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Abstract: Over the past decade, deep-learning-based representations have demonstrated remarkable
performance in academia and industry. The learning capability of convolutional neural networks
(CNNs) originates from a combination of various feature extraction layers that fully utilize a large
amount of data. However, they often require substantial computation and memory resources while
replacing traditional hand-engineered features in existing systems. In this review, to improve
the efficiency of deep learning research, we focus on three aspects: quantized/binarized models,
optimized architectures, and resource-constrained systems. Recent advances in light-weight deep
learning models and network architecture search (NAS) algorithms are reviewed, starting with
simplified layers and efficient convolution and including new architectural design and optimization.
In addition, several practical applications of efficient CNNs have been investigated using various
types of hardware architectures and platforms.

Keywords: deep learning; compression and acceleration; pruning; quantization; network architecture
search

1. Introduction

With the growing success and continuous development of deep learning, deep neural
networks (DNNs) have been widely used in many applications including object detection,
semantic segmentation, object recognition, and medical imaging [1]. In many of these
applications, DNNs are now able to exceed human-level accuracy. However, this superior
performance comes at the cost of significant computational complexity, memory use, and
power consumption, due to the billions of parameters in the network.

As shown in Figure 1, since the development of AlexNet [2] in 2012, which was
evaluated in a 1000-class ImageNet Large-Scale Visual Recognition Competition (ImageNet-
1k) [3] dataset, the literature has focused on designing more accurate and efficient networks,
with regard to model complexity and size [4]. This was also enabled by the emergence of fast
graphics processing units (GPUs), satisfying huge memory bandwidths and computational
complexity consumed by large size DNNs. Owing to increased computing power and
a sufficient amount of data being available, DNNs have evolved into wider and deeper
architectures. The number of layers in DNNs can reach tens of thousands with billions of
parameters [5]. Consequently, it is challenging for researchers to deploy DNNs in portable
devices with limited hardware resources (e.g., memory, bandwidth, and energy). Therefore,
means are urgently sought for efficiently deploying DNNs in resource-constrained edge
devices (e.g., mobile phones, embedded devices, smart wearable devices, robots, drones,
etc.) without detriment to the model’s performance.
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Figure 1. Ball chart reporting the Top-1 ImageNet-1k accuracy vs. computational complexity. The
size of each ball corresponds to the model’s complexity. (Reprinted from ref. [4]).

To address this problem, several efforts have been made to reduce the memory and
computation requirements of DNNs while still providing optimal accuracy. In this paper,
these efforts are broadly categorized into two categories: (1) design or derive an efficient
CNN using a base model (e.g., quantization), and (2) directly design an efficient CNN
(e.g., neural architecture search (NAS)). However, the interaction between the hardware
architecture and software algorithm is also a present trend in designing efficient CNN
inference systems. Figure 2 shows an overview of the efficient CNN design approaches ex-
plained in this study. We include several topics on both the algorithm and hardware design
sides, focusing on the most recent work in the past few years. Our survey methodology
covers from manual design algorithms to automatic algorithms, as well as sole hardware
acceleration to hardware and software co-design methods.

Specifically designed CNNs with fewer parameters and small model sizes (e.g.,
SqueezeNet [6], ShuffleNet [7], and MobileNet [8]) achieve performances similar to larger
networks (AlexNet [2] and ResNet-50 [9]). This proves that the network architecture design
is crucial, which offers many opportunities for designing more efficient network architec-
tures. However, owing to the inherent limitations of human knowledge, it is difficult to
design optimal architectures based only on prior knowledge and experience. Therefore, the
logical idea is to allow the algorithm to design the neural architecture automatically while
minimizing human intervention. NAS approaches [10–30] automatically search for the
optimal network design for the best possible performance under user-defined constraints,
such as accuracy, model size, and inference time. Owing to the extremely large search
space, the success of the NAS approach is highly dependent on an efficient and effective
network architecture performance evaluation scheme.
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Figure 2. Overview of efficient CNN design approaches.

In addition to creating a compact and efficient base model, other approaches have mod-
ified or utilized base models to reduce memory and computation costs. Those approaches
can be classified into four categories: (1) pruning [10,31–50], (2) quantization [10,51–68],
(3) tensor decomposition [69–83], and (4) knowledge distillation [84–94]. Among them,
network pruning and quantization are well-established compression techniques that can be
traced back to the early 1990s, whereas tensor decomposition and knowledge distillation
are getting more attention in recent years with the evolution of deep learning.

