
A Survey on Domain-Specific Languages in Robotics

Arne Nordmann1,2, Nico Hochgeschwender3, and Sebastian Wrede1,2

1 Cognitive Interaction Technology Excellence Cluster (CITEC), Bielefeld University, Germany
2 Institute for Robotics and Cognition (CoR-Lab), Bielefeld University, Germany

3 Department of Computer Science, Bonn-Rhein-Sieg University, Germany

Abstract. The design, simulation and programming of robotics systems is chal-
lenging as expertise from multiple domains needs to be integrated conceptually
and technically. Domain-specific modeling promises an efficient and flexible con-
cept for developing robotics applications that copes with this challenge. It allows
to raise the level of abstraction through the use of specific concepts that are closer
to the respective domain concerns and easier to understand and validate. Further-
more, it focuses on increasing the level of automation, e.g. through code gen-
eration, to bridge the gap between the modeling and the implementation levels
and to improve the efficiency and quality of the software development process.
Within this contribution, we survey the literature available on domain-specific
(modeling) languages in robotics required to realize a state-of-the-art real-world
example from the RoboCup@Work competition. We classify 41 publications in
the field as reference for potential DSL users. Furthermore, we analyze these con-
tributions from a DSL-engineering viewpoint and discuss quantitative and quali-
tative aspects such as the methods and tools used for DSL implementation as well
as their documentation status and platform integration. Finally, we conclude with
some recommendations for discussion in the robotics programming and simula-
tion community based on the insights gained with this survey.

1 Introduction

Model-driven and domain specific development methods are recognized to cope with
the challenges of building complex heterogeneous systems in domains such as aerospace,
telecommunication and automotive [1] which face similarly complex integration and
modeling challenges as advanced robotics. In the last years, this approach was actively
adapted to the robotics domain to handle the complexity of robotics systems and help
with the separation of concerns regarding the functional architecture and software ar-

chitecture. One goal is to support the development and ease design space exploration.
This requires to support the entire experimental toolchain ranging from purely func-
tional modeling to software architectural and technical aspects such as software de-
ployment.

The purpose of this survey is to report on the state of the art in domain-specific lan-
guages in robotics, and provide an overview on sub-domains relevant for programming
and simulation of robotics applications that are already supported through domain-
specific modeling methods. Similar surveys, yet for a wider scope, have been conducted
by Biggs and MacDonald [2] as well as Van Deursen et al. [1]. One targeted audience of
this survey is the potential DSL users, the domain experts looking for method and tool



support in their domain. This survey provides means to assess availability and usability
of the DSLs to formulate their experimental or system hypotheses and generate repro-
ducible experiments. We also target DSL developers and system integrators in robotics,
to provide an overview on the state of the art, common solutions and best practices, and
foster scientific exchange and community building inside the domain.

The paper starts with a short introduction to the core concepts of domain-specific
modeling in Section 2 and defines a minimal set of methodological requirements on
DSL approaches to be included in the systematic review. Subsequently, Section 3 analy-
ses the targeted domain and exemplifies the use of domain-specific modeling techniques
along a reference example from the RoboCup@Work competition. Section 4 explains
how the literature survey was conducted along a defined protocol, while Section 5 clas-
sifies and quantitatively assesses the found literature, also providing an overview of
several non-functional aspects. On that basis, Section 6 discusses some of these as-
pects along key publications and identifies best practices both for DSL engineering
and DSL-related publications and documentation. Section 7 summarizes the survey and
propose recommendations for further community development (exchange among re-
searchers) and discusses requirements for re-use of knowledge provided with domain-
specific models in the area of simulation and programming of robotic applications.

2 Domain-specific Languages

In order to perform a systematic review on domain-specific modeling for simulation
and programming of robotics applications, a necessary prerequisite is to define what we
consider a domain-specific (modeling) language and what we don’t. According to van
Deursen et al. [1], a DSL is defined as a “programming language or executable specifi-

cation language that offers, through appropriate notations and abstractions, expressive

power focused on, and usually restricted to, a particular problem domain”. The ab-
stractions and notations must be “natural/suitable for the stakeholders who specify that

particular concern” [3]. These definitions already highlight two fundamental character-
istics of well-designed DSLs: their expressive power targeted a specific domain and the
definition of formal notations intuitively understandable for domain experts while being
machine processable, eventually yielding executable models of robotics applications.

