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Abstract—The development of advanced robotic systems is challenging as expertise from multiple domains needs to be integrated

conceptually and technically. Model-driven engineering promises an efficient and flexible approach for developing robotics applications

that copes with this challenge. Domain-specific modeling allows to describe robotics concerns with concepts and notations closer to

the respective problem domain. This raises the level of abstraction and results in models that are easier to understand and validate.

Furthermore, model-driven engineering allows to increase the level of automation, e.g., through code generation, and to bridge the gap

between modeling and implementation. The anticipated results are improved efficiency and quality of the robotics systems engineering

process. Within this contribution, we survey the available literature on domain-specific modeling and languages that target core robotics

concerns. In total 137 publications were identified that comply with a set of defined criteria, which we consider essential for contributions

in this field. With the presented survey, we provide an overview on the state-of-the-art of domain-specific modeling approaches in

robotics. The surveyed publications are investigated from the perspective of users and developers of model-based approaches in

robotics along a set of quantitative and qualitative research questions. The presented quantitative analysis clearly indicates the rising

popularity of applying domain-specific modeling approaches to robotics in the academic community. Beyond this statistical analysis, we

map the selected publications to a defined set of robotics subdomains and introduce an extended classification scheme to allow a fine-

grained mapping of publications addressing the architecture and programming of robotics systems. We map the surveyed publications

to typical development phases in robotic systems engineering. The resulting classification tree shall serve as overview and reference

for potential users. Furthermore, we analyze the surveyed contributions from a language engineering viewpoint and discuss aspects

such as the methods and tools used for their implementation as well as their documentation status, platform integration, typical use

cases and the evaluation strategies used for validation of the proposed approaches. Finally, we conclude with recommendations for

discussion in the model-driven engineering and robotics community based on the insights gained in this survey.

Index Terms—Model-Driven Engineering, Domain-Specific Modeling Languages, Code Generation, Language Engineering

1 INTRODUCTION

Model-driven engineering (MDE) and domain specific devel-

opment methods are recognized to cope with the challenges

of building complex heterogeneous systems in domains such

as aerospace, telecommunication and automotive [1] which

Regular paper – Manuscript received August 31, 2015. revised April 12,

2016.

• The research leading to these results received funding from the European

Community’s Horizon 2020 robotics program ICT-23-2014 under grant

agreement 644727 - CogIMon and was supported by a grant of the Cluster

of Excellence Cognitive Interaction Technology (CITEC) at Bielefeld

University. Nico Hochgeschwender received a PhD scholarship from the

Graduate Institute of the Bonn-Rhein-Sieg University which he gratefully

acknowledges.

• Authors retain copyright to their papers and grant JOSER unlimited

rights to publish the paper electronically and in hard copy. Use of the

article is permitted as long as the author(s) and the journal are properly

acknowledged.

face similarly complex integration and modeling challenges as

advanced robotics. A model can be defined as “an abstraction

of a system often used to replace the system under study” [2]

and often represents a partial and simplified view of a system

or specific aspect. As such, the creation of multiple models is

“usually necessary to better represent and understand the sys-

tem under study” [2], which is particularly valid in the robotics

domain due to its intrinsic interdisciplinary foundation.

Domain-specific modeling allows to describe robotics con-

cerns with concepts and notations closer to the respective prob-

lem domain. This raises the level of abstraction and results in

models that are easier to understand and validate, lowering the

technical skills necessary to handle the complexity of robotics

systems development. Furthermore, it focuses on increasing

the level of automation, e.g., through code generation or direct

model interpretation, to bridge the gap between the modeling

and the implementation levels and to improve the efficiency

and quality of the robotics systems engineering process.
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In the last years, this approach was actively adapted to the

robotics domain to handle the complexity of robotics systems

development.

The purpose of this survey is to report on the state of

the art in Domain-specific (Modeling) Languages (DS(M)L)

in robotics, and provide an overview of subdomains relevant

for programming and simulation of robotics applications that

are already supported through the MDE approach. Similar

surveys, yet for a wider scope, have been conducted by Biggs

and MacDonald [3] as well as Van Deursen et al. [1]. A

mapping study in the field of robotics has recently been done

in the master thesis of Cattivera and Casalaro [4], yet with a

narrower scope than this survey by focusing on mobile robot

systems. This contribution extends on a previously published

earlier version of this survey [5] with improved coverage of

the available literature as well as a more in-depth discussion

and classification of the surveyed publications, i.e. through

the mapping of the identified publications to the phases of a

typical robotics development process.

The intended addressee of this survey are potential DS(M)L

users as well as system integrators who are interested in

applying a domain-specific modeling approach directly for one

of the anticipated MDE use cases. Furthermore, we address

language developers that are interested in reuse and extension

of existing approaches and who want to learn about best

practices in order to foster scientific exchange and community

building inside the domain. Hence, the central aim of this

survey is to provide an overview on the state-of-the-art in

domain-specific modeling and languages in robotics.

The remainder of this article continues with a brief outline

of the quantitative and qualitative research questions that

we want to investigate in this contribution, followed by an

introduction to core concepts of domain-specific modeling in

Section 3 and a definition of a minimal set of methodological

requirements on DS(M)L approaches to be included in the

survey. Subsequently, Section 4 analyses the target domain

along two dimensions, which are the core robotics domains

and a reference development process. Section 5 explains how

the literature survey was conducted along a defined protocol,

while Section 6 classifies and quantitatively assesses the

covered literature, also providing an overview of several non-

functional aspects along the quantitative research questions.

On that basis, Section 7 discusses the qualitative research

questions along key publications and identifies best practices

that are relevant both for DS(M)L users and developers. We

analyze the surveyed contributions from a language engineer-

ing viewpoint and discuss aspects such as the methods and

tools used for their implementation as well as their docu-

mentation status, platform integration, typical use cases and

the evaluation strategies used for validation of the proposed

approaches. In Section 8 we briefly discuss potential threats

to the validity of the presented study. Section 9 summarizes

the main findings of the survey and discusses requirements

on accessibility and documentation standards for DS(M)L

publications to allow more effective reuse of knowledge

provided with domain-specific models in the area of robotic

systems engineering. Finally, Section 10 groups the surveyed

publications according to subdomain and development phase

as a quick reference to the bibliography entry for the interested

reader. Links at the end of each bibliography entry link back

to the sections where the respective publication is mentioned.

2 OBJECTIVES

The main objective of this survey is to investigate the question:

What is the state-of-the-art of Model-Driven Engineering

and Domain-Specific (Modeling) Languages in Robotics?

This main objective will be investigated along the following

quantitative and qualitative research questions.

2.1 Quantitative Research Questions

The research questions addressed within this survey are an

extension of our earlier analysis [5]. By answering these ques-

tions we aim to provide insights into quantitative relationships

that are relevant for answering the main question introduced

above. The questions can be summarized as follows:

RQ1 Which functional aspects are typically addressed with

DS(M)Ls in robotics?

This question investigates the distribution of MDE and

DS(M)L approaches over the different functional domains

prevalent in robotics systems to find out which of those

are particularly well supported. Our initial hypothesis is

that a larger number of model-based approaches exists for

well understood and mature aspects such as kinematics

modeling or motion control in contrast to comparably

recent research fields such as force control.

RQ2 Which robot application development process phases are

well covered by DS(M)L-based MDE approaches?

This question investigates the distribution of MDE and

DS(M)L approaches over the different phases of a

robotics system engineering process. A preliminary ob-

servation is that MDE and DS(M)L approaches typically

support modeling of certain capabilities and systems, but

ignore runtime aspects.

RQ3 Which tools are used to realize DS(M)Ls and apply

MDE in the context of robotics?

To investigate homogeneity and compatibility inside the

domain, we analyzed which tools are used for the imple-

mentation of MDE and DS(M)L methods. Findings shall

provide insights on the level of fragmentation as well

as identify possible standard environments that may lead

to easier (meta)model interchange and reuse of language

implementations.

RQ4 What are the publication trends?

On a meta level we are also interested in the momentum

of the MDE and DS(M)L topic in the robotics community,

which we investigate along two more fine-grained ques-

tions: i) What is the publication rate by year? Is there
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a positive trend for MDE approaches and DS(M)Ls in

robotics? ii) What are the main venues MDE and DS(M)L

topics are published to? What are the main conferences,

journals or workshops where work on MDE and DS(M)L

approaches is published? How is the distribution between

domain (robotics) venues and those regarding the method

(software and modeling venues) as well as among the

publication types, i.e., workshop, conference and journal

paper?

We provide answers to these questions by utilizing the

statistical data gathered through the survey and by highlighting

selected examples in Section 6.

2.2 Qualitative Research Questions

To further investigate the current state of the art of MDE and

DS(M)Ls in robotics, we try to answer questions regarding

the typical development, usage as well as the accessibility and

documentation state of these approaches.

RQ5 What is the accessibility and documentation state of

DS(M)Ls and their MDE ecosystem?

An important factor for reuse of models and DS(M)Ls,

scientific exchange and community building around MDE

in robotics is accessibility and documentation. This com-

prises several factors like technical accessibility, e.g.,

download of the language or models, licensing, and

documentation.

RQ6 What typical artifacts are generated by DS(M)L-based

MDE approaches and how are they used?

To assess the intended use of the MDE approaches and

DS(M)Ls, we looked at the artifacts generated with their

help (if any) and the context they are used in and also

how this differs between the subdomains and disciplines

(cf. RQ1).

RQ7 How much platform-dependency is introduced?

An important aspect of the generated artifacts and the

model transformations is how tightly they are coupled to

a certain platform. “Platform” in this context means the

technical execution context, so the software framework

and all additional tools or libraries necessary to use the

DS(M)L or the generated artifacts.

RQ8 How are DS(M)L approaches evaluated?