Network pruning removes the superfluous portion of the network, ranging from the
weights, filters, channels, and even the layers. The simplest form of network pruning is to
remove individual parameters, which is also known as unstructured pruning. Conversely,
the simultaneous removal of a group of parameters, such as neurons or filters, is known
as structured pruning. A typical deep neural network applies 32-bit floating-point (FP32)
precision for both training and inference. Quantization attempts to reduce the bitwidth
of data flow across the neural network (e.g., replacing FP32 with 8-bit integers (INT8)),
reducing the model size and simplifying operations. Extreme quantization represents the
network weights and activations using 1-bits, also known as binarization [56,63–68]. The
combination of quantization and pruning is the most widely used joint-way compression
technique [10,51].

With the tensor being the fundamental building block and the tensor operation being
a basic computation in DNNs, the number of parameters in the network can be greatly
reduced by substituting the tensor with a low-rank matrix or tensor approximations. Tensor
decomposition decomposes a high-rank tensor into a series of low-rank tensors, reducing
both memory use and operations. It can be used in both convolutional and fully connected
layers and performs well in compressing parameterized networks. The tensor decom-
position model can be further compressed using pruning or quantization. The goal of
knowledge distillation, another more recent efficient CNN design technique, is to train
a simpler and more compressed student model that imitates the performance of a larger
teacher model. The main challenge with this approach is knowing how to transfer knowl-
edge from the teacher network to the student network. The basic knowledge distillation
components are knowledge, distillation algorithms, and teacher–student architectures.

The efficient CNN design algorithms discussed above can further benefit from suitable
hardware accelerator design. The resulting CNN after unstructured pruning, tensor decom-
position, and quantization/binarization needs specially designed hardware architecture
for maximum inference efficiency. The hardware implementation of neural networks is
based on either sole hardware implementation that uses general purpose processors to
joint hardware algorithm co-designs using modern hardware accelerators. The processor
platforms include central processing units (CPUs), GPUs, application-specific integrated
circuits (ASICs), and field-programmable gate arrays (FPGAs). The processing-in-memory
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(PIM)-based architectures are also being used in recent hardware implementations. The
specialized hardware implementation mainly focuses on reducing data movement, energy
consumption, area consumption, etc., using several dataflow and data reuse techniques.
Rather than only using sole hardware implementation [95], researchers have used both
algorithms and hardware to develop optimized modern neural network accelerators [96,97].

The rest of this article is organized as follows. Section 2 reviews several efficient
CNN design software algorithms. These techniques range from the automatic search-
ing of efficient networks using NAS to designing a compressed network using pruning,
decomposition, quantization, and distillation depending on the base model. Section 3
highlights the hardware approaches used to accelerate the neural networks. This includes a
combination of algorithm-based compression and modern hardware accelerators. Section 4
briefly discusses current efficient CNN design techniques and potential future research
opportunities. Finally, we present the conclusions of the study in Section 5.

2. Efficient Convolutional Neural Networks

The efficient neural-network design approach either searches for an efficient base
model from a predefined search pool or modifies the given base model to obtain the final
compressed model. Network pruning, data quantization, tensor decomposition, and knowl-
edge distillation approaches use the given base model, whereas more recent approaches,
such as NAS, programmatically search for highly efficient neural network structures. In
this section, we detail each of these efficient neural network design approaches.

2.1. Pruning

Network pruning is a well-known topic that can be traced back to the early 1990s [98,99].
The key idea in pruning is to remove unimportant weights, filters, channels, or even layers
from the original DNN, resulting in a reduced number of memory access and computation
operations. Weight or connection pruning attempts to eliminate unimportant connections
from the original model, whereas more recent techniques use large-scale pruning, such
as filter-pruning or channel-pruning. In general, network pruning can be categorized as
(1) connection (weight) pruning, also known as unstructured pruning, and (2) filter or
channel pruning, also known as structural pruning.

