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Wireless signal recognition plays an important role in cognitive radio, which promises a broad prospect in spectrum monitoring
and management with the coming applications for the 5G and Internet of 	ings networks. 	erefore, a great deal of research and
exploration on signal recognition has been done and a series of e�ective schemes has been developed. In this paper, a brief overview
of signal recognition approaches is presented. More speci�cally, classical methods, emerging machine learning, and deep leaning
schemes are extended from modulation recognition to wireless technology recognition with the continuous evolution of wireless
communication system. In addition, the opening problems and new challenges in practice are discussed. Finally, a conclusion of
existing methods and future trends on signal recognition is given.

1. Introduction

With the increasing innovation in wireless communication
system, numerous wireless terminals and equipment are
constantly emerging, which has brought profound changes to
our daily life. Unfortunately, the limited spectrum resource
can hardly meet the ever-changing demand of the coming
5G [1] and Internet of 	ings (IoT) networks [2], which
poses a signi�cant challenge to the spectrum utilization and
management. 	e Federal Communications Commission
(FCC) and European Union (EU) authorities have attached
high priority to spectrum policy and committed to fur-
ther improve the performance of spectrum sensing as well
as signal recognition algorithms to satisfy the demand of
spectrum management. Some concepts including dynamic
spectrumaccess (DSA) and cognitive spectrum-sharing tech-
niques have aroused widespread discussions in academia.
However, much work is limited to speci�c scenarios and
poor in adaptability to the di�erent channel conditions and
device types. 	erefore, new spectrum sensing schemes and
novel signal recognition mechanisms have attracted more
and more attention, which pave the way to cognitive radio
(CR) [3].

Wireless signal recognition (WSR) has great promise on
military and civilian applications [4], which may include
signal reconnaissance and interception, antijamming, and
devices identi�cation. Generally, WSRmainly includes mod-
ulation recognition (MR) and wireless technology recog-
nition (WTR). MR also known as automatic modulation
classi�cation (AMC) is �rst widely used in military �eld and
later extended to civilian �eld. MR classi�es radio signals by
identifying modulation modes, which facilitates to evaluate
wireless transmission schemes and device types. What is
more, MR is capable of extracting digital baseband informa-
tion even under the condition of limited prior information.
Recently, WTR attracts much attention with the various
wireless communication technologies emerging and develop-
ing. Wireless technology usually contains various technical
standards, not just a single modulation mode. Moreover,
di�erent technical standards may adopt the same modulation
mode. WTR is able to leverage more comprehensive features
to identify technical standards, which has important practical
signi�cance in current increasingly tense electromagnetic
environment. In addition, the estimation of some parameters,
such as frequency, bandwidth, and symbol rate, may also
contribute to WSR. Due to the variety and complexity of
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signal transmission mechanisms, it is di�cult to recognize
complex signals by only estimating single or few parameters.
	erefore, the MR and WTR technologies are focused in this
paper.

Traditional algorithms of MR could mainly be separated
into two groups: likelihood-based (LB) and feature-based
(FB) approaches [5]. LB approaches are based on hypoth-
esis testing theory; the performance based on decision-
theoretic is optimal but su�ers high computation complexity.
	erefore, feature-based approaches as suboptimal classi�ers
were developed for application in practice. In particular,
the feature-based approaches usually extracted features for
the preprocessing and then employed classi�ers to real-
ized modulation classi�cation. Conventional FB approaches
heavily rely on the expert’s knowledge, which may per-
form well on specialized solutions but poor in generality
and su�er high complexity and time-consuming. To tackle
these problems, machine learning (ML) classi�ers have been
adopted and shown great advantages, for example, support
vector machine (SVM) in [6]. Although ML methods have
the advantage of classi�cation e�ciency and performance,
the feature engineering to some extent still depends on
expert experience, resulting in degradation of accuracy rate.
	erefore, the self-learning ability is very important when
confronted with unknown environment. A new dawn seems
to have arrived, since the DL performs very well in computer
vision (CV) [7], machine translation (MT) [8], and natural
language processing (NLP) [9]. DL architecture has also
been introduced to MR, for instance; the convolutional
neural networks (CNN) model is employed in modulation
classi�cation without expert feature extraction [10], which
demonstrates excellent performance both on e�ciency and
accuracy.