Evaluation of a DS(M)L-based approach in its intended

use-case is not only interesting from a developer’s per-

spective, but also to validate an approach from a scientific

perspective. Evaluation can also be used to demonstrate

or prove whether the approach is complete, which implies

that typical examples of the domain can be completely

expressed with the modeling approach.

RQ9 What are the development processes that lead to the

surveyed MDE and DS(M)L approaches?

The identification and formalization of domain-specific

concerns in an abstract model or the automation of

manual development tasks are typical motivations for the

development of models and DS(M)Ls [6]. We wanted

to know whether the surveyed publications report on

why a DS(M)L-approach has been applied and what

activities such as domain and problem assessment or

expert consultation are used for domain analysis and

language development.

RQ10 How are models, metamodels and DS(M)Ls (re)used

by third parties?

While many publications introduce new MDE meth-

ods and DS(M)Ls, we are also interested whether such

approaches are actually used by third-parties (not the

developers themselves) and in how far the reported usage

scenarios demonstrate the intended benefits of model-

driven engineering. With this question we try to gain

some insight whether model (re)usage within the domain

is already happening and how the MDE approach is prac-

tically applied in a robotics context. While this question

may deserve a dedicated survey, we wanted to share the

preliminary observations gathered during the analysis of

candidate publications as we consider these an interesting

contribution.

These questions will be discussed along reference publi-

cations in Section 7. The discussion shall provide insights

on best practices that are useful for language developers

when publishing their DS(M)L approaches in the robotics or

software engineering community. It is furthermore intended

to provide hints to potential users and developers on which

criteria are relevant when considering to use or extend a

DS(M)L-based approach.

3 DOMAIN-SPECIFIC MODELING LANGUAGES

In order to perform a systematic review on domain-specific

modeling for robotics system engineering, a necessary prereq-

uisite is to define what we consider a domain-specific (mod-

eling) language and to briefly describe terminology, concepts

as well as use cases that are relevant from the survey’s point

of view. While a full introduction to the topic of MDE with

DS(M)Ls (cf. [2] for a recent conceptual overview) is beyond

the scope of this article, the following paragraphs motivate

our expectations on the surveyed publications from a software

engineering perspective. These expectations partially define

the inclusion and exclusion criteria of our search process (cf.

Section 5) and link the presented DS(M)L concepts to the

previously introduced research questions.

While some aspects such as the the basic properties of

modeling languages and the different mechanisms to utilize

models on a target platform are essential for language users

(cf. Fig. 1), other concepts such as the formalism used at the

metamodel level are mainly relevant for language developers

and researchers in the DS(M)L community. Hence, the fol-

lowing subsections are structured according to these different

perspectives.
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Fig. 1. Abstraction levels of model-driven engineering

with DS(M)Ls informed by the standard definition of the

OMG [7]. In robotics, multiple metamodels and modeling

languages, models and artifacts with potentially complex

interactions will be required to fully describe an exe-

cutable system.

3.1 User Perspective

According to van Deursen et al. [1], a DSL is defined as a

“programming language or executable specification language

that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a

particular problem domain”. The abstractions and notations

must be “natural/suitable for the stakeholders who specify that

particular concern” [8].

These definitions already highlight two fundamental char-

acteristics of well-designed DSLs: their expressive power

targeted at a specific domain and the definition of formal

notations intuitively understandable for domain experts while

being machine processable, eventually yielding executable

models of robotics applications.

In contrast to General-purpose Programming Languages

(GPL) such as C++, Java, or Python, DSLs usually contain

only a restricted set of notations and abstractions specialized to

one or more particular domain(s). Compared to external DSLs

that define their own syntax and semantics, so-called internal

DSLs are embedded in extensible general purpose languages

such as Lua, Racket or Ruby. They extend the syntax and

potentially the semantics of the host language with domain-

specific notations and abstractions. This adds the expressive

power of the DSL to the GPL.

Similarly, Domain-Specific Modeling Languages (DSMLs)

that rely on graphical notations must be differentiated

from general purpose modeling languages (GPMLs) such as

UML [9] or SysML [10]. GPMLs typically provide a larger

number of generic constructs and notation, which allows

their application in different domains, e.g., the modeling of

object-oriented software systems in UML. In contrast, DSMLs

are typically comprised of a smaller set of concepts and

graphical notations that are close to the respective application

domain [2]. A common practice for the definition of DSMLs

is the use of the UML Profile mechanism that allows to

add domain-specific abstractions to UML, e.g., MARTE [11]

for modeling and analyzing real-time systems. MARTE is an

example of an internal DSML, which is realized as extension

to an existing modeling language (UML). An external DSML

typically provides a custom graphical syntax, which conforms

to a custom meta-model and requires a customized framework

for graphical editing.

This differentiation already allows to define the scope of

the presented survey in terms of modeling languages. We

consider both textual and graphical DS(M)Ls as relevant and

discuss their usage in the context of robotics along RQ3. In

contrast, we do not include publications on general purpose

(modeling) languages or their use in the context of robotics

system development. Hence, this scope is reflected in the

search terms of our overall search process (cf. Section 5).

From a user’s perspective, the execution or interpretation

of robot-specific models is an important use case for domain-

specific modeling, e.g., the embedding of a generated model-

based kinematics and dynamics controller in a larger robotic

system. While internal DS(M)Ls rely on (and are bound to) the

execution semantics of their host language, external DS(M)Ls

can be transformed to a format that directly allows execution

on a target platform or interpretation, e.g., through a virtual

machine. Another use case for domain-specific models in a

robotics context is system analysis. Here, model checking and

validation, the setup and analysis of simulations or model-

based testing are typical tasks that can be addressed. Beyond

execution and analysis, models are often directly suitable

as documentation but can also be used to generate further

visualization or documentation assets such as specific views

on a system. For the survey, we did not focus on a particular

use case for DS(M)Ls. Instead, we highlight in the discussion

of RQ10 representative usage scenarios.

Further concerns that are highly relevant for potential

DS(M)Ls users are the kind of artifacts such as source code,

configuration files, etc. that are provided through a model-

based development approach and how these artifacts are used

within a target platform. Here, target platform refers to the

specific hard- and software required to integrate and run the ar-

tifacts within a robotics system architecture. Nowadays, many

approaches, e.g., Frigerio et al. [12], already demonstrate the

parallel generation of different kinds of artifacts such as C

code for real-time components as well as Matlab/Simulink

code for simulation and analysis through exchangeable code

generators. As part of the discussion on RQ6, the survey

shall provide insights on the M0 artifacts (cf. Fig. 1) that
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are current targets of model-driven engineering in robotics. In

order to support variability with regard to the target platforms,

flexible model transformation and code generation techniques

allow to interface generated or non-generated artifacts, e.g.,

with different robot devices, software libraries or robotics

middleware such as ROS or YARP. To support this mapping

to different environments, models often need to be augmented

with additional information that needs to be added by develop-

ers. As technical and functional variability is a major challenge

in robotics system engineering, we discuss in the context of

RQ9 in how far these benefits of model-based development

are already demonstrated in the reported approaches.

3.2 Developer Perspective

Language Engineering [8] extracts agreed-upon abstractions,

syntax and semantics from the problem domain, e.g., by re-

viewing existing code examples and APIs, through the analysis

of formal descriptions found in the literature or the application

of further analysis patterns [6]. Based on the results of these

domain analysis steps, the identified abstractions and desired

notations can be realized in a DS(M)L.

In order to efficiently implement and apply a DS(M)L

approach for the development of robotics systems and to

fully exploit its benefits, DS(M)Ls are typically realized in

tools tailored to model-driven development such as the Eclipse

Modeling Project [13] or JetBrains MPS [14]. These so-called

language workbenches offer extensive support for the devel-

opment of DSLs. Domain-specific modeling languages are

themselves often modeled using the elements and following

the rules of metamodel languages [2] such as MOF [7] in

case of UML or Ecore as part of the Eclipse Modeling Project.

The alternative to the use of a potentially complex metamodel

language available in a language workbench is the use of a

grammar specification formalism such as (E)BNF, which can

be used by parser generators. However, language workbenches

provide further benefits beyond the definition of abstract

and concrete syntax such as support for the development of

textual and/or graphical editors with rich code completion and

dynamic constraint checking at design time that improve the

usability for language users. Furthermore, these environments

provide extension points to plug-in required model-to-model

(M2M) and model-to-text (M2T) transformations in order to

generate a different textual representation from system models

that integrates with the overall environment used for the

development of a robotics application. Language engineering

tools and formalism used in current publications on DS(M)Ls

in robotics are discussed in the context of RQ3.

The above mentioned aspects contain fundamental facets

that need to be addressed in scientific contributions presenting

domain-specific modeling approaches from a language devel-

oper perspective. Hence, the DS(M)L approaches considered

in this survey i) should either provide a language definition

or metamodel, based on, e.g., Ecore or (E)BNF, ii) or must

provide an example of their concrete syntax (notation), iii)

must be textual (internal or external) or graphical languages,

iv) and explain how a mapping to a target platform is achieved.

We consider all of these aspects as relevant for DS(M)L

developers and users, since formally described models and

the identification of popular language engineering tools might

lead to easier model interchange for developers, whereas users

may actually want to learn about well supported modeling

languages.

While many of the above mentioned criteria are formulated

from a software engineering perspective, the most important

criterion to judge whether a paper or article is included in

the survey is whether or not it targets a relevant concern in

the robotics domain. These relevant concerns are introduced

in the following section that identifies a set of sub-domains

considered particularly important and mature in the context

of robotics systems as well as development phases that are

prevalent in the engineering process of robotics applications.

4 DOMAIN ANALYSIS

A dedicated goal of this survey on the state of the art of

domain-specific modeling and languages in robotics is to give

potential DS(M)L users and developers orientation guide with

regards to the domain concerns that are addressed by existing

approaches. Naturally, one analysis dimension is defined by

the functional aspects that are covered by a domain-specific

modeling approach, i.e. which kinds of robot system aspect

such as a motion control algorithm can be modeled using a

surveyed approach. Since DS(M)L and MDE approaches are

particularly designed to facilitate and enhance the engineering

process, a second dimension is introduced that addresses

the question to which phases of a typical robotics system

development process the surveyed approaches contribute.

