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ABSTRACT In recent years visual place recognition (VPR), i.e., the problem of recognizing the location of

images, has received considerable attention from multiple research communities, spanning from computer

vision to robotics and even machine learning. This interest is fueled on one hand by the relevance that

visual place recognition holds for many applications and on the other hand by the unsolved challenge of

making these methods perform reliably in different conditions and environments. This paper presents a

survey of the state-of-the-art of research on visual place recognition, focusing on how it has been shaped

by the recent advances in deep learning. We start discussing the image representations used in this task

and how they have evolved from using hand-crafted to deep-learned features. We further review how metric

learning techniques are used to get more discriminative representations, as well as techniques for dealingwith

occlusions, distractors, and shifts in the visual domain of the images. The survey also provides an overview of

the specific solutions that have been proposed for applications in robotics and with aerial imagery. Finally the

survey provides a summary of datasets that are used in visual place recognition, highlighting their different

characteristics.

INDEX TERMS Visual place recognition, image representation learning, deep learning.

I. INTRODUCTION

‘‘Wherewas this picture taken?’’ – understanding the location

of a generic photo is a problem that has interested researchers

for nearly two decades, under the name of visual place

recognition (VPR). The last decade in particular has seen a

drastic acceleration of the research in this field, driven by

three forces. Firstly, the mass diffusion of smartphones and

the consequential demand for new services that can lever-

age their integrated cameras, such as consumer photography,

vision based navigation and augmented reality. Secondly,

the large availability of publicly shared pictures on social

media and other platforms, which can be used to locate inter-

esting venues, holiday sites, restaurants, etcetera. Thirdly,

the rise of mobile robots operating in the open world, e.g.,

self-driving cars, and the inherent challenge of their long term

autonomy. Pertaining to the last point, recognizing places by

vision is regarded as a key component for localization and

navigation, being used for loop-closure in SLAM algorithms

in GPS denied environments as well as an input to learn

navigation policies [1] under different conditions. Remark-

ably, the development of visual localization in robotics is also
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paving the way for new applications of VPR, such as assistive

technologies for people with visual impairments [2].

Such a variety of use-cases and application domains trans-

lates to a rich research panorama where VPR is studied by

different communities (computer vision, robotics, machine

learning) and with different problem settings. For instance,

in computer vision VPR is often studied as the task of recog-

nizing the location of a single image. In robotics, VPR algo-

rithms can typically leverage streams of heterogeneous data

(e.g., videos, pointclouds, odometry, etc.) as well as some

knowledge of the motion of the robot. Moreover, in robotics

there is a stronger emphasis on computational efficiency and

real-time execution. Even the definition of placemay change

depending on the task: a place could be denoted by the name

of a landmark, a GPS coordinate or even a 6 DoF pose with

respect to a frame of reference.

Given the breadth of research in VPR and its fragmentation

across multiple scientific domains, it is arguably challenging

for scientists to have a comprehensive view of the state of the

field. This challenge is exacerbated by the profound evolu-

tion of VPR that was prompted recently by the adoption of

deep learning techniques. This manuscript aims at describing

the state of research in VPR, by collecting, analyzing and

systematizing studies pertaining that are published within
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the communities of computer vision, robotics and machine

learning. We focus on the most recent literature to identify

the current research trends, particularly from the perspective

of deep learning. Yet, this manuscript is not intended to be an

introduction to deep learning, andwe assume that the reader is

at least familiar with basic concepts regarding convolutional

neural networks. Finally, we remark that the goal of this paper

is not to provide an empirical validation or comparison of

the numerous methods discussed. On one hand, it would be

infeasible to experimentally assess all the many approaches

discussed. On the other hand, we think that such an evaluation

study is better left to a benchmarking report with a much

narrower scope than a survey.

A. VISUAL PLACE RECOGNITION: CONCEPTS AND

ORGANIZATION OF THE SURVEY

Visual place recognition is, broadly speaking, the task of

recognizing the place depicted in an image (or a sequence

of images). This task is commonly addressed as an image

retrieval problem. In this formulation, the prior knowledge

of the places of interest for the task is represented as a

collection of images (database). Each image in the database

is tagged with an identifier of its location, e.g., the name of

a landmark or a GPS coordinate. When a new picture needs

to be localized (query), the place recognition system searches

through the database for images that are similar to it. If similar

pictures are found, their tagged locations are used to infer

the location of the query. This retrieval process is typically

implemented as a three-stages pipeline (see Fig. 1):
1) an encoding procedure extracts from each image a vec-

tor representation of its content (image representation);

2) a similarity search performs a pairwise comparison

between the representations of the query and of every

image in the database according to a scoring func-

tion (e.g., Euclidean distance or cosine similarity), and

returns the best matches;

3) a post-processing stage refines the results produced by

the similarity search.
The first part of this survey (Secs. II to VII) expands on the

three stages of the VPR retrieval pipeline. First, Sec. II gives

an overview of the hand-crafted representations that were

used for image retrieval and VPR in the pre-deep learning

era. Then, Sec. III moves on to discuss how these represen-

tations have evolved with the advent of deep convolutional

networks (CNN), highlighting similarities and differences

with the engineered descriptors. In particular, Sec. III focuses

on the architectural aspect of the CNN-based representations,

discussing the methods used in VPR to extract a vector

description of an image using CNNs. Section IV reasons

about the dimensionality of the representations and how to

reduce it, which is important for the scalability of VPR to

large databases. Section V delves into the topic of how the

CNN models for extracting the image representations used

in VPR are trained. Finally, Secs. VI and VII focus on the

last two stages of the VPR retrieval pipeline, with a brief

discussion on the similarity search and then a detailed review

of the post-processing methods used to refine the results of

the search. In this regard, we observe that most methods

in this last stage are still based on engineered approaches,

however few learning-based solutions are recently emerging,

e.g., using CNN-based local feature descriptors for geometric

verification or graph convolutional networks (GCN) to revise

the results of the search.

Although VPR is formulated as an image retrieval task,

there are specific challenges and use-cases in the recogni-

tion of places that set it apart from other retrieval problems.

The second part of the survey (Secs. VIII to X) elaborates

on these unique challenges and research questions. These

challenges are largely related to the complexity of the scenes

and to the dynamic nature of the world. First of all, images

of places hardly ever present a single identifying object in

the foreground. On the contrary, they usually contain multi-

ple visual elements. Many of these elements may carry no

useful information regarding the place and they might even

occlude more useful objects in the background. Moreover,

the appearance of landscapes naturally changes over time, not

only because of dynamic objects or physical modifications

(e.g., a temporary construction site), but also due to variations

in illumination, weather and seasons. Other challenges in

VPR arise from i) the presence of recurring elements and

architectural patterns that make different places look similar,

and ii) the large variety of viewpoints from which a place can

be observed. Section VIII discusses these challenges that are

peculiar to place recognition and identifies the research trends

that have emerged to address them. The survey then covers

the development of VPR in two application domains with

very specific characteristics. The first domain is that of aerial

images taken either from a high altitude satellite/aircraft or

from a low altitude micro aerial drone. Section IX discusses

how the viewpoint and the lack of distinctive visual details

in aerial imagery make VPR in this setting rather different

than when performed with street-level images. Afterwards,

Sec. X analyzes VPR in the context of robotics. In robotics,

place recognition is a task that is performed continuously

during the navigation of the robot and it can often leverage

multiple streams of data. These reasons, combined with a

strong emphasis on computational efficiency, have led to

unique developments of VPR.

At the beginning of this introduction we have established

that VPR is commonly formulated as an image retrieval

task and we have described how the survey covers differ-

ent aspects of this formulation, particularly from the per-

spective of deep learning. However, the influence of deep

learning in VPR goes beyond its application to the image

retrieval pipeline shown in Fig. 1. In fact, the remarkable

results achieved by deep classification models have led some

researchers to investigate VPR as a classification task. In this

formulation, unlike in image retrieval, the database images

are categorized in classes, with each class representing a

place. A deep CNN is then trained for a classification task

on these images. At inference time the database images are

not needed: new queries are run through the classifier which
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FIGURE 1. Visual place recognition is commonly formulated as an image retrieval problem. The known places are collected in a database and a new
image to be localized is called query. The place retrieval is performed in three logical stages. 1) In the first stage, vector representations are generated
for the query and the database images. From a practical perspective, the representation of the query is computed online, whereas the representations
of the database images are computed offline. 2) the representation of the query is compared to those of the database images, to find the most similar
ones (here only the top 3 are shown). 3) The best results of the comparison are further refined with post-processing techniques (here only the top
3 are shown).

predicts their corresponding classes, i.e., their places.

Section XI discusses VPR as a classification task, looking

in particular at the solutions that have been developed to

partition large database of images, that are not necessarily a

discrete set of landmarks, into classes.

Finally, the survey closes in Sec. XII with an overview

of the evaluation metrics used in VPR, as well as with a

comprehensive discussion on the publicly available datasets

for VPR.

B. RELATED WORKS

Prior to this survey only few works have tried to provide an

overview of the state of research in VPR. Lowry et al. [3]

reviewed the evolution and state-of-the-art of visual place

recognition, mostly from a robotics perspective. Their anal-

ysis focuses on the role of VPR in mapping and localization

for mobile robots, discussing how the representation of the

known world may include topological and metric informa-

tion, besides appearance, and how all this information can

be exploited. The paper also discusses image representa-

tions, albeit restricted mostly to classical hand-crafted or

shallow learned descriptors. Strictly related to VPR, Piasco

et al. [4] provide a survey on visual based localization. The

main difference between visual place recognition and visual

based localization is that the latter has the goal of precisely

estimating the pose of the camera when it took the photo,

whereas the former has the broader scope of recognizing the

location. Therefore, a focal point of [4] is about methods

that directly regress the pose of the camera. That survey also

provides an insightful analysis on the role of heterogeneous

data in VPR.

With respect to these prior works, this survey distinguishes

itself not only for including more recent references, but most

importantly for providing a review of visual place recognition

from a different perspective. Although we comprehensively

describe the broad landscape of VPR, we focus primarily on

the advances that deep learning has introduced in this task.

Among the other things we discuss the adoption of image

representations based on convolutional neural networks and

how these representations are trained using metric learn-

ing, we analyze multi-modal and multi-task architectures,

we review the deep-learning based strategies that are emerg-

ing to cope with distractors and domain shifts. Given its

different perspective, this survey can be considered comple-

mentary to [3], [4] and we encourage the reader who wants to

get a broader view on the subject to consult also these other

documents.

We also acknowledge that, during the time this manuscript

was under review, another survey on VPR from the per-

spective of deep learning was published [5]. However, even

with respect to [5], the present survey brings additional value

because:

• the two surveys, which are the result of independent

studies, organize and present the topics differently, thus

providing readers with different points of view;

• this manuscript discusses aspects of VPR that are not

touched upon in [5] (i.e., VPR as a classification task,

in depth analyses on the application to robotics and aerial

imagery) and delves with greater detail in some aspects

of the problem that are discussed in both manuscripts

(e.g., metric learning for place retrieval, techniques for

refining the results of place retrieval);
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• this manuscript cites around 25% more references

than [5].

II. HAND-CRAFTED REPRESENTATIONS FOR PLACE

RETRIEVAL

Visual place recognition is commonly framed as an image

retrieval pipeline (see Fig. 1). This formulation relies on the

ability to generate image representations that are discrimina-

tive w.r.t. places. This section briefly revisits the hand-crafted

representations that were used for this task before the advent

of CNNs. The following discussion is divided in two parts:

representations generated from descriptors of local features

and representations that describe an image as a whole. As

it will be seen in Sec. III, the concepts and lessons learned

from these representations provide a useful insight also for

convolutional-based representations.

A. REPRESENTATIONS FROM LOCAL DESCRIPTORS

A local feature descriptor analyzes only a patch of the

image, highlighting patterns that differ from its neighbor-

hood [6]. These patches can be densely sampled [7], however

in visual place recognition they are generally originated from

a sparse detector that identifies points of interest (keypoints).

Examples of detectors are the Hessian-Affine detector [8]

or MSER [9]. A description is then extracted around each

keypoint using methods such as SIFT [10], SURF [11],

RootSIFT [12], BRIEF [13], DSP-SIFT [14] and kernel

descriptors [15], [16].

Several studies, even recent ones, have showcased the use

of hand-crafted detectors and local descriptors to represent

images in VPR [17]–[30]. Two images can be compared

by analyzing pairwise correspondences among their respec-

tive descriptors, however this approach is not effective and

hardly scalable to a database-wide search. Not all detected

features are discriminative for the task, so good features can

be selected using shallow classifiers [27]. Far more effective

and scalable is the idea that for searching the database the

images should be compared by analyzing the statistics of

their descriptors, rather than matching them on an individual

basis. This idea was pioneered by Sivic and Zisserman [31]

who adopted the Bag of Words (BoW) approach for image

retrieval. In this method the descriptors are quantized in

clusters, based on a codebook of visual words, and the

image representation is then obtained as the histogram of the

assignment of all image descriptors to visual words, weighted

according to the ‘‘term frequency – inverse document fre-

quency’’ (tf-idf). During retrieval, the images in the database

are ranked based on the normalized inner product of their rep-

resentation w.r.t. the query (i.e., the cosine similarity). Since

the representation is sparse, retrieval can be implemented effi-

ciently using an inverted file structure [32]. This was the first

method that demonstrated efficient image retrieval, although

on a small sized database. Following in its footsteps, other

representations based on the quantization of local descriptors

have been proposed, improving upon the BoW with a better

ranking under the similarity measure [33]–[35], a reduction

in the memory footprint [33] and a reduction in the number of

visual words in the codebook [35]. Jégou and Zisserman [36]

observe thatmethods that create a single vector representation

from local feature descriptors can be regarded as two-steps

approaches: i) an embedding step that individually maps each

vector (feature) to a higher-dimensionality space, and ii) an

aggregation step that generates a single representation from

the mapped vectors. The rationale behind the embedding step

is to improve the distinctiveness of the individual features and

suppress false positives. For example VLAD embedding [33],

[34] suppresses all matches between features that are adjacent

to different centroids in the codebook. Notable examples of

such methods are Fisher Vectors [35], VLAD [33], [34] and

Triangular embeddings with democratic aggregation [36].