On the other hand, current communication systems tend
to be complex and diverse, various new wireless technologies
are constantly updated, and the coexistence of homogeneous
and heterogeneous signals is entering a new norm. As a
result, the detection and recognition of complex signals will
be confronted with new dilemma, and the methods for
signal recognition are needed to keep up with the pace.
Fortunately, some literature on WTR has emerged, in which
ML and DL model with explicit features have also been done
to realize the recognition of speci�c wireless technologies.
Meanwhile, some emerging applications are been explored,
such as base station detection, interfere signals recognition,
and localization in mobile communication network [11].

In this paper, the need of deep learning in signal recog-
nition is reviewed in Section 2. Section 3 introduces the
modulation recognition with various approaches. In Sec-
tion 4, wireless technology recognition is presented. Opening
problems are discussed in Section 5. Section 6 concludes the
paper.

2. Need of Deep Learning in Wireless
Signal Recognition

2.1. Wireless Signal Recognition. With the continuous expan-
sion of military and civilian needs, communication systems
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and electromagnetic environments have greatly changed over
the past decades; the capability of detection and recognition
of communication signals has also made signi�cant progress
and gradually become maturity. Generally, communication
signal recognition takes advantage of some signal parameters
to classify or identify the types of signals. 	ese techniques
may include frequency and bandwidth estimation, symbol
rate evaluation, modulation type classi�cation, and wire-
less technology identi�cation, which could be collectively
referred to as wireless signal recognition as shown in Figure 1.
In this paper, we are concerned with the current two main
technologies, namely, MR and WTR. MR commits to realize
the modulation type recognition so as to evaluate wireless
transmission schemes and device types, while WTR takes
wireless technology identi�cation as object for improving
interference management and electromagnetic environmen-
tal assessment.

2.2. De�nition of DL Problem. 	e concept of DL originates
from the research on arti�cial neural network [12] and the
goal is to understand data by mimicking the mechanism of
the human brain [13]. 	e basic neural network framework
consists of three parts: input, hidden, and output layer and
is shown in Figure 2. Hidden layers maybe one layer or
multilayer, and each layer consists of several nodes. 	e



Wireless Communications and Mobile Computing 3

Table 1: ML VS DL in wireless signal recognition.

Leaning model Machine learning Deep learning

Application scenarios
(i) small signal data (i) high-dimensional signal data

(ii) signal under relatively ideal conditions (ii) good feasibility in real �eld environment

Algorithms

(i) ANN [26, 37]
(ii) KNN [38, 91]
(iii) SVM [6, 27, 47, 48, 92]
(iv) Naı̈ve Bayes [39]
(v) HMM [46]
(vi) Fuzzy classi�er [93]
(vii) Polynomial classi�er [40, 94]

(i) DNN [24, 30, 31, 61]
(ii) DBN [49, 63]
(iii) CNN [17, 19–21, 54, 64, 65, 70, 73–
76, 79, 81, 82, 95, 96]
(iv) LSTM [29, 69]
(v) CRBM [53]
(vi) Autoencoder network [50, 62]
(vii) Generative adversarial networks [66, 67]
(viii) HDMF [71, 72]
(ix) NFSC [78]

Pros
(i) works better on small data
(ii) low implementation cost

(i) simple pre-processing
(ii) high accuracy and e�ciency
(iii) adaptive to di�erent applications

Cons

(i) time demanding
(ii) complex feature engineering
(iii) depends heavily on the representation of the data
(iv) prone to curse of dimensionality

(i) demanding large amounts of data
(ii) high hardware cost
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Figure 3: Hidden layer node.

node presented in Figure 3 is the basic operational unit, in
which the input vector is multiplied by a series of weights
and the sum value is fed into the activation function �.
	ese operational units contribute to a powerful network,
which could realize complex functions such as regression
and classi�cation. In fact, the study of DL makes substantial
progress by Hinton in 2006 [14], which causes a great
sensation. DL architecture is comprised of many stacked
layers of neural networks, emphasizing the learning from
successive layers to obtain more meaningful information or
high-level representations. 	e fundamental idea is to utilize
feedback information to iteratively optimize weight value
in multilayer neural networks. Moreover, the layers with a
relatively large scale will bring about amazing e�ects. Due to
the superior performance, DL has been employed on a wide
variety of tasks including CV, MT and NLP.

