmission in the
routing of mobile intelligent fog computing will be enhanc-
ing by employing the routing protocol through the control
procedure of the cluster. This is achieved through employing
fog nodes onto the sensing layer. The guaranteed optimal
clustered routing depends on selecting an optimal number of
clusters and the distance of the single-hop by employing fog
nodes onto the sensing layer [246], [52].

5) MOBILE DATA MINING AND ANALYTICS LAYER

The analytical layer aims to treat and evaluate the great
amounts of data created from a massive number of devices
connected to 6G networks. The big data DL aids in data
reduction at early stages and analyzes the big data during the
preprocessing of sensitive data created from a large number
of devices. Achieving the valuable feat of early informa-
tion detection from large data streams requires using a large
number of high-dimensional and sparse data [52], [247].
In addition, the prediction of user mobility, traffic comport-
ment, and channel variants enable flexible network capability
distribution at the core of the network through leveraging data
mining and big data technology. Data mining and information
detection are needed to analyze the collected data and support
improved decision-making during the processing of big data.
The improvements in channel modeling were initiated by

the big-data DL method, whereas data mining approaches
used the mining connection rules to accelerate the develop-
ment of information detection, to avoid the low-density value
of high mobile costs, and to provide efficient transmission in
the complex channel [55], [248], [249], [250]. The proposed
DL algorithms improved big data by using different methods
for huge data reduction approaches [16]–[18], [33], [56].
In the era of huge data, several data analysis systems are
facing great challenges as the data capacity increases in 6G
networks. The data capacity in ML-based mobile devices for
DL is improved by solving the complex problems preventing
increasing data capacity. This improvement is generated by

simulating neurons and synapses that are able to produce a
learned hierarchical approach to current big data samples and
avoid the low-density value of big mobile data [57], [251].
Facing the challenges threatening future 6G networks depend
on the development of data storage during the preprocessing
of sensitive big data from physical environments such as
heterogeneous sources, data mining, and analytics.

The quite valuable initial knowledge was obtained by
analyzing the collected data regarding information detection
while the data-driven DL improves 6G by advanced data
analytics. The proposed AI-based enhancements are self-
aware, self-adaptive, and use predictive networking to run
the network. These advanced methods analyze the collected
data and support improved decision-making during the pro-
cessing of big data, enhancing the system’s intelligence [54].
Moreover, the collected data from physical environments are
enhanced by decreases in processing time and storage space
through features such as channel information being greatly
collected and high-dimensional data. This great data collec-
tion is enhanced by utilizing self-aware, self-adaptive, and
predictive networking algorithms to achieve more in-depth
knowledge of the performance of 6G networks. The pro-
posedmethod incrementally optimizes the swift decision-tree
algorithm by a balance of general accuracy, high-prediction
accuracy, and tree size. This proposal guarantees the best
performance under imperfect data information without rein-
venting the proverbial wheel [55].

6) INTELLIGENT CONTROL LAYER

Great agents such as devices and base stations are enabled by
utilizing a selection of correct actions such as power control,
spectrum, and network connection. The power control, spec-
trum, and network connection all improve based on the intelli-
gent control layer that involves learning and decision-making,
and that improves from lower layers. Determining a feedback
loop between the decision-maker and the physical system to
adopt universal AI services from the core to the end of devices
attached to the network requires using a deep-RL [22].
Decision-making in 6G networks improves on the basis of
the precoding variables in THz transceiver systems, which
allow massive agents to intelligently select the maximum
of correct decisions through joining the high-quality service
requirements. However, power control access to the physical
channel for all upper layers and network connection functions
are achieved by utilizing AI techniques for medium-access
control (MAC). Meanwhile, every agent has an intelligent
brain. The AI in 6G networks achieves optimum network
sharing, E2E PHY scheme, edge computing, and heteroge-
neous networking by using the learning process to increase
the performance of every device. Furthermore, intelligent
deep-RL algorithms will enable a more reliable and estab-
lished data rate per application, based on advances in ML,
which facilitate the real-time analysis in different layers of
the network such as the medium access layer, the physical
layer, and the application layer [252].
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High levels of feasibility, self-confirmation, self-
improvement, and self-regulation are achieved through
employing AI learning. The high coverage area, big data
rate, and applicability improved in 6G networks by using
the MAC layer protocols with IoT [253]. Therefore, MAC
allows big data analytics to extract huge patterns for machine-
centric communication based on allowing self-organizing
processes [254]. The MAC layer protocols with IoT enable
access to carrier sense multiple accesses with collision avoid-
ance and access to the physical channel to improve the
transmission efficiency for all upper layers and handle the
big data rate. Supporting THz band communication depends
on using the MAC protocol in multi-band transmission with
high flexibility that changes during the aforementioned bands
for data transmissions through designing more flexibly inte-
grated networks [255], [256]. The MAC layer proportion
trains cellular AI by using the over-air response to inform
layer weights based on the backward propagation algorithm
to increase the availability of training data. The decreasing
training overhead is a critical product for the feasibility of a
MAC layer based on AI models [257]. The intelligent MAC
protocol improved by using ML, which utilizes classification
training for MAC protocol selection. The operation of the
proposed non-competitive protocols selected the optimal
MAC protocol, which improved big data collection and dense
networks [279]–[282].