In [37] Tolias et al. proposed a general family of represen-

tations and similarity functions that, besides embedding and

aggregation, includes a mechanism to select the contribution

of each pair of descriptors per cluster. Using this formula-

tion, the authors not only revisit methods such as BoW and

VLAD, but also derive a novel aggregated selective matching

kernel (ASMK) that achieves state-of-the-art performance in

large scale place recognition. A regional version of ASMK

was introduced in [38]. One property of these representa-

tions that makes them particularly good for image retrieval,

as discussed in [39], is that they inherit to some extent the

invariance properties (change in viewpoints, cropping, etc.,)

of the local descriptors they are computed from.

B. REPRESENTATIONS FROM GLOBAL DESCRIPTORS

While the aggregation of local feature descriptors allows to

obtain a single vector representation of an image, this can also

be done directly using global feature descriptors, i.e., descrip-

tors that encode holistic properties of the scene. Since they

process the image as a whole, global descriptors do not

require a detection phase, thus being less expensive to com-

pute. Examples of whole-image descriptors are HOG [40]

and Gist [41]. A low-dimensional binary coded representa-

tion of Gist was proposed in [42], which not only reduces

the memory footprint but also allows for rapid recognition.

Representations from global feature descriptors have been

used in visual place recognition [26], [43]–[46]. Compared to

the representation from local descriptors, global descriptors

are less robust to viewpoint changes, clutter and occlusions.

However, global descriptors like Gist are not dependent on

illumination changes [47].

III. DEEP LEARNED REPRESENTATIONS FOR

PLACE RETRIEVAL

Convolutional neural networks (CNNs) are a type of neural

network that is specialized for processing data organized

in a grid-like topology, e.g., images. CNNs have several

remarkable properties, which have led them to become a

powerful tool in different fields, including computer vision.

In particular, since Krizhevsky et al. [48] demonstrated

that deep CNNs can reach excellent performance in visual

tasks, it has been recognized that these architectures can act
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as powerful generators of image representations [49]–[51].

Moreover, it has been shown that CNNs can learn generic

features that are, to some extent, transferable to other visual

tasks [52]–[54]. These findings have also inspired the appli-

cation of deep learned representations to image retrieval,

where they have surpassed the performance achieved with

handcrafted methods.

In the rest of this section we discuss how CNNs are used to

generate image representations for VPR. Given the breadth

of CNNs as a subject, we do not provide an introduction

to it. That would be impractical to do in a limited space

and it would unnecessarily dilute the survey. Rather we refer

the reader to other sources for an introduction, e.g., [55],

and hereinafter we assume that the reader is familiar with

basic concepts of CNNs such as convolutional layers, pooling

layers, fully connected layers, feature maps, etcetera.

A. FULLY CONNECTED REPRESENTATIONS

The first attempts at using CNNs as representation generators

for image and place retrieval date back to 2014-2015, when

several studies [49], [56]–[60] demonstrated that the vector of

activations of a fully connected (FC) layer of a classification

network pre-trained on ImageNet [61] could be effectively

used for retrieval. Soon afterwards, it was shown that the

better retrieval results were achieved with FC representations

when the model was trained specifically for the retrieval task

using a triplet loss [60], [62].

From this early studies it became soon clear that the infor-

mation extracted by a FC layer is akin to a global descriptor:

it is not robust to the presence of distractors or occlusions

and lacks invariance to translation and scale. In order to

mitigate these issues, a few studies tried to extract multiple

sub-patches from the input image, each with a FC repre-

sentation, and use each patch for retrieval [56], [58], [62].

Although such a strategy was shown to close the gap with

classical hand-crafted representations from local descriptors,

especially when considering low-memory footprint, it is com-

putationally expensive and it does not solve all the limitations

of FC layers. In particular, FC representations are limited

by the fixed input size and by requiring large numbers of

parameters.

B. CONVOLUTIONAL REPRESENTATIONS

The limitations of FC representations have inspired

researchers to investigate the generation of image repre-

sentations directly from the output of convolutional layers.

The first study in this direction was proposed by Babenko

et al. [57]. In that work, the authors demonstrate that

the feature maps produced by a convolutional layer of a

CNN trained for classification can be used as representation

for place retrieval. More specifically, the authors take the

H ×W × C tensor produced by a convolutional layer of the

network, where H is the height of the tensor, W is its width

andC is the number of channels, and flatten it as a vector. This

vector is then normalized and used as image representation.

A similar approachwas demonstrated also in [63]. Despite the

interesting use of the convolutional feature maps, the results

achieved with this simple method are not far off from those

obtained with FC representations. Intuitively, simply flatten-

ing the featuremaps of a convolutional layer does not take full

advantage of the spatial information contained therein. This

consideration has guided the development of the current state-

of-the-art representations for place retrieval. These methods

can be categorized into two families:
• aggregation of the convolutional features using meth-

ods derived from hand-crafted representations of local

descriptors;

• pooling methods that summarize the convolutional

features.

1) AGGREGATED REPRESENTATIONS

Rather than collapsing the H × W × C features extracted

from a convolutional layer to a vector, they can be consid-

ered as a H × W grid of C-dimensional feature descrip-

tors, each one having a limited receptive field. Namely,

the output of a convolutional layer can be assimilated to

a set of densely extracted local descriptors. Following the

lessons learned from classical non-learned approaches, these

dense descriptors can be aggregated in a single vector rep-

resentation and then compared using a similarity function

(e.g., Euclidean distance or cosine similarity). Several studies

demonstrated the applicability of classic encodings to these

dense convolutional descriptors, e.g., VLAD [64], BoW [65],

[66], ASMK [67]. Moving further, researchers have proposed

aggregation modules that can be plugged on top of a CNN

and allow end-to-end learning. In [68], the authors combine

a fully convolutional network to a Fisher vector module.

By computing the gradient of the contrastive loss w.r.t. the

parameters of the Fisher Vector, this module can be trained

together with the CNN. In [69] it is introduced NetVLAD,

a layer that implements the VLAD embedding and aggre-

gation with differentiable operations, thus allowing end-

to-end training of the network. Moreover, NetVLAD presents

more trainable parameters than VLAD, hence providingmore

flexibility.

2) POOLED REPRESENTATIONS

Researchers have shown that convolutional features from

mid/late layers, unlike shallow non-learned features, can

be successfully aggregated and compared without embed-

ding. Babenko and Lemiptski [70] show that for shallow

hand-crafted features like SIFT, the embedding step is fun-

damental to improve their discriminativity. However, they

argue that raw convolutional features have a higher discrimi-

native capability and therefore they can be pooled together

with simpler schemes, thus providing not only a leaner

pipeline and, in many cases, more compact representations,

but also improving performance. Namely, an image represen-

tation can be generated by summarizing the statistics of the

convolutional features. The simplest pooled representation

is achieved by max-pooling the feature maps of a convo-

lutional layer. Despite its simplicity, the low-dimensional
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representation obtained with this scheme can outperform

more complex hand-crafted representations with a similar

memory footprint scheme [71]. Another popular representa-

tion is obtained by a parameterless sum-pooling of convo-

lutional feature maps (SPoC) [70], which can be interpreted

as an implementation of a simple match kernel. Sum-pooling

has been shown to perform better than max-pooling, espe-

cially when the image representation is whitened [69], [70].

An intuition about these two pooling strategies is elaborated

in [72]. The authors observe that max-pooling is more invari-

ant to scale changes, whereas sum-pooling is less sensitive

to distractors in the feature maps. To combine the advantages

of both methods, they test an hybrid pooling that concate-

nates the sum and max-pooling descriptors. Inspired by the

max-pooling described in [51], [71], Tolias et al. [73] design a

new pooling procedure that encodes multiple regions. Rather

than extracting multiple patches from the image and making

a forward pass for each of them, they select regions directly

on the feature maps using a uniform sampling scheme.

A max-pooled vector is computed for each region and these

regional descriptors are then summed and ℓ2 normalized.

This descriptor, called ‘‘Regional Maximum Activations of

Convolutions’’ (R-MAC) can be implemented with integral

images, which only requires specifying one parameter and

yields a more efficient computation. This implementation

reduces to sum-pooling for a specific choice of the param-

eter. Later, [74] introduces an implementation of the R-MAC

descriptor using differentiable operations, thus yielding a

module that can be plugged atop any CNN and that allows

end-to-end training. R-MAC uses different pooling opera-

tions to capture multi-scale information from the regions.

This approach is modified in [75] in two ways: i) the different

pooling operations are applied to the whole image, and ii) the

obtained feature maps are concatenated in a pyramid. Then,

the multi-scale feature maps of the pyramid are fused using

1 × 1 convolutions. With this fusion operation, the network

learns to combine the multi-scale context at each location. A

generalization of sum-pooling is presented in [76] by using a

cross-dimensional weighting scheme before the sum-pooling.

The weights across both dimensions are engineered based

on heuristic. The spatial weighting is based on the normal-

ized total response across all channels and it tends to boost

the response for locations in which multiple channels are

active, which likely correspond to salient regions. The chan-

nel weighting is based on the sparsity of the feature maps.

Conceptually, it is similar to an inverse document frequency

and it boosts the contribution of rare features in the overall

response.

Together with R-MAC, the current state-of-the-art pool-

ing method is the generalized-mean aggregation layer

(GeM) [77]. This layer implements a parametric generalized-

mean. There is one parameter per feature map, however

they can be shared reducing the parameters count to one.

GeM generalizes both max and average pooling (SPoC),

which can be considered as special cases corresponding

to a proper selection of the parameters. Since the pooling

operation is differentiable, the parameters can be learned as

part of the back-propagation. Experiments show that GeM

consistently outperforms max-pooling (MAC) and average

pooling (SPoC), and even R-MAC (in the implementation

with fixed region sampling).

IV. DIMENSIONALITY REDUCTION AND WHITENING

Another important aspect of image representations, besides

the retrieval performance they yield, is their dimensionality.

Intuitively, the number of dimensions of an image represen-

tation is directly connected to the size it occupies in mem-

ory. This has practical consequences for scalability, consid-

ering that for the similarity search in the retrieval pipeline

(see Fig. 1) the representations of all the database images

should be loaded in memory. Therefore, when developing

a VPR system that needs to be deployed to large environ-

ments, i.e., with a large database of images, reducing the

memory footprint of the representations becomes critical.

Additionally, reducing the dimensionality of representations

is also helpful to reduce the retrieval time. Scalability has

indeedmotivatedmany recent works to investigate short-code

representations [57], [68], by adopting different dimension-

ality reduction approaches. With hand-crafted descriptors

there is evidence that dimensionality reduction and whitening

can, in some circumstances, slightly improve performance

over the original embeddings [78], [79]. For example, Jégou

and Chum [39] explain that PCA and whitening help with

exploiting negative evidence and mitigating the problem of

co-occurrences. Many recent studies adopt dimensionality

reduction approaches with deep learned features [49], [56],

[57], [67]–[70], [73], [77], [80]–[85], suggesting that the

learned descriptors are better suited to compression. An

explanation for this is that the network learns to discard

much of the information that is irrelevant, thus allowing for

a more aggressive dimensionality reduction [57]. However,

it is also revealed that the effectiveness of the reduction may

depend on the aggregation method. For example, training

the PCA for high-dimensional engineered descriptors needs

a lot of data and it is prone to overfitting [70]. Early works

with FC descriptors report improvements when using PCA

and whitening [49], [56], [57]. In [56], where a multi-patch

approach is used, the dimensionality reduction is applied

both to the FC descriptors and to the aggregated representa-

tion. Starting from a 4096 dimensional (4096-D) descriptor,

the performance degradation is negligible up to 256-D and

128-D. Replacing the PCA with a learned projection matrix

that optimizes distances of the projected features can further

reduce the compression degradation.

Several works have confirmed that the effectiveness

of dimensionality reduction and whitening on convolu-

tional representations depends significantly on the method

used to build the representation. PCA and whitening are

shown to be more beneficial with sum-pooling than with

max-pooling [68]–[70], [76]. One explanation of this phe-

nomenon is that in sum-pooling whitening helps suppress-

ing the contribution of features that are both common
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across images and bursty. For max-pooling, burstiness of

popular features is a minor issue and whitening actually

causes a drop in performance [69]. Ong et al. [68] confirm

that PCA-whitening works better for sum-pooling, whereas

max-pooling shows better results when compressed with

linear discriminant analysis (LDA). Several alternatives to

PCA-whitening have also been used with convolutional

descriptors. In [83] the authors use the linear discriminant

projections originally proposed by Mikolajczyk and Matas

for SIFT features [78], directly learning it on the training data.

While this approach works better for high-dimensional rep-

resentations, PCA is shown to be superior for very compact

codes (64-D or less). The PCA projection is implemented

in [80] with a shifting and a FC layer, which can be advanta-

geously trained with the rest of the network. This implemen-

tation shows results that are comparable to classic whitening,

albeit being sensitive to initialization (random orthogonal

projection is reported to work best). This is explained by the

fact that the FC layer introduces a huge number of parameters

and it is prone to overfitting [69]. Another approach is to learn

the projection matrix from the representations of semantic

landmarks in the image, and then use it to reduce the dimen-

sionality of a holistic descriptor [86], [87]. This solution

effectively allows integrating both image-wide information

and the information from the semantic landmarks in a unique

representation.

While PCA whitening is an effective way to solve the

problem of over-counting and co-occurrences [39], it may

excessively penalize over-counting. Zhu et al. [84] observe

that whitening balances the energy across the dimensions of

the rotated descriptor, but they argue that it would be bene-

ficial if the variance of the first few dimensions is preserved

to some extent. For this reason they introduce a PCA power

whitening, in which the variance scaling is modulated via

a parameter. This parameter allows changing the tradeoff

between reducing over-counting and preserving the energy

distribution of the features. Experiments show that the power

whitening improves upon the classic whitening, and it can

even add a small gain to max-pooling (whereas the PCA

whitening generally worsens results). A similar formulation

is also proposed in [85] in the context of patches similarities.

In [67] the authors use a convolutional autoencoder (AE)

module to learn low-dimensionality local descriptors. This

approach is appealing because the AE can be integrated in the

network and trained with it by adding a reconstruction loss,

without the need to perform post-processing learning steps as

in the case of PCA. However, caremust be taken to control the

flow of the gradients from the autoencoder to the backbone.