2.3. FromML to DL. AlthoughML is not a new �eld, with the
explosive growth of the amount of data and the development
of hardware technologyMLhas been one of research hotspots

in both academe and industry [15, 16]. Recently, ML has also
made great strides in signal recognition. ML works well on
automatic signal classi�cation for small signal dataset under
relatively ideal conditions [17]. Most algorithms are easy to
interpret and have the advantage of low implementation cost.
While for a high-dimensional dataset, machine learning is
prone to curse of dimensionality and the complex feature
engineering is time demanding. In terms of algorithm theory,
ML has a risk of falling into local optimum, which may lead
to great performance degradation. Furthermore, ML models
are trained for speci�c solutions and lack of generality in
di�erent real �eld environments. To overcome these issues,
DL is developed and achieves high accuracy and e�ciency
[18]. Owing to multilayered arti�cial neural networks, DL
needs few data preprocessing and shows adaptive to di�erent
application scenarios. A comparison between ML and DL is
summarized in Table 1.

2.4. Advantage of DL Applied in Wireless Signal Recogni-
tion. 	e perfect combination of DL and signal recognition
possesses notable superiority. On the one hand, large-scale
data is essential for the training process in DL model,
which is accessible to get for various communication pieces
of equipment in daily life. On the other hand, feature
engineering can be le� out in DL architecture, which is
an indispensable part for conventional recognition schemes.
Feature selection from the received signal is usually di�cult
in practical applications. For example, the prior information
is essential in the estimation of many parameters, which
may be impractical or inaccurate [19]. Although some FB
approaches perform well in certain solutions, the feature
selection may su�er high complexity and time-consuming,
so the feature self-learning model is of great signi�cance for
realistic scenarios to free from expert experience [20]. In
addition, with the further improvement ofDL algorithms and
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theory research, more application prospects will be excavated
for signal recognition in future communications systems [21].

3. Modulation Recognition

Modulation recognition has attracted much attention in last
decades; quite a few scholars have presented a variety of
excellent approaches, which can be approximately separated
into two categories: LB [22, 23] and FB approaches, as shown
in Figure 4. 	eoretically, the LB approaches are capable of
obtain optimal performance by considering all the unknown
quantities for the probability density function (PDF) and
are usually employed as the theoretical upper bound for
the performance comparison of modulation recognition.
However, such approaches are burdened with high com-
putational complexity and are prone to mismatching when
applying the theoretical system model to the actual scene. To
consider the e�ects of frequency o�set and time dri�, a large
number of computational operations bring about extremely
high complexity in maximum likelihood-based detector
[24].

To tackle the problem of high complexity in practice,
a large number of suboptimal approaches come into being.
	e FB approaches usually extract certain features from the
received signal; then reasonable classi�ers are used to classify
di�erent modulation signals. Since the training samples
are employed to train a good classi�er, the robustness of
FB approaches is signi�cantly improved for various system
models and channel conditions. In addition, e�ective features
and enough training data are also signi�cant for improving
classi�cation accuracy.

To reduce the di�culty in expert-feature extraction and
enhance the �exibility for modulation classi�cation applied
in di�erent system and channel fading environment, DL is

applied for self-feature learning based on the I/Q raw data or
sampling data.

In the following, we introduce the feature-based
approaches and feature learning approaches in modulation
recognition.

3.1. Feature-Based Approaches. 	ese features can be sum-
marized as follows: instantaneous time features, statistical
features, transform features, other features including con-
stellation shape, etc. 	e feature-based approaches are more
robust and general for various signals. When combined with
deep learning methods, the feature-based approaches will
provide a signi�cant improvement in the performance with
high e�ciency and robustness.

3.1.1. Instantaneous Time Features. Generally, instantaneous
time features consist of a series of parameters, namely, carrier
amplitude, phase, and frequency. 	ese parameters and the
variation of them are developed to modulation classi�cation.
Nine key features are summarized in the Table 2.

In [25], the authors use eight key features in the recog-
nition procedure and compare with some manually selected
suitable thresholds to classify both analogue and digital
modulation signals.

Unlike the previous approaches with manual thresh-
old, machine learning has been developed to improve the
performance and reduce tedious threshold operations. To
choose the threshold automatically and adaptively, arti�cial
neural networks (ANN) is employed in some literature.
In [26], a universal ANN was proposed for analogue as
well as digital modulation types classi�cation with nine key
features employed. Although ANN has achieved success
in modulation recognition, its overdependence on training
sample data and easily getting into a local optimum restrict
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Table 2: Instantaneous time features [26].