2.1.1. Weight Pruning

Some early works, i.e., Optimal Brain Damage (OBD) [98] and Optimal Brain Surgeon
(OBS) [99], use the second derivative (Hessian matrix) of the loss function to prune each
non-essential weight. The most popular early works in the deep learning era [31,32] used a
three-step method to prune the weights below the threshold and demonstrated that many
connections can be removed from the DNN to achieve a significant compression ratio.
First, the network is trained to find important connections, then, unimportant connections
are pruned, and, finally, the network is retrained to fine-tune the remaining connections.
Iterative connection pruning and fine-tuning gradually produce a compressed network.
Dead neurons, for which all connected weights are pruned, can also be safely dropped.
Using similar-weight pruning techniques, the authors in [34,35] proved that the accuracy of
large but pruned models outperforms the accuracy of their smaller but dense counterparts
under identical memory footprints. However, the lottery ticket hypothesis [36] shows that
dense, randomly-initialized, neural network contains subnetworks (“winning tickets”),
when trained in isolation, have an accuracy comparable to original networks with a similar
number of iterations. In their iterative pruning, each pruned subnetwork was trained from
scratch where the weights are initialized with the same initial weights used in the original
model. While the above methods use pruning in the spatial domain, Ref. [33] showed
that converting spatial weights into frequency–domain weight coefficients and pruning
dynamically in each iteration and different frequency bands achieves a higher compression
ratio. In [31–33], the global magnitude threshold is set for the whole DNN, which directly
affects the performance of the network, because applying the same compression rate in
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each layer is illogical. To overcome this problem, the methods in [37,38] use different
compression ratios in each layer according to their importance in the network. The authors
in [37] improved the pruning process by selectively learning the corresponding weights
that have a large impact on the loss, while discarding the other weights by cutting off their
gradient flow. This end-to-end training method automatically determines the per-layer
sparsity ratio and does not require fine-tuning after pruning. On the other hand, another
method [38], determines the layer-wise compression ratio using a mixture of Gaussian
distributions (GMM) over the weight distributions in each layer. The target layers to
be pruned are selected based on the quantity of small-magnitude weights in each layer
estimated using GMM, and the selected layers are pruned with a specific compression
rate. In another magnitude-aware pruning method [39], energy reduction, rather than
only the compression ratio and accuracy loss, is also considered when determining the
pruning strategy.

With connection pruning, less important weights or neurons are removed regardless
of their position, resulting in an unstructured network. Although a significant number of
connections can be pruned with minimal damage to the general capacity of the network,
specialized software or hardware is required to support sparse matrix operations and has
limited applications on the general purpose hardware.

2.1.2. Structural Pruning

In this category, the methods aim to reduce the memory footprint by pruning entire
filters, channels, or even layers. After pruning, the input and output shapes of the lay-
ers and weight matrices are changed, still permitting dense matrix operations without
requiring any specialized hardware or software. Identifying the least important filter and
removing it is the most popular scheme in filter pruning. Ranking the filters with certain
criteria [40–43], minimizing the reconstruction errors [44,45], and finding the replaceable
filters with similarity measurements [46,47] are the three main branches under this category.
In [40], the filters and their connecting feature maps were removed according to their L1
norm. Soft Filter Pruning (SFP) [41] compares both L1 and L2 norm criteria. They found
that the performance of the L2 norm criteria is slightly better than that of the L1 norm
criteria, because filters with large weight are preserved by L2 norm criteria. The average
percentage of zeros (APoZ) activation neurons criteria was used in [43] to delete filters with
small APoZ. HRank [42] utilized the rank of feature maps to prune filters, because low-rank
feature maps contain less information, and the pruned results can be easily reproduced.
The NISP [45] and ThiNet [44] formulated pruning as an optimization problem. ThiNet [44]
prunes the filters in the current layer and minimizes the reconstruction error in the next
layer, whereas NISP [45] focuses on minimizing the reconstruction error in the “Final Re-
sponse Layer” (FRL). Figure 3 shows an overview of ThiNet [44], which uses the statistics
of layer i + 1 to guide the pruning in layer i so that the weak channels in layer (i + 1)’s
input and their corresponding filters in layer i are pruned. The filter pruning via geometric
median [46] and online filter clustering [47] criteria search for filters with redundancy rather
than those with “relatively less” importance. In addition to filter and channel pruning,
entire layer pruning methods also exist [48–50]. Using different criteria, selected layers
from the network were removed to obtain a compact structure. These methods claim that
the model obtained by layer pruning incurs even less inference time and run-time memory
usage with similar accuracy than the model obtained by filter pruning methods.

