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In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention frommultiple
disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed
estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent
need has arisen to understand the e	ects of distributed information structures on 
ltering and fault detection in sensor networks.
In this paper, a bibliographical review is provided on distributed 
ltering and fault detection problems over sensor networks. �e
algorithms employed to study the distributed 
ltering and detection problems are categorised and then discussed. In addition, some
recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally,
we conclude the paper by outlining future research challenges for distributed 
ltering and fault detection for sensor networks.

1. Introduction

1.1. Sensor Networks. Sensor networks have recently been
undergoing a quiet revolution in all aspects of the hard-
ware implementation, so�ware development, and theoretical
research. In addition to the universal attributes of complex
networks, sensor networks do possess their own characteris-
tics due mainly to the large number of inexpensive wireless
devices (nodes) densely distributed and loosely coupled over
the region of interest. �e past decade has seen successful
applications of sensor networks in many practical areas
ranging from military sensing, physical security, and air
tra�c control to distributed robotics and industrial and
manufacturing automation. Accordingly, theoretical research
on sensor networks has gained an increasing attention from
multiple disciplines including engineering, computer science,
and mathematics. Lying in the core part of the area are
the distributed estimation and 
ltering problems that have
recently been attracting growing research interests.

For distributed estimation/
ltering problems, the inher-
ently asynchronous sensor network is comprised of a large

number of sensor nodes with computing and wireless com-
munication capabilities, where the nodes are spatially dis-
tributed to form a wireless ad hoc network and every node
has its own notion of time. Each individual sensor in a
sensor network locally estimates/
lters the system state from
not only its own measurement but also its neighbouring
sensors’ measurements according to the given topology. �e
possible complexity of such a topology posesmany challenges
for scientists and engineers, and it is di�cult to analyse
these networks thoroughly with currently available estima-
tion/
ltering algorithms. �erefore, there is an urgent need
to research on modelling, analysis of behaviours, systems
theory, estimation, and 
ltering in sensor networks. Numer-
ous fundamental questions have been addressed about the
connections between sensor network topology and dynamic
properties including stability, controllability, robustness, and
other observable aspects. However, some major problems
have not been fully investigated, such as the behaviour of
stability, estimation, and 
ltering for sensor networks with
incomplete/imperfect/stochastic topology, as well as their
applications in, for example, distributed signal processing.
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Sensor networks have already become an ideal research
area for control engineers, mathematicians, and computer
scientists to manage, analyze, interpret, and synthesize func-
tional information from real-world sensor networks. Sophis-
ticated system theories and computing algorithms have been
exploited or emerged in the general area of distributed sensor
networks, such as analysis of algorithms, arti
cial intelli-
gence, automata, computational complexity, computer secu-
rity, concurrency and parallelism, data structures, knowledge
discovery, DNA and quantum computing, randomisation,
semantics, symbol manipulation, numerical analysis, and
mathematical so�ware.�is survey aims to bring together the
latest approaches to understanding, estimating, and 
ltering
complex sensor networks in a distributed way.�e references
discussed in this paper include, but are not limited to the
following aspects of sensor networks: (1) systems analysis of
distributed sensor networks; (2) distributed parameter identi-

cation of sensor networks; (3) robustness and fragility anal-
ysis of distributed sensor networks; (4) methods and algo-
rithms for sensor network dynamics; and (5) distributed esti-
mation and 
lteringwith limited communication constraints.

1.2. Distributed Filtering. Over the past ten years or so, the
sensor networks (SNs) have proven to be a persistent focus of
research attracting an ever-increasing attention in the areas
of systems and communication. A typical sensor network
is composed of a large number of spatially distributed
autonomous sensor nodes and also a few control nodes,
where each sensor has wireless communication capability as
well as some level of intelligence for signal processing and
for disseminating data [1–7]. �e development of sensor net-
works was originally motivated by military applications such
as distributed localization, power spectrum estimation, and
target tracking problems. With recent intensive research in
this area, sensor networks have awide-scope domain of appli-
cations in areas such as environment and habitat monitoring,
health care applications, tra�c control, distributed robotics,
and industrial and manufacturing automation [1–3, 8, 9].