Feature De�nition description

���� Maximum value of the power spectral density of the normalized-centered instantaneous amplitude

��� Standard deviation of the absolute value of the nonlinear component of the instantaneous phase

��� Standard deviation of the direct value of the nonlinear component of the instantaneous phase

��� Standard deviation of the absolute value of the normalized-centered instantaneous amplitude

��� Standard deviation of the absolute value of the normalized instantaneous frequency

�� Standard deviation of the normalized-centered instantaneous amplitude

� Spectrum symmetry

��42 Kurtosis of the normalized instantaneous amplitude

��42 Kurtosis of the normalized instantaneous frequency

the performance and application, while the support vector
machines (SVM) can e�ectively alleviate these problems. In
[27], the straightforward ordered magnitude and phase were
adopted by SVM classi�er. 	e proposed method is close to
the theoretical upper bound and has an advantage of easy
implementation.

Recently, deep learning as an extension of ANN is
showing its great potential in modulation recognition [28].
Complex features are learned by multiple hidden layers,
so the processing of input data could be simpler in deep
learning schemes. A new model Long Short Term Memory
(LSTM) has been applied to modulation recognition, which
is suitable for processing the time series data with relatively
long intervals or delays [29].	e time domain amplitude and
phase data were employed in the model without complex
feature extraction. Simulations show that the method could
achieve high classi�cation accuracy at varying SNR condi-
tions.	e �exibility of the proposedmodel was also validated
in scenarios with variable symbol rates. Unlike the existing
methodswhich only focus onmodulation types classi�cation,
in [30, 31], they propose a novel scheme for classifying
modulation format and estimating SNR simultaneously. 	e
asynchronous delay-tap plots are extracted as the training
data and two multilayer perceptron (MLP) architectures are
adopted for real-world signal recognition tasks.

3.2. Statistical Features. Moments, cumulants, and cyclosta-
tionarity will be introduced as following.

3.2.1. Moments and Cumulants. In mathematics, moments
are employed to describe the probability distribution of a
function. 	e p-th order and q-th conjugations moment [32]
for a received signal �(�) can be given as

��� = E [� (�)�−� (�∗ (�))�] (1)

where E[∙] is expectation operator and (∙)∗ is complex
conjugate. Although moments have been widely used in
the �eld of signal process for the advanced ability on noise
suppression, most practical applications tend to cumulants
for its superiority on non-Gaussian random processes.

Table 3: Cumulants formulas.

Cumulants Formulas

�40 �40 − 3�220
�41 �41 − 3�21�20
�42 �42 − �����20����2 − 2�221
�60 �60 − 15�20�40 + 30�320
�63 �63 − 6�20�41 − 9�42�41 + 18�220�21 + 12�321
�80 �80 − 35�240 − 28�60�20 + 420�40�220 − 630�420

In statistical theory, cumulants are made up of moments
and can be regarded as an alternative to the moments.
Commonly used cumulants are expressed in Table 3.

Cumulants are o�en employed for modulation classi�ca-
tion to against the carrier o�sets and non-Gaussian noise.
In [33], fourth-order cumulants were utilized in the task
of signal classi�cation. Higher-order cumulants (HOC) are
conducive to further enhance the performance and extend
the range of recognition signals. In [34], sixth-order cumu-
lants show signi�cantly performance improvement than the
fourth-order cumulants. In [35], eighth-order cumulants are
employed to distinguish between 8PSK and 16PSK signal.
Additionally, higher-order cyclic cumulants are developed to
further expand the signal types including 256-QAM in [36].