Almost all the aforementioned algorithms typically follow three steps of pruning
pipelines, that is, training a large model, pruning, and fine-tuning. However, based on
the argument in [53], in structural pruning, fine-tuning the pruned model yields compa-
rable or inferior performance than training the same model from scratch with randomly
initialized weights. The network-slimming technique in [52] automatically identifies and
prunes unimportant channels during training. This approach imposes L1 regularization
on the scaling factors in batch normalization (BN) layers to find insignificant channels (or
neurons). The more recent approach in [54] also finds a compact structure by introducing
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the group LASSO loss to the BN layers to prune the model from scratch with randomly
initialized weights.

Figure 3. Example of Structural Pruning (ThiNet: statistics of layer i + 1 are used to guide the pruning
in layer i). (Reprinted from ref. [44]).

2.2. Quantization

Quantization reduces computations by reducing the precision of the data type, instead
of reducing the number of computations in the network. This minimizes the bitwidth of
the data storage and flow through the deep neural network. The computation and storage
of data at a lower bitwidth allows for speedy inference with reduced energy consumption.
During quantization, the neural network data are restricted to a set of discrete levels that
can have different distributions: uniform or non-uniform. A uniform distribution [56]
with even steps is a widely used quantization scheme. A logarithmic distribution [57] is a
commonly used non-uniform quantization method. Both deterministic [56] and stochastic
methods were used to project high-precision data into a discrete space. The former projects
data to the nearest discrete distance level, whereas, in the latter, the projection to one of the
two adjacent discrete levels is determined by the probability.

Quantizing neural networks from FP32 precision to low bitwidth is a popular com-
pression technique that can be traced back to the early 1990s [55]. There are two forms of
quantization: post-training quantization [58,59] and quantization-aware training [60–62].
As the name suggests, post-training quantization uses the FP32 weights and activations
to apply quantization after the model is fully trained. In quantization-aware training,
the quantization error is considered as part of the training loss when training the model.
Although post-training quantization is easy to use, quantization-aware training generally
improves model’s accuracy. The researchers in [58] showed that FP32 precision parameters
can be reduced to INT8 without significantly losing accuracy. Another method [59] devel-
oped a 4-bit post-training quantization approach that does not require model fine-tuning
after quantization. Only INT8 was used in [60] for both the training and inference of the
ResNet-50 model with a 1.5% accuracy loss. The work in [61] generalizes the concept of
bit precision for storing weights and activations with any number of bits instead of only
INT8. The quantized version of AlexNet achieved 51% top-1 accuracy with 1-bit weights
and 2-bit activations. During training, the parameter gradients were quantized to 6-bits.
The more recent quantization-aware INT8 training method [62] optimizes the computation
of forward and backward passes via precisely designed loss-aware compensation and
parameterized range clipping.

Binarization

The most extreme form of quantization is binarization. In binarization, the data can
have only two possible values {0, 1} or {−1, 1}. With binarization, heavy matrix multi-
plications can be replaced with simple XNOR and bitcount operations. Due to the fact
that it saves significant storage and computation, binarization is a promising technique
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for deploying deep neural networks in resource-constrained devices. However, owing to
extreme quantization, binarization inevitably suffers from heavy information loss. Simulta-
neously, owing to its discontinuity, optimizing a binary neural network becomes difficult.
Various algorithms have been proposed to solve these issues and have achieved promising
progress in recent years. BinaryConnect [63], Binarized Neural Network (BNN) [64], and
XNOR-Net [65] are some of the most popular binary neural networks. Researchers have
proposed heuristic and optimization problem formulations for neural network binarization.

The heuristic binarization methods in [63,64] directly binarize weights and inputs
based on a predefined function. The function can be either deterministic or stochastic. The
deterministic binarization function can be defined as:

xb = Sign(x) =

{
+1, i f x ≥ 0
−1, otherwise,

(1)

where xb is the binarized variable, and x is the real-valued variable. Similarly, the stochastic
binarization function can be defined as:

xb =

{
+1, with probability p = σ(x)
−1, with probability 1− p,

(2)

where σ is the “hard sigmoid” function:

σ(x) = clip
(

x + 1
2

, 0, 1
)
= max

(
0, min

(
1,

x + 1
2

))
. (3)

BinaryConnect [63] was an early stochastic method for binarizing neural networks.
The weights are binarized during both forward and backward propagation, but not dur-
ing the parameter update. Later, BNN [64] extended BinaryConnect [63] networks by
binarizing activations, which is recognized as the very first binary neural network. They
make use of both deterministic and stochastic binarization functions to simplify hardware
implementation. In contrast to BinaryConnect [63] and BNN [64], XNOR-Net [65] approxi-
mates floating-point parameters by introducing a scaling factor for the binary parameters.
Therefore, the weight quantization in XNOR-Net [65] can be formulated as w ≈ αbw, where
α is the floating-point scaling factor for the binarized weight bw.