Experiments show that AE outperforms PCA and a simpler

dimensionality reduction using a single FC layer.

V. LEARNING TO RETRIEVE PLACES

Section III introduced the topic of CNN-based representa-

tions used in VPR but only from an architectural perspective.

However, besides the aggregation or pooling method used

to build these representations, their effectiveness depends

also on how they are learned from the data. This section

discusses the approaches that are used to train the CNNs

as representation generators for VPR, highlighting also new

directions of research in this regard.

A. LEARNING FROM CLASSIFICATION

Asmentioned in Sec. III, the first CNN-based representations

used in VPR were actually generated from models trained

for a classification task, not for retrieval. This is motivated

by the fact that classification is the first visual task where

CNN demonstrated extraordinary results, and also by the

observations that CNNs can learn generic features that are,

to some extent, transferable to other visual tasks [52]–[54].

The first attempts with CNN-based descriptors for image

retrieval amounted to using an off-the-shelf classification

network pre-trained on ImageNet as feature extractor [49].

Although the pre-trained network is shown to be reasonably

capable of localizing queries, the retrieval performance was

noticeably improved in [57] by fine-tuning on a landmarks

dataset that is much closer to the target domain for urban

place recognition. Despite these improvements, it is generally

argued that learning for a classification task is sub-optimal

because the extracted features are not necessarily suitable

for the retrieval task [69], [80], [83]. One point to support

this objection is that descriptors trained for classification

learn to distinguish between semantic classes but are robust

to intra-class variability, which is undesirable for instance

retrieval [80].

Nevertheless, there a few recent studies that have gone

back to investigating the use of classification models to gen-

erate global representations for retrieval (i.e., FC representa-

tion, see Sec. III-A). For instance, [67], [88] use the ArcFace

loss [89] to train the global features with image level labels,

achieving good retrieval results under the cosine similarity.

There is a couple of reason that motivate this interest in

revisiting classification models as generators of image repre-

sentations for VPR. On one hand, the global descriptors they

produce can be quite compact. On the other, they only need

image level labels, without incurring in the cost of mining

examples that is discussed in the next section for metric

learning. Both these aspects are relevant for scalability to

large databases.

B. LEARNING TO RANK

Image retrieval is akin to a ‘‘learning-to-rank’’ problem,

therefore it naturally lends itself to metric learning, i.e., learn-

ing image descriptors that represent well the similarity under

a distance function. Indeed, most studies in VPR train the

CNN that generates the image representations with one of two

ranking losses: the contrastive loss, using a siamese network

setup, [68], [77], [83], or the triplet loss, using a triplet

network setup [69], [74], [80], [90]–[92]. Albeit different,

these two losses are based on a similar idea. For each training

sample the model is provided also with positive and/or neg-

ative examples. The two losses enforce that the learned rep-

resentation for the training sample is close to that of positive
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examples and distant to that of negative examples, according

to a metric. In the context of VPR, a positive example is an

image of the same place as the training sample, whereas a

negative example is an image of a different place. There are no

explicit comparisons between these two losses in VPR, with

only a few studies providing some indications: [93] reports

superior performance using a triplet network, but only for a

classification task; on the other hand, [77], [83]mention using

a siamese architecture because it yielded faster convergence

and better generalization, but no evidence is given.

Various modifications of the classic contrastive and

triplet losses have been discussed in image retrieval.

Mishchuk et al. [66] propose a triplet loss variant that max-

imizes the distance between the closest positive and closest

negative example in the batch. In [94] a Quadratic Hinge

Triplet loss which constraints first-order similarity is paired

with a loss that regularizes second-order similarity for local

descriptor learning. This idea is also applied to global descrip-

tors learning in [95]. In [96], the triplet loss is modified

by setting the distance to the hardest negative example to a

constant value, so that the corresponding derivative of the

loss is set to zero. The effect is to bring positive samples

together and then distributing them in the space, satisfying

the triplet margin criterion. Amulti-scale version of the triplet

loss is proposed for place recognition in [97], so as to create

embeddings from features extracted at multiple layers.

As mentioned earlier, representation learning via ranking

losses requires selecting positive and negative examples for

each training image. This topic is discussed next.

1) EXAMPLES MINING

The selection of positive and negative examples is crucial

when training a model with contrastive and triplet losses.

If they are too easy, the network will not learn to prop-

erly discriminate the images. On the other hand, forcing

the network to learn extremely hard examples could lead

to overfitting [83] and bad local minima [98]. The pairwise

similarity learning process is also not very tolerant to outliers,

therefore it needs clean training data [80]. Another challenge

in mining hard examples is efficiency, especially for scaling

to large databases. Various solutions have been proposed to

mine positive and negative examples. In [99] the authors use

stochastic sampling to select a set of samples, propagate them

through the network, and retain only those with the largest

losses. A similar approach is taken in [80] and the authors

report that, to reduce the computational effort, they mine hard

triplets every 16 network updates.

Learning through examples allows for weakly-

supervised [69], [91], [100] or unsupervised training [77],

by exploiting additional information to guide the mining

process. Radenovic et al. [77] exploit 3D models (clusters)

constructed via structure-from-motion (SfM) to inform the

choice of the examples. Hard negatives are mined from

clusters different from the one the query belongs to. Positive

examples are instead selected at random from the images

that co-observe enough 3D points with the query, but with

a threshold on the scale. Since the positive examples do not

depend on the current state of the CNN, but only on the

images and 3Dmodels, they can be mined once and then kept

fixed during training. GPS information is exploited in [69],

[91], [100]. In [91], the set of positive examples is selected as

those images that are within 50meters from theGPS tag of the

training query. Considering that images from the same GPS

coordinates could be taken pointing the camera at different

directions, the positive candidates are refined via geometric

verification. For the negative examples, the authors mimic

the image geo-localization process within the training batch

and for each iteration they pick as a negative candidate the

top retrieved image at least 225 meters away from the GPS

location of the training query. Since a learning based only

on the hardest negatives can lead to a bad local minima [98],

some negatives are also randomly selected from the batch.

The main difference in [69], [100] is that the loss considers

all the negative examples for each training sample. A naïve

computation of all negatives is infeasible because it would

require for each query to perform a forward pass on all

database images. Moreover, many negative examples would

have a negligible contribution to the loss, so considering them

would be a waste of computations. The authors propose three

strategies to make the mining process more efficient:
• Sampling: the loss is computed only for a set of negative

samples and each step inherits the hardest negatives from

the previous epoch.

• Caching: the representations are cached and recomputed

after a certain number of training queries. This number

can be chosen depending on the learning rate.

• Clustering: the queries are clustered according to their

GPS location and the queries in a cluster share the same

negative examples.

C. LISTWISE RANKING

Although the contrastive and triplet loss are the most popular

methods used in VPR for learning image representations,

they both come with two limitations. The first limitation

is practical: the procedures for mining examples can add

a significant overhead to the training and might even lead

to poor results if the examples are not chosen properly.

The second limitation is theoretical: these losses have been

shown to be only upper bounds on themean average precision

(mAP) [101]. Hence, optimizing these ranking losses is not

guaranteed to also optimize the mAP. A few recent works

have instead proposed to use a different loss that can address

both limitations. The idea is to directly optimize the mAP

by leveraging a listwise loss formulation (Fig. 2) [82], [102],

[103]. This formulation approximates the non-smooth and

non-differentiable AP using the method of histogram-binning

with a differentiable soft-assignment. This allows to compute

a quantized and differentiable mAP and to use backpropa-

gation. From an implementation perspective, backpropaga-

tion with the listwise-loss needs large batch sizes, which is

generally intractable. This problem can be bypassed using

a multi-stage backpropagation [82] or heuristics to split the
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FIGURE 2. The triplet loss (left) only considers few examples at a time. The listwise loss (right) considers all the images simultaneously and directly
optimizes the AP. Image from [82], Copyright 
2019, IEEE.

batch in mini-batches [102]. Experiments in image retrieval

demonstrate that learning with the listwise loss consistently

surpasses the results achieved with contrastive or triplet loss,

even compared to methods that perform multi scale analysis.

Moreover, this is achieved by using a smaller number of

forward/backward passes, a smaller number of iterations,

with a training process that is several times faster and without

the need to mine hard positive and negative examples [82].

D. LEARNING FROM EXPERT KNOWLEDGE

Learning to rank allows training a network directly for the

retrieval task, but the process can be long and costly. If one

such network has already been trained, knowledge distilla-

tion [104] can be used to train a student network. This is the

approach followed in [105], [106], where the student network

is based on a lightweightMobileNet architecture. Following a

similar concept, the feature extractor for the retrieval task can

also be trained from an expert system based on hand-crafted

features. For example, [107] uses an autoencoder architecture

that, instead of reconstructing the input image, is tasked to

decode a holistic feature vector that tries to reconstruct a

handcrafted HOG descriptor. The HOG descriptor provides

the geometric prior knowledge needed to train the network,

while also guaranteeing some invariance to illumination con-

ditions. This approach is shown to be capable of producing

a lightweight feature extractor and it can be trained without

supervision. The limitation of these methods is that they

depend on the availability of an expert system.

VI. SIMILARITY SEARCH

The second step of the retrieval procedure is a k-nearest

neighbour search (kNN), i.e., finding the k database instances

that are closest to the query. Albeit simple, this task

is quite expensive. Even though there are efficient algo-

rithms that implement exact nearest neighbour search for

low-dimensional cases, in high-dimensional problems they

can even be outperformed by a naïve linear search due to

complex effects (curse of dimensionality [108]). The search

can be drastically sped up using approximate nearest neigh-

bour methods (ANN) that perform a non-exhaustive search

implemented using different indexing structures, encoding

and stopping criteria [18], [59], [78], [109]–[113]. Efficient

implementations of several approximate nearest neighbour

algorithms are available in the FLANN library [109] and in

themore recent FAISS library [113] which also supports GPU

operations. The similarity search for visual place recognition

can also be implemented by matching multiple features per

image. This approach has been demonstrated using a nearest

neighbour (NN) for each individual local feature in the query

and resorting to techniques such as the GeneralizedMinimum

Clique Problem [114] or the Dominant Set Clustering [30].

These techniques are combined with NN pruning strategies

and with filtering based on global features to shortlist the

results from the matched images.

For image retrieval, it is also important to consider the

memory requirements of the indexing structure of the simi-

larity search method because large image representations can

lead to unsustainable memory footprints for big databases. In

the literature of image retrieval and visual place recognition,

several techniques have been used to make the similarity

search more efficient and scalable. Indexing structures based

on an inverted file [115] have been adopted to implement

a non-exhaustive search that is particularly effective with

sparse vector representations [24], [31], [37], [65], [81],

[116]. In [24] retrieval time is reduced by first grouping

similar database images and then performing the matching

by cluster. Quantization techniques such as k-means [116],

[117], binarization [35], [37], [67], [118], [119] and product

quantization [74], [81], [120], [121] have been used to reduce

the memory requirements for storing the data, in some cases

by more than one order of magnitude. They have also been

combined with asymmetric distance computation [120] and

multiple assignments [37], [118], [120], [122]–[124] to miti-

gate the quantization errors. The inverted index has also been

generalized to work with product quantization [58], [120],

[125], further improving the speed and accuracy of the search,

at a small memory cost. For an in-depth review on the topic

of approximate and efficient methods for nearest neighbors

search that is out of the scope of this document we refer the

reader to [111].

VII. RETRIEVAL REFINEMENT

The shortlist of database images retrieved by the similarity

search provides a set of hypotheses of the place corresponding

to the query. Due to the complexity of representing the sim-

ilarity, noise in the data and approximations, the hypotheses

can contain false positives or they can miss relevant instances

from the database. This section reviews several methods that
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can be applied to improve precision and recall by re-ranking

and even expanding the shortlist of candidates.

A. SPATIAL VERIFICATION

Spatial (geometric) verification is a popular technique for

boosting the performance of image retrieval and particularly

visual place recognition [24], [66], [67], [96], [106], [116],

[117], [119], [124], [126]–[131]. The gist of this method is

to first detect feature-to-feature correspondences among a

pair of images and then verify their reliability by analyzing

the consistency of spatial transformations between them. The

result of this analysis is then used to re-rank the shortlisted

results. Although spatial verification is generally used at the

refining stage, the same principle can also be used as a

procedure clean the database from labeling noise [80] before

setting up the place retrieval pipeline.

Spatial verification is typically implemented by using

model-based methods, such as RANSAC [116], [132] or

PROSAC [133], to generate transformation hypotheses based

on feature-to-feature correspondences, which are typically

pruned by imposing different kinds of constraints, such as

geometric [24] or semantic [128]. Each hypothesis is eval-

uated based on the number of ‘‘inliers’’ among all features

under that hypothesis, which can then be used as score for re-

ranking. Alternatively to model-based methods, some works

use model-free methods for the verification step [124], [128].

Spatial verification methods use sparse local descriptors to

detect correspondences and check the consistency between

images. In pre-deep learning VPR, the same hand-crafted

local descriptors that were aggregated to build the representa-

tion of an image for the retrieval could also be used for spatial

verification [117]. However, the transition to CNN-based

image representations raises the question of how these sparse

local descriptors for spatial verification can be extracted,

given that the methods discussed in Sec. III to generate holis-

tic image representations do not make sparse local descriptors

readily available. Aside from the naïve solution of addition-

ally computing hand-crafted local feature descriptors espe-

cially for the spatial verification [119], new approaches that

leverage CNNs have been proposed. These methods can be

categorized in three families:

• use a single CNN specialized to generate image repre-

sentations and then extract sparse local descriptors from

the same network using some heuristics;

• use two CNNs, one to generate image representations

and the other to extract sparse local descriptors;

• use a hybrid CNN trained to both generate holistic image

representations and to extract sparse local descriptors.