Somemethods combined cumulants withmachine learn-
ing for modulation classi�cation have been proposed in
recent works, such as ANN, K-Nearest Neighbor (KNN),
SVM, Näıve Bayes (NB), and polynomial. To improve the
performance, two updated ANN training algorithms are pre-
sented in [37]. KNN is attractive due to its easy implement. In
[38], the authors propose a KNN classi�er using cumulants-
based features of the intercepted signal. Satisfactory perfor-
mance was veri�ed by numerous simulations. SVM has great
potential on the recognition of small-scale and high dimen-
sional dataset. Another interesting scheme combined HOC
with SVM is presented for digital modulation classi�cation
in NB model originates from classical mathematical theory
and the major advantages lie in simplicity and less sensitive
to missing data. In [39], the authors proposed a new scheme
combined HOCwith NB classi�er. Simulations indicated that
the NB classi�er was superior to both Maximum Likelihood
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and SVM model on computational complexity and close to
SVM on performance. To further reduce the complexity, a
novel AMC system based on polynomial classi�er was pre-
sented in [40]. Second, fourth and sixth HOCwere utilized to
classifyM-PSK andM-QAM signals with low computational
complexity. In addition, a comprehensive comparison among
KNN, SVM, NB, and the proposed polynomial classi�er
combined with extraction of higher order cumulants features
is carried out in [41]. 	e proposed method achieves good
tradeo� in terms of accuracy and structure simplicity.

3.2.2. Cyclostationarity. A cyclostationary process is a signal
whose statistical characteristics change periodically with time
[42]. Cyclostationarity is an inherent physical property of
most signals, which is robust against noise and interference
[43]. Spectral correlation function (SCF) is usually used to
examine and analyze the cyclostationarity of the signal [44]
and can be de�ned as

�
� (�) = lim
Δ��→∞

lim
Δ��→∞
1
Δ�

⋅ ∫
Δ�/2

−Δ�/2
Δ��1/Δ� (�, � + �2) ⋅ �

∗
1/Δ� (�, � − �2) ��

(2)

where

�1/Δ� (�, V) = ∫
�+1/2Δ�

�−1/2Δ�
� (�) �−�2�V��� (3)

is the complex envelope value of �(�) corresponding to the
frequency V and the bandwidth Δ� and � represents cyclic
frequency and Δ� is the measurement interval.

As a continuation, the spectral correlation function of
digitally modulated signals was provided in [45]. Hidden
Markov Model (HMM) was employed to deal with the
features extracted from the cycle frequency domain pro�le
in [46]. Simulations show that the presented model was
able to classify the signals at a range of low SNRs. Another
classi�cation scheme with spectral correlation feature and
SVM classi�er is developed in [47]. 	e results demonstrate
that the algorithm is robust under the condition of low SNR
and maintain high accuracy. In [48], four features based
on spectral correlation were selected for SVM classi�er. 	e
proposed method performs more e�ciently in low SNR and
limited training data.

Deep learning methods employed spectral correlation
function features have been applied to signal classi�cation.
In [24], the method using 21 features of baseband signal
and a full-connected DNN model is proposed to recognize
�ve modulation mechanisms. 	e simulations verify that the
proposed algorithm outperforms the ANN classi�er under
various channel conditions. Deep Belief Network (DBN) is
introduced to pattern recognition tasks in [49]. With spectral
correlation function (SCF) signatures, the DBN classi�er
achieves great success in the �eld of modulation classi�cation
in various environments. In [50], cyclic spectrum statistics
are also adopted in the signal preprocessing and a stacked
sparse autoencoder and so�max regression with DL model

are employed to recognize communication signals. 	e com-
parison of the proposed methods and several traditional
machine learning schemes was analyzed by simulations.
Another modulation classi�cation method for very high fre-
quency (VHF) signal is presented in [20].	e received signals
are transformed into cyclic spectrum; then the denoised
spectrum images are fed into CNN model to self-learn the
inner features and train classi�er to recognize modulation
formats �nally.

3.3. Transform Features

3.3.1. Fourier Transform. Fourier transform is a signi�cant
technique in signal processing and analysis. For most signals,
frequency domain analysis is more convenient and intuitive
than time domain, and the Fourier transform provides
convenience in decomposing a function of time (a signal)
into the frequencies. In [51], in order to analyze the signal
modulation method, discrete Fourier transform (DFT) and
the calculated amplitude and phase values were employed to
classify MFSK,MPSK signals. In [52], a classi�er adopted fast
Fourier transform (FFT) has been proposed to classify the
received MFSK signal.

Joint time-frequency transforms play an important
role in characterizing time-varying frequency information,
which could compensate for the insu�ciency of the one-
dimensional solution and process the time and frequency
characteristics simultaneously. 	e short time-frequency
transform (STFT) is known as a classical time-frequency
representation and has been widely adopted in signal pro-
cessing. In [53], a novel learning scheme with STFT fea-
tures based on DL is proposed, which could automatically
extract features and dodecision-making in complexmissions.
	e performance of the proposed method is veri�ed in
the spectrum application of classifying signal modulation
type. In [54], the authors propose a DCNN method that
transforms modulation mode to a new time-frequency map
and successfully recognize the hybrid communication signals
under low SNR condition.