More recently, several optimization-based binarization techniques have been proposed,
e.g., in [56,65–68]. The XNOR-Net [65] and DoReFa-Net [56] have attempted to reduce
the quantization error during training. In DoReFa-Net [56], gradients are quantized to
accelerate the training process. Instead of focusing only on local layers, other binarization
techniques such as loss-aware binarization [66] and incremental network quantization [67]
directly minimize the overall loss associated with the binary weights in the network. IR-
Net, a more recent binarization algorithm proposed in [68], reduces the gradient error in
training by using a self-adaptive error-decay estimator and is the first approach to consider
information retention for both forward and backward information propagation.

2.3. Tensor Decomposition

The tensor (including the matrix) is the basic building block of, and the tensor opera-
tion is the basic computation in, DNNs. Tensor compression using tensor decomposition
results in a reduced network model size and simplified tensor operations. DNN parameters
in weight tensors of the convolutional layer and weight matrices of the fully connected
layers are of low rank [69]. Therefore, the number of parameters in the weight matrix
or tensors can be reduced by substituting them with low-rank approximations. Tensor
decomposition algorithms used in DNNs can broadly be classified into two main cate-
gories: low-rank matrix decomposition and tensorized decomposition. In the following
subsections, we describe them individually, in terms of their use in CNNs.
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2.3.1. Low-Rank Matrix Decomposition

Matrix decomposition methods for DNNs approximate the weight matrix of a DNN
layer by multiplying multiple low-rank matrices. Singular value decomposition (SVD) [70]
is the most popular low-rank approximation of a matrix in which most of the information
can be described by singular values. The SVD of a matrix A ∈ Rm×n is the factorization
of A into the product of three metrics A = UDVT , where U ∈ Rm×r and VT ∈ Rr×n are
orthogonal metrics, and D ∈ Rr×r is a diagonal matrix with only singular values of A. A
compact network model is produced by retaining only the important components of the
decomposed matrices.

In [71], a simplified SVD was used to replace the original weight matrix and reduce
the spatial complexity of speech recognition applications. SVD is used to decompose the
product of the weight matrix and input in [72].The authors in [73] embedded sparsity with
low-rank factorized matrices to achieve a better compression rate by maintaining a lower
rank for unimportant neurons. Zhang et al. [74] used channel-wise SVD decomposition of
the convolution layer with a kernel size of w× h into two consecutive layers with kernel
sizes w× h and 1× 1. However, it is costly to use SVD on every training step. It is also
difficult to measure the rank of DNN layers during the training process. To overcome these
issues, the authors of [75] proposed a SVD training technique to explicitly achieve low-rank
approximations without applying SVD at every training step. Instead of compressing layers
separately, Chen et al. [76] proposed a joint matrix decomposition scheme to decompose
layers sharing the same structure simultaneously, in which the optimization is based
on SVD.

2.3.2. Tensorized Decomposition

The tensor is a multiway array of data. The 2-D matrix is a second-order tensor, which
is used to represent the weights of the fully connected layers. The convolutional-layer
weight is represented by 4-D tensor. As the order of the tensor increases, more flexible
algorithms are used to achieve a higher compression ratio, because the low-rank matrix
approximation fails to utilize the tensor-based network structure. Figure 4 shows the anal-
ogy between the matrix and tensor decomposition. Recently, several tensor decomposition
methods have been proposed to achieve higher compression ratios in CNNs, such as Tucker
decomposition [77], CANDECOMP/PARAFAC (CP) decomposition [78,79], Tensor Train
(TT) decomposition [81–83], and Tensor Ring (TR) decomposition [100]. CP decomposition
represents a tensor by the sum of rank-1 tensors, whereas Tucker decomposition decom-
poses a tensor into a set of matrices and one small core tensor. Next, the TT decomposition
represents a tensor in an appropriate chain of three-dimensional tensors, and, thus, it is suit-
able for handling higher-order tensors. TR decomposition can be viewed as an extension of
TT decomposition, which is a linear combination of TT decompositions.