The classification schemes that we utilize within each

dimension are introduced in the following.

4.1 Functional Dimension

The definition of the functional analysis dimension essentially

raises the question about the mature sub-fields of engineering

and research that can be identified in robotics. Finding a clear

answer to this questions proves surprisingly hard. Partially,

because existing publications and standard ontologies are too

specific, existing taxonomies too broad, or just due to the fact

that in many robotics textbooks the partitioning of the robotics

field into sub-areas is still differing. Hence, we decided for

the purpose of an initial classification into subdomains to

utilize Part A of the Springer Handbook of Robotics [15] as

a “normative” and neutral reference.

Here, Part A (Robotics Foundations) covers the fundamental

principles and methods needed to create a robotic system.

While developing such a system, various challenges have to

be tackled in kinematics, dynamics, actuation, sensing, motion

planning, control, programming and task planning. Thus, the
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subdomains1 chosen in this survey will correspond to these

categories:

Kinematics refers to the motion of bodies in robotic mech-

anisms without taking the forces/torques causing the motion

into account. Hence, it includes general representations of the

position and orientation of a body, the relation among the

joints as well as conventions for representing the geometry

of rigid bodies connected by joints.

Dynamics covers the relationships between actuation and

contact forces that act on robot mechanisms. Such a mech-

anism in this sense is described by rigid bodies connected by

joints. Furthermore, it pertains to the acceleration and motion

trajectories resulting from these relationships.

Mechanisms and Actuation focuses on the mechani-

cal structure of a robot that creates its movable skeleton. All

elements that cause a robotic mechanism to move – so called

actuators – are addressed along with the mathematical model

that is used to characterize the robot’s performance.

Sensing and Estimation ranges from robot-state esti-

mation for feedback control to task-oriented interpretation of

sensor data of any kind. Apart from estimation techniques, this

category also covers different kinds of information represen-

tations.

Motion Planning covers collision-free trajectory plan-

ning for mobile platforms as well as robot actuators.

Motion Control addresses the dynamical model of

robotic manipulators. This includes different controller ap-

proaches, such as independent-joint, PID as well as torque

control.

Force Control pertains to the achievement of a robust

and dynamic behavior of robotic systems in compliant inter-

action between robot and environment. Similar to the Motion

Control category, it includes different control aspects, e.g.,

stiffness and impedance control.

Architectures and Programming refers to the way

a robotic system is designed on the software-level. It can be

divided into architectural structure and architectural style. The

structure is represented by how the system is split up into

subsystems and how they interact with each other. The style

however addresses the underlying computational concepts.

Reasoning Methods focuses on symbol-based reasoning

and knowledge representation. It covers logic- as well as

probability-based approaches. Furthermore, this category also

addresses learning, such as inductive logic learning, neuronal

networks and reinforcement learning.

Of course, many further ways of decomposition of the

robotics field exist, which may all be valid. For instance,

“grasping and manipulation” could very well be thought of

as a subdomain in its own right. However, we consider

the categories introduced above as principal components for

the core robotics problems. Following this idea, a paper on

grasping and manipulation will (of course this depends on

1Subdomains will be marked in the typewriter-style

the specific contribution) very likely be classified into the

motion control, motion planning and probably force control

subdomains.

4.2 Development Process Dimension

One general goal of DS(M)Ls is to support and structure de-

veloper’s work in development phases. Hence, we labeled the

surveyed DS(M)Ls according to their intended and potential

usage within a development process. To ground this analysis

we utilized the Robot Application Development Process in

BRICS (BRICS RAP or shortly RAP) [16]. The BRICS RAP

has been developed in the EU-funded project BRICS [17] and

is a holistic process model for developing robot applications

both in academia and industrial settings. The process model

combines ideas from traditional software engineering [18],

[19], agile software development [20], model-based engineer-

ing [21], [22], and system engineering [23] and foresees in its

latest revision eight different phases, each of which requires

several steps to complete the task. Note, the BRICS RAP also

foresees feedback and interaction among development phases,

but we present for the sake of simplicity only the core phases.

We decided to use the BRICS RAP in this survey for two

reasons. Firstly, to the best of our knowledge the BRICS

RAP is one of the very few reported process models targeting

robotic applications and is therefore applicable for our survey.

Secondly, the BRICS RAP aims to cover the complete life

cycle of a robotic application which enables to investigate

whether DS(M)Ls are used to a particular extent in certain

process phases. In the following we provide a brief overview

about the process phases proposed by the BRICS RAP.

• In the scenario building phase, environment features,

constraints and characteristics are defined. Furthermore,

the robot’s task is defined. This includes the specification

of customer acceptance tests to be performed in the

specified and potentially generalized environment.

• In the functional design phase, hardware requirements

and top-level functionalities are derived based on the

scenario definition. Furthermore, top-level functionalities

are decomposed and dependencies among them are iden-

tified. Also an initial functional design stating which

functionalities interact with each other is developed.

• In the platform building phase, the robot hardware is

determined. This includes the selection and potential

configuration of robot’s sensors and actuators meeting the

requirements defined in the functional design phase.

• In the capability building phase, basic and composite

components are constructed up to the application-level

and constraints for their deployment are specified. This

also includes the specification and eventually generation

of additional knowledge required for component execu-

tion such as knowledge bases and training data.

• In the system deployment phase, top-level component(s)

are packaged into a complete application system which
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defines a mapping of components and composites to com-

putational units. Furthermore, features and procedures for

system launch management are developed.

• In the system benchmarking phase, certain test proce-

dures targeting different quality attributes are performed

such as stress testing, safety and security testing, relia-

bility and durability testing, and performance testing.

• In the product deployment phase, an application is

tailored to a specific robot system. This includes also the

installation of maintenance instrumentation and a final

target platform system testing.

• In the product maintenance phase, the robot application

is operated and maintained. This includes eventually the

analysis of log files and the tuning of system parameters.

5 PROCESS

The selection of the publications for this survey focused

on publications that developed DS(M)Ls or metamodels to

conceptualize aspects of the robotics domain or support certain

research or engineering aspects. Compared to our previous

survey [5] we extended the process to find potential candidates

for this survey. A list of potential candidates was automatically

generated by a script2 performing a keywords-based query

on the widely known publication database Google Scholar.

Google Scholar3 indexes the publication databases of all

major scientific publishers and allows keyword-based full-text

searches while restricting certain metadata, e.g., publication

year or conference. All publications resulting from the selec-

tion process (cf. Fig. 2) were then analyzed manually regarding

our research questions detailed in Section 2. Furthermore, the

initial analysis has been reviewed by following a four-eyes

principle where one author assessed the analysis of another

author.

5.1 Selection Process

The script queried the publication database for publications

conforming to one of two inclusion criteria (IC):

IC1 Publication was published in the proceedings of the

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), IEEE International Conference on

Robotics and Automation (ICRA), International Confer-

ence on Simulation, Modeling, and Programming for

Autonomous Robots (SIMPAR), Robotics: Science and

Systems Conference (RSS), Journal of Software En-

gineering in Robotics (JOSER), IEEE Transactions on

Robotics (TRO), Springer Autonomous Robots (AURO),

Elsevier Robots and Autonomous Systems (RAS), Wi-

ley Journal of Field Robotics (JFR)4, Workshop on

Software Development and Integration in Robotics

2https://github.com/corlab/dslzoo/tree/query
3http://scholar.google.com/
4From 1984 until 2006 the journal was named Journal of Robotic Systems.
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Fig. 2. Sequence diagram of the selection process.

From top to bottom, an IC and EC is applied in each

step respectively. While the boxes on the right represent

the amount of contributions included or excluded by a

specific criterion, the boxes in the middle show the actual

amount after each step. Ultimately, 137 publications are

considered in this survey.

(SDIR) or the Workshop on Domain-Specific Languages

in Robotics (DSLRob) and full-text search matching

one of the keywords “domain-specific language(s)”,

“domain-specific modeling language(s)”, “generative

programming”, “specification language(s)”, “descrip-

tion language(s)”, “code generation”, “dsl(s)”, “meta-

modeling”, “metamodel(s)”, “metamodeling”, “meta-

model(s)”, “MDE”, “MDSD”.

IC2 Publication was published in the proceedings of the Code

Generation Conference (CG), International Conference

on Generative Programming: Concepts & Experiences

(GPCE), ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems (MODELS),

Conference on Model-driven Engineering and Software

Development (MODELSWARD) or the IEEE/ACM In-

ternational Conference on Software Engineering (ICSE),

and full-text search matching one of the keywords

“robot(s)” and “robotic(s)”.

Scanning the 12 robotics conferences, workshops and jour-

nals5 for the 20 keywords regarding model-driven or domain-

5The Workshop on Domain-Specific Languages in Robotics (DSLRob)
is not available in official proceedings and can therefore not be queried via
Google Scholar. We nevertheless included all 23 DSLRob publications of the
years 2010 – 2014 manually due to its relevance to the topic.

https://github.com/corlab/dslzoo/tree/query
http://scholar.google.com/
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specific methodology6 (IC1) with a total of 220 single queries

resulted in 708 publication candidates.

Scanning the 5 software engineering conferences, work-

shops and journals for the 4 keywords regarding robotics6

(IC2) with a total of 20 single queries resulted in 71 additional

publications, totaling in 779 publication candidates for this

survey.

After this automated process, the 779 publication candidates

were filtered manually by the authors of this survey by three

exclusion criteria (EC):

EC1 Publication is not online accessible in article format.

Presentation slides are not sufficient and books are also

excluded.

EC2 Publication does not describe a metamodel or domain-

specific language, or publication is not complying with

our definition from Section 3, e.g., domain-specific lan-

guage or metamodel not documented via grammar or

example.