3.3.2. Wavelet Transform. Compared with the Fourier trans-
form, the wavelet transform (WT) can provide the frequency
of the signals and the time associated to those frequencies,
which o�ers re�ned local signals analysis and low computa-
tions. 	e paper [55] proposed a WT modulation classi�er
without requiring any a priori knowledge. 	e combination
of WT and SVM is a popular scheme in modulation identi�-
cation. 	e wavelet kernel function and SVM for modulation
recognition is employed in [56]. 	e proposed method is
capable of classifying BPSK,QPSK, andAMsignalswith good
accuracy. 	e paper extended the SVM classi�er with key
features of WT to recognize 8 kinds of digital modulated
signals.

In [57], the authors use higher-order statistical moments
features based on continuous WT and multilayer feed-
forward neural network for modulation recognition. Taking
into account for various distracters including di�erent SNR,
fading channels, and frequency shi�, the authors in [17]
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propose an improved CNN architecture based on [10], in
which the pooling layer is employed to retain principal
components and reduces the dimension of features. 	e
recognition rate and performance are further enhanced by
wavelet denoising technology and appropriate order of the
wavelet transformation.

3.3.3. S Transform. S transform (ST) has unique advantages
in possessing both the phase and frequency estimations of the
FT and the super-resolution of theWT [58]. Early application
of the ST was in electrical power networks with power quality
analysis. In [59], ST based features extraction for digital
modulation classi�cation was presented. A comparison with
the WT was given by employing di�erent machine learning
classi�ers.

3.4. Other Features

3.4.1. Constellation Shape. In digital modulation, the con-
stellation is usually used to map the signal into scattered
points.	e constellation diagram provides an intuitive way to
represent signal basic structure and the relationship between
di�erent modulation modes. In [60], the constellation shape
was employed as a reliable signature to realize digital modu-
lation recognition.

DL has been e�ectively used in constellation-based
approaches for automatic modulation classi�cation. In [61,
62], the authors use the DL network combined with IQ
components of constellation points as features. In [63], a
simple graphic constellation projection (GCP) scheme for
AMC is presented. Unlike FB approaches, the AMC task
is turned to image recognition technology. Reference [64]
proposed a DL-based intelligent constellation analyzer that
could realize modulation type recognition as well as OSNR
estimation. 	e authors utilized CNN as DLmodels and treat
constellation map as original processing features. Due to the
automatic feature extraction and learning, CNN is capable
of processing original constellation distribution without the
knowledge of any other parameters. In [21, 65], the signals
were transformed to the images with topological structure
and the CNN algorithm was used to deal with the classi-
�cation. In [66], the authors explore a new framework for
generating additional images in CNN training through using
auxiliary classi�er generative adversarial networks (ACGAN)
for data augmentation to solve the modulation classi�cation
problem. Reference [67] extended a new semisupervised
learning model combined with generative adversarial net-
works (GANs). 	e proposed scheme was veri�ed to be a
more data-e�cient classi�er.

3.4.2. Zero Crossing. A zero-crossing sampler is used for
recording the number of zero-crossing voltages of input
signals, which could provide precise information about phase
conversion in wide frequency range. 	erefore, the zero-
crossing of the signal can also be applied to modulation
classi�cation. 	e paper [68] develops a modulation recog-
nition algorithm with zero-crossing techniques. Both the
phase di�erence and the zero-crossing interval histograms

are employed as features. 	e recognizer could identify CW,
MPSK, and MFSK signals with a reasonable classi�cation
accuracy.