1) HEURISTIC EXTRACTION OF SPARSE

LOCAL DESCRIPTORS

These methods aim at simplicity and efficiency, trying to

extract spatial local descriptors without the need of retraining

the model for this task nor a second model. One strategy

proposed by Taira et al. [119] is based on the observation that

the feature maps from a convolutional layer of a CNN can

be interpreted as a dense grid of local feature descriptors, but

these descriptors can be matched in a coarse-to-fine-manner

to sparsify them. For this purpose, the authors first find

broader matches among the features of the fifth convolutional

layer (conv5) and then look for matches in the finer features

from the third convolutional layer (conv3) restricted by the

already found conv5 correspondences. Another solution is

to extract sparse local descriptors from the CNN used for

the first stage by selecting high activations of the convolu-

tional feature maps [128], [131]. This method is based on

the observation that the output of a convolutional layer can

be interpreted as a collection of 2D response maps of pattern

detectors. Hence, the selection of the high activations can be

seen as choosing the local features with the most confident

detections.

2) SEPARATE MODEL FOR EXTRACTING SPARSE

LOCAL DESCRIPTORS

This family of methods aims at using a separate model spe-

cialized to extract the sparse local descriptors. These methods

are based on the observation that the feature maps from a con-

volutional layer of a CNN can be interpreted as a dense grid of

local feature descriptors because they lack the detection step

that is instead used for hand-crafted local descriptors. There-

fore, they propose to combine the detection and description

steps in the model that is specialized for extracting the sparse

local descriptors (Fig. 3).

An architecture for this purpose that is tailored for VPR is

DELF [81]. In DELF the detection step is implemented as an

attention module that sits on top of the convolutional layer

and weights its activations. Effectively, this module works as

a keypoint detection, albeit the detection happens after the

description step. Revaud et al. [103] argue that salient regions

are not necessarily discriminative and that the model must

learn to detect keypoints that are both repeatable and reliable

for matching. For this purpose, they filter local descrip-

tors extracted at each pixel position based on a repeatabil-

ity map, learned in a self-supervised way, and a reliability

map, trained using a modified listwise loss. A non-learned

detection approach is used in [134], where detections are

obtained by performing a non-local-maximum suppression

on convolutional feature maps followed by a non-maximum

suppression across each descriptor.

3) HYBRID MODELS TO EXTRACT BOTH IMAGE

REPRESENTATIONS AND SPARSE LOCAL DESCRIPTORS

The use of two specializedmodels, one to generate image rep-

resentations and the other to extract local descriptors, clashes

with the limited resources and need for efficiency that arise

in many applications. For this reason several researchers have

investigated hybrid solutions that combine the computation

of both global descriptors (for similarity comparison) and

local descriptors (for spatial verification) into a single CNN

with multiple heads. This approach is used in DELG [67],

where local and global features are extracted from a common

backbone with two heads: i) a GeM pooling that produces
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FIGURE 3. Different approaches for detecting keypoints and describing
local descriptors from CNN features. a) Classical pipeline. b) Pipeline that
combines the two steps. Figure from [134], Copyright 
2019, IEEE.

the global representation, and ii) an attention module inspired

by DELF [81] to produce the local descriptors. In order to

train the two tasks simultaneously, the authors leverage the

concept of hierarchical representations in CNNs [53]: global

features are associated with the deep layers of the network

that encode high-level cues, while local features are associ-

ated to themid-levels that encodemore localized information.

Therefore, at training time, only the gradient of the similarity

loss of global descriptors is propagated back to the back-

bone whereas the gradients of the losses concerning the local

descriptors are stopped before. This is due to the observation

that a naïve optimization of the three losses would disturb the

hierarchical feature representation and produce weakmodels.

Another two-headed architecture is proposed in [106], but in

this case using distillation to learn the tasks directly from off-

the-shelf teacher networks. In particular, the authors use a

NetVLAD [69] based network for the image representations

and SuperPoint [135], a generic detector-descriptor architec-

ture, to extract the local descriptors.

B. NON-GEOMETRIC RE-RANKING

Even though spatial verification is the most popular method

for re-ranking, other methods that do not rely on geometric

correspondences are also used. In [73] the re-ranking stage

is performed by computing the matching scores between

the MAC representation of the query and all the individ-

ual R-MAC regions for the database image. The shortlisted

images are re-ranked based on the maximum similarity

between their regions and the query. In [88], [136] the authors

use a discriminative ranking method based on the similarity

of labels assigned to the images by a kNN search with soft

voting. Namely, the search results are re-ranked by first mov-

ing up all the shortlisted images that have the same label as

the query, and then by adding the images from the database

with the same label as the query and that were not retrieved by

the search. Another manually engineered re-ranking method

is presented in [137]. This solution is a brute force algorithm

based on matching descriptors from mid-level convolutional

layers while accounting for their spatial location.

C. QUERY EXPANSION

One of the most successful and widely used techniques to

improve the retrieval result is query expansion (QE) [12],

FIGURE 4. Example of diffusion. Left) retrieval from two queries using a
nearest neighbour search. Right) the diffusion process allows bettering
capturing the underlying data manifold. Image from [139], Copyright

2013, IEEE.

[23], [37], [65], [66], [70], [73], [74], [76], [77], [80], [82],

[88], [92], [96], [123], [126], [127], [129], [130], [138]. The

idea of query expansion is to use the shortlisted images

as a feedback to produce an enriched representation that is

re-submitted for a new search through the database. This solu-

tion can significantly increase the recall by retrieving relevant

images that were not selected with the first search. However,

it requires the initial candidates to be reliable and accurate

enough, hence it benefits from a prior verification step. More-

over, queries with few relevant images might see a degrada-

tion in performance after query expansion [129].

There are several versions of QE that are commonly used.

Average Query Expansion (AQE) [126] creates the enriched

representation as the average of the high ranked results. The

Discriminative Query Expansion (DQE) [12] instead uses

the top and bottom ranked results as positive and negative

examples to train a linear SVM. The SVM learns a weight

vector that is then used to re-rank all the candidates. The

Hamming Query Expansion revisits query expansion mak-

ing it compatible with Hamming Embedding [123]. The

α-weighted query expansion (αQE) [77] is a generalization

of AQE that uses a weighted average. Namely, each of the

top retrieved results is weighed by its similarity score raised

to the power of a tunable scalar parameter.

D. DIFFUSION

One of the limitations of retrieval by similarity search is

that the pairwise formulation ignores the structure of the

data manifold. Instead, similarities could be estimated more

accurately along the geodesic path on the data manifold.

Even query expansion, which has been shown to boost

the retrieval performance, only uses the closest neighbours

selected according to the pairwise similarity values to issue

new queries. In contrast to these methods, diffusion is a

technique that exploits the context similarities between all

elements of the database to unveil the data manifold and

it uses this information to perform a search in a principled

way (Fig. 4). The manifold here is interpreted as a weighted

graph, where each instance is represented by a node and the

weight on an edge is a pairwise similarity measure between

the connected nodes. The diffusion process then follows the

concept of a random walk that propagates a ranking score

through the whole graph.

The diffusion technique has recently gained popularity

in retrieval tasks because it has been shown to signifi-

cantly increase the performance [139], but this comes with
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some caveats. Firstly, this is a very expensive procedure that

can dominate the computational time of all other phases in

the retrieval. Secondly, the diffusion process assumes that the

query is part of the graph (i.e., the database), which is not

the case in visual place recognition. A major step towards

overcoming these issues was the Regional Diffusion algo-

rithm by Iscen et al. [140], which included several strategies

to make the diffusion refinement more efficient. Firstly, new

queries are handled without augmenting the original graph

but rather by expressing the vector that selects the initial

graph nodes in terms of the top ranked nearest neighbors

retrieved with the similarity search. The scores are then prop-

agated with a conjugate gradient solver. To further speed

up the online computation, diffusion is applied only on the

truncated graph corresponding to the nearest neighbors, with

a trade-off between precision and size of the truncation. This

technique is also generalized to handle multiple query vector

representations, typical of regional methods. The Fast Spec-

tral Ranking algorithm (FSR) [141] improves upon [140],

by moving more computations offline, effectively reducing

the online stage to a sequence of sparse matrix-vector multi-

plications. The Regularized Diffusion Process (RDP) [142]

is an algorithm that introduces a smoothness criterion that

simultaneously regularizes four vertices in the affinity graph.

This regularization is used to guide the iterative diffusion

process on the tensor product graph. An evenmore significant

speed boost is achieved by Yang et al. [143]. In comparison

to Iscen’s method their algorithm completely moves offline

the computation of the graph Laplacian that is used for the

diffusion, thus reducing the online process to a linear com-

bination of precomputed vectors. With this solution, the cost

of the diffusion process becomes almost negligible w.r.t. the

nearest neighbour search. Additionally, the authors use a

late truncation (truncation of the Laplacian) and demonstrate

that, contrary to Iscen’s early truncation (truncation of the

affinity matrix) [140], this does not reduce performance.

The motivation for this is that the subgraph obtained with

an early truncation contains incomplete manifolds and the

later normalization raises the probabilities to reach nodes

on such incomplete manifolds. The improved truncation

allows implementing more sizeable graph reductions with

a benefit in terms of the memory footprint. Regarding the

offline computation, building the affinity matrix of the graph

requires an exhaustive pairwise similarity check among all

the images of the database. Even though the operation is not

as critical as the online stage, this procedure cannot scale

to large databases. Generally an approximate NN search is

used [140]. Magliani et al. [112] propose an ANN algo-

rithm based on local sensitivity hashing that is specifically

tailored for the diffusion task. Inspired by diffusion, [130]

introduces a graph traversal approach called Explore-Exploit

Graph Traversal (EGT) to be applied to the kNN graph from

the similarity search. Themain idea is to combine the strength

of QE (exploiting the neighbours) and diffusion (exploring

the descriptor space) by alternating exploitation and explo-

ration steps. Additionally, a variant of this traversal algorithm

includes spatial verification to adjust the weights of the edges.

The spatial verification helps mitigating the problem of topic

drift – the exploration drifting away from the original query

– and improves results on a number of benchmarks.

The essential idea of classic diffusion methods is to

unveil the manifold structure to better guide the similarity

search. This idea has been revisited with the use of graph

convolutional networks (GCN). GCNs can be used to encode

the information from the kNN graph directly into the image

descriptors used for the similarity search. This generates new

descriptors that encode the high-order neighbour information.

In [144] this idea is explored with a GCN that is trained

without supervision by using a loss function inspired by

the concept of clustering: similar descriptors should move

closer, while dissimilar descriptors should be pushed apart.

After the model is learned, the image descriptors can be

forwarded through it to get the updated representation. At

inference time, computing the updated representation for the

query requires first to update the adjacency matrix of the

graph, which can be done in an approximated manner to

limit the time cost. This method depends on the quality of

the adjacency matrix, so the authors suggest using spatial

verification in the offline construction of the graph of the

database images. A similar idea is explored in [145], where

three different implementations of the transition equation for

the graph are demonstrated but not for the specific task of

retrieval. Another GCN-based method is presented in [146],

with a model that is trained without supervision using two

loss functions that directly depict the diffusion process with-

out any labeled information: a local loss that enforces smooth-

ness (if two nodes are topologically close in the graph the

similarity of their features should be high), and a global loss

that enforces global order (similarities measured by different

nodes from two neighborhoods should remain consistent).

The learned feature space can be applied to unseen queries

without a second nearest neighbour search, by a resorting to

a QE-like averaging.

VIII. CHALLENGING CONDITIONS IN VISUAL PLACE

RECOGNITION AND HOW TO TACKLE THEM

Although VPR is mostly treated as an image retrieval task,

there are numerous challenges specific to the recognition

of places that set it apart from other retrieval problems.

One peculiar problem is that two places might present com-

mon elements that make them difficult to be distinguished.

For example, man-made structures in urban environments

are rich of recurring patterns such as building facades or

fences [117]. These recurring patterns cause the phenomenon

of ‘‘visual burstiness’’ [147], i.e., the presence of visual

elements that are more frequent than predicted by a sta-

tistically independent model. Another problem is that the

same scene can appear significantly different if viewed from

different viewpoints [121], [148] or there can be little over-

lap between query and database images [149], making the

retrieval task harder. Moreover, a scene can experience struc-

tural modifications over time, e.g., when there is a temporary
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FIGURE 5. Examples of challenging conditions. Images taken from: CMU
Seasons dataset [151], [152], Aachen Day/Night dataset [151], [153], [154],
Nordland dataset [155].

construction site. Unlike other instance retrieval tasks, e.g.,

catalogue search, in visual place recognition usually there

is not a single object of interest centered and well visible

in the picture. Scenes can be cluttered with non informa-

tive elements, such as people or vehicles, that might dis-

tract or even occlude distinctive elements of the environment

see (Fig. 5c). There are also challenges that are specific to

certain environments. For instance, indoor scenes, such as

campuses or hospitals, may have similarly shaped corridors

and textureless areas [119]. Another major problem is the

fact that the same scene can appear drastically different due

to changes in environmental conditions such as illumination

(day/night/shadows), weather or season (see Fig. 5a-b and

Fig. 5d). The rest of this section discusses the various tech-

niques that have been proposed to tackle these specific chal-

lenges of VPR, categorizing them in order to highlight their

different goals and properties. Once again, we stress the fact

that the following discussion is not a comparison of multiple

methods, as they are too many and pursue different goals. For

a not exhaustive comparison of few of these methods we refer

the reader to [150].

A. SELECTING WHERE TO LOOK

The problem of coping with visual clutter and distractors has

inspired different solutions for guiding the visual inspection

pipeline to focus on the most informative parts of the images

and avoiding those elements that may induce confusion.

These methods not only can extract more informative and dis-

criminative features for the localization task, but they can also

make the systemmore efficient. The idea of selecting relevant

visual information for image geo-localization is not new, and

it has been investigated also with not CNN-based descriptors

and/or handcrafted schemes [18], [23], [27], [117], [156],

[157]. Some of the lessons learned by these studies have

translated to CNN-based architectures.