EC3 DSL does not model or support aspects of the introduced

domain.

After applying EC1, 760 publication candidates remained.

This step sorted out false positives from the Google Scholar

query and publications that were only available as slides but

not in proceedings.5 176 publication candidates remained after

applying EC2, mainly filtering out publications that used our

keywords somewhere in the publication, e.g., in the related

work part, discussion, or bibliography, but do not introduce

any domain-specific language or metamodel. Also publications

that only vaguely describe a domain-specific language or meta-

model, but do no provide any grammar, formal specification

or even example are excluded with this criterion. Finally, 137

publications remained after applying EC3, mainly filtering out

publications added through IC2 that used the term “robot”,

e.g., somewhere in its outlook without actually supporting a

robotics use-case.

5.2 Analysis Process

The 137 publications that resulted from the selection process

were manually screened by the four authors. In this process,

additional metadata was attached that helps answering the

research questions detailed in Section 2.

Some of the quantitative aspects introduced in Section 2.1,

e.g., year and venue, were already annotated during the

automated selection process. Further aspects like subdomains,

development phases, and the formalization had to be annotated

manually.

While screening the publications, the four authors of this

survey also annotated if the paper was especially relevant

for one of the qualitative research questions discussed in

Section 2.2, e.g., being an especially good or relevant example,

6Due to technical restrictions, singular and plural forms of the keywords
had to be queried separately, e.g., “description language” and “description
languages”, resulting in 20 keywords for IC1 and 4 keywords for IC2.

Per Subdomain

0 40 80 120

Kinematics

Dynamics

Mechanisms and Actuation

Sensing and Estimation

Motion Planning

Motion Control

Force Control

Reasoning Methods

Architectures and Programming

14

5

13

10

15

26

22

18

120

occurrences in total

Fig. 3. Distribution of the surveyed publications over

robotics subdomains as defined in [15].

following best practice or being a special case in this aspect.

To avoid subjective bias during the annotations of the papers,

all papers were evaluated by at least two of the four authors

of this survey.

6 ANALYSIS

In the following, the surveyed publications are analyzed ac-

cording to the research questions introduced in Section 2.1.

The identified quantitative relationships provide a compact

overview on the functional or engineering concerns that are

addressed with DS(M)Ls in robotics and indicate what mod-

eling tools are used to realize these approaches. Furthermore,

we present metadata about the surveyed publications such as

the temporal distribution over the last decades, which clearly

indicates a rising number of DS(M)L publications. While the

focus in this section generally is on quantitative analysis, we

highlight selected papers if we consider these as representative

for a certain kind of category or relationship.

6.1 Subdomains (RQ1)

As introduced in Section 4, the functional subdomains that

serve as a basic classification ontology are motivated by

the core foundations of robotics as outlined in Springer’s

Handbook of Robotics [15]. The classification result, cf. Sec-

tion 10, shall serve as an annotated bibliography and reference

guide for potential DS(M)L users and developers to foster

discussion, reuse and extension of languages or models.

Besides this mapping of the individual publications, our

initial research question is to assess the overall distribution of

DS(M)L approaches with regard to the defined subdomains.

Fig. 3 provides an overview for the observed relationship

between robotics subdomains and DS(M)L publications as

a first result with regard to this question. The underlying

numbers seem to support the initial hypothesis that well
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understood subdomains are covered by a larger number of

contributions, whereas recent research fields are sparely or

not covered at all. Domains such as Motion Planning and

Motion Control (that we consider well understood), are

addressed by more than 11% of the publications. In contrast to

that, so far only two contributions [24], [25] are dealing with

Force Control. One of them [24] provides an internal

DSL to specify force-velocity controlled motions following

the Task-Frame formalism introduced by Mason [26]. The

article is also a good example how existing robotics knowledge

is reused in the form of a DS(M)L as the article is from

2011 whereas the underlying theory dates back to the 80s

and 90s. We also consider Kinematics a mature subdomain

and observe a higher number of reported DS(M)L-approaches

than in the field of Dynamics. Rather recently, there are

also contributions combining these subdomains. For instance,

both Kinematics and Dynamics are covered by [27], [12],

[28], [29] where for example both aspects are required to

compute algebraic quantities for the sake of various control

applications.

Revisiting Fig. 3, the subdomain Architectures and

Programming attracts attention. It is addressed by over

53% of the publications in this survey. We believe this is

mainly due to the following reasons. First, while the Handbook

chapter implicitly defines this subdomain to consider structural

aspects of robotics architectures such as basic component

models [32] and composition of components [33], [34] which

is reasonable, it also includes rather computational aspects

such as the coordination of architectural elements on different

levels of abstraction, e.g., on a task [35], [36] and behavior-

level [37]. As we need to apply this definition to all of the

surveyed papers, a comparably large fraction of the papers,

i.e. [38], [39], [40], [41], [37], are mapped to this category. A

second reason that we consider relevant here is that researchers

applying DS(M)L methods are likely to work on topics that

are closely related to this subdomain.

The large number of publications within this category called

for a deeper analysis of this subdomain. Following a similar

approach as with the Handbook of Robotics, we consulted the

Software Engineering Body of Knowledge [30] published by

the IEEE Computer Society as a widely accepted reference

to establish a more fine-grained classification taxonomy. In

particular, we associate the Programming aspect with the

key issues addressed the subsections of Section 2.2 within

the SWEBOK on Software Design and the Architecture

aspect with the issues outlined in the subsections of Section

2.3 on Software Structure and Architecture. TABLE 1 briefly

summarizes each of these issues according to their original

definition. We are aware that these terms are defined and

introduced in the SWEBOK without a dedicated focus on

robotics software development. For instance, we propose to

explicitly extend the definition of Security and Safety

to include models that address the physical safety of humans

in the presence of robots. Nevertheless, the re-use of def-

Software Design [30, Sect. 2.2] Sect.

Concurrency: Decomposition of software into processes,
tasks, and threads, dealing with related issues of efficiency,
atomicity, synchronization, and scheduling.

2.2.1

Control and Handling of Events: Organization of
data and control flow as well as handling of reactive and
temporal events.

2.2.2

Data Persistence: Handling of long-lived data. 2.2.3

Distribution of Components: Distribution of the soft-
ware across the hardware, communication of components,
and how can middleware be used to deal with heteroge-
neous software.

2.2.4

Error and Exception Handling and Fault

Tolerance: Prevention, toleration, and processing of
errors as well as dealing with exceptional conditions.

2.2.5

Interaction and Presentation: Structuring and or-
ganization of interactions with users as well as the presen-
tation of information.

2.2.6

Security and Safety: Prevention of unauthorized ac-
cess to and manipulation of information and other re-
sources. Limiting of damage, continuation of service,
speed-up of repair, and how to fail and recover securely.
Ensuring safety of humans in the presence of robots.

2.2.7

Software Structure and Architecture [30, Sect. 2.3] Sect.

Architectural Structures and Viewpoints: De-
scription of architectural structures and software designs in
general by independent and orthogonal views.

2.3.1

Architectural Styles: Descriptions and guidance for
the high-level organization of software providing “a special-
ization of element and relation types, together with a set of
constraints on how they can be used”.

2.3.2

Design Patterns: Provide “a common solution to a com-
mon problem in a given context” [31]. Typically employed at
a lower abstraction level than architectural styles.

2.3.3

Architecture Design Decisions: Impact of quality
attributes and the trade-offs among competing quality at-
tributes that provide the basis for design decisions.

2.3.4

Families of Programs and Frameworks: Software
product lines or Frameworks encapsulating commonalities
among elements and targeting re-use by designing cus-
tomizable components that account for variability.

2.3.5

TABLE 1

Categories for decomposition of the architecture and

programming subdomain. The referenced subsections

point to the respective SWEBOK [30] subsections.

initions from the field of Software Engineering to classify

software development aspects in Robotics seems more natural

and promising to us than to invent new but closely similar

vocabulary.

Hence, we conducted a deeper analysis of this subdomain

by assigning each of the 120 papers to a maximum of three

of the introduced categories. This annotation was done by at

least two of the four authors of this survey for each paper.

The outcome of this analysis is depicted in Fig. 4. First,

the distribution highlights that much of the work belonging

to this category is concerned with coordination aspects such



84 Journal of Software Engineering for Robotics 7(1), July 2016

Per A&P Subdomain

0 15 30 45

Control & Handling of Events

Arch. Structures & Viewpoints

Distribution of Components

Arch. Styles

Concurrency

Interaction & Presentation

Error & Exeption Handling

Fam. of Prog. & Frameworks

Security & Safety

Design Patterns

Arch. Design Decisions

Data Persistence

59

40

21

21

19

17

11

8

8

5

4

4

occurrences in total

Fig. 4. Distribution of the surveyed publications within the

Architectures and Programming subdomain.

as Control and Handling of Events, which is rea-

sonable given that models for event handling are required

in many applications to specify robot behavior and that we

suppose that the required methods within this field are compa-

rably well understood. Second, papers frequently consider Ar-

chitectural Structures and Viewpoints, Distribution of

Components and Architectural Styles as concerns

that are targeted with domain-specific modeling languages.

While principles of component-based software engineering are

considered best practice in robotics software engineering, the

modeling of component-based architecture and systems also

represents a major topic in the general software engineering

domain. Third, only a few papers report on Security

and Safety aspects. Being a relevant concern for many

advanced robotics applications and human-robot interaction,

this observation is surprising. Summarizing, the resulting

distribution shows that the SWEBOK-informed categories

work well as a decomposition for the Architectures

and Programming subdomain. Section 10.9.1 provides an

overview of the respective publications within this subdomain

and their individual mapping to the chosen categories.

While the SWEBOK has many more knowledge areas that

are of course also relevant from the perspective of robotics

systems engineering, we argue that most of these (i.e. require-

ments engineering) are already covered by the more domain-

specific BRICS RAP that we use as orthogonal classification

scheme. Please refer to the next Section 6.2 for this mapping

of the surveyed contributions to development process phases.