Model-driven software development with DSLs aims to extract agreed-upon syntax
and semantics from the problem domain, e.g., by reviewing existing code examples and
APIs, through the analysis of formal descriptions found in the literature or the appli-
cation of further analysis patterns [4]. Based on the results of these domain analysis
steps, the identified abstractions and desired notations can be realized as a DSL. In-
stead of hiding the domain concepts in a compilation unit implemented with traditional
programming techniques, the DSL approach provides the specific abstractions at the
model level. In contrast to General Purpose Languages (GPL) such as C++, Java, or
Python, DSLs usually contain only a restricted set of notations and abstractions. Com-
pared to external DSLs that define their own syntax and semantics, so-called internal

DSLs are embedded in extensible general purpose languages such as Lua, Racket or
Ruby. They extend the syntax and potentially the semantics of the host language with
domain-specific notations and abstractions. This adds the expressive power of the DSL



to the GPL. While internal DSLs typically rely on (and are bound to) the execution se-
mantics of their host language, external DSLs are transformed to a format that directly
allows execution on a target platform or interpretation, e.g., through a virtual machine.

Similarly, Domain-specific Modelling Languages (DSML) that use graphical nota-
tions must be differentiated from general purpose modeling languages such as UML or
SysML. While it is still possible to add domain-specific abstractions to these languages,
e.g. using UML Profiles (cf. MARTE [5] to describe and analyze real-time systems),
adding domain-specific notation to graphical modeling languages is much harder.

In order to efficiently implement and apply a DSL approach for the development
of robotics systems and to fully exploit its benefits, DS(M)Ls are typically realized in
toolchains tailored to model-driven development such as the Eclipse Modelling Pro-
ject [6]. These so-called language workbenches such as MPS [7] offer extensive sup-
port for the development of the DSLs themselves and for the actual system modeling
tasks performed by a language user. DSLs developed in these environments facilitate
the users modeling tasks typically with textual and/or graphical editors with rich code
completion and dynamic constraint checking. Furthermore, these environments provide
extensions points to plug-in required model-to-model (M2M) and model-to-text (M2T)
transformations in order to generate code from system models that integrates with the
overall environment used for the development of a robotics application.

The above mentioned aspects comprise fundamental characteristics that need to be
addressed in a DSL approach. Hence, the DSL approaches considered in this survey i)
must provide a language definition or meta-model, e.g. Ecore or (E)BNF, ii) must be
textual (internal or external) or graphical languages, iii) must provide an example of
their concrete syntax (notation), iv) should4 explain how a mapping to a target tech-
nology is achieved. While these criteria are formulated from a software engineering
perspective, the most important criteria to decide whether a paper or article is included
in the systematic review is whether or not it targets a relevant concern in the robotics
domain. In order to allow for a more fine-grained mapping of DSL-related publica-
tions that conform to the criteria introduced above to the robotics domain the following
section identifies a set of relevant sub-domains along a reference example that we con-
sider particularly relevant and mature in the context of simulation and programming of
robotics systems.

3 Domain Analysis

To exemplify the domain of this survey we use the Precision Placement Test (PPT)
from the RoboCup@Work competition. It is a new competition in RoboCup that targets
the use of robots in industrial scenarios where robots cooperate with human workers
and machines for complex tasks ranging from manufacturing, assembly, automation,
and parts-handling up to general logistics. The PPT exemplifies the complexity and
huge variability of competences and capabilities required to develop today’s robot ap-
plications. We consider this example to represent the current state of the art involving
mature robotics disciplines so that we expect to find consolidated knowledge in the

4 This relaxation allows to include purely analytical approaches in the review, which we also
consider relevant contributions.

http://www.robocupatwork.org/


(a) PPT platform used in RoboCup@Work. (b) Kinematics DSL example [10]

form of DSLs. In the following we will explain the PPT and also synthesize a core set
of subdomains5 which are relevant in solving the task and later used for classification
of the surveyed publications. We are aware that this list is non-conclusive, but focus on
these for the sake of brevity.