1) REGION SELECTION

An approach for dealing with clutter and visual distractors

is to extract regions of interest from the image, i.e., regions

that contain only the elements that are most relevant for the

recognition task. This idea can be naïvely implemented as a

multi-scale search on the input image. Namely, patches are

cropped from the image and for each of them a representation

is extracted. The regional representations can then be com-

pared for the retrieval. Even though such an implementation

has shown to be more robust against scale and viewpoint vari-

ations [71], [149], [158], [159], extracting patches directly

from the input image is inefficient because it requiresmultiple

forward passes through the network. Inspired by the advances

in object detection, most recent works extract the regions

directly on the convolutional feature maps. Another consid-

eration, which applies also to regions extracted on the feature

maps, is that using a fixed-grid of proposals (e.g., [71], [73])

is sub-optimal. Since the fixed grid is not informed by the

content of the image, the proposed regions may fail to fully

contain relevant elements. Moreover, many of the regions

may only cover clutter, hence they can negatively affect

performance [80]. This problem, cannot be solved by simply

using a finer grid because increasing the number of regions

would not only improve coverage of the informative areas but

also of the irrelevant ones. Additionally, this would not be a

scalable solution, because increasing the number of regions

would also increment the retrieval latency and the required

memory [129]. Following these considerations, [80] modifies

the R-MAC descriptor [73] by replacing the fixed-grid sam-

pling with a region proposal network, akin to the one intro-

duced in Faster R-CNN [160], and trained on the Landmarks

dataset [57]. For a similar number of regions, the region pro-

posal network yields better performance than the fixed sam-

pling. A limitation of this proposal method is that it is trained

in a supervised fashion, from a dataset with labeled regions.

A similar modification was proposed for the ASMK aggre-

gation [37] by Teichmann et al. [38], using a MobileNet-

V2 [161] based SSD detector [162] for selecting the regions

and modifying the ASMK kernel to apply regional aggrega-

tion. Another strategy for computing the regions of interest,

without requiring annotated region proposals, is to directly

mine them on the convolutional feature maps [163], [164].

Features at late layers tend to be sparse and representative

of semantically meaningful elements such as a shape or an

object [53]. Therefore, saliency regions can be extracted

from these layers by clustering the activations and selecting

those with highest energy. Themain difference between [163]

and [164], besides the aggregation method from the local

features, is in the definition of the cluster: a set of non-zero

spatially proximal 8-connected activations in [163], a set of

neighboring activations with similar values in [164]. When

multiple regions are selected for each image, an approxi-

mate linear bidirectional similarity search across the database

can become prohibitive. To mitigate this problem, in [165]

the k-NN search from regional descriptors is replaced

by a Locality-Sensitive Hashing based method, which not

only provides a significant speedup but also improves

matching.

2) ATTENTION MODULES AND WEIGHTING MASKS

Attention modules are an approach to select the more relevant

information from the images (see Fig. 6) that can signif-

icantly improve the performance of place retrieval [166].
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FIGURE 6. Examples of images from urban environment (top) and the
attention scores (bottom) generated by the AdAGeo architecture [168]
which implements attention via class specific activation maps. The
attention is focused on building, disregarding dynamic objects,
uninformative areas (sky) and objects that are not stable over time
(trees).

Differently from region proposal methods, which effectively

extract portions of the image that are deemed interesting,

with attention modules the image is processed as a whole but

the individual features are weighted according to a relevance

criterion. The weighting scheme, particularly in early works,

can be established according to some heuristic. In [70] the

weighting heuristic is based on the assumption that objects

of interest tend to be closer to the center of the image.

The CroW descriptor [76] combines spatial and per-channel

weighting. The spatial weighting is based on the normalized

total response across all channels, effectively boosting the

response for locations in which multiple channels are active.

The per-channel weighting is based on the sparsity of feature

maps, effectively penalizing low-sparsity filters that are very

recurrent and not discriminative. Heuristics based weighting

masks can improve specific aspects of the retrieval process,

but they lack flexibility. In the spirit of deep learning, these

weighting masks are better learned end-to-end from the data.

A learned attention module is used in [81], where it serves as

a keypoint detection unit. The module learns a non-negative

scoring function for each feature with a weakly supervised

training, i.e., requiring only image-level labels. The same

attention module, both in additive and multiplicative form,

is also used in [138] to improve the localization from aerial

images (remote sensing). A learned contextual reweighting

network (CRN) is described in [91]. The CRN is implemented

as a concatenation of multi-scale context filters followed

by 1 × 1 convolutions, with downsampling/upsampling lay-

ers used for dimensionality consistency. Being implemented

with conventional differentiable layers, the CRN can sit on

top of a fully convolutional network and be trained in an

unsupervised way, meaning that the training does not need

explicitly annotated boxes. The effect of this contextual mod-

ulation is to produce a weighting mask based on semi-global

context. Qualitatively, the mask gives positive weights to

relevant structures while it penalizes repetitive lattices or not

meaningful content. This contextual reweighting surpasses

the predefined weighting mask used in Crow [76]. A method

similar to the CRN is presented in [167]. In [168] an attention

mechanism is implemented through class specific activation

maps [169], which are used as score maps to weigh the

features (see Fig. 6).

Selection of salient regions can be guided by context at

multiple scales as demonstrated by MSCAN [92] with a two

layer LSTM network. The first layer of the LSTM network

generates an initial multi-scale context memory that is then

fed to the second LSTM layer to produce a multi-scale aware

attention. MSCAN produces very focused responses on the

relevant portion of the images (e.g., buildings) but not on

occlusions such as people in the foreground. Another model

that uses an attention map based on multi-scale context is

proposed in [170]. There, a global latent context is created

for each location of the feature maps by adaptively pooling

all local descriptors. The attention mask is created by fusing

these context maps, thus combining the local information and

the global context at multiple scales. Global image infor-

mation is also used in [84] to guide the attention module

with a cascaded scheme: a first attention block of 1 × 1

convolutions produces a global attention descriptor; a second

attention block uses the global attention descriptor from the

first one as content prior. In [75], a multi-scale attention map

is implemented using two 1 × 1 convolutional layers with

sigmoid activation on a multi-scale feature map. However,

the results show that this multi-scale attention map may give

inconsistent results in presence of lighting variations.

Another solution to produce more informative attention

maps is to leverage second-order spatial information, as done

in [95] using a non-local block [171]. Second order spatial

information allows to generate a feature map in which local

features reflect the correlations between all spatial locations,

in contrast to first order features where each local feature has

a limited receptive field. This method allows to learn dense

local descriptors that account for the contribution of each

local feature in relation to the others.

B. VIRTUAL VIEWS AND WARPING

View synthesis is an approach that has been adopted in

visual place recognition to address the problem of view-

point variations. Namely, the query or database images are

replaced/augmented by artificial views that show the same

scene but from a different viewpoint. In [121], view synthesis

is used as a way to augment the database in order to help

recognition of night-time queries against day-time database

images. This use of synthesized views is motivated by the fact

that the dense local descriptors used for the matching, while

more robust than sparse local descriptors to illumination

changes [172], suffer from limited invariance to geometric

transformations (scale and viewpoint). In this case, the views

are synthesized from panoramic Google Street View images

and their associated coarse depth-maps. Despite containing

significant visual artifacts, these artificial views yield better

localization than the non-augmented database. View synthe-

sis is used in [119] for pose verification after the initial

retrieval stage. Namely, after a set of candidate poses are esti-

mated for the query, a view for each estimate is synthesized to

show how the scene would look from that pose. The synthesis
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leverages a database of RGBD images that provides a dense

and accurate 3D structure of the environment. The re-ranking

is finally based on the count of matching and non-matching

pixels between query and synthesized views.

Warping is used in the case of cross-view localization in

which the query is a street-level image and the database

is made of aerial images, or viceversa. Such an extreme

viewpoint difference makes it impossible to directly match

query and database images. One workaround is to project

ground and aerial images to a common artificial view. In [173]

the authors first project the 2D street view images to 3D

world coordinates and then re-project them onto the aerial

view image plane through the street-view depth estimates and

using some simplifying assumptions. A similar use of recti-

fied views is displayed in [174], where a street-level query

is geo-localized against a geographic information system

(i.e., a map from satellite imagery). In [28] virtual views are

created from Google Street View images to simulate different

camera tilt angles and improve matching with aerial queries.

C. SEMANTIC INFORMATION

Semantic information can be leveraged to guide the extraction

of the most informative and distinctive visual elements for

the retrieval task, providing more robustness to distractors

and changing conditions (Fig. 7). This approach leverages

a prior knowledge about the environment where the local-

ization is considered. For example, knowing that people and

vehicles carry no relevant information for the localization,

one could discard or penalize the visual cues corresponding to

these semantic labels. Even in the pre-CNN setting, semantic

information has been used to improve image retrieval, e.g.,

to select correspondences between images only on areas

recognized as man-made structures because they are more

distinctive and stable over time [175], to remove the sky

since it carries no localization information [176], or to filter

out patch descriptors based on the semantic content of the

patches [177]. Place categorization is instead used in [178]

to inform the recognition of the location. Namely, a clas-

sification network trained on Places365 [179] is used to

extract the most likely semantic attributes from a scene, thus

categorizing it. The semantic category of the query is then

used in the place recognition module to bias matches within

the same semantic category. The method proposed in [178]

actually uses sequences of images and the segmentation is

used to create subsequences with coherent category both in

the query and in the database. Nevertheless, the principle is

applicable to the single image scenario. A similar concept is

explored in [180], where the semantic classes of the objects in

the query are used to filter the database images, thus reducing

the search space for the image retrieval.

Dense, pixel level semantic information extracted from a

semantic segmentation network is used in [128], [181] to

tackle the specific challenge of localizing a vehicle along

a road that was previously traversed only in the opposite

direction, meaning that there is a 180◦ viewpoint difference

between queries and database images. The visual semantic

FIGURE 7. Pixel-wise semantic information can be leveraged to select
only portion of the image corresponding to content that is stable across
seasons, e.g., man-made structures. Image from [183], Copyright 
2017,
IEEE.

information is used in two ways. First, the semantic label

probability and convolutional maps of the semantic seg-

mentation network are used to construct a descriptor called

Local Semantic Tensor (LoST), which concatenates descrip-

tors for each semantic class. Then, the maximally-activated

location of the same feature maps are exploited to select

semantically labeled keypoints for verifying and re-ranking

the candidate matches. This use of the semantic informa-

tion not only mitigates the problem of viewpoint changes,

but it also boosts the recognition performance in vary-

ing weather/illumination/season condition. A similar prob-

lem and solution are considered in [182]. Here, temporal

sequences of pixel-wise semantic masks are used to build

graphs where the vertices are semantic blobs extracted from

the masks and the edges are built based on proximity con-

straints. Given a query graph and a database graph (map),

the place is then retrieved by matching descriptors built using

a random walk approach.

Pixel-wise semantic labels are used in [183] to produce

an image representation that is more robust to changes over

time. For this purpose, the authors use a semantic segmen-

tation network trained over a dataset with scenes in varying

ambient conditions to extract a binary semantic mask. Pix-

els corresponding to stable elements (buildings, signals) are

marked as discriminative and preserved, whereas dynamic

objects (pedestrian, cars), uninformative content (road, sky)

and objects with unstable appearance over time (trees) are

marked as not discriminative and removed. Both the orig-

inal and segmented image are then fed through a feature

extractor and the corresponding convolutional features are

aggregated to form the image representation. Hou et al. [184]

employ a similar semantic binary mask, however they use it
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not to compute an holistic image representation but rather

to filter out the non-discriminative regions proposed by a

landmark detector. Similarly to [183], also [185] combines

appearance-based and semantic features to produce a more

robust representation. The main difference is that [185] also

uses semantic and appearance information to estimate a

multi-modal attention module. The multi-modal attention

module, informed by both appearance and semantics, helps

the network to selectively focus on visual elements that are

more discriminative and stable. Pixel-wise semantic labels

and depth labels are combined in [97] to train a multi-task

architecture with a shared feature extractor.With this strategy,

the feature extractor implicitly learns to fuse geometric and

semantic information, thus producing more discriminative

embeddings for the retrieval task. While semantic masks can

be highly informative in urban environments, the lack of

content in bucolic scenes might make them ineffective. For

this reason [186] proposes to use descriptors created from

semantic edges, rather than the full semantic masks. However

this solution is extremely vulnerable to noise in the semantic

mask.

Despite the improvements in the localization performance

achieved by several methods that exploit pixel-wise semantic

information, the semantic classes that are used are often

few and chosen by experience or inherited by other tasks.

Larsson et al. [187] argue that such a choice of few classes is

not optimal for visual place recognition because it limits the

discriminative power of the learned representations. To over-

come this problem they propose a fine-grained segmentation

network with a high number of classes (≈ 102 − 103) that

are learned in a self-supervised way by clustering the features

extracted. The clustering, and thus the selection of classes,

is updated at a fixed number of training steps. Additionally,

a correspondence loss is applied to different views of the same

scene to encourage the model to learn semantic representa-

tions that are robust to viewpoint and ambient changes.

Semantic information has also been used to address the

place recognition problem in the case of extremely different

views. Castaldo et al. [174] consider the case in which the

query is a street-level image and the database is made of

semantically annotated top-view satellite images. In this case,

the matching is performed by searching on the map for a

tile with a spatial layout of semantic segments (e.g., road,

building, grass) which is consistent with the one in the query

image. Finally, even though not strictly relevant for the visual

place recognition task using only 2D images, it is noteworthy

that semantic information also been shown to yield more

robust results in the case of 3D-based place recognition [29].

In this case, the semantic information is exploited to generate

semantically complete 3D models, from which robust 3D

descriptors are extracted.

D. DEPTH INFORMATION

Depth maps are an auxiliary source of information that can

be combined with appearance-based processing to leverage

scene geometry in the place recognition task, hence providing

robustness to visual changes. Depth information can be used

to guide the process of extracting a global image represen-

tation for the image retrieval. This strategy is used in [97],

where the authors propose an architecture where the encoder

used to extract the image representation for the recognition

task is shared with two auxiliary tasks: depth map reconstruc-

tion and segmentationmask reconstruction. Thus, the encoder

learns to use the geometry in the scene (as well as the seman-

tic content) to extract the appearance-based representation.

Piasco et al. [188] also use depth reconstruction as an auxil-

iary task to help the place recognition task. Unlike [97], they

use separate encoders for the two tasks (plus a decoder to gen-

erate the depth map) and combine representations obtained

from these two encoders in a unique descriptor. In both [188]

and [97] the training is supervised, requiring a depth map

for each training image, but at inference time only the RGB

image is needed.

E. ADAPTING TO DIFFERENT ENVIRONMENTAL

CONDITIONS

The challenges posed to vision place recognition by changing

conditions such as illumination, weather and seasons are

widely acknowledged [151] and represent an open problem.