However, the correlation among the different subdo-

mains is as well interesting. It can be noticed in Fig. 5

that there are high correlations between Architectures

KinematicsKinematics

DynamicsDynamics

Mechanisms and ActuationMechanisms and Actuation

Sensing and EstimationSensing and Estimation

Motion PlanningMotion Planning

Motion ControlMotion Control

Force ControlForce Control

Architectures and ProgrammingArchitectures and Programming

Reasoning MethodsReasoning Methods

Fig. 5. The correlation between the different subdomains

(colored nodes) is represented by the size of the edges.

For instance, a thick edge means that a lot of publications

are associated with the two subdomains.

and Programming and almost every other considered

functional domain. This means a lot of publications that

present an approach focused on e.g., Motion Control

or Reasoning Methods, also considers architectural as-

pects. An explanation may be that these domain-specific

models can typically only be validated on the real robot

system if they are integrated into an overall architec-

ture, e.g., providing realistic sensor data. The correla-

tion between Motion Control, Motion Planning and

Kinematics seen in Fig. 5, is reasonable due to the

close affiliation of those domains [42], [43], [44], [45],

[46], [47], [48]. Considering Reasoning Methods, it is

mostly related to Architectures and Programming

[49], [50], [51], [52] and Motion Planning [53], [54],

whereas there is apparently no correlation to low-level

Motion Control, Kinematics, Dynamics and Force

Control. The strong correlation between Reasoning

Methods and Architectures and Programming is

meaningful as for instance in order to coordinate tasks one

needs also to reason about robot capabilities and eventually

varying environment and task conditions as addressed in the

work of robot control architectures, e.g., [55], [56].
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6.2 Development Phases (RQ2)

To answer RQ2 we assessed the contributions from a DS(M)L

user perspective, namely to which extent does a language

support the development of a robotics software system within a

particular development phase. In the following we summarize

observations relevant for DS(M)L users and developers.

The majority of the surveyed publications, namely 128,

address the capability building phase. This is not surprising

as within this development phase not only basic components

following a component model are constructed [57], but also

composite components are developed [58] leading to higher-

level and potentially reusable capabilities [34], [59], which are

orchestrated or coordinated [60], [38], on a behavior-level [61],

[41] as well as on a task-level [46], [62], [35], [63].

Much less contributions are assigned to the platform build-

ing phase, namely 26. However, the diversity of DS(M)Ls

is impressive and ranges from means to model sensor char-

acteristics [64], [65], [58], [52], computational hardware re-

sources [66], kinematic and dynamic properties of manipula-

tors [27], [67] and hands [68] to kinematic abstractions for

arbitrary modular robots [69].

A similar range of publications, 35, addresses the functional

design phase. Exemplary contributions belonging to this cat-

egory present modeling approaches targeted at requirements

represented in the form of crucial mission guarantees [70],

constraints for machine configuration [71] or motion con-

straints [45] that are described in structured English.

Even though, several articles describe how they accomplish

development tasks in the deployment phase, e.g., [72] gen-

erating ROS launch files, they do not necessarily introduce

dedicated abstractions for modeling deployment activities and

artifacts. In summary, 22 publications consider the system de-

ployment phase. Exemplary contributions in this category such

as [49], [66], [59] provide means to model deployment specifi-

cations, e.g., threading and platform properties, to facilitate use

cases such as scheduling analysis. All these approaches (see

also [73], [74]) strictly separate the deployment model from

the architecture specification in order to enable deployment of

the same architecture on different platforms.

Twelve articles consider DS(M)Ls to model run time as-

pects as required in the system benchmarking, product

deployment and product maintenance phase. Most notably,

in [75] and [76] design time models, e.g., software architecture

models, are combined with adaptation models in order to

express how a robot should adapt its system architecture based

on varying environment, platform or task conditions.

Very few publications, namely five, have been assigned to

the scenario building phase. Here, we have to admit that

the differentiation between the scenario building phase and

the functional design phase was challenging as both phases

deal with high-level requirements. Nevertheless, some articles

such as [77] and [78] can be clearly assigned to the scenario

building phase as they deal with modeling of task and/or

environment requirements.
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Fig. 6. Formalisms of the DS(M)Ls included in this survey.

6.3 Meta-Metamodels and Formalisms (RQ3)

This section analyzes the formalisms that were used for the

development of the DS(M)Ls to shed some light on the

homogeneity and compatibility inside the domain (RQ3). As

far as this is assessable in the publications or the referenced

documentation, we annotated the formalisms used for devel-

opment of the metamodels and the external DS(M)Ls, as well

as development of internal DS(M)Ls.

The majority of DS(M)Ls assessed with this survey is

realized as an external DS(M)Ls. While these DS(M)Ls need

to be based on a formalism, internal DS(M)Ls are bound to

the specific syntax of their host language and are therefore not

considered in Fig. 6. There are various kinds of host languages

used by internal DSLs, such as F# [54], Lua [79], Prolog [80],

and C++ [81] – to name a few.

In the following, the observations of this survey are pre-

sented based on Fig. 6. We gather UML Profiles [9] under

the term UML/MOF, since the UML Profile is an extension

mechanism to adapt the UML metamodel, which is based

on MetaObject Facility [82] (MOF), to different domains.

Considering Fig. 6 it can be noticed that Ecore7 is one of the

most used meta-metamodels. It therefore seems to be a good

integration point and opportunity for DS(M)L compatibility

in this domain. Since different approaches within the Eclipse

Modeling Project (EMP) share Ecore as their representation,

the possibility to use the extensive EMP tool-support as well

7The core of the Eclipse Modeling Framework [83] (EMF) includes a
metamodel (Ecore) for describing models and providing runtime support.

http://www.eclipse.org/modeling/emf/
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as to reuse the Ecore model itself [84] can be considered as

big advantage.

(E)BNF is also quite widely used, e.g., by [85], [86], [76],

[29]. It is standardized8 by the International Organization for

Standardization9 (ISO). Additionally, it can be converted to an

Ecore model as well as the other way around. Both features

foster reuse and compatibility with the EMP ecosystem.

As it can be seen in Fig. 6 there are almost as much pub-

lications using a custom tool chain, e.g., custom formalisms,

parser and tools, as there are publications using (E)BNF. Those

are collected under the term Other. A considerable amount of

DS(M)Ls cannot be classified, because the used formalism is

not specified in the publications and thus marked as Unknown.

Not mentioning the underlying formalism, however, limits

the possibility of reuse strongly. From the user’s perspective,

knowing the specific formalism is a crucial factor in order to

use existing work published by third-parties.

6.4 Publication Trends (RQ4)

In order to answer RQ4, this section analyzes the publi-

cation trends in two fine-grained parts. The first part (cf.

Section 6.4.1) covers the publication rate by year, to determine

a general trend for DS(M)Ls in robotics. In the subsequent part

(cf. Section 6.4.2) the main venues, DS(M)Ls are published

to, are investigated. This also covers the distribution of venues

regarding their domain (i.e. robotics- and software-oriented

venues as well as hybrid ones).

6.4.1 Temporal distribution

Model-driven and domain-specific approaches are on the rise

in robotics. We plotted the temporal distribution of the publi-

cations in this survey, as shown in Fig. 7. While from 1984 to

2009 only a few contributions (on average ∼2) each year were

published, the amount of MDE and DSL related publications

is highly increasing from 2010 on. This is equivalent to the

start of the DSLRob workshop and the SIMPAR conference.

The numbers, however, clearly exceed the amount of DSLRob

publications per year, proving that this is more due to a

general increase, rather than to the influence of single venues.

Although the distribution clearly supports this overall positive

trend, the anomaly in 2013 attracts attention. A reason for that

might be that there was no SIMPAR in 2013 and SDIR did

not publish any papers but slides only.

6.4.2 Venues

As seen in Fig. 7, the very first publication included in this

survey was successfully submitted to the robotic conference

IJRS (green) by Henderson et al. [58] in 1984. Since then

ICRA (blue) is represented almost every year, although with

great fluctuations regarding the number of publications. The

8EBNF ISO/IEC 14977:1996
9http://www.iso.org/

third conference that appears in this survey is IROS (light-

blue). From 1993 until 2010 it is represented with one to two

publications per year. Starting in 2011 a continuous increase

can be noticed. ICRA and IROS combined create a solid base

of contributions.

Since 2009 an increasing variety of different venues is

appearing. For instance: AURO, TRO and RAS, which were

occasionally represented (especially from 1995-2002), are

recurring again. The fact that new venues are also increasingly

appearing stands out. Since 2010, the DSLRob workshop

(orange) as well as the SIMPAR conference (dark-yellow) is

particularly contributing to the field of DS(M)L-research.

Considering the percentage ratio of sighted (i.e. passed ICs)

and finally accepted contributions (i.e. not excluded by ECs)

of this survey, it can be noted that DS(M)L publications cover

only a very small part of more generic robotic-conferences,

such as ICRA and IROS. In case of ICRA, roughly 13% of

the sighted publications suffice the inclusion criteria of this

survey. This ratio is very low, compared to workshops such as

DSLRob (79%), SDIR (23%) and conferences, e.g., SIMPAR

(35%). Nevertheless, IROS and ICRA combined represent

over 53% of the included publications, closely followed by

the DSLRob (∼17%) workshop.

The color range in Fig. 7 visualizes the difference be-

tween the representation of robotics- and software-oriented

venues in this survey. Over 65% (blue and green) of the

DSL-related contributions were submitted to robotics-oriented

venues, whereas hybrid venues, i.e. related to both robotics and

software, are represented by over 30% (yellow and orange).

Only ∼4% (red and purple) of the publications considered in

this survey were submitted to purely software-related venues,

such as ICSE and MODELS. This particular distribution,

however, is the result of the selection and analysis process

introduced in Section 5.