As one of the most fundamental collaborative infor-
mation processing problems, the distributed 
ltering or
estimation problem for sensor networks has gained particular
concerns frommany researchers and awealth of the literature
has appeared on this topic; see, for example, [10–19] and
the references therein. For distributed 
ltering problems, the
information available on an individual node of the sensor
network is not only from its own measurement but also from
its neighboring sensors’measurements according to the given
topology. As such, themain di�culty in designing distributed

lters lies in how to copewith the complicated coupling issues
between one sensor and its neighboring sensors and how to
re�ect such couplings in the 
lter structure speci
cation.

1.3. Distributed Fault Detection. On another research front,
the fault detection problem has been an active 
eld of
research for the past decades because of the ever increasing
demand for higher performance, higher safety, and reliability
standards [20–33]. In sensor networks, sensor nodes have
strong hardware and so�ware restrictions in the light of

processing power, memory capability, battery supply, and
communication throughput, and faults are likely to occur
frequently due to the low cost and the uncontrolled or even
harsh environment where the sensor nodes are deployed. It
is thus indispensable for the sensor networks to be able to
detect, locate the faulty sensor nodes, and take actions to
exclude them from the network during normal operation
in order to ensure the network quality of service. Recently,
some localized and distributed generic algorithms have been
addressed inwireless sensor networks and a number of results
about the distributed fault detection and fault tolerance have
been published in the literature.

1.4. Structure of the Survey. �e focus of this paper is to
provide a timely review on the recent advances of the
distributed 
ltering and fault detection issues for sensor
networks. �e rest of this paper is outlined as follows.
In Section 2, the related results in the area of distributed

ltering for wireless sensor networks are reviewed.�e study
contains a classi
cation of di	erent methods concerning
distributed 
ltering. A comparison of di	erent approaches
is brie�y summarized. Section 3 discusses the distributed
fault detection problems over sensor networks. Both the
distributed faulty sensors detection and distributed fault-
event detection are carried out and explained separately. In
Section 4, we give some concluding remarks and also point
out some future directions.

2. Distributed Filtering for Sensor Networks

2.1. Traditional Kalman Filtering Approach. In recent years,
the distributed 
ltering problem for sensor networks has
received a fast growing research interest and some e�cient
distributed 
ltering/state estimation algorithms have been
available in the literature; see, for example, [10, 11, 34–39] and
the references therein.

�e available algorithms, which can estimate stationary
signals with low-cost and track nonstationary processes with
reduced complexity, have a variety of engineering applica-
tions such as battle
eld surveillance and target tracking. For
example, a distributed Kalman 
ltering (DKF) algorithm has
been introduced in [38] through which a crucial part of the
solution is utilized to estimate the average of � signals in
a distributed way. Accordingly, this elegant algorithm has
been developed in [34–36, 40, 41] with di	erent sensing
models and dynamic consensus protocols. �e notion of
distributed bounded consensus 
lters has been introduced
in [19] and the convergence analysis has been conducted
for the corresponding distributed 
lters. In [14, 17, 42], the
optimal distributed estimation algorithm has been proposed
to adaptively update theweights forminimizing the estimated
mean-square error.�e di	usion-based Kalman 
ltering and
smoothing algorithm has been established in [10, 11], where
the information is di	used across the network through a
sequence of Kalman iterations and data aggregation. In mul-
tisensor linear systems, several e�cient algorithms including
the centralised sensor fusion, distributed sensor fusion, and
multialgorithm fusion to minimize the Euclidean estimation
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error of the state vector have been presented in [43, 44].
In [45–47], the distributed particle 
ltering algorithm has
been investigated as a response to o�oad the computation
from the central unit as well as to reduce converge cast
communication. References [48, 49] have introduced the
maximum-likelihood approach in order to achieve the best
possible variance for a given bandwidth constraint.

Looking into the issues discussed above, it can be
observed that most available literature concerning the dis-
tributed 
ltering problems have been mainly limited to
the traditional Kalman 
ltering theory that requires exact
information about the plant model.