VII. FUTURE RESEARCH DIRECTIONS

Future research is based on the application scenarios and a
multi-level architecture that enables a data-driven DL in AI
as well as many supported slices in 6G discussed in the last
section. In this section, we present the future research direc-
tion for AI technologies that will improve the 6G network
performance based on its effective learning capability.

A. COMPUTATION EFFICIENCY

The computation efficiency is a challenging topic for DL,
which is capable of gradually achieving promising results
in wireless networking. The improved computational com-
plexity in 6G wireless networks based on explicit induc-
tive inference models normally pursue learning algorithms
that achieve exact identification. The learning algorithms
are essential to be efficient by developing their perfor-
mance by analyzing the collected data in 6G and evalu-
ating transmission links with every IoT devices designers.
The best computation efficiency was deployed by apply
DL for URLLC in 6G wireless networking. Furthermore,
the computation efficiency for IoT devices trains the neces-
sary DNN treatments in resource-constrained devices such
as self-driving cars, drones, and auto-robots by reducing
the delay caused by device transmission. DL provides high
computation efficiency to design efficient AI by improving
research methods with high-performance computing facili-
ties. These improvements include reducing complex compu-
tation, network control, network edge, storage, cloud, and
end devices of 6G networks. The DNN develops extremely

challenging techniques in distributing the neural networks
based on proposed new designs ranging from systems for
estimation offloading to network architectures [262].

B. HARDWARE COMMUNICATION FOR 6G

The hardware development is a very critical challenge for
designing 6G, where the radio access equipment and IoT
devices have become a more pervasive method to satisfy the
future connectivity requirements. Moreover, involving more
hardware and algorithms designed for Non-Line-of Sight
and multi-beam acquisition allows 6G wireless networks to
operate in THz. The hardware development depends on the
low cost of hardware components and achieving a low-cost
distributed policy with good antennas and the smallest pro-
cessing. In addition, the hardware communication for 6G
can make improvements through using the massive MIMO
techniques that will become more advanced from 5G to 6G
and could involve a new complex architecture such as trans-
mission protocol and algorithm design.

Design complexities in hardware for different communica-
tion implementation DL and AI were overcome by applying
the well-behaved solution in unsupervised and reinforcement
learning environments [93], [263]. The radio access moves
toward THz bands by reducing the cost of hardware, lowering
interference, reducing the power constraints, and increas-
ing the gains for the antenna array, which will consider-
ably affect the transceiver and algorithm design. Advanced
hardware-efficient transceivers are applied through increas-
ing the IoT devices’ storage, highly accurate sensing at IoT,
and civilizing the design flexibility to allow for the develop-
ment of hardware in 6G networks. From increasing the IoT
devices’ storage and producing highly accurate sensing in the
IoT, the latency will be reduced depending on DNN architec-
tures and developing the complicated transmission protocol
for learning algorithm design. In addition, the development
of AI learning algorithms in terms of learning is essential
to significant research for improving high computational
functions such as adapting learning matrix computation and
transferring learning for intelligent communications.

C. SCALABILITY AND ROBUSTNESS

The ML techniques are able to provide an adequate capacity
for big data by increasing the performance of the infras-
tructure that supports immense parallelization and improv-
ing the scalability of model training through treatments that
range from inference algorithms to developed learning [264].
It is even possible to apply the ML techniques in terms of
computing for large data sets, where the total data collected
from mobile networks is too large to predict productivity.
Managing big data require so great capacity for both regulated
and unregulated data that exceeds the capacity afforded even
by established database and software techniques.