The main objective of the PPT is to assess the robot’s ability to grasp and place ob-
jects into object-specific cavities (see Fig. 1a). The objects are taken from a set of (a pri-
ori known) standardized industrial objects such as screws, nuts, bolts and profiles. For
the test a single robot is placed in front of a service area which stores the objects to be
manipulated. The objective is to pick each object and place it in the corresponding cav-
ity. Once the objects are picked up and placed or the time is over the task ends. To simu-

late and solve the problem one usually first needs to know the Robot Structure 1 of
the target robot platform. This comprises representation of the actual physical realiza-
tion of robot platforms (e.g., mobile base and manipulator) in terms of their mechanical
structure and kinematic as well as dynamic properties. This subdomain roughly corre-
sponds to Part B of Springer Handbook of Robotics (Robot Structures). Furthermore,

Coordinate Representations and Transformations 2 between parts of the robot and

its environment are required to enable computation of position, force, and velocity
of the robot joints. This subdomain roughly corresponds to Part A in the Handbook
of Robotics (Robotics Foundations). Exemplary DSL representatives for this subdo-
main are URDF [8] and the work of Frigerio et al. [9], shown in Fig. 1b. In general,

the PPT demands advanced Perception 3 and Reasoning and Planning 4 abil-

ities, namely to recognize and match objects and the correct cavities. Further, precise

Manipulation and Grasping 5 abilities are required, namely to grasp and place the

object in such a manner that it fits into the cavity. These subdomains roughly corre-
spond to Part C (Sensing and Perception), Part A Chapter 9 (AI Reasoning Methods for

Robotics), and Part D Chapter 28 (Grasping) in the Handbook of Robotics.

For each sub-task (object/cavity detection/recognition and object manipulation) there

are several options to approach the problem which all require Coordination 6 primi-
tives such as finite-state machines. For instance, the placement of objects in the cavities
can be achieved through first perceiving and computing the position of the cavities and
then generating a plan yielding a pose where the object can be dropped in the cavity.
A more control-based approach is to compute an approximately position of the cav-
ity and then placing the object on the arena and sliding the object into the cavity by

5 Subdomains will be marked in the format Name # where # is a continuing number.



means of force-feedback. This approach demands advanced Motion Control 7 abil-
ities in order to cope with uncertainties in the environment and fulfill constraints such
as force-limits which corresponds to roughly to Part A Chapter 7 (Force Control) in
the Handbook for Robotics. Example DSLs for this task are TFF [11] and iTaSC [12].

The presented capabilities all need to be integrated in an overall Architecture 8

with Components 9 as the basic building blocks which are preferable re-usable also

for other applications. This domain corresponds roughly to Part A Chapter 8 (Robotic

Systems Architectures and Programming) in the Handbook of Robotics.

4 Process

The selection of the publications for this survey focused on publications that developed
domain-specific languages (DSL) to conceptualize aspects of the introduced domain
or support certain research or engineering aspects. To find these, we scanned relevant
robotics and software conference proceedings for a set of keywords. For the actual
selection process we defined two inclusion criteria (IC) and two exclusion criteria (EC):

IC1 In proceedings of the International Conference on Intelligent Robots and Systems (IROS),
International Conference on Robotics and Automation (ICRA), International Confer-
ence on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR),
Robotics: Science and Systems Conference (RSS), workshop on Software Development
and Integration in Robotics (SDIR) or the workshop on Domain-Specific Languages in
Robotics (DSLRob) and search matching one of the keywords “domain-specific lan-

guage”, “domain-specific modeling language”, “generative programming”, “specifica-

tion language”, “description language”, or “code generation”.
IC2 in proceedings of the Code Generation Conference (CG) and the International Conference

on Generative Programming: Concepts & Experiences (GPCE) and search matching one
of the keywords “robot” and “robotics”.

EC1 DSL does not model or support aspects of the introduced domain.
EC2 Either is no DSL or publication not complying with our definition from section 2, e.g.

notation not documented via grammar or example.

Table 1: Inclusion criteria (IC) and exclusion criteria for publications in this survey.

IC1 included 208 publications after removing duplicates, IC2 included additional 2
publications, adding up to a total of 210 publications. We consider all publications from
IC1 to pass EC1, as they passed through a review process of robotics conferences. EC2
filtered 169 publications, leading to a total of 41 publications that will be analyzed and
discussed in the remainder of this survey.

5 Analysis

This section assesses technical aspects across the publications in this survey. The publi-
cations are analyzed along their subdomains according to Section 3 and regarding their
temporal distribution as well as their utilized tool or method.