3.5. Feature Learning. Feature learning is based on the raw
data or sampling data instead of cra�ing of expert features.
A recently proposed AMC scheme based on DL model
takes advantage of CNN classi�er [10]. 	e time domain IQ
samples are directly fed to CNNmodel and suitable matched
�lters can be learned automatically in di�erent SNRs. In
[69], the classi�cation accuracy of CNN architectures with
di�erent sizes and depths was analyzed. 	e authors also
provided a hybrid learning scheme, which combines CNN
model and long short term memory (LSTM) network to
achieve better classi�cation performance. Reference [70]
constructs a CNN model with 5 layers for the recognition
of very high frequency signals. Simulation and actual signals
are veri�ed that the frequency o�set and noise have a great
impact on accuracy. Reference [19] proposed a novelmodel to
obtain the estimation of the frequency o�set as well as phase
noise for improving accuracy rate. To further improve the
performance of CNN-based recognition schemes in [10], the
authors present a signal distortion correction module (CM)
and results show that this CM+CNN scheme achieves better
accuracy than the existing schemes. In [71, 72], a heteroge-
neous deep model fusion (HDMF) approach is proposed,
and the two di�erent combinations between CNN and LSTM
network without prior information are discussed. 	e time-
domain data are delivered to fusionmodel without additional
operations. 	e results show that the HDMF approach is
an excellent alternative for a much better performance in
heterogeneous networks.

4. Wireless Technology Recognition

Various radio pieces of equipment make an increasing short-
age of spectrum resources. As a result, the interference for
transmissions is unavoidable in a coexistence environment,
which leads to a decline in spectrum e�ciency. What is more
serious is that the diversity of communication technologies
and heterogeneous networks cause a more complex electro-
magnetic environment. 	erefore, the recognition of signal
technology is of great signi�cance in spectrum sharing and
interference management.

Similar to MR, the feature-based approaches can also be
developed for WTR. Due to the development of machine
learning and deep learning, WTR favors explicit features,
such as time, frequency, and time-frequency features. 	e
literature related to DL in MR and WTR is summarized in
Table 4.

4.1. Time Domain Features. Time features are the most
explicit representation of a signal, such as amplitude, phase,
and even IQ raw data, and can be obtained easily. In [73],
the author uses time domain features such as IQ vectors
and amplitude/phase vectors to train CNN classi�ers. 	e
results demonstrate that the proposed scheme is well suited
for recognizing ZigBee, WiFi, and Bluetooth signals. In
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Table 4: Summary of DL in wireless signal recognition.

Modulation recognition Wireless technology recognition

Algorithms

(i) DNN [24, 30, 31, 61]
(ii) DBN [49, 63]
(iii) CNN [17, 19–21, 54, 64, 65, 70, 95]
(iv) LSTM [69]
(v) CRBM [53]
(vi) Autoencoder network [50, 62]
(vii) Generative adversarial networks [66, 67]
(viii) HDMF [71, 72]

(i) CNN [73–76, 79, 81, 82, 96]
(ii) LSTM [29]
(iii) NFSC [78]

[74], the amplitude and phase di�erence representation were
employed for CNN training procedure. 	e results indicate
that the recognition of radar signals has been realized suc-
cessfully with the proposed scheme even under the condition
of LTE and WLAN signals coexisting at the same time.
Reference [75] extended the deep CNN model for radio
signal classi�cation by heavily tuning deep residual networks
based on previous works. A discussion was carried on the
robustness of the proposed model under di�erent channel
parameters and scales of training sets. Reference [76] pro-
posed a radio �ngerprinting method, which adopted CNN
model and IQ dataset for network training. 	eir method is
capable of learning inherent signatures from di�erent wire-
less transmitters, which are useful for identifying hardware
devices. 	e results demonstrated that the proposed method
outperformed ML methods in the recognition of 5 same
hardware devices.

4.2. Frequency Domain Features. In contrast to time features,
frequency features contain more useful characteristics, such
as bandwidth, center frequency, and power spectral density,
which are essential for wireless technology recognition. What
is more, e�ective frequency domain data can greatly alleviate
the problems of data transmission and storage in actual
deployment process.

As one of machine learning, fuzzy classi�er has been
concerned in wireless technology recognition. In [77], a
new fuzzy logic (FL) method was presented to recognize
WLAN, BT, and FSK signals. 	e power spectral density
(PSD) information was used to get the bandwidth and
center frequency for labelling the signals corresponding to
standards. Results demonstrated that the proposed strategy
is e�cient for explicit signal features extraction. Likewise,
neurofuzzy signal classi�er (NFSC) to recognize nanoNET,
WLAN, Atmel, and BT signals by utilizing measured PSD
information is presented in [78]. Results show that the perfor-
mance is improved by using wideband and narrowband data
acquisition modes in real-time coexistence environments.