Demonstrating high dynamics in both of the base station’s
relatives, the high quality of channels, and network topologies
depend on overcoming the current limitations of AI learn-
ing algorithms. Developing the tremendous robustness and
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scalability of the learning framework to overcome these lim-
itations depends on supporting the possibly infinite number
of interacting entities and high QoS. In addition, enabling
the scalable epistemic uncertainty estimation in DL depends
on the robustness of the design that’s required in real-world
vision. It also requires the use of state-of-the-art DNNs. How-
ever, the high scalability and robustness depend on providing
strong verifiable acuity by designing a dynamic Mix-Train
using an accurate prediction from ANNs to guarantee the
capacity for big data in 6G. The estimation of necessary
scalability is made by subsequently trained robust ANNs,
whereas the ANNs enhance the efficiency and decrease the
processing delay of the communication [265]. Nevertheless,
the proposed compensated learning phase provides a real
estimator of neural networks that were able to evaluate the
robustness of a neural network without the costly testing and
provide robust neural networks.

D. TERAHERTZ COMMUNICATIONS

THz communications are a promising technology that sup-
ports ultra-broadband in 6G networks. The THz band from
0.1 THz to 10 THz was identified as a gap band among the
microwave and optical spectra. Increasing system capacity
and improving spectrum efficiency depends on increasing the
system bandwidth to this THz range. This requires decreasing
the propagation loss to provide the high data-rate communi-
cation for hundreds of Gbps for short-range communications.
It also requires increasing the wireless data traffic volume by
using several folds in 6G. It is not currently possible to run
data-hungry apps that have large quantities of information,
such as video transmission, and spectrum bandwidth, in the
mm-wave spectrum. Therefore, addressing these challenges
requires improvements to spatial-spectral efficiency and a
larger radio frequency spectrum, which are only found in
the THz and THz sub-bands. The merging of THz com-
munications and sensing equipment for future 6G cellular
networks is very important to fulfilling the requirements for a
multi-Tb/s data rate. Additionally, the THz band will sustain
mm-wave, a quiet frequency, to avoid high path loss. The
6G global networks will be an ultra-dense heterogeneous
network, which needs the aid of ultra-high-capacity x-haul.
The large intelligent surfaces enable the super-narrow

beams that will diminish the strict propagation loss for THz
bands and the collected co-channel inter-cell interference.
However, the ML uses THz communication to provide
an exact estimation of channel quality and high prediction
accuracy based on treat time-varying channels. The treat
time-varying channel function as finite-state Markov chan-
nels and utilize deep Q networks able to learn and pro-
vide the best user selection. Meanwhile, the THz spectrum
combined with a DNN provides unprecedented sensitivity
for detecting at air interfaces and user-end levels [266].
It is widely recognized that 6G can achieve the hybrid
THz/free-space based on the hybrid electronic-photonic
transceivers [267]. Enabling the spectrum beyond 140GHz
with exacting products in actual short-range communication

provides high data rates [268]. Nevertheless, the major chal-
lenges that need to be addressed in the coming years depend
on improving the sensibility of the THz band, molecular
absorption, selection, and reducing the complexity circuits
for Analog-to-Digital and Digital-to-Analog conversion and
transmission.

E. ENERGY MANAGEMENT

In the future, the most formidable challenge is energy
management for 6G networks, which requires managing
controlling and decreasing energy consumption. The energy
efficiency will matter more in the case of reducing energy
consumption per bit (J/bit), where more power will be con-
sumed due to intelligent connectivity for massive data pro-
cessing and ultra-large antenna processing. Moreover, energy
management is designed to maintain the efficient treatment
of the harvested energy. The circuit power consumption and
transmission stack enhanced in 6G networks based on design
energy-awareness in mind provides for energy harvesting
circuits and allows devices to be self-powered with high
efficiency and less energy [269].