Subdomains A first analysis we did was grouping DSLs and their publications by com-
mon semantics, abstractions and use-cases according to the domain example introduced
in Section 3. This is intended to serve as a map for potential DSL users as well as foster
discussion and reuse of languages and the underlying models for DSL developers. The
categorization is given in Table 2 and references the subdomains introduced in Sec-

Subdomain(s)

1 2 3 4 5 6 7 8 9
Struct. Transf. Perc. Plan. Manip. Coord. Ctrl. Arch. Comp.

Muehe2010 � �

Akim2010 � �

Reckhaus2010 �

Frigerio2011 � � �

Trojanek2011 � �

Anderson2011 �

Romero2011 �

Ingles2010 �

Angerer2012 � �

Klotzbuecher2012 �

Laet2012 �

Nordmann2012 � � �

Buchmann2013 � � �

Hochgeschw2013 �

Blumenthal2013 �

Dantam2012 �

Kilgo2012 �

Dhouib2012 � � �

Brugali2012 � � �

Vanthienen2013 �

Klotzbuecher2011 � �

Loetzsch2006 � �

Steck2011 �

Anderson2012 � �

Haas2012 �

Dai2002 �

Manikonda1995 � �

Kunze2011 � �

Kanayama2000 � �

Rosa2007 �

Graves1999 �

Tousignant2012 �

Murray1992 � �

RuggGunn1994 �

KressGazit2010 � � �

Ljungkrantz2007 � �

Thomas2013 � �

Ferstenberg1986 �

Bordignon2010 �

Table 2: Overview of the surveyed DSLs and their subdomains: � = in focus, � =
partially.

http://cor-lab.org/robotics-dsl-zoo#Muehe2010
http://cor-lab.org/robotics-dsl-zoo#Akim2010
http://cor-lab.org/robotics-dsl-zoo#Reckhaus2010
http://cor-lab.org/robotics-dsl-zoo#Frigerio2011
http://cor-lab.org/robotics-dsl-zoo#Trojanek2011
http://cor-lab.org/robotics-dsl-zoo#Anderson2011
http://cor-lab.org/robotics-dsl-zoo#Romero2011
http://cor-lab.org/robotics-dsl-zoo#Ingles2010
http://cor-lab.org/robotics-dsl-zoo#Angerer2012
http://cor-lab.org/robotics-dsl-zoo#Klotzbuecher2012
http://cor-lab.org/robotics-dsl-zoo#Laet2012
http://cor-lab.org/robotics-dsl-zoo#Nordmann2012
http://cor-lab.org/robotics-dsl-zoo#Buchmann2013
http://cor-lab.org/robotics-dsl-zoo#Hochgeschw2013
http://cor-lab.org/robotics-dsl-zoo#Blumenthal2013
http://cor-lab.org/robotics-dsl-zoo#Dantam2012
http://cor-lab.org/robotics-dsl-zoo#Kilgo2012
http://cor-lab.org/robotics-dsl-zoo#Dhouib2012
http://cor-lab.org/robotics-dsl-zoo#Brugali2012
http://cor-lab.org/robotics-dsl-zoo#Vanthienen2013
http://cor-lab.org/robotics-dsl-zoo#Klotzbuecher2011
http://cor-lab.org/robotics-dsl-zoo#Loetzsch2006
http://cor-lab.org/robotics-dsl-zoo#Steck2011
http://cor-lab.org/robotics-dsl-zoo#Anderson2012
http://cor-lab.org/robotics-dsl-zoo#Haas2012
http://cor-lab.org/robotics-dsl-zoo#Dai2002
http://cor-lab.org/robotics-dsl-zoo#Manikonda1995
http://cor-lab.org/robotics-dsl-zoo#Kunze2011
http://cor-lab.org/robotics-dsl-zoo#Kanayama2000
http://cor-lab.org/robotics-dsl-zoo#Rosa2007
http://cor-lab.org/robotics-dsl-zoo#Graves1999
http://cor-lab.org/robotics-dsl-zoo#Tousignant2012
http://cor-lab.org/robotics-dsl-zoo#Murray1992
http://cor-lab.org/robotics-dsl-zoo#RuggGunn1994
http://cor-lab.org/robotics-dsl-zoo#KressGazit2010
http://cor-lab.org/robotics-dsl-zoo#Ljungkrantz2007
http://cor-lab.org/robotics-dsl-zoo#Thomas2013
http://cor-lab.org/robotics-dsl-zoo#Ferstenberg1986
http://cor-lab.org/robotics-dsl-zoo#Bordignon2010