A significant body of literature has investigated the short-

comings of descriptors and deep features in such difficult

conditions [172], [189], [190] and the insight gained by these

analyses has provided some guidance to find more robust

descriptors. In this sense, it has been shown that sparse local

features are not robust to appearance variations such as dras-

tic illumination changes (day/night) [172]. An explanation

for this poor performance is that keypoint detectors only

consider small image regions and use low-level information

that is highly affected by pixel intensities. This can lead to

unstable detections under strong appearance changes [134].

These observations have led researchers to use dense local

descriptors without a detection phase to address place recog-

nition across day and night cycles [121]. An alternative is to

preprocess the images with a learned photometric normal-

ization to cope with significant illumination changes [191].

Notably, deep learned descriptors have shown better perfor-

mance than hand-crafted ones in benchmarks with day/night

conditions [69]. For similar reasons, dense local descriptors

have also found use in indoor localization where keypoint

detection is hindered not only by changes in lighting (arti-

ficial/natural) but also but also by the lack of textures [119].

Small performance gains have been recorded by using meth-

ods that introduce a selective focus on parts of the image,

e.g., with regions of interest [158], [163], [164], attention

modules [84], [170] or semantic guidance [128], [183]–[185].

These gains can however be attributed to the fact that these

techniques help focusing on elements in the scene, such as

buildings, that have a more stable appearance over time.

It is also worth noting that methods that use sequences

of images have shown a greater robustness to changing

conditions [192]–[195].
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A different solution to the problem of changing conditions

has been proposed for robotics and autonomous driving, and

it consists of continuously growing the database with new

images captured in different conditions. Disregarding the

collection costs, this idea is difficult to implement as the

dimension of the database, and consequently the computa-

tional cost of the place recognition algorithm, can quickly

become unmanageable. To solve this scalability problem,

Doan et al. [196] propose a solution that consists of three

elements. Firstly, a VPR algorithm based on aHiddenMarkov

Model that is efficient both in terms of training time and

testing time. Secondly, a strategy for growing the database

with the query sequences that only adds images with signif-

icant new content. Thirdly, a compression step that merges

connected portions of the map, thus decreasing its size.

More recently, a few studies have explicitly targeted the

cross-domain problem where the target domain (query) dif-

fers from the source domain (database) due to changes in

illumination, weather or season. Amethod that is investigated

in [197], [198] is to replace the query with a synthetic image

that depicts the same scene but with the appearance of the

source domain. In [197], the query image is translated to

a synthetic image in the source domain by using a Cycle-

GAN [199] that has been tailored for SURF matching by

adding a loss term on the feature detector and descriptor.

In particular, the authors use a generator based on URes-

Net [200] and train it with a two-stages procedure. In the

first, unsupervised, stage the image generators are trained

using a small set of unpaired images from the two domains.

In the second, supervised, stage the generators are fine-tuned

using pairs of pixel-aligned images from the two domains,

learning certain feature transformations that might not have

been captured in the first stage. A similar idea is developed

in [198], albeit using a ComboGAN [201] that allows for

n-domain translations. The architecture in [198] is tailored

for the retrieval task by using a triple discriminator: one

focused on texture, one on color, and the third one on hor-

izontal/vertical gradients. The main difference with [197]

is that there the cycle-consistency loss is used to enforce

that the feature detectors/descriptors are translated properly,

whereas in [198] the third discriminator emulates the process

of extracting SIFT descriptors, thus inducing the creation

of matching-relevant features in the translated version. A

ComboGAN is used also in [202], together with a feature

consistency loss, to learn domain invariant latent features

for retrieval-based place recognition. GANs with cycle con-

sistency are also used in [203] to tackle the cross-domain

problem, however there the authors directly utilize the feature

extracted by the first fully connected layer in the discrimi-

nator as image representation to be used for the similarity

search. Rather than aligning the features of different domains,

another strategy is to learn multi domain features and then

separate condition dependent features from the condition

invariant ones using a separation module [204].

One specific case of cross-domain place recognition is

considered in [205]: the database is composed of present day

RGB images and the queries are historic images from the

same area. In this case the domain shift is caused not only by

possible changes in the scene but also by the different tech-

nology used to take the photos. The architecture proposed to

tackle this specific setting is based on a CNN feature extractor

with VLAD aggregation [33] and two key elements: i) an

attention module that weighs the features and residuals in the

aggregation within the VLAD module, and ii) a multi-kernel

maximummean discrepancy (MK-MMD) domain adaptation

loss that guides the CNN to learn a latent space where the

two domains are not distinctive. Experiments show that the

attentionmodule brings only amodest improvement, whereas

the boost due to the domain adaptation loss is significant.

A different application of domain adaptation is proposed

in [97]. There, the authors propose to use a virtual dataset

to train their model which requires both depth and semantic

labels. An adversarial training with an adaptation loss is then

used to ensure that the latent features extracted from the

virtual and real domain have similar distributions. Generative

and domain adaptation approaches are combined in [168] to

tackle the problem of changing conditions in place recogni-

tion. The authors show that generative and domain adaptation

techniques bring orthogonal improvements to the recognition

results, and their combination further boosts performance.

Additionally, among the solutions discussed here, [168] is

the only one that addresses domain adaptation in VPR in a

few-shot setting.

F. USING 3D MODELS

Appearance based recognition of a place can be supple-

mented with the information of a 3Dmodel. This information

can be exploited in various ways. Firstly and most impor-

tantly, the 3Dmodel can be used to accurately regress the pose

of the camera that captured the query image with respect to

a given coordinate system. Additionally, the 3D information

can be used to improve some aspects of the retrieval pipeline,

such as the construction of the database. The 3D model can

be built directly from the database images using structure-

from-motion (SfM) [151], [206], [207], as long as the images

present enough overlaps and provide different viewpoints

of the same scene. Since the 3D points reconstructed from

SfM are usually sparse, multiview stereo algorithms [207]

or densification [208] can be used to recover more dense

and accurate models. Mining techniques such as zoom-in and

zoom-out or sideways crawl can also be included in the SfM

pipeline [208] to better capture fine details. 3D models can

also be created by other sensor information, e.g., using depth

information [209] or lidar measurements [29].

In visual place recognition 3D models are exploited in

different ways. In [210] it is used to learn a codebook to be

used for classic aggregation methods such as BoW or VLAD.

The 3Dmodel can also be used for re-ranking with geometric

verification [208], or as an instrument to guide the mining of

positive examples for metric learning [77], [83]. A predom-

inant use of 3D models is to estimate the camera pose with

respect to the map [28], [105], [106], [119]. First, the image
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is matched using descriptors, then a precise pose is com-

puted from 2D-3D matches using a PnP [211] solver within

a RANSAC loop [212]. Under strong viewpoint changes,

which are typical for instance in place recognition for aerial

robots, it can be difficult to establish 2D-3D correspondences,

so the 3Dmap can be densified using depth completion [213].

One problem with using 3D models is that they are expensive

to store and maintain, and do not scale well to large environ-

ments. To overcome this problem [214] proposes to not use

a large 3D model created offline, but rather to create a small

local model online (SfM-on-the-fly), using the top retrieved

images from the database. This solution is shown to achieve

good results, although its effectiveness deteriorates in the case

of weakly textured scenes. A 3Dmodel is also used in [119] to

synthesize views from the predicted camera pose, which can

then be used for verification and re-ranking. It is worth noting

that there are deep camera pose regression methods based on

a single CNN [215]–[217] without the need of storing the 3D

model for online inference, however these methods have not

yet achieved an accuracy comparable to those using explicitly

3D structure. A 3D model derived from SfM is used in [134]

to generate training data for D2, a network that learns to

detect keypoints for local descriptors. Structure-from-motion

is also used as a way to generate ground-truth sparse patch

correspondences between pairs of images depicting the same

scene. These correspondences can then be used to train a

model that extracts sparse local descriptors [218] for spatial

verification.

While all the aforementioned studies use 3D information

to support visual-based recognition of places, recent studies

have proposed to do the inverse. Favoured by the increasing

availability of 3D sensors, several researchers are investigat-

ing to directly use 3D-3D matching for place recognition.

In this case the images are used as an auxiliary information,

e.g., to extract semantic information to be fused with the 3D

pointcloud [29].

IX. VISUAL PLACE RECOGNITION WITH AERIAL IMAGES

The task of visual place recognition is predominantly stud-

ied in the context of images captured from the street level,

however the availability of satellite imagery and the diffusion

of camera-equipped aerial robots has led to new and specific

developments. On one hand, aerial images allow to obtain a

bigger variety of viewpoints as well as wider views of an area.

On the other, they introduce new challenges, such as drastic

viewpoint variations and a lack of distinctive visual details.

The rest of this section discusses few scenarios of VPR with

aerial images.

A. REMOTE SENSING

In remote sensing image retrieval, like in classical VPR,

the task is to identify a query image location by retrieving

similar images from a database. However, the images are

taken from a downfacing camera onboard an aircraft flying

at high altitude or from a satellite. Therefore, the images

depict large geographic areas, with objects that may have

significantly different scales. Moreover, elements that are

very distinctive from the street level, such as buildings, may

be less informative when looked from a great distance above.

On the other hand, visual elements that are not particularly

informative from the street level, such as roads, are important

for remote sensing.

Despite these differences, methods that are used in VPR

have also been applied to remote sensing place recogni-

tion. In [219] the authors use an approach based on the

bag-of-words framework. First, the images are divided in

patches using different schemes, namely uniform grid and

superpixel. Then, the image representation is constructed by

stacking together the latent features extracted by feeding

each patch through the encoding part of a deep convolutional

autoencoder. Finally, the bag-of-words is generated using

these representations. Rather than using patches, which is

computationally expensive, [138] proposes to use the DELF

architecture [81] to extract attentive local features that are

then combined via the VLAD aggregator. Additionally, since

geometric verification is difficult to apply to remote sensing

imagery, the authors use a query expansion based on memory

vectors [220] to improve the retrieval results.

B. CROSS-VIEW GEO-LOCALIZATION

Another use-case for aerial images in place recognition is

cross-view geo-localization. In this setting the query is taken

from the street level whereas the images in the database are

aerial views (or vice versa). Lin et al. [173] consider the

specific case in which the aerial images in the database are

taken at approximately 45◦ angle and the database images

are taken from Google Street View together with a coarse

depth map. This information, together with the assumption of

an orthographic camera model, allows to reproject the street

level images onto the aerial plane and establish ground-aerial

matches. These matches are then used as examples to train

a CNN-based feature extractor with a contrastive loss. The

idea of cross-view training is also explored in [221]. There

the authors propose to train a CNN to extract the FC represen-

tation of aerial images by using an ℓ2 loss function that aligns

these representations with those extracted from a pre-trained

model for the corresponding ground images. The cross-view

scenario is specialized in [174] for the case of geographic

information system images endowed with a semantic map.

Similarly to [173], a reprojection is used to rectify the street

level image, however the projection is applied to a semanti-

cally segmented copy of the query. The cross-view matching

is then cast as a search for consistent spatial layouts of the

semantically labeled regions.

C. MICRO AERIAL ROBOTS

When the aerial images are captured from a front facing

camera onboard a multicolor micro aerial vehicle flying at

low height, the geographic area covered is not as wide as

in the case of remote sensing imagery. However, the large

roll-pitch rotations that are typical in the motion of these

robots cause drastic viewpoint changes (Fig. 8). This prob-
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FIGURE 8. Example of viewpoint variations due to the drone pitch/roll
angles during flight. Images from the camera onboard a drone flying in
Zurich. Dataset presented in [28].

lem is particularly pronounced in the cross-view setting in

which the database images are taken at the ground-level.

Majdik et al. [28] suggest using virtual views that simulate

different tilt angles as well as a verification step. The problem

of drastic viewpoint variations is also present in the aerial-

to-aerial setting and it is demonstrated in [148], [213], where

the authors propose a new dataset specifically for VPR for

aerial robots. Along the same lines, Zaffar et al. [222] show

that methods that perform very well on ground-level local-

ization show a significant degradation in performance when

applied to the aerial case with 6 DoF viewpoint changes.

The viewpoint variations encountered in this setting can be

partially mitigated by the use of geometric verification [148].

X. VISUAL PLACE RECOGNITION IN

ROBOTICS APPLICATIONS

Visual place recognition is a fundamental component in the

navigation stack of robotic systems, being used for exam-

ple for loop closure detection in GPS denied environments.

Although the techniques from computer vision research

have carried over to this scenario, the unique characteristic

implicit in the robotic application have led to specific devel-

opments. The most significant peculiarity of this problem

setting is that place recognition is intended as a continuous

task that processes streams of observations and that can

leverage a knowledge of the motion of the robot available

through egomotion estimation and motion models. Addition-

ally, robots are often equipped with different sensor technolo-

gies other than vision that can be used for VPR, such as 3D

lidars [223], [224] or range sensors [225]. Lastly, the place

recognition problem is often combined with visual based

localization, where the goal is to regress the 6 DoF pose of

the robot w.r.t. a known map.

A. MAPS

The task of recognizing a location from visual information

requires prior knowledge of all the places of interest. Since

in robotic navigation the observations are collected contin-

uously, consecutive images from the video stream of the

camera are connected by spatio-temporal constraints. In this

setting, the prior knowledge of the world is thus naturally

organized as a topological map [3], where nodes represent

places with associated observations of the world (images)

and edges indicate transitions between places. These tran-

sitions allow to naturally describe motion constraints that

are posed by the structure of the environment and by the

robot itself. For example, the navigation of autonomous cars

in a urban environment is constrained not only by their

mechanical structure but also by the roads and the traffic

rules. In this context, the transition between two spatially

near places might not be allowed because of a ‘‘no entry’’

traffic sign. Topological maps, combined with the continuous

localization of the robot, can effectively speed up matching

because the location prior can be used to limit the search

to a sub-graph with an adaptive window approach [194]. A

similar idea is proposed in [226], where the database images

for an indoor environment are partitioned in subspaces based

on spatial rules. This partitioning stems from the observation

that there is a relation between image similarity and distance.

Moreover, the partitioning rules used by the authors also

leverage the natural subdivision in spaces that is present in

indoor environments (rooms, corridors). The partitioning of

the database is used to improve the computational efficiency

of the VPR system by limiting, if possible, its search space to

the last visited subspace.