The advanced energy management schemes are very
sharp in 6G networks. Furthermore, AI techniques have
the potential to help these infrastructures and help devices
optimize energy management strategies through intelligent
energy consumption management. In addition, neural net-
works use AI and DL techniques to optimize energy man-
agement. Achieving the performance tradeoff of the energy
efficiency of THz communications systems depends on
selecting the optimal power in massive antenna arrays
that need to be carefully treated in the ultra-massive
MIMO. However, the current predominant method ful-
fills the future connectivity requirements depending on
deployed energy-harvesting schemes for low-power con-
sumption. Energy harvesting is established to produce the
highest reliability for energymanagement. The reinforcement
learning for energy harvesting adapts its energy management
policy and power consumption for a time-varying environ-
ment to achieve a very low computational output that is
suitable for resource-constrained systems in reinforcement
management.

Achieving the highest throughput possible and low energy
consumption requires using harvested energy prediction
schemes that use an improved pro-energy model to develop
energy management [270]. Furthermore, the extended
Kalman Filtering techniques adopt its energy management
method by controlling and decreasing energy consumption,
which is achieved by predicting the harvesting power for AI
through adaptive security specification in the IoT and 6G
networks. Then, it must be addressed that the 6G high-level
security necessitates the consumption ofmore energy. For this
reason, the IoT sensing devices are proposed to provide the
energy harvesting technique based on the adaptive security
technique for IoT devices at transmission signal through
THz [138], [271].
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F. NOVEL CHANNEL ESTIMATION

The channel estimation for identifying entrance will be an
essential module of ultra-high frequencies in 6G. Hence, 6G
wireless network systems require improved channel estima-
tion performances. This can be achieved through design-
ing efficient processes for directional connections by using
multiple frequency bands and high bandwidth. Producing
accurate CSI is challenging due to channel estimation errors
and mobility. The ML in DNN improves channel estimation
in future 6G networks based on training and inference.
The physical layer employs unsupervised learning to

exploit novel channel estimation techniques. This is
done to improve the efficiency through the proposed
channel-aware feature extraction and interference elimina-
tion. TheDL-based channel estimation improves the accuracy
of the estimation during the training of the neural network,
although it must cope with complex channel environments.
The equalization modules of the channel in the physical
layer that were realized in a single DNN were able to
achieve better accuracy of the channel estimation [272].
However, it is difficult to obtain a channel transfer that can
deal with the time-varying channel and location. Solving
this issue requires auto-encoding an E2E learning system
within DNNs to enhance the capacity and accuracy of the
estimated channel. Meanwhile, improving intelligence to the
physical layer also improves the smart estimation of symbol
detection, channel tracking, and mitigation of interference at
transmission signal between transmission and receiver [273].
Besides, eliminating the applied priority of signal processing
enhances the capacity and improves the accuracy of channel
estimation by using ML for the physical layer. The high data
rates and low latency for future 6G implemented in real-time
are achieved through using the channel model standards
for 3GPP ITU to support the modeling of channels up to
100 GHz [274]. TheML and the intelligent channel modeling
will be automatically predicted and will allow the channel to
more adequately accommodate the big data.

VIII. CONCLUSION

URLLC is an innovative technique that can adequately
address the reliability challenge in 6G communications and
has a wide array of applications. The applications include
tactile internet and intelligent transportation systems based on
ML techniques. The main contribution of this research paper
is to enhance the data-driven DL in AI based URLLC. This
enhancement enables device intelligence, edge intelligence,
and cloud intelligence through the use of the training pro-
cess in unsupervised learning for URLLC. A comprehensive
review on advanced URLLC and its enhancements was thor-
oughly explored in this research paper, and prepare references
to discuss certain primary problems that are still unresolved
in this research field. After exploring this comprehensive
review on advanced URLLC some AI-based solutions are
provided to be adopted into different features of 6G net-
works in deploying and managing multi-level architecture

for URLLC in DL. These AI-based solutions are data-driven
in the edge intelligence, device intelligence in MU, and
cells. In addition, this paper presents the AI technologies
that improved the 6G network’s performance based on its
effective learning capabilities. The learning capabilities such
as computation efficiency, hardware communications for 6G,
THz communications, energy management, scalability and
robustness, and novel channel estimation. The ML in 6G
utilizes THz communication to achieve a perfect channel
quality estimation and high prediction accuracy based on the
treat time-varying channels. In addition, future connectivity
requirements in 6G devices depend on deploying energy-
harvesting schemes for low-power consumption. Therefore,
the high computation efficiency that 6G provides requires the
development of efficient AI by increasing research methods
through high-performance computing facilities and develops
extremely capable methods to distribute the processes of the
neural networks.
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