Figure 4. Matrix decomposition vs. tensor decomposition: (a) low-rank matrix decomposition
(truncated SVD); (b) low-rank tensor decomposition (Tucker decomposition).
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The authors in [77] used Tucker decomposition to compress the convolutional weight
kernel of each layer using a previously determined rank. CP decomposition of the con-
volutional kernel into several rank-1 tensors was used in [78,79] to reduce the number of
parameters and the training time. An iterative process is applied for the decomposition
and fine-tuning of each convolution layer. In [79], whole convolution layers are decom-
posed, as apposed to [78], where only a few convolution layers underwent decomposition.
Phan et al. [80] proposed a stable low-rank decomposition using a combination of both
Tucker decomposition and CP decomposition, in which the core tensor from Tucker de-
composition was further decomposed using CP decomposition. More advanced tensor
decomposition, such as TT decomposition, has been widely used in DNN compression,
particularly for recurrent neural networks (RNN) [81]. TT decomposition allows up to
1000× the parameter reduction for RNN models. However, compressing a CNN using
the TT method causes significant accuracy loss. Recently, the authors in [82] proposed a
TT-format DNN model suitable for a CNN not explicitly trained on the TT format. In [83],
TT decomposition was adapted to compress three-dimensional CNNs (3DCNNs), and
an appropriate method was proposed to select TT ranks to achieve a higher compression
ratio. Another method using TR decomposition, in [100], employs a progressive genetic
algorithm for optimal rank selection.

2.4. Knowledge Distillation

Knowledge distillation is a neural network compression technique in which a smaller
or compact model (student model) is trained using information from a larger model
(teacher model) about similar tasks. Knowledge distillation was first introduced by
Bucilua et al. [84] and later popularized by Hinton et al. [85] for deep learning. The main
challenge in knowledge distillation is how to transfer knowledge from the teacher model
to the student model to achieve competitive or even better performance. In general,
knowledge distillation is composed of three components: knowledge, the distillation al-
gorithm, and the teacher–student architecture. Knowledge can take the form of logits,
activations, or features from the teacher model’s intermediate layers. As shown in Figure 5,
the distillation process can be offline, online, or through self-distillation. Offline distilla-
tion [86–88,91] distills the knowledge from the pre-trained teacher model, whereas online
distillation [89,90,92] distills while the teacher and student models are being trained. In
self-knowledge distillation [93,94], the student network is trained progressively using its
own knowledge without requiring a pre-trained teacher model. Finally, teacher-–student ar-
chitecture refers to the relationship between the selection or design structure of the student
and teacher models.

Figure 5. Comparison of different knowledge distillation mechanisms. (Reprinted from ref. [94]).
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The knowledge distillation methods proposed in [86–88] use the soft-level outputs
of the teacher model to train the student model. Ensembles of teacher networks were
used to train student networks in [86], in which the output distribution from multiple
teacher networks via data argumentation was utilized. The authors in [87] developed a
distillation method for a quantized model and claimed that quantized student networks
have accuracy levels similar to their full-precision teacher model counterparts, while
simultaneously achieving a high compression rate and fast inference. Nayek et al. [88]
proposed a data-free method to train student networks using synthesized data responses
from complex teacher networks. All the methods mentioned above use offline training
and utilize the soft-level output from the teacher network. Online knowledge distillation
that utilizes soft-level outputs from teacher networks is discussed in [89,90]. Jin et al. [89]
proposed training the student model on different checkpoints of teacher models until the
teacher models reached conversion. Knowledge Distillation via Collaborative Learning
(KDCL) [90] dynamically generates high-quality soft targets using different ensemble
methods for one-stage online training.

Knowledge distillation from other parts of the teacher network, such as the interme-
diate layers, is also possible for training student networks [91,92]. The layer-selectivity
learning (LSL) method [91] proposed a two-layer selection scheme called the inter-layer
Gram matrix and layered inter-class Gram matrix to select intermediate layers in both
student and teacher networks for knowledge distillation. The student network was trained
with an alignment loss function from the selected layers and a prediction–loss function
from the teacher and student network. Another more recent ensemble-based knowledge
distillation method proposed in [92] also utilizes the features from intermediate layers, in
which distilled student systems and ensemble teachers are trained simultaneously without
requiring a pre-trained teacher model. Many efficient neural-network architecture designs
that use self-knowledge distillation have also been proposed [93,94]. The main advantage
of this technique is that training a large teacher network is not necessary. Ji et al. [93] used
an auxiliary self-teacher network to transfer refined knowledge for a classifier network
utilizing both soft labels and intermediate feature-map distillations. In [94], the best-
performing student network in past epochs was used to distill knowledge while training
the current student network using an effective augmentation strategy, thus improving
network generalization.