Topological maps might also be augmented with metric

information assigned to nodes or edges [3]. Suchmetric infor-

mation can be exploited to guide the place recognition process

in conjunction with motion models and odometry measure-

ments [182], [194]. The addition of odometry information

has been demonstrated to improve place recognition perfor-

mance [176]. Moreover, the information stored in the nodes is

not necessarily limited to the appearance of the corresponding

places, i.e., images, but can also contain semantic informa-

tion. For example, places might be described using scene text

such as billboards, shop names, road signs, etcetera [194],

[227]. Hong et al. [194] use a topological-metric map where

each node represents an image with an associated a descriptor

of the scene text present therein. The similarity matching is

then implemented as a combination of semantic information

(Levenshtein distance between text strings) and appearance

information (IoU between the text bounding boxes). The

semantic information that can be stored in the map is not

limited to textual descriptors. Gawel et al. [182] build graphs

using blobs of connected regions extracted from semantically

segmented images, i.e., regions with the same pixel-wise

class label.

One question that arises in this setting is how to efficiently

construct and expand the map as the robot navigates the

world. This question is critical for long-term autonomy and

scalability to wide geographical regions. In particular, when

a new sequence of images is acquired it is necessary to add

only new and relevant information to the map and to establish

connections with previously visited places. One approach

used to selectively grow the map is to link the acquisitions of

new observations to localization failures [25]. This strategy

follows the idea that the localization failure is an indication

that the prior knowledge available is not sufficient for recog-

nizing the current place. Churchill and Newman [25] apply

this solution and introduce four different methods to connect

different acquisition with new edges. New nodes can also be

added to the map based on metric information, i.e., when the
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camera moves a certain distance from an existing node [194].

Metric information can also be used to combine newly created

graphs with previous acquisition, by merging close vertices

into a single location [182]. Doan et al. [196] have recently

proposed a strategy to efficiently expand a map. This strategy

is based on two different optimizations: i) adding images that

provide only new information based on the localization belief

(culling); ii) merging nodes that refer to the same place but

were visited in different occasions (compression).

B. CONTINUOUS PLACE RECOGNITION

AND LOCALIZATION

In robotics, VPR is intended as a continuous task in which

the algorithms can access streams of video frames, rather

than single images, as well as odometry measurements and

hypotheses about the motion model. The availability of such

information can be leveraged by ad-hoc solutions to achieve

a more robust and accurate place recognition.

1) STOCHASTIC MODELS

Stochastic models are used to generate a belief distribution

about the location of the current observation (image) cap-

tured by the robot with respect to the known map. This

generation process is performed recursively, exploiting pre-

vious estimates, egomotion measurements and motion mod-

els to provide the prior localization belief. An important

milestone in this line of research is FAB-MAP [19], [21],

an appearance-only algorithm for place recognition that

extends the bag-of-words framework with a recursive Bayes

estimation. FAB-MAP implements Bayes recursion by

approximating the likelihood that the observation was orig-

inated from an unseen place. This approximation can cause

perceptual aliasing, however this problem is mitigated by the

introduction of a smoothing operator. Although FAB-MAP

can work as a pure image retrieval process by always assum-

ing a uniform location prior, using even a simple motion

model to leverage the prior estimate improves performance.

HiddenMarkovModels (HMM) are also used extensively for

visual place recognition in robotics to exploit the temporal

order of the captured images and the high correlation between

time and place due to motion constraints [193], [196].

In [193], a HMM is used to combine image representations

produced by four methods: two hand-crafted representations

and two types of deep learned representations. For this pur-

pose, the authors introduce a multi-process fusion algorithm

that compares the matching performance of each represen-

tation and ranks them by voting. Then, in the application

of the Viterbi algorithm the emission matrix is re-computed

at each element of the sequence using only the top voted

representation for that particular image.

2) SIMILARITY MATRIX

Another family of methods for VPR in robotics is based on

the use of similarity matrices. Given a sequence of frames

(query), a similarity matrix is built by comparing individ-

ually each frame of the query (rows) with each image in

FIGURE 9. Example of similarity matrix computed from sequences of
images. The rows refer to the query frames, whereas the columns refer to
the database frames. The sequences are taken from Oxford RoboCar and
the image representations are computed using a pretrained
ResNet-101 with a GeM pooling.

the database sequences (columns) (see Fig. 9). The similar-

ity matrix is then used to estimate the most likely trajec-

tory followed with respect to the known map. This kind of

approach was popularized by SeqSLAM [45], which used

image differences with local contrast enhancement to cre-

ate the similarity matrix. SeqSLAM estimates the current

location by searching on the matrix for the best fitting tra-

jectory along the map, i.e., the trajectory that provides the

best matching score, possibly given motion constraints. One

weakness of SeqSLAM is the susceptibility to perceptual

aliasing which can be counteracted by using long sequences

of images. The approach of SeqSLAM has been expanded

by subsequent works, e.g., using a Hidden Markov Model

to allow searching for non-linear trajectories [228], filter-

ing out the sky from the images [176], querying frames

by their relative distance to allow for traversals at different

speeds [176], using learned features instead of handcrafted

ones [229], using semantic-based descriptors to create the

similarity matrix [181]. The similarity matrix can also be

used in conjunction with more complex trajectory search

methods to achieve more robust and accurate localization

results. Naseer et al. [192] use the similarity matrix to build

a flow network that associates the frames in the query and

in the database. The nodes in the network represent matches

between images on the edges are associated a cost based on

the similarity score. The trajectory search is thus interpreted

as finding the minimum cost flow through the network. Not

only this method allows to find trajectories traversed at dif-

ferent speeds and with stops, but using special nodes it can

also manage trajectories with non-matching frames.

3) SEQUENCE REPRESENTATIONS

The images in the query sequence can also be processed all

at once to create a combined representation that implicitly

contains the temporal information among frames and that can
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be matched to other sequences [182], [203], [230]. In [230]

the authors test three different methods to combine deep

learned representations, i.e., concatenation, fusion via a FC

layer and recurrent representations built via LSTMs. Inter-

estingly, naïve grouping works better on standard sequences,

perhaps because it is equivalent to imposing a coherence

check. Although such a grouping can become more distinc-

tive as the length of the sequence grows [203], the rep-

resentation size also increases with the number of com-

bined frames thus imposing a trade-off. Fusion and recurrent

representations work better when the sequences are altered

(different speed, reverse traversal) as they are able to learn

complex relations among the frames. Sequence representa-

tions are created in [182] using a two-stage strategy. First,

a semantic graph is created from a sequence of images by

selecting connected semantic components. Then, for every

node of the graph a random walk is repeated and the

sequences of visited semantic nodes are stored as a matrix.

In this case, the similarity between pairs of sequences is

scored by the number of matching random walks in their

representations.

4) BIOLOGICALLY INSPIRED METHODS

Biologically inspired methods mimic the cognitive processes

of animals with relatively small brains, such as insects and

rodents, in order to create efficient and resource limited algo-

rithms. RatSLAM [231] is a notable example of such biolog-

ically inspired methods. RatSLAM is inspired by computa-

tional models of the hippocampus of rodents and it represents

the pose of the robot by the activity in a continuous attractor

network (CAN) that integrates odometry with visual land-

mark sensing. In [232] the authors present a place recognition

approach that is inspired by a recently discovered type of

spatial encoding cell, called grid cell, that is found within the

mammalian brain and whose firing structure reveals the char-

acteristics of multiple discrete and overlapping scales. The

proposed approach mimics the discrete multi-scale encod-

ing patterns of grid cells by utilizing multiple place recog-

nition channels, each of which adaptively selects spatial

scales based on environmental similarity. NeuroSLAM [233]

employsmulti-dimensional CANs to represent amultilayered

head direction cell model and a 3D grid cell model. These

models are used to perform 3D SLAM with a robot whose

state is given by a 3D position and heading (yaw angle). Chan-

can et al. [195] propose a hybrid system that concatenates

a compact and sparse two layer neural network inspired by

the brain structure of fruit flies with a one-dimensional CAN

that encodes the places. The first part of this architecture,

the FlyNet network, imitates how the fruit fly brain assigns

similar activity patterns to similar odors. The 1D CAN filters

temporal information, with units being inhibited/excited by

movement. Despite its extremely compact format, this hybrid

solution manages to achieve competitive results in several

place recognition scenarios and it is even shown to surpass

more complex algorithmic methods in the day/night domain

shift case.

C. MULTI-TASK ARCHITECTURES

Visual place recognition is just one of several tasks that a

robot needs to perform while navigating. In this context,

the performance of place recognition can be improved by

leveraging the information extracted by other related tasks,

or viceversa. For example, VLocNet++ [234] processes

incoming images with three streams: one for visual odometry,

one for global pose regression and the last one for seman-

tic segmentation. The visual odometry and pose regression

streams employ hybrid hard parameter sharing up to the third

residual block. This influences the pose regression network

to integrate motion specific features. Semantic features are

also fused at the fourth residual block of the pose regres-

sion network via an adaptive fusion module. This allows

the pose regression to leverage also semantic information.

While VLocNet++ is an architecture with parallel tasks,

DeLS-3D [235] serializes them. First, the pose is estimated

using a regression network that is fed the image stream

as well as the semantic mask obtained from a semantic

3D map and the coarse pose an inertial navigation system.

A multi-layer RNN follows the pose regression to include

temporal information. Finally, the estimated pose is used to

render a precise semantic mask from the 3D map which is

then fed into a segmentation CNN together with the RGB

image. A different take onmulti-task architectures is to have a

single primary task, e.g., place recognition, assisted by other

auxiliary tasks. This strategy is used in [97] with an architec-

ture that extracts multi-scale features for the place retrieval

task using an encoder that is shared with other two tasks:

semantic segmentation and depth estimation, each one using

a specialized map generator. This solution implicitly fuses

geometric and semantic information in the features extracted

for place recognition. Another example of multi-task archi-

tecture, in the domain of assistive technologies, is demon-

strated in [2], which introduces a model with a single back-

bone and two heads, one for VPR and the other for scene

recognition.

XI. VISUAL GEO-LOCALIZATION AS CLASSIFICATION

Although visual place recognition from a single image has

been predominantly formulated as an instance retrieval task,

few recent works have proposed to cast this problem as a

classification task. Note that this is different from what dis-

cussed in Sec. V-A, where the classification task is only used

to train a model to generate representations for the retrieval

pipeline (see Fig. 1). In the alternative formulation discussed

here, it is the classification task itself that predicts the place of

an image, without any retrieval. This idea stems not only from

the remarkable results that deep classifiers have achieved on

large-scale tasks, but also from the observation that humans

can estimate the location of a photograph without having

to perform instance level or landmark recognition. This is

particularly interesting when trying to achieve a global scale

localization, in which case category level information can

help [26].
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The pioneering study from Weyand et al. [236] is the

first one to explicitly formulate visual geolocalization on

a global scale as a classification problem. In this setting,

the surface of the earth (or just the area of interest) is divided

in non overlapping cells. Each cell, corresponds to a class for

the classification problem. A CNN with a Softmax output

layer (PlaNet) computes a discrete probability distribution

assigning a confidence to all the cells. The partition in cells

is performed using an adaptive subdivision, so that each

cell is recursively divided if it contains more than a certain

number of images. Finally, cells with too few samples are dis-

carded. Such a subdivision allows to have balanced classes,

while assigning more classes (or equivalently, more of the

network’s parameter space) to areas with higher density of

images. A shortcoming of this solution is that the size of

the regions determines the maximum accuracy achievable.

It would be tempting to use a finer subdivision in cells to

make the classification more accurate, however this does

not work too well because: i) if the cells are very fine the

number of training examples per class will reduce; ii) with the

increase in the number of classes the number of parameters

of the classifier grows substantially, thus leading to problems

with scalability and generalization. Indeed, while in some

instances increasing the number of cells may increase accu-

racy, in others it can worsen the results [237] (see Fig. 10).

To overcome this problem, [238] proposes a combinatorial

partitioning in cells. Namely, different coarse partitions of

earth’s surface are generated and then overlapped to create

finer regions. With this strategy it is possible to use a single

backbone classifier with different fully connected layers per

coarse partition, resulting in an architecture that has far fewer

parameters than a single classifier network trained for many

more classes. At inference time, the subregions overlapped by

multiple class sets are given cumulative scores from multiple

classifiers, with a normalization that accounts for the number

of cells per class. Experiments with this architecture show

that the classifier is able to correctly locate images from a

wide variety of environment types, not just urban pictures.

However, the performance drops critically as the accuracy

required increases. This can be explained not only by the

limitation of the training dataset, but also because the dis-

cretization used to create the classes is naturally lossy. The

performance of the classification-based place recognition can

be boosted by combining it with scene recognition [239].

In this approach, a first network classifies the category of the

scene and, based on the label, forwards the image to a clas-

sifier specialized for that category. The main improvement

comes from the fact that the specialized classifiers can learn

more specific features for their respective domain, however

this solution is not easily scalable.

So far, only one study has attempted to compare the per-

formance of geolocalization using image retrieval and clas-

sification approaches [237]. Even though this comparison is

not extensive and it does not include the latest architectures,

it does offer some insight. The authors observe that image

retrieval performs generally better at finer scales than the

FIGURE 10. Example that shows the effect of different partitioning
schemes on the localization result with a classification formulation. The
two rows show two different examples, where the picture on the left is
the query and the charts on the right show the predicted places for
increasing number of cells. The red point indicates the prediction,
the green point indicates the ground truth. Image from [237], Copyright

2017, IEEE.

classification method, however both have some shortcom-

ings. Image retrieval requires a database that provides images

with significant overlap with the query. Moreover, it may

be difficult to create a retrieval solution that generalizes to

different environment types (e.g., urban cities and naturalistic

scenes). On the other hand, the formulation as a classification

task can provide a more general localization solution, but it

suffers from the lossy partitioning in classes.

XII. DATASETS AND EVALUATION

A. DATASETS

The datasets that are openly available and used for visual

place recognition focus on different use cases or problems,

and therefore have substantial differences from one another.

A first broad categorization of these datasets comes from

the distinction between robotics and non-robotics datasets.