7 DISCUSSION

This section discusses the qualitative research questions in-

troduced in Section 2.2 that we think are important for i)

language developers to enable language reuse, interoperability

and discussing the core concepts, as well as ii) language

users to allow assessing the availability and usability of the

DS(M)Ls. As mentioned in Section 5.2, publications were

annotated during the analysis process when being of particular

interest or particular positive examples for any of the following

research questions. In the following sections, the qualitative

research questions are discussed along these examples.

We discuss these exemplary approaches and publications to

extract best practices in terms of documentation, accessibility

and evaluation of robotics DS(M)Ls to make suggestions

to the community. The need for this became clear during

analysis of the publications for this survey, as lots of the

aspects discussed here were largely undocumented and/or were

partially unaccessible.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153
http://www.iso.org/
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Fig. 7. Temporal distribution of the publications in this survey ranging from 1980 to 2015. Robotics- and software-

related venues are distinguished by color: A color between blue and green represents robotics venues. The color

space from Yellow to orange characterizes hybrid (i.e. robotics- and software-oriented) venues, while red and purple

stand for pure software venues.

7.1 Accessibility and Documentation (RQ5)

An important factor for reuse of DS(M)Ls, scientific exchange

and community building around DS(M)Ls in robotics is their

accessibility and documentation. This comprises several fac-

tors like technical accessibility, e.g., download of the language

or models, licensing, and documentation of the DS(M)L, its

usage and execution context.

The majority of publications only give hints on the meta-

model or show parts of it [62], [87], while some are also docu-

menting their metamodel through exemplary models. Still that

is not enough to reuse and properly interface between different

approaches. Only a subset of the DS(M)Ls in this survey is

documented in an exemplary manner to promote reuse as well

as to enable actual usage. [88], [89], [12] allow interfacing by

presenting a documentation of their metamodel. [35] generates

HTML documents from Task Description Language (TDL)

files with their Visual Design Tool, to facilitate the search for

existing task definitions. [37], [34] provide a documentation

for their approach, including install instructions. Besides that,

the documentation of [27] also includes a complete description

of all classes and packages of their EjsRL tool. A good way

to push reuse even further is to provide tutorials and examples

as done by [88], [37], [27].

To facilitate reuse, extension and integration of the de-

veloped DS(M)Ls or their metamodels, community-friendly

open-source licensing schemes are required due their impact

on usage, modification and redistribution [90]. Some pub-

lication already express to share this particular mindset by

making their DS(M)Ls available for download as open-source

software [91], [37], [12], [27], [41], [88], [34].

Making the deployment of the available software straight-

forward, is another crucial factor. This includes, apart from

proper install instructions, a simple way to resolve depen-

dencies (if necessary) [91]. [34] handles that matter in an

exemplary manner. They provide three different methods to

deploy their work: It can be installed using a Makefile10

that automatically downloads all requirements, including the

Eclipse IDE11. Furthermore, it can be installed from source

via GitHub12. Finally, an eclipse update site can be used to

integrate the software into an already existing instance of

Eclipse.

7.2 Artifacts and Use-Case (RQ6)

To assess the intended use of the surveyed MDE and DS(M)L

approaches, we looked at the artifacts generated (if any) and

the context they are used in.

While model-based approaches can be used to generate vi-

sualizations of systems, e.g., of the system architecture [93] or

hardware platforms [91], [69], the main use-case for DS(M)Ls

is to generate executable code to perform experiments or

provide supporting routines. The majority of the surveyed

approaches is used for code generation, but roughly a fifth of

the surveyed approaches is implemented as internal DS(M)Ls,

e.g., [94], [95], [36], [79], and some of the languages use

interpretation rather than code generation for their execution,

e.g., [61], [96].

Among the approaches used for code generation, the ones

identified within the same subdomains often cover similar

use-cases and therefore are used for generation of similar

10A Makefile is used to specify how Make derives an, e.g., executable
from source code. [92]

11http://www.eclipse.org/
12https://github.com/

http://www.eclipse.org/
https://github.com/
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artifacts. Approaches in the Kinematics subdomain often

target simulation support, e.g., [69], [84], or are used for

generation of controllers that can be embedded into motion

control systems, e.g., [12], [80].

Approaches within the Coordination subdomain target

to a large extent generation of state-chart or state machine

based artifacts [60], [24], [97] since many robotics soft-

ware frameworks and solution are based on them [60]. The

following contributions [87], [89] generate code to realize

motion tasks as state hierarchies, state transitions and import

or extension of existing states.

Artifact generation from DS(M)Ls becomes especially pow-

erful and suited for reuse if the accompanying toolchains sup-

port different parallel M2M and M2T transformations. Either

to generate different artifacts like visualization, computational

routines and glue code [93], or executable code for different

programming languages or software platforms [29], [12], [24],

[74]. [69] for example generates code for different hardware

platforms and three different execution contexts: i) world files

for a simulation engine, ii) C code for a virtual machine, and

iii) XML configuration files for a specific compiler.

While the main target of DSL seems to be the automation

of the software development, several approaches are also used

for analysis and validation, e.g., [98], [49], or debugging,

e.g., [99] who use their language for debugging and verifying

correctness across distributed modular robots.

Robotics DS(M)L approaches, however, still use their mod-

els and languages mainly at design time [36]. Only a few of the

surveyed approaches use the models to exploit the represented

knowledge also at runtime, e.g., to model runtime variation

points in the task at design time and bind and use them at

runtime [100], [36], or to synthesize DSL programs while

learning from demonstration as done by [54].

Another interesting example of using models after design

time is presented by [101], [102], where DSLs are used for

compact representation of programs and performing genetic

programming with evolutionary optimization directly on the

DSL code. Subsequent to the rearrangement of the DSL

models through the genetic algorithms, GPL code is generated

and tested for fitness to perform the next evolution step.

7.3 Platform (RQ7)

An important aspect of the artifacts and the model transforma-

tions discussed in the previous section is how tightly they are

coupled to a certain platform and technical execution context,

as discussed in Section 3.

A first differentiation to make in this case is usage of

internal vs. externals DS(M)Ls.

While external DS(M)Ls are usually depending on a tool

that transforms or executes their model and therefore introduce

a platform-dependency, the target platform or technology can

usually be chosen through their respective M2M and M2T

transformations. Internal DS(M)Ls on the other hand are

bound to the execution context, i.e. compiler or interpreter,

of the host language. [80] discusses the impact of internal or

external DSLs explicitly by implementing their model as an

external DSL in Xtext and as an internal Prolog DSL. They

draw the conclusion that the external DSL provides better tool

support, but the internal DSL is easier from a developer’s

perspective in terms of implementation, and more convenient

from a user’s point of view, since it is executable out of the box

without additional transformation steps. That said, the intended

use cases of the internal and external languages are slightly

different. While the primary focus of the internal DSL is on

constraint checking and validation, the external DSL is also

used to generate and build the corresponding infrastructure

artifacts.

A second essential differentiation to make in terms of

platform is between the DS(M)L being used in a interpretation

or a generation manner. [61] does both and can either run their

language models in an interpreter or generate C++ code from

it for robots with restricted hardware resources.

For DS(M)Ls that are used in a generation manner, we

differentiate between three classes of platform-dependency:

1) Proprietary robot programming languages such as

KRL [103] and RAPID [104] typically target to a set of

compatible platforms by a specific robot manufacturer

and usually don’t consider openness or platform inde-

pendence13.

2) Generation of artifacts that are tied to or dependent on

a library stack, software framework or runtime environ-

ment, e.g., tied to a specific robotics framework [87], [89],

[100], or targeted to be executed by a certain tool [105],

[67]. While this introduces a bigger platform footprint

during execution, custom tools can increase performance

with respect to generic tools, e.g., in terms of parsing

performance as discussed by [44].

Some of the surveyed DS(M)Ls approaches come with

exchangeable generators to explicitly allow use of the

DS(M)Ls and their concepts in different frameworks

or environments [74], [24]. [24] makes the platform

explicit, by distinguishing between platform-independent

and platform-specific models.

3) Transformation of the DS(M)L models directly to a

general purpose language, e.g., Ada [88] or C++ [67],

[29], [61], is the most platform-independent option. This

reduced platform dependencies to a minimum, which is

easier portable, even to embedded systems or system with

restricted hardware capabilities [88], [61], easier to re-

use and thereby eases scientific exchange. It also reduces

assumptions about the platform from within the DS(M)L.

Interpretation of a DS(M)L is always being tied to a

(DS(M)L-specific) interpreter [61], e.g., to directly executing

13Although neither KRL nor RAPID are included in the surveyed list of
publications, we found them worthwhile to mention here as representatives
for manufacturer-specific robot programming languages.
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API calls during interpretation of the language models[96].

While platform-independence is often a motivation for the

development and use of DS(M)L approaches, it may also be

tied to a platform to provide tool support for this very specific

platform. [106] for example bases the model on ROS nodes

targeting its interactive programming, and thereby introducing

platform dependency already on model level.

7.4 Evaluation (RQ8)

Evaluation of a DS(M)L based approach in its intended use-

case is not only interesting from a developer’s perspective,

but also serves as a foundation for a decision from a user’s

perspective. A number of the surveyed publications evaluated

the semantics or the generated artifacts. A surprising yet

positive outcome of the analysis was that quite a number of the

DS(M)Ls in this domain are evaluated not only in simulation,

but on real hardware [89], [88], [12], [87], [107], and even on

different platforms [62], [24], [107].

We can roughly differentiate two different kinds of evalua-

tion approaches: qualitative and quantitative evaluation. Quali-

tative evaluation is often done by conceptual discussions based

on examples and use-cases, e.g., [34], which is a suitable

research methodology in software engineering research [108].

Several publications use case studies to discuss portability of

their semantics to different platforms, e.g., [88], [62], [24].