Fig. 1: Temporal distribution of the publications in this survey ranging from 1986 to
2013.

tion 3. The table is an initial version, though, that we intend to update continuously
and maintain online6, enriched with the aspects discussed in the remainder of this sur-
vey. The left-most column of Table 2 references this online table, as space constraints
unfortunately don’t allow citation of all surveyed publications.

The initial grouping by subdomains seems reasonable, as the assignment of most
of the DSLs and publications to subdomains was quite straight-forward. However, the
number of publications per subdomain varies significantly. Whereas we found no DSLs

in the subdomain of Manipulation and Grasping 5 , Coordination 6 for example

seems to be quite well-covered as over 20 publications entirely or partially belong to

this subdomain. The Robot Structure 1 and Motion Control 7 subdomains are
also well-covered with roughly 10 publications each. These numbers may indicate how
well-explored or even stable a discipline or subdomain is.

Temporal distribution Model-driven and domain-specific approaches are on the rise
in robotics, we plotted the temporal distribution of the publications in this survey, as
shown in Fig. 1. The distribution clearly supports a positive trend of DSLs in robotics
respectively their publications, especially since around the year 2010 with several pub-
lications per year. This is equivalent to the start of the DSLRob workshop, the numbers,
however, clearly exceed the number of DSLRob publications per year, proving that this
is also a trend on general robotics conferences.

Methods / Tools This section analyzes the methods and tools that were used for de-
velopment of the surveyed DSLs, as far as this is assessable via the publications or
referenced documentation. This comprises tool support for developing external DSLs,
as well as development of internal DSLs, as shown in Fig. 2.

The majority of DSLs assessed with this survey is realized as an external DSL.
Although different tools and methods are being used, Fig. 2 shows that the Eclipse

Modeling Project [6] (EMP) seems to be quite widely used. It therefore seems to be
a good integration point and opportunity for DSL compatibility in this domain. Some

6 http://cor-lab.org/robotics-dsl-zoo

http://cor-lab.org/robotics-dsl-zoo


Fig. 2: Tools and methods used for the DSLs in this survey.

publications mentioned the extensive EMP tool-support explicitly as a big advantage of
developing DSLs inside the Eclipse framework [13, 14], or the possibility of language
re-use [15], as approaches within EMP share the same representation (Ecore). 7 publi-
cations in this survey developed their DSLs as internal DSL, for example in Lisp [16],
and Lua [12]. 7 of the assessed publications developed DSLs and their tool-chain man-
ually and without the aforementioned tool support, e.g. with custom parsers and tools.

6 Discussion

This section highlights different aspects of the surveyed DSLs as well as their publica-
tions that we think are important for i) language developers to enable language re-use,
interoperability and discussing the core concepts, as well as ii) language users to allow
assessing the availability and usability of the DSLs. We show different approaches to ex-
tract best practices in terms of documentation, accessibility and evaluation of robotics
DSLs to make suggestions to the community. The need for this became clear during
analysis of the publications for this survey, as lots of the aspects discussed here were
largely undocumented and/or hard to access.

Accessibility and Documentation An important factor for re-use of DSLs, scientific
exchange and community building around DSLs in robotics is their accessibility and
documentation. This comprises several factors like technical accessibility (e.g. down-
load of the language or models), licensing, and documentation of the DSL, its usage
and execution context. Only a subset of the DSLs in this survey is documented in a way
that would allow interfacing with it, e.g. with a documented meta-model [14, 17, 18].
While some publications give hints on the meta-model or show parts of it [19, 13], sev-
eral publications document their meta-model mostly through exemplary models. Some
DSLs are available for download as open-source software [18, 8, 20].

A good way to promote re-use of s DSL is to provide tutorials and examples of its
usage, as download together with software frameworks and dependencies (if necessary),
as done for example by [21, 8]. Laet et al. propose their semantics for standardization
in the context of the robotics engineering task force [22].