Robotics datasets [21], [45], [151], [152], [214], [240], [241],

[247]–[249], [249] are typically created by recording videos

from cameras mounted on a vehicle (e.g., car) or a smaller

robot. The data is thus available in sequences, with the tem-

poral coherence among successive frames that can be lever-

aged to formulate motion hypotheses. Moreover, the point of

view is consistently at the street level, without big changes

in the vertical orientation. Non robotics datasets typically

are not collected as sequences of frames [22], [23], [38],

[69], [80], [81], [116]–[118], [122], [125], [190], [215],

[242], [244], [246], [251]. In many cases, they are created

by collections of online images, with variable viewpoints

and resolutions. Since such collections are quite noisy and

may include mislabeled images, it has been reported that an

automatic cleaning stage can be critical to improve retrieval

results [80], [88], [136]. A source of images that is closer

to the robotics domain is Google StreetView. This is a col-

lection of panoramic images taken from a vehicle (street

level) but not organized as time-coherent sequences. Several

datasets use images from StreetView, divided in perspective

images, to create maps of cities [30], [69], [114], [117],

[121], [243]. Another distinction among these datasets is the

way they encode places. Some datasets focus on recognizing

famous landmarks or discretely sampled locations, so they

encode places by labels [22], [116], [118], [122], [190].
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TABLE 1. Summary of commonly used datasets in VPR. Among the changing conditions, D/N stands for Day/Night, W stands for Weather, and S stands for
Season. The column denoted as 3D indicates if the dataset includes 3D models.

Other datasets use the GPS information tagged on the images

as the place information [69], [121]. This is particularly use-

ful when the database densely covers an area rather than being

a sparse list of landmarks. Finally, few datasets encode places

with 6 DoF camera poses [151], [153], [154]. An additional

aspect that sets apart the datasets is the kind of environment

they consider. The majority of databases are focused on urban

environments, being this the most relevant use case for many

applications. However, a few datasets consider indoor envi-

ronments [119], [251] and non urban areas [81], [118], [190],

[249]–[251].

The available datasets have also evolved over time, in order

to better represent the current problems to be solved in VPR

and provide more challenging benchmarks. For example,

the Oxford [116] and Paris [122] datasets that served as the

main VPR benchmarks for several years have been recently

revised, not only to correct inaccuracies but also to introduce

new protocols of increasing difficulty [129]. The Google

Landmark dataset [81] has also been expanded with a second

version [251], not only to increase its size but also to ensure

that the images are stable and are not be removed from

their sources. Some datasets have also been revisited to add

extra information, such as manually annotated boxes (Google

Landmark v1 [38]) or 3D models created using structure

frommotion (CMU Seasons [151]). Most recent datasets also

provide images from different ambient conditions (day/night

cycles, different weather/seasons), because dealing with such

variations is an open problem in VPR [69], [121], [151],

[151]–[155], [155], [190], [248], [252]. Table 1 summa-

rizes the datasets that are commonly used in visual place

recognition.

The significant efforts recently poured into autonomous

driving research has led to the release of several datasets

that, although not directly aimed at visual place recog-

nition, could be potentially adapted and used for that

purpose [254]–[260]. In fact, these datasets offer long

sequences of data recordings that generally include not only

multiple camera streams, but also egomotion measurements,

lidar scans and sometimes depth masks and semantic seg-

mentation. However, to be used for visual place recogni-

tion these recordings need to be pre-processed, filtering the

video streams and associating ‘‘place label’’ to the frames.
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TABLE 2. Summary of datasets used for VPR with aerial robots. Among the changing conditions, D/N stands for Day/Night, W stands for Weather, and S
stands for Season. The column denoted as 3D indicates if the dataset includes 3D models.

This could be done by leveraging the data collected from

the vehicle inertial navigation system, although this typi-

cally operates at a different frequency than the cameras.

Additionally, there are several virtual datasets aimed at

autonomous driving that manage to generate pseudo-realistic

images from a variety of scenarios, while at the same time

providing exact annotations for semantic segmentation and

depth masks [261]–[265]. Most of these virtual datasets do

not associate a pose or coordinate to the images yet, but

if geotagged images were to be added they could become

a valuable instrument to study VPR. Lastly, there are also

datasets specialized for visual place recognition with aerial

robots [28], [148], [213], [253]. These datasets emphasize the

problem of viewpoint changes, which is extremely common

for aerial robots for two reasons: i) multi-rotor drones tilt

significantly during flight, and ii) they can fly at different

heights. Table 2 summarizes the datasets that are available

to study VPR with aerial robots.

B. EVALUATION OF RESULTS

Evaluating the performance of a visual place recognition

system requires first to define when a query is correctly

localized. This definition changes depending on how a place

is identified. For localization of landmarks identified by a

label, the place is considered recognized if the label retrieved

for the query matches the ground truth [117]. In the case

of places identified by GPS coordinates, a query image is

deemed correctly localized if the retrieved image is within

a certain distance from the ground truth position [69], [121].

Finally, if the place is identified by a pose, the correctness

of the retrieval is based on a maximum error on position and

orientation with respect to the ground truth [119]. The latter

two definitions give the flexibility to set the error thresh-

old, adapting it to the use-case. For example, the GPS error

may be set differently for recognition on street level or city

level [238].

Using these definitions, various metrics are used to

assess the performance of the recognition system. The

most common metric applied to both retrieval-based and

classification-based methods is the fraction of correctly rec-

ognized queries. This metric is indicated with different

names, such as accuracy [238] or recall (in this context

with a slight different meaning than in pure image retrieval)

[69], [121]. Another quantity of interest in the metric is the

number of hypotheses that are considered to verify a query,

i.e., the number of top ranked retrieved images or most likely

classes. The parameter is indicated in the metric with the

notation @N , i.e., recall@N . Methods can be compared for

specific values ofN or by considering full curves over a range

of N .

For datasets with a constant number of positive database

images for each query, such as Oxford [116] and Paris [122],

performance is assessed using the mean average precision

(mAP) [83]. In the classification formulation the retrieval is

evaluated by themean average precision (mAP@N), i.e., sort-

ing the top N retrieved images in order of relevance and aver-

aging the AP of the individual queries. A modified version

of the mAP that is similar to the µAP [266] is considered

in [81] to account for distractors among the set of queries. Full

precision-recall curves and the corresponding ‘‘area under

curve’’ (AUC) are also used for evaluation [81], [150].

XIII. DISCUSSION AND FUTURE DIRECTIONS

OF RESEARCH

The main proposition of this document is to present a com-

prehensive overview on visual place recognition, breaking

down this topic in its multiple facets. This overview is built

upon over 250 research items published by different scientific

communities, i.e., computer vision, machine learning and

robotics. By categorizing and analyzing all these documents,

we tried to identify the research trends in VPR and to empha-

size them. In this final section we summarize the contents

of the survey with a short discussion. Once again, we stress

that a quantitative comparison would be impossible given the

breadth and diversity of methods and aspects covered by the

survey. Afterwards, we elaborate on possible future directions

of research for this field.

A. DISCUSSION

1) IMAGE REPRESENTATIONS FOR PLACE RETRIEVAL

In Secs. II to V we touched upon various aspects concern-

ing image representations for place retrieval. This has been

a central focus of research in recent years, with convolu-

tional based representations becoming the state-of-the-art.

From an architectural perspective, excellent results have been

achieved both with aggregation and pooling schemes, but we

observe that most recent studies are leaning towards pooling

schemes. Apart from their simplicity, these solutions are

shown to produce more effective compact representations

than aggregation methods. Another important aspect to be

considered is the method used to train the representation

generator. We observe that researchers in this field are mostly

using contrastive or triplet metric learning losses. Neverthe-

less, the mining step involved with these methods can become
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a weakness moving forward to large scale databases, due to

the complexity in selecting hard examples and the computa-

tional overhead it adds to the training. The recent application

of listwise loss, which requires no mining, appears promis-

ing but it should be tested more extensively, particularly on

large databases. Novel ideas, such as including second order

appearance information or geometric/semantic information

in the metric learning process, show that this is an area where

there can be further improvements.

2) RETRIEVAL POST-PROCESSING

Although most modern research in VPR is centered around

learning better representations for the similarity search stage,

the post-processing stage is equally important. In Sec. VII we

have mentioned various refinement methods that can boost

the performance of a place recognition system. For each of

these methods we have discussed strengths and limitations,

with regards to the computational effort required, how effec-

tively the information in the database is used and applica-

bility to unseen queries. The different families of methods

discussed are not mutually exclusive, but the selection of the

most appropriate one depends heavily on the specific problem

setting and requirements. We observe that most of the refine-

ment methods used nowadays are based on well-established

principles. Nevertheless, there are some notable advances

to be acknowledged. Firstly, the promising application of

diffusion techniques. Secondly, there are some attempts to

implement deep learning solutions also at this stage, e.g., for

the computation of local feature descriptors for geometric

matching and for the implementation of diffusion processes

via graph convolutional networks.

3) VISUAL PLACE RECOGNITION IS NOT JUST ANOTHER

RETRIEVAL PROBLEM

In the survey we observed that visual place recognition, albeit

viewed as a retrieval task, is very different from other image

retrieval problems. Section VIII paints a picture of the numer-

ous challenges that make visual place recognition a unique

and very difficult problem, and it identifies several research

trends that have emerged as a consequence of these chal-

lenges. From these trends we can draw some observations:
• The selection of salient areas of the image is particularly

important in place recognition, helping not only with

occlusions and distractors but alsowith the identification

of the most stable elements across seasons. Among these

methods, attention maps stand out not only because they

do not need a separate supervised training, but also

because they allow to modulate how much focus should

be given to different elements.

• The recognition of a place based on appearance can

be greatly improved by exploiting also semantic and

geometric information.

• The variation of viewpoints can greatly affect the recog-

nition of places, but the integration of view synthesis or

warping techniques in the retrieval pipeline can mitigate

this problem.

4) VISUAL PLACE RECOGNITION IN ROBOTICS

Robotics is a major domain of application for visual place

recognition. The specific challenges and requirements in

robotics have led to several key developments in visual

place recognition (see Sec. X). Many of these developments

revolve around the continuous nature of robotics navigation.

In particular, the availability of temporal and topological

information in robotics applications can be leveraged in the

retrieval process. Most of the solutions developed with this

goal combine a multi-frame retrieval process with trajectory

exploration strategies. However, there are few studies that

try to embed the temporal information directly in the place

recognition process, e.g., using sequence descriptors or bio-

logically inspired methods. Another emerging theme in this

context is the integration of VPR in multi-task architectures.

These architectures may not only be aimed at realizing more

efficient perception stacks, but they can also combine the

information extracted from multiple sensor input to perform

better in different tasks.

5) GEO-LOCALIZATION BY CLASSIFICATION

In Sec. XI we discussed an alternative formulation of VPR

as a classification task. This formulation has interesting char-

acteristics and it can provide a more effective solution for the

coarse recognition of a place given a large and sparse database

of images. The different strengths and limitations of image

retrieval and classification methods for place recognition also

raise some interest in hybrid solutions that could combine

the accuracy of retrieval based methods with the ability

to generalize and the resilience to viewpoint changes from

classification methods.

B. FUTURE DIRECTIONS

Based on the analysis provided in this survey we can for-

mulate some considerations about the future directions of

research in VPR. One observation is that scalability is a

fundamental problem to be solved to make VPR viable in

real world applications. As discussed in the survey, there are

several aspects of the retrieval task that have repercussions

on scalability and where researchers can investigate new

solutions. Firstly, there is a need to investigate compact repre-

sentation that can be discriminative for large scale problems.

Moreover, using classic ranking losses may be infeasible for

massive databases, given the problems involved with mining

examples. From this point of view, it could be interesting

to revisit representations generated from classification tasks.

Indeed, in the survey we observe that these representations

were quickly abandoned in favour of generators based on a

contrastive or a triplet loss. However, that trend was moti-

vated by the results achieved on small scale problems. For

large scale problems, using a classification model may be

beneficial to obtain compact representations without the need

to mine examples. Additionally, even similarity search on

a massive database can become prohibitive. In this sense,

methods to reduce the search space in the database may
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be necessary. Lastly, we advocate the necessity to inves-

tigate scalability both with sparse databases (images col-

lected on a large area, without overlaps) and dense databases

(where a possibly limited area is covered by many images

with overlaps), because these two scenarios present different

problems.

Another open problem in VPR is long term reliability (or

long term autonomy), which is crucial to effectively deploy

these systems in the wild. We recognize that there are two

aspects of this problem that have barely received any atten-

tion. Firstly, these systems must be able to generalize or adapt

to different domains. As discussed in the survey, there are

many solutions that have been shown to help in this sense (i.e.,

saliency selection, use of multi-modal information) however

these methods are either not specifically developed for this

purpose or based on heuristics. There are only few studies that

explicitly tackle domain adaptation in VPR and only one that

does it in a few-shot setting. Secondly, these systems must be

able to acquire new knowledge after they are deployed. To the

best of our knowledge, the question of incremental learning

has not been addressed in this context.

At the beginning of this manuscript we mentioned that

the increasing interest in VPR largely derives from the

many potential use-cases, from apps on a smartphone to an

autonomous driving car. So far VPR has only been studied in

the scenario of a single system, however both smartphones

and autonomous cars are naturally networks of distributed

systems. From this perspective, it becomes interesting to

frame VPR as a task across multiple devices, where the

experience of one could help increase the knowledge the

others. There are several interesting challenges in such a

scenario, from the sensitivity of data, to the limited onboard

resources available on such devices. Therefore, we think that

VPR makes for a fascinating problem to be studied from the

perspective of edge computing and federated learning.

Currently, one prominent direction of research in VPR

concerns the development of multi-modal solutions that also

leverage semantic and geometric information to help in the

recognition of places. However, we find that the lack of

datasets built for VPR and that include also these other

input modalities is a limiting factor. Therefore, we believe

that to further advance the research in this direction it is

urgently required to create newmulti-modal datasets for VPR

or expand existing ones in this direction. Along this line,

we also think that autonomous driving platforms could offer

the opportunity to create VPR datasets with heterogeneous

sensor inputs (e.g., video streams and lidar pointclouds),

which could be used to further expand the visual place recog-

nition problem.
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