2.2. Robust and/or �∞ Filtering Approach. In the presence
of modeling errors, parameter uncertainties, and external
disturbance, it is di�cult to ensure the robustness of the
traditional Kalman 
lters especially when the unavoidable
parameter dri�s or external disturbances occur. Note that
the robust performance of the available distributed 
lters
has not been paid adequate research attention despite its
clear engineering signi
cance. In this sense, it is of great
signi
cance to include the robust and/or �∞ performance
requirements for the distributed 
ltering problems.

Very recently, a new distributed �∞-consensus perfor-
mance has been de
ned in [50] to quantify bounded con-
sensus regarding the 
ltering errors over a 
nite horizon, the
distributed 
ltering problem has been addressed for a class
of linear time-varying systems in the sensor network, and the

lter parameters have been designed recursively by resorting
to the di	erent linear matrix inequalities.�e�∞-consensus
performance presented in [50] has been utilized in [39] to
deal with the distributed �∞ 
ltering problem for a class of
polynomial nonlinear stochastic systems in sensor networks.
Subsequently, the desired distributed �∞ 
lters have been
designed in terms of the solution to certain parameter-
dependent linear matrix inequalities. A stochastic sampled-
data approach has been addressed in [16] to investigate the
distributed�∞ 
ltering in sensor networks. In [51], an�∞-
type performancemeasure of disagreement between adjacent
nodes of the network has been included and a robust 
ltering
approach has been proposed to design the distributed 
lters
for uncertain plants.

2.3. Filtering with Incomplete Information. It is worth noting
that most reported results concerning the distributed 
lter-
ing/estimation algorithms are for linear and/or deterministic
systems. Since nonlinearities are ubiquitous in practice, it is
necessary to consider the distributed 
ltering problem for
target plants described by nonlinear systems. On the other
hand, distributed 
ltering in a sensor network inevitably suf-
fers from the constrained communication and computation
capabilities that would degrade the network performances.

It is well known that, accompanied by the rapid devel-
opment of network technologies, the network-induced phe-
nomena have been thoroughly investigated for 
ltering
and control problems of networked systems [13, 21, 52–
73]. Considering the case that the occurrence of incom-
plete information in sensor networks is more complex and

severer due primarily to the network size, communication
constraints, limited battery storage, strong coupling, and
spatial deployment, the distributed 
ltering problem has
been investigated in [74–76] for several classes of nonlinear
stochastic systems over lossy sensor networks. �e issue of
average�∞ performance constraints has been brought up in
[74], and then the distributed�∞ 
ltering problem has been
investigated for system with repeated scalar nonlinearities
and multiple probabilistic packet losses. Moreover, in [75],
the distributed 
ltering problem has been further extended
to the nonlinear time-varying systems with limited commu-
nication. �e lossy sensor network su	ers from quantization
errors and successive packet dropouts that are described
in a uni
ed framework. A new distributed 
nite-horizon

ltering technique bymeans of a set of recursive linearmatrix
inequalities has been proposed to satisfy the prescribed
average 
ltering performance constraint.

In addition, the distributed �∞ 
ltering problem has
been investigated in [76] for a class of discrete-time Marko-
vian jump nonlinear time-delay systems with de
cient statis-
tics of modes transitions. In [77], a new approach has been
proposed in virtue of the solvability of certain coupled
recursive Riccati di	erence equations (RDEs) to deal with
the distributed �∞ state estimation problem for a class of
discrete time varying nonlinear systems with both stochastic
parameters and stochastic nonlinearities.

3. Distributed Fault Detection for
Sensor Networks

Wireless sensor networks (WSNs) are a multihop self-
organized network system through wireless communication
in which the failed nodes may decrease the service quality
of the entire WSNs and create huge burden to the limited
energy. In recent years, a growing number of e	orts have been
focused on the development of the fault detection methods
for sensor nodes.