Artifacts and Use-Case To assess the intended use of the DSLs, we looked at the ar-
tifacts generated (if any) and the context they are used in. While the DSL can be used



to generate visualizations of systems, e.g. the system architecture [23] or platforms [8],
the main use-case for DSLs is to generate executable code to perform experiments or
provide supporting routines. DSLs within the identified subdomains often cover similar

use-cases. The Robot Structure 1 subdomain for example primarily targets con-
trollers and platform as well as simulation support. Frigerio et al. [18] and Laet et
al. [16] target kinematics and dynamics controllers that can be embedded in motion
control systems. Bordignon et al. [24] exemplify the usage by generating code to simu-
late the specified robot platform in a particular simulation framework.

Artifact generation from DSLs becomes especially powerful and suited for re-use
if the toolchain supports different M2M and M2T transformations. Either to generate
different artifacts like visualization, computational routines and glue code [23], or exe-
cutable code for different programming languages or software platforms [10, 11, 25].

Evaluation Evaluation of a DSL-based approach in their intended use-case is not only
interesting from a developer’s perspective, but also serves as a foundation for a decision
from a user’s perspective. A number of the surveyed publications evaluated the seman-
tics or the generated artifacts. A surprising yet positive outcome of the analysis was,
that quite a number of the DSLs in this domain are evaluated not only in simulation, but
on real hardware [26, 14, 18, 13], and even on different platforms [19, 11].

We can roughly differentiate two different kinds of evaluation approaches: qualita-
tive and quantitative evaluation. Qualitative evaluation is often done by conceptual dis-
cussions based on examples, e.g. portability of the semantics to different platforms [14,
19, 11]. Laet et al. [21] for example model some typical use-cases and show how com-
mon errors can be avoided by using its proposed semantics.

Özgür [27] lists four different quantitative benefits and corresponding metrics, that
can be used to evaluate a model-based approach and can serve as a best practice:

1. Efficiency can be evaluated in terms of performance and memory utilization. Frige-
rio et al. [9] for example benchmarked the generated C++ code in its intended use-
case, being forward and inverse kinematics and dynamics on different numbers of
degrees-of-freedom.

2. Scalability in terms of compilation time and system size.
3. Productivity in terms of size, effort or number of change requests. Examples are

Ringert et. al [28] and Romero-Garces et. al [29]. Both evaluate the usage of a
DSL from the developers perspective against classical approaches by means of em-
pirical software engineering. Non-functional aspects they covered comprise time
spent for learning of the technologies, effort for fixing bugs, component re-use and
complexity of understanding re-used software artifacts. [11] conducted hardware
experiments on a PR2 and a KUKA LWR and analyzed the necessary number of
lines of code for platform-independent and robot/framework specific code.

4. Reliability, e.g. in terms of defects introduced in a period of time.

Platform An important aspect of the generated artifacts and the model transformations
is how tightly they are coupled to a certain platform. “Platform” in this context means
the technical execution context, so the software framework, and all additional tools or
libraries necessary to use the DSL or the generated artifacts.



First of all we have to differentiate between the DSL being used in a interpretation
vs. a generation manner. Interpretation of a DSL is always being tied to a (DSL-specific)
interpreter (e.g. [30]). For DSLs that are used in a generation manner, we differentiate
between three classes of platform-dependency:

1. Proprietary solutions like KRL [31] and RAPID [32] that are targeted to a single
platform and don’t target openness or platform independence at all.

2. Generation of artifacts that are tied to or dependent on a library stack, software
framework or runtime environment [13, 17, 33]. Some of the DSLs in this survey
target a certain framework or environment, but come with exchangeable generators
to explicitly allow re-use of the DSL and its concepts in different frameworks or en-
vironments as discussed above. Klotzbücher et al. [11] make the platform explicit,
by distinguishing between platform-independent and platform-specific models.

3. Transformation of the DSL code directly to a general purpose language (e.g. Ada [14]
or C++ [10]) being the most platform-independent option by reducing platform de-
pendencies to a minimum, which provides clear advantages. It is easier portable,
even to embedded systems [14], easier to re-use and eases scientific exchange. It
also reduces assumptions about the platform from within the DSL.