[80] for example models some typical use-cases and shows

how common errors can be avoided by using the proposed se-

mantics and language. [109] discusses its approach extensively

from a developer’s perspective, using the language evaluation

criteria from [110] including language design aspects, human

factors, software engineering aspects, and application domain

criteria. [80] discusses the impact of developing internal or

external DS(M)Ls on the workflow and tools by implementing

the model in both of them.

[111] lists four different quantitative benefits and corre-

sponding metrics, that can be used to evaluate a model-based

approach and can serve as a best practice:

1) Efficiency: This can be evaluated in terms of performance

and memory utilization as it is done for example by

[12]. They benchmarked their generated C++ code in its

intended use-case, forward and inverse kinematics as well

as dynamics on different numbers of degrees-of-freedom.

In [112] the authors compare their approach to another

framework and another library in terms of complexity

to solve a targeted problem as well as quality of the

generated code.

2) Scalability in terms of compilation time and system size.

3) Productivity: This can be evaluated in terms of size,

effort or number of change requests, as done by [113].

They evaluate the usage of a DS(M)L from the devel-

oper’s perspective against classical approaches by means

of empirical software engineering. Non-functional aspects

they covered comprise time spent for learning the tech-

nologies, effort for fixing bugs, component reuse and

complexity of understanding reused software artifacts.

[112] introduces its approach into an educational context

and evaluates how much work students take to solve

a problem. In [24] the authors conducted hardware ex-

periments on a PR2 and a KUKA LWR and analyzed

the necessary number of lines of code for platform-

independent and robot/framework specific code.

4) Reliability, e.g., in terms of defects introduced in a period

of time similar to what [80] does qualitatively, e.g., as

done by [113], or in terms of number and duration of

experiments as done by [32] who ran the system for

several hours on 30 simulated robots.

Evaluation can also be used to show, if the DS(M)L is

complete in terms of the evaluated examples. “Completeness”

in this context means being able to express the domain prob-

lem, applications or typical examples of the domain entirely

in the DS(M)L: “Can typical use-cases of the DS(M)L be

completely expressed within the DS(M)L?” DS(M)Ls that

for example specify controllers [12] or transformations [80]

are not complete in this sense, since they need additional

surrounding code or an application context.

In [114], [115] the authors state completeness of URBI for

a set of examples, some of them listed in the paper: “URBI,

which is a command script language, is normally supposed

to be used together with a client program written in C++ or

Java, which will handle all the image processing and cognitive

part of the robot behavior. However, it is possible to write

quite complex and useful programs fully in URBI, without the

use of an external client.” [88] might be complete in terms

of simple applications of subsumption architectures, although

it is vague to which extend the computational code of the

modules can also be expressed within the DS(M)L. At least

in the evaluation in their publication this part was implemented

manually.

KUKA’s KRL [103], [96] and ABB’s RAPID [104] are

complete, as they are typically used as sole language on the

robot’s control systems and can express entire industrial robot

applications.

A slightly different completeness term is explicitly ad-

dressed by [116] who discuss how to prove completeness for

their Motion Grammar in terms of the ability to cover the

entire functional variability of the domain, i.e. the robot is

able to respond to all situations, and how this helps proving

correctness of their modeled systems.

To sum up, both, qualitative as well as quantitative eval-

uation can help language developers and potential users.

While qualitative evaluation provides a first means to assess

the general applicability to a certain problem domain, we

recommend conducting also quantitative evaluation such as

the ones discussed above to get a better grasp on the raised

effectiveness of the development process, which is often the

motivation for developing DS(M)Ls [6].
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7.5 DS(M)L Development Process (RQ9)

In our previous survey [5], we already reported that very little

is known about the process how DS(M)L developers identify

and consolidate abstractions which on the one hand suit the

domain best and on the other hand are the building blocks

of DS(M)Ls. Unfortunately, also for the assessed articles we

conclude that very little is reported about the DS(M)L devel-

opment process itself. Even though, some articles report how

they ground their DS(M)Ls, e.g., based on an ontology [74],

[117], a formalism [80], [24], an architectural pattern [118],

or a domain analysis [93], [119], [72] little is known about

the involved stakeholders such as DS(M)L developers and

domain experts, their requirements and interaction among each

other. Ultimately, such a description could be used to define

a robotics-specific DS(M)L development process model. In

[120] such a process model has been identified in a reverse-

engineered manner based on the insights gained during the

development of the GDDL DSL [68]. However, as the model is

reverse-engineered on the basis of one language and particular

language objective (i.e. task automation) it is debatable to

which extent the proposed process model can be generalized to

other use cases and DS(M)L developments. Nevertheless, we

would like to motivate the community to perform such reports

as they provide lessons learned on how one could structure and

perform DS(M)L development in robotics.

7.6 DS(M)L Usage (RQ10)

During the assessment of the publications we noted that several

articles do not introduce a new DS(M)L, but make use of

an existing approach to solve robotic-specific problems. We

discuss some representative examples of usage and draw some

conclusions relevant for both DS(M)L developers and users.

Within the domain of AI-based task planning and reasoning,

declarative languages and formalism such as PDDL [121],

ADL [122] and C+ [123] to name a few have been introduced.

Some of these languages are used in the assessed papers

to represent declarative knowledge in the context of robot

plan optimization [124], to embed geometric reasoning in

action descriptions [125] and to develop an integrated robot

manipulation application where task planning capabilities are

required [126]. We argue that the usage of these languages

is not surprising as on the one hand the languages itself

and underlying principles are well established and on the

other hand planning frameworks usually require to specify the

domain in one standard way. This at least holds true for task

planner relying on the PDDL formalism.

Some articles are solely usage reports about applying

general purpose model-based approaches to solve robotic

problems. Most notably, the work by [127], [128] reports

about the advantages and disadvantages of AADL [129] and

SysML [10] to model, analyze, and validate structural and

behavioral aspects of software for a robotic wheelchair. In

a similar manner [130] adopt the AUTOSAR14 methodology

and conforming model-based tooling to the design of em-

bedded robotic systems. Surprisingly we have not found any

article which performs such a usage study for a core robotics

DS(M)L. This might be an indication that robotic DS(M)Ls are

not yet so widespread as general-purpose modeling approaches

such as SysML and/or the available tooling supporting devel-

opment is not mature enough as this is the case for general-

purpose approaches.

Some articles mention and briefly describe usage of ap-

proaches included in this survey, e.g., [131] uses TDL [35] to

model the executive of an autonomous mobile manipulator in

the context of assembly tasks, [132] employs the XABSL lan-

guage [37] to coordinate heterogeneous mobile robots, and the

practicality of the logical sensor specification language [58] is

reported by [133].

Due to the chosen keywords specification language(s) and

description language(s) we found numerousness publications

dealing with temporal logic languages, e.g., LTL. For instance,

in [134] controllers are synthesized based on LTL formulas

and in [135] LTL is applied among other formal languages

to specify robot motions and actions. We report on these

approaches here as DS(M)Ls and formal methods in general

share several commonalities and goals such as the importance

of models as a key towards systematic design, development

and eventually correct-by-construction of robotics software.

We argue that both communities should foster collaboration in

order to make formal methods more practicable and accepted

in robotics software development and to make DS(M)L ap-

proaches more well-founded in theory to foster work in the

field of model validation and verification.

Quite interestingly, some approaches compose robotic

DS(M)Ls and general-purpose modeling approaches. For in-

stance, in [136] SysML [10] is used in combination with

PDDL [121] for the task of manufacturing planning. Here,

SysML is used to model manufacturing capabilities and

process specifications whereas PDDL is used to determine

acceptable plans. In [137] the BRICS Component Model

(BCM) [138] and corresponding tooling is used in combina-

tion with 20sim15 a modeling and simulation framework and

graphical DSL for mechatronics systems. Here, the BCM is

used to model the structural aspects of a robot motion-control

architecture whereas 20sim is used to model the computational

parts (aka. control algorithm). We argue that both from a

DS(M)L developer and user perspective such reports are very

much appreciated as they provide insights in when and how

robotic DS(M)Ls can be used alone and/or in combination

with general-purpose modeling languages.

14http://www.autosar.org/
15http://www.20sim.com/

http://www.autosar.org/
http://www.20sim.com/


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 91

8 THREATS TO VALIDITY

We report on threats to internal and external validity of this

survey according to the guidelines proposed by [139]. To avoid

systematic errors within the survey and to enhance internal

validity we formulated a well-defined selection process (see

Section 5) and applied descriptive statistics to investigate the

quantitative research questions (see Section 2.1). We obtained

the list of potential candidates by a script performing keyword-

based full-text searches on the Google Scholar corpus which

we tested extensively and which is released16 as open-source.

We are aware that the selection of keywords impacts the

number of potential candidate publications. For example,

trough the addition of specification language to the set of

keywords some of the earlier papers became part of the result

set. Obviously, the set of keywords is not conclusive and

may be extended by the introduction of further keywords.

However, we argue that the current set of keywords rep-

resents the common vocabulary of the DS(M)L community

established over the years. The temporal distribution reflects

the DS(M)L publications that use the evolved vocabulary.

Therefore, we excluded general terms such as modeling and

models. To largely avoid systematic bias we applied the four-

eyes principle during the paper analysis. To enhance external

validity and generalizability of the insights we ensured to

include high-ranked robotics, software engineering and model-

driven engineering venues in our survey as assured trough the

h5-index17 obtained by Google Scholar. In summary, we are

confident that threats to validity are minimal.

9 SYNOPSIS

This contribution surveyed the available literature on domain-

specific (modeling) languages, which addresses key concerns

in robotics application development along a set of quantitative

and qualitative research questions. The resulting mapping of

publications to functional subdomains and the phases of an

application development process shall serve as a reference to

users and developers of DS(M)L approaches in robotics and

related domains.