In [78], the online model-based detection of sensor
faults has been 
rst investigated by the cross-validation-based
technique in which statistical methods are utilized to identify
the sensors that are most likely to be faulty. �is technique is
centralized and can be applied to a broad set of fault models.
A distributed fault detection scheme for sensor networks has
been proposed in [79] to identify the faulty sensors, where
each sensor nodemakes a decision based on the comparisons
between its own sensing data and neighbors’ data. �e
scheme, however, has the shortcoming of reducing the fault
detection accuracy in the case that the number of neighbor’s
nodes to be diagnosed is small. In [80], an improved dis-
tributed fault detection algorithm based on weighted average
value has been addressed by de
ning a new detection crite-
rion to remedy the shortcoming that mentioned above. �e
scheme detects the sensor fault using spatial and time infor-
mation simultaneously, where each sensor node identi
es its
own status based on local neighbor’s average sensed data with
some thresholds, hence maintaining low false alarm rate.

By using the spatial correlation of sensor measurements,
a weighted median fault detection scheme has been intro-
duced in [81] to detect the faults in WSNs. Reference [82]
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has studied the problem of designing a distributed fault-
tolerant decision fusion in the presence of sensor faults,
where sensor fault detection scheme has been put forward
to eliminate unreliable local decisions when performing
distributed decision fusion. In [83], an agreement-based fault
detection mechanism has been presented to detect cluster-
head failures in clustered underwater sensor networks. Fur-
thermore, a schedule generation scheme for a cluster head
has been introduced to generate the transmission schedule
of the forward and backward frames. �e distributed fault
detection problem has been investigated in [84] for WSNs,
where each sensor node discerns its own status in view of
local comparisons of sensed data with some thresholds and
transfers the test results. It is well known that the basic idea
of the distributed fault detection methods for sensor nodes is
to check out the failed nodes by exchanging data andmutually
testing among neighbor’s nodes in this sensor networks.

It is worth pointing out that, apart from the development
of distributed fault detection methods for sensor nodes, the
distributed fault-event detection, which serves as a much
more useful application in a sensor network, has also received
much research attention. In [85], a distributed Bayesian
fault recognition algorithm has been presented to solve the
fault-event detection problem in sensor networks, where
the randomized decision scheme and the threshold decision
scheme have been used to derive analytical expressions for
their detected performance. �e proposed algorithm has the
superiority of being completely distributed and localized
each node by obtaining the information from neighboring
sensors in order to make its decisions. A localized fault
identi
cation algorithm has been proposed in [86] to identify
the faulty sensors and detect the reach of events in sensor
networks, where each sensor node compares its own sensed
data with themedian of neighbors’ data in order to determine
its own status. In [87], a fault detection scheme for an
event-driven wireless sensor network has been addressed
by using an external manager, which can perform more
complex functions compared to the sensor nodes. In [88],
a fault-tolerant energy-e�cient detection scheme has been
presented to introduce the sensor fault probability into the
optimal event detection process. For a given detection error
bound, the minimum neighbors are selected to minimize the
communication volume during the fault correction. It is also
noted that the proposed distributed fault detection methods
for sensor networks have a widely application 
elds such as
the management of a reservoir [89] and integration of supply
networks [90].

4. Conclusions and Future Work

In this paper, we have discussed and reviewed results, mostly
from relatively recent work, on the problems of distributed

ltering and fault detection for sensor networks. �e various
distributed 
ltering and fault detection technologies over
sensor networks have been surveyed in great detail. Based
on the literature review, some related topics for the future
research work are listed as follows.

(i) A trend for future research is to generalize the meth-
ods obtained in the existing results to the distributed


ltering and fault detection problems for nonlinear
stochastic complex networks systems with randomly
occurring incomplete information.

(ii) �e nonlinearities considered in the existing results
have some constraints that may bring somewhat
conservative results. An additional trend for future
research is to investigate the distributed 
ltering and
fault detection problems for the general nonlinear
systems for sensor networks.

(iii) Another future research direction is to further inves-
tigate the problems of nonparametric and robust
sequential distributed detection for sensor networks.

(iv) �e techniques such as conditional statistical tests
and multivariate procedures in the presence of non-
parametric hypotheses can be applied fruitfully in
distributed fault detection applications.
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