DSL Development Process Mernik et al. [4] discuss that the identification and formal-
ization of domain-specific abstractions is an important decision pattern for DSL devel-
opment. However, to reuse, refine or to define new abstractions one needs to perform
activities known in the area of knowledge representation such as domain and problem
assessment and expert consultation. Unfortunately, in the assessed papers very little is
written about the process how the abstractions have been identified, e.g. based on an
ontology [25], a formalism [16] or a domain analysis [23]. One reason may be that the
DSL developers are very often simultaneously also the DSL users and domain experts.
Hence, assessing the domain is performed in an ad-hoc and implicit manner. To bring
forward the DSL development in robotics we argue that robotic DSL papers should
report also about the process of how and on which basis one developed certain domain-
specific abstractions.

7 Synopsis

We surveyed the available literature on domain-specific (modeling) languages used for
design, simulation and programming of robotics systems. The quantitative analysis sup-
ports that DS(M)Ls are a current active research field for simulation and programming
of robots, however, compatibility and re-use of different DSLs and approaches is still an
issue. Yet the Eclipse Modeling Project may serve as an integration platform for DSLs
in robotics as it is already widely used. We further discussed, how different approaches
to documentation, evaluation and platform-dependency affect the availability and us-
ability of a DSL. We intend this survey to serve the robotics DSL community to foster
exchange between DSL developers as well as providing an orientation for potential
DSL users. Following the idea of the EMF Concrete Syntax Zoo7 we intend to continu-

7 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo


ously maintain the survey as an online Robotics DSL Zoo8 and invite the community to
provide feedback and contribute. Future iterations of this survey will comprise further
conference proceedings and include journal publications.

Acknowledgement This work was supported by a grant of the Cluster of Excellence Cognitive
Interaction Technology (CITEC) at Bielefeld University. Nico Hochgeschwender received a PhD
scholarship from the Graduate Institute of the Bonn-Rhein-Sieg University.

Bibliography

[1] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An Annotated
Bibliography. ACM Sigplan Notices, 2000.

[2] G. Biggs and B. MacDonald. A Survey of Robot Programming Systems. Australasian

Conference on Robotics and Automation, 2003.
[3] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,

Lennart Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering Designing, Imple-

menting and Using Domain-Specific Languages. 2013.
[4] M. Mernik, J. Heering, and A.M. Sloane. When and how to Develop Domain-Specific

Languages. ACM Computing Surveys, 37(4):316–344, 2005.
[5] Sébastien Gérard and Bran Selic. The UML – MARTE Standardized Profile. In The Inter-

national Federation of Automatic Control, pages 6909–6913, Seoul, Korea, 2008.
[6] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional, 2009.
[7] JetBrains. Meta Programming System.
[8] Ioan Sucan. Unified Robot Description Format (URDF).
[9] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. Code Generation of Algebraic

Quantities for Robot Controllers. International Conference on Intelligent Robots and Sys-

tems, pages 2346–2351, October 2012.
[10] M. Frigerio, J. Buchli, and D.G. Caldwell. A Domain Specific Language for Kine-

matic Models and Fast Implementations of Robot Dynamics Algorithms. In Workshop

on Domain-Specific Languages and models for Robotic systems, 2011.
[11] Markus Klotzbücher, Ruben Smits, Herman Bruyninckx, and Joris De Schutter. Reusable

Hybrid Force-Velocity controlled Motion Specifications with executable Domain Specific
Languages. In International Conference on Intelligent Robots and Systems, pages 4684–
4689, 2011.

[12] Dominick Vanthienen, Markus Klotzbücher, Joris De Schutter, Tinne De Laet, and Her-
man Bruyninckx. Rapid application development of constrained-based task modelling and
execution using Domain Specific Languages . In International Conference on Intelligent

Robots and Systems, 2013.
[13] Andreas Angerer, Remi Smirra, Alwin Hoffmann, Andreas Schierl, Michael Vistein, and

Wolfgang Reif. A Graphical Language for Real-Time Critical Robot Commands. In Work-

shop on Domain-Specific Languages and models for Robotic systems, Tsukuba, 2012.
[14] Piotr Trojanek. Model-Driven Engineering Approach to Design and Implementation of

Robot Control System. Workshop on Domain-Specific Languages and models for Robotic

systems, 2011.
[15] Sebastian Blumenthal and Herman Bruyninckx. Towards a Domain Specific Language for

a Scene Graph based Robotic World Model. In Workshop on Domain-Specific Languages

and models for Robotic systems, 2013.