As a way forward, deep learning has also been developed
in recent literatures. In [73], the time-domain data was
also mapped into frequency-domain representation by FFT.
Results show that the CNN model trained on FFT data
has signi�cant improvement in accuracy compared to time
domain features. Similarly, a reduced CNN model with
frequency-domain data is proposed in [79]. 	e approach
is capable of identifying several common IEEE 802.x signals

in coexistence. Simulations indicate that the performance
of reduced CNN model is superior to most state-of-the-
art algorithms. In [29], the authors explore the combination
of averaged magnitude FFT processing and LSTM model
with distributed sensor architecture. 	e result shows that
the proposed scheme could classify DVB, GSM, LTE, Radar,
Tetra, and WFM signals.

4.3. Time-Frequency Domain Features. Time-frequency dis-
tribution has unique advantages in the comprehensive anal-
ysis of signals. In [80], frequency-time representations such
as spectral bandwidth, temporal width, and center frequency
are extracted for neural networks. In [81], the authors applied
CNNs to identify IEEE 802.x protocol family operating the
ISM band. 	e time-frequency power values with matrix
form were fed into the CNN classi�er for data training. 	e
result indicates that the CNN model outperforms traditional
machine learning techniques. A semisupervised model based
on CNN is developed in [82]; a series of time-slices spec-
trum data with pseudolabels scheme are trained in CNN.
Experiments show that this model performs well in devices
recognition, even at the condition of fewer labeled data in
training process.

5. Opening Problems in Signal Identification

Although in last decades, large amounts of literatures have
proposed various schemes for signal recognition, it cannot
be denied that the technology makes little sense in real
electromagnetic environment. Many papers are based on
ideal assumptions, such as AWGN channel or enough prior
knowledge, and the identi�ed signals are limited to a set
of several known types. DL is the tendency in future, but
large-scale training data are required to get rid of over�tting
and attaching precise labels to large-scale data is di�cult
to accomplish, especially in a short time. Semisupervised
and unsupervised mechanisms can be explored to alleviate
tedious label operations for DL model in the future. More
innovative technologies and solutions are envisaged in future
research.

5.1. Burst Signal Recognition. Burst signal has been widely
used in military �eld and there will be broad prospects for
dynamic spectrum access in the future. 	e burst signal
has the characteristics of short duration and uncertainty of
starting and ending time, which poses great challenges to
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signal recognition [83–85]. Generally, the processing �ow of
signal recognition includes data acquisition, preprocessing,
classi�cation, and decision. 	e high quality labels have a
crucial role for a satisfactory recognition accuracy but are
relatively time-consuming in burst communication systems.
	erefore, there are still research prospects on the identifying
burst signals.

5.2. Unknown Signal Recognition. In the present literatures,
the type of signal to be recognized is assumed to be within
a known set and few literatures are capable of coping with
unknown signals. Even if the spectral characteristics and
background noise are obtained in practical situations, it is
unrealistic to know the set of signal types in advance and
unexpected interference may occur at any instant [86, 87].
Many proposed approaches lack universality for the signals
outside of the set. So a comprehensive set of signal types
or a more reasonable model design may be needed for the
unknown signal recognition.

5.3. Coexistence Signal Recognition. Signal monitoring and
interference management under the condition of multisignal
coexistence have attracted much attention recently [88, 89].
With the advent of 5G and the IoT commercialization,
crowded spectrum resources are likely to lead to an overlap of
multiple signals.Moreover, the increasing types of signals and
diverse wireless networks will undoubtedly bring challenges
on the signal recognition in the coexistence environment
[90]. Predictably, the recognition of homogeneous and het-
erogeneous signal in an overlapped bandwidth may be a
novel development trend of signal recognition and highly
e�ective and accurate DL algorithms will create a new
centre.

6. Conclusion

In this paper, an overview of modulation recognition
and wireless technology recognition is presented. Signal
recognition has made considerable progress on both the-
ory and practice in traditional �elds of device identi�ca-
tion and interference detection. It is noticeable that the
area of signal recognition has extended from modulation
recognition to wireless technology recognition. With the
development of machine learning and deep learning, sim-
ple feature extraction in the preprocessing and even raw
data are becoming a trend to realize signal recognition.
However, many works are based on ideal assumption or
some known conditions and most results are obtained by
simulations. 	ere is still a long way for signal recog-
nition in real electromagnetic environment and practical
application.
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