Our analysis yields that a major fraction of the surveyed

publications addresses architectural concerns or mature sub-

domains such as robot motion, while only a minor number

of papers target comparably recent subdomains such as force

control. With regard to architectural concerns, the extended

decomposition of the architecture and programming sub-

domain introduced within this contribution, provides further

insight into existing research approaches. From the viewpoint

of the robotics application development process, we showed

that many DS(M)L approaches use models and model-driven

engineering to generate artifacts for the capability building

16https://github.com/corlab/dslzoo/tree/query
17https://scholar.google.de/citations?view op=top venues&hl=en&vq=

eng robotics

phase, while only a few approaches consider the application

of models at runtime in robotics systems.

The presented quantitative analysis also clearly indicates

that DS(M)Ls are currently an active research field given

the rising number of publications at robotics conferences.

That said, the robotics DS(M)L community seems to lack

comparable acknowledgment at the general modeling and

software engineering venues.

From a technical perspective, we also must assess that

compatibility and reuse of different DSLs and approaches

in a modular approach is still an issue for conceptual and

technological reasons, i.e., due to the fragmentation in terms

of modeling tools and formalisms. While the Eclipse Modeling

Project may serve as an integration platform due to its wide

use, further research on language modularization and reuse

seems required.

We further discussed, how different approaches to accessi-

bility and documentation as well as evaluation and platform-

dependency affect the availability and usability of a DS(M)L

approach. Given the current status of many DS(M)L publica-

tions with regard to their technical accessibility and thus repro-

ducibility, we hope that this survey stimulates a discussion on

how meta-models, languages and experience reports may be

shared in a reproducible way within the robotics community.

Along this line, we highlighted best practices that may be

considered to foster improved collaboration and development

within the DS(M)L community.

Future work on the basis of this survey may include a

more detailed analysis of the specific concepts presented in the

surveyed publications within one of the robotics subdomains.

For instance, we consider this relevant for the field of archi-

tectures and programming given the number of publications

addressing its concerns. To facilitate further work on the basis

of this survey, we share the automated query code on GitHub.

Furthermore, following the idea of the EMF Concrete Syntax

Zoo18 we intend to continuously maintain this overview as

an online Robotics DSL Zoo19 and invite the community to

provide feedback and contribute.

10 PUBLICATIONS

To provide some kind of map for DS(M)L developers and

users of the domain, this section provides an overview of all

surveyed publications, sorted by their associated subdomains

and development phases. Note, that publications appear multi-

ple times as they have multiple subdomains and development

phases annotated from the analysis process. When following

the references to the bibliography at the end of this survey,

links at the end of each bibliography entry link back to the

sections where the respective publication is mentioned, e.g.,

the subdomain and development phase it is associated with,

or a section in which it is discussed and used as an example.

18http://www.emftext.org/index.php/EMFText Concrete Syntax Zoo
19https://corlab.github.io/dslzoo/

https://github.com/corlab/dslzoo/tree/query
https://scholar.google.de/citations?view_op=top_venues&hl=en&vq=eng_robotics
https://scholar.google.de/citations?view_op=top_venues&hl=en&vq=eng_robotics
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
https://corlab.github.io/dslzoo/{}
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10.1 Kinematics

Platform Building [69], [27], [140], [67]

Functional Design [12], [141], [27], [42], [140], [142]

Capability Building [80], [28], [69], [143], [12], [27], [42],

[140], [24], [142], [67], [79]

10.2 Mechanisms and Actuation

Platform Building [144], [81], [140], [65], [145], [146],

[147], [68]

Functional Design [141], [140], [147]

Capability Building [148], [144], [149], [150], [140], [65],

[145], [146], [151], [68]

10.3 Dynamics

Platform Building [27]

Functional Design [12], [27]

Capability Building [28], [143], [12], [27]

10.4 Motion Planning

Scenario Building [77]

Product Maintenance [48], [47]

Platform Building [144], [68]

Functional Design [54], [77], [42], [45]

Capability Building [48], [144], [47], [53], [44], [54], [77],

[56], [42], [45], [107], [105], [98], [68], [43]

10.5 Sensing and Estimation

Product Maintenance [152], [52]

Platform Building [81], [52], [65], [146], [119]

Functional Design [63], [58]

Capability Building [152], [150], [63], [58], [52], [65],

[146], [151], [119]

10.6 Force Control

Capability Building [25], [24]

10.7 Motion Control

Scenario Building [77]

Platform Building [46], [145], [66], [153], [67]

Functional Design [154], [77], [141], [42], [45], [142], [89]

System Deployment [96], [93], [66]

Capability Building [48], [96], [93], [25], [149], [154],

[102], [44], [155], [77], [156], [42], [46], [145], [24],

[45], [142], [66], [153], [67], [89], [157], [79], [43]

Product Maintenance [48]

10.8 Reasoning Methods

Scenario Building [117], [78], [51]

Platform Building [71], [49], [52], [78], [147]

Functional Design [76], [71], [54], [63], [158], [147]

System Deployment [76], [49]

Capability Building [76], [53], [99], [54], [49], [63], [52],

[95], [39], [117], [78], [50], [158], [36]

Product Deployment [76]

System Benchmarking [99]

Product Maintenance [76], [99], [52]

10.9 Architectures and Programming

In accordance with the more fine-grained partitioning of

the Architectures and Programming subdomain in-

troduced and motivated in Section 6.1 we provide a more

detailed overview of the respective publications and their sub-

disciplines and addressed development phases.

10.9.1 Concurrency

Platform Building [49], [140], [46], [66], [153]

Functional Design [140], [159]

System Deployment [115], [100], [49], [66], [159]

Capability Building [115], [100], [160], [41], [109], [32],

[161], [49], [140], [46], [162], [107], [163], [66], [153],

[159], [98], [112], [35]

10.9.2 Data Persistence

Scenario Building [117], [51]

Platform Building [84]

Capability Building [84], [117]

10.9.3 Control and Handling of Events

Scenario Building [164]

Platform Building [165], [49], [140], [46], [153], [119]

Functional Design [166], [74], [75], [63], [140], [159], [167],

[89]

System Deployment [115], [168], [169], [170], [171], [165],

[74], [49], [37], [86], [159]

Capability Building [115], [87], [168], [48], [148], [172],

[62], [173], [28], [160], [169], [41], [109], [170], [171],

[166], [174], [47], [53], [165], [61], [74], [155], [75],

[150], [161], [175], [49], [63], [95], [39], [140], [46],

[97], [162], [101], [176], [37], [107], [163], [86], [153],

[50], [159], [94], [119], [167], [98], [112], [35], [36],

[177], [89], [38], [60], [40], [178]

Product Deployment [75]

Product Maintenance [48], [172], [47], [75], [167]

10.9.4 Error and Exception Handling

Scenario Building [164]

Functional Design [154], [167]

System Deployment [168]
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Capability Building [168], [48], [172], [154], [99], [150],

[39], [50], [167], [36]

System Benchmarking [99]

Product Maintenance [48], [172], [99], [167]

10.9.5 Distribution of Components

Platform Building [179], [69], [49], [66]

Functional Design [74], [73], [159], [59]

System Deployment [113], [100], [169], [170], [74], [49],

[73], [86], [66], [159], [59]

Capability Building [179], [113], [100], [160], [169], [170],

[69], [180], [99], [74], [32], [49], [156], [73], [181], [86],

[57], [66], [159], [59]

System Benchmarking [99]

Product Maintenance [99]

10.9.6 Security and Safety

Scenario Building [77], [51]

Product Maintenance [182], [167]

Functional Design [182], [183], [77], [45], [70], [167]

Capability Building [182], [183], [180], [77], [45], [70],

[167]

10.9.7 Interaction and Presentation

Scenario Building [77]

Platform Building [85], [165], [27]

Functional Design [85], [54], [77], [27], [45], [70]

System Deployment [113], [88], [171], [165]

Capability Building [106], [87], [62], [113], [173], [88],

[171], [85], [53], [165], [54], [77], [156], [27], [45], [70],

[177]

10.9.8 Architectural Styles

Scenario Building [78]

Platform Building [78]

Functional Design [183], [184], [185]

System Deployment [118], [93], [88]

Capability Building [118], [93], [172], [88], [41], [183],

[174], [184], [185], [175], [95], [39], [78], [186], [94],

[98], [38], [60], [157]

Product Maintenance [172]

10.9.9 Architectural Structures and Viewpoints

Scenario Building [117], [78]

Platform Building [179], [84], [144], [64], [69], [85], [52],

[27], [153], [78], [72], [119]

Functional Design [76], [64], [85], [74], [184], [34], [73],

[27], [72], [59]

System Deployment [118], [76], [93], [113], [100], [88],

[169], [170], [171], [74], [73], [86], [59]

Capability Building [179], [84], [118], [152], [76], [80],

[148], [93], [113], [100], [88], [144], [169], [64], [25],

[170], [69], [171], [85], [74], [184], [32], [34], [73], [52],

[181], [27], [117], [86], [57], [153], [78], [186], [72],

[119], [59], [36], [177], [157]

Product Deployment [76]

Product Maintenance [152], [76], [52]

10.9.10 Architecture Design Decisions

Scenario Building [117]

Platform Building [69]

Functional Design [184], [185]

Capability Building [69], [102], [184], [185], [117]

10.9.11 Design Patterns

Functional Design [154], [34]

Capability Building [149], [154], [34], [105]

10.9.12 Families of Programs and Frameworks

Platform Building [119]

Functional Design [187], [76], [75], [34], [73]

System Deployment [76], [96], [73]

Capability Building [187], [76], [96], [25], [75], [34], [73],

[119]

Product Deployment [76], [75]

Product Maintenance [76], [75]
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[96] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On Reverse-
Engineering the KUKA Robot Language,” in Workshop on Domain-

Specific Languages and models for Robotic systems, 2010. [Online].
Available: http://arxiv.org/abs/1009.5004 7.2, 7.3, 7.4, 10.7, 10.9.12
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