8 http://cor-lab.org/robotics-dsl-zoo

http://cor-lab.org/robotics-dsl-zoo


[16] Tinne De Laet, Wouter Schaekers, Jonas de Greef, and Herman Bruyninckx. Domain Spe-
cific Language for Geometric Relations between Rigid Bodies targeted to Robotic Applica-
tions. In Workshop on Domain-Specific Languages and models for Robotic systems, 2012.

[17] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann. A New Skill Based
Robot Programming Language Using UML/P Statecharts. In International Conference on

Robotics and Automation, 2013.
[18] M. Frigerio, J. Buchli, and D.G. Caldwell. Model based code generation for kinematics and

dynamics computations in robot controllers. In Workshop on Software Development and

Integration in Robotics, St. Paul, Minnesota, USA, 2012.
[19] M. Reckhaus and N. Hochgeschwender. A Platform-Independent Programming Environ-

ment for Robot Control. Workshop on Domain-Specific Languages and models for Robotic

systems, 2010.
[20] M Lötzsch, Max Risler, and M Jungel. XABSL – A Pragmatic Approach to Behavior

Engineering. International Conference on Intelligent Robots and Systems, pages 5124–
5129, 2006.

[21] Tinne De Laet, Steven Bellens, Herman Bruyninckx, and Joris De Schutter. Geometric
Relations between Rigid Bodies (Part 2): From Semantics to Software. IEEE Robotics and

Automation Magazine, (September), 2012.
[22] Tinne De Laet, Steven Bellens, Ruben Smits, Erwin Aertbelien, Herman Bruyninckx, and

Joris De Schutter. Geometric Relations between Rigid Bodies (Part 1): Semantics for Stan-
dardization. IEEE Robotics and Automation Magazine, (June), 2012.

[23] Arne Nordmann and Sebastian Wrede. A Domain-Specific Language for Rich Motor Skill
Architectures. In Workshop on Domain-Specific Languages and models for Robotic systems,
Tsukuba, 2012.

[24] Mirko Bordignon, Ulrik Pagh Schultz, and Kasper Stoy. Model-Based Kinematics Genera-
tion for Modular Mechatronic Toolkits. International Conference on Generative Program-

ming and Component Engineering, page 157, 2010.
[25] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane. RobotML,

a Domain-Specific Language to Design, Simulate and Deploy Robotic Applications. In
Simulation, Modeling, and Programming for Autonomous Robots, 2012.

[26] Ulrike Thomas, Bernd Finkemeyer, Torsten Kröger, and Friedrich M. Wahl. Error-Tolerant
Execution of Complex Robot Tasks based on Skill Primitives. In International Conference

on Automation and Robotics, Taipei, Taiwan, 2003.
[27] Turhan Özgür. Comparison of Microsoft DSL Tools and Eclipse Modeling Frameworks

for Domain-Specific Modeling in the Context of the Model-Driven Development. Master,
Blekinge Institute of Technology, 2007.

[28] J.O. Ringert, Bernhard Rumpe, and Andreas Wortmann. A Case Study on Model-Based
Development of Robotic Systems using MontiArc with Embedded Automata. In Dagstuhl-

Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme IX, 2013.
[29] A. Romero-Garcés, L.J. Manso, M.A. Gutierrez, R. Cintas, and P. Bustos. Improving the

Lifecycle of Robotics Components using Domain-Specific Languages. In Workshop on

Domain-Specific Languages and models for Robotic systems, 2013.
[30] Henrik Mühe, Andreas Angerer, Alwin Hoffmann, and Wolfgang Reif. On reverse-

engineering the KUKA Robot Language. In Workshop on Domain-Specific Languages and

models for Robotic systems, 2010.
[31] KUKA System Software 5.5 - Operating and Programming Instructions for System Integra-

tors. Technical report, KUKA Roboter GmbH, 2009.
[32] RAPID Overview. Technical report, ABB Robotics Products.
[33] A. Steck and C. Schlegel. SMART TCL: An Execution Language for Conditional Reactive

Task Execution in a Three Layer Architecture for Service Robots. In Int. Workshop on

DYnamic languages for RObotic and Sensors systems (DYROS), pages 274–277, 2010.


	A Survey on Domain-Specific Languages in Robotics