2.5. Neural Architecture Search

Efficient network design using human expert knowledge and prior experience has
achieved great success in the past (e.g., SqueezeNet [6], ShuffleNet [7], and MobileNet [8]).
However, because of limitations in human knowledge and expertise, the current research
trend is toward automatically designing efficient neural network architectures without (or
only involving minimal) human intervention. This emerging area of research into machine-
aided efficient neural network architectural design is termed NAS. Unlike pruning, quan-
tization, and tensor decomposition-based efficient network designs, NAS automatically
searches for an efficient DNN without depending on the base model.

The early approach using NAS algorithms (for example, [11], Figure 6) first generated
many candidate network architectures based on a predefined search-space criterion. Each
network architecture was trained until convergence and ranked according to network
accuracy on the validation set. This ranking can be used as feedback information to adjust
the search strategy and obtain new neural architectures. This process was repeated until
the termination condition was reached. Finally, the best network architecture was selected
and evaluated using the test set. Using this approach, thousands of neural networks must
be trained and evaluated from a vast search space, leading to tremendous computational
and time costs. To address this challenge, several new NAS techniques have been proposed
to improve the search space, search algorithms, and network evaluation criteria. As show
in Figure 7, recent NAS approaches follow three main steps: training a super-network,
training and evaluating sampled networks, and finally training the discovered network.
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Figure 6. An overview of NAS with RL. (Reprinted from ref. [11]).

Figure 7. The algorithm flow of NAS in NetAdaptV2. (Reprinted from ref. [29]).

2.5.1. Search Space

The search space is the scope for exploring neural networks. If we search for both
network elements and their connections to determine the entire network structure, the
search space grows exponentially [11]. Therefore, it is necessary to restrict the search
space. The search space can be restricted by searching only a finite number of small-cell
structures, and the final network structure can be constructed as a sequence of repeated cells.
Representative works related to the cell search space include NASNet [20], ENAS [27] and
AutoDispNet [28]. For example, AutoDispNet [28] exclusively searches for two types of
cells, namely, normal cells and reduction cells, in a predefined high-level network structure.
ENAS [27] allows all child models to share weights, increasing the GPU processing time
more than 1000 times compared to traditional NAS [11]. The major aspects of efficient
network design are inference time (latency) and memory consumption, while maintaining
reasonable network accuracy. MnasNet [30] is a platform-aware NAS for mobile devices
that searches for networks to achieve an acceptable trade-off between latency and accuracy.

2.5.2. Search Algorithm

The search strategy governs how the search space is explored. In NAS, the generator
usually produces the sample architecture, and the evaluator evaluates the performance
after training. Due to the fact that an expensive training process is in the loop, the search al-
gorithm that affects the sampling strategy plays an important role in improving the overall
NAS process. The well-known search algorithms include random search (RS), Bayesian
optimization (BO) [18], neuroevolution [21–26], reinforcement learning(RL) [11,20], and
gradient-based optimization. Bayesian optimization [18] is one of the most popular meth-
ods for hyperparameter optimization; however, it has not been widely applied to NAS. The
neural architecture obtained using RL [11] in NAS-RL [11] and MetaQnn [19] outperformed
previous state-of-the-art classification accuracy in image classification tasks. Neuroevolu-
tion methods [21–26] were initially used to optimize both neural structures and weights
but recently have only been used to optimize the neural structure itself. Real et al. [25] com-
pared RL, neuroevolution with RS and concluded that RL and neuroevolution performed
better than RS in terms of final test accuracy, and neuroevolution always produced better
performance and smaller models.
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2.5.3. Performance Evaluation Strategy

The performance estimation strategy aims to find a neural architecture that maximizes
specific performance measurements to evaluate the performance of the explored model.
Early NAS [11] evaluated the quality of each sampled network by training it from scratch,
which is very costly. Progressive NAS [14] and ReNAS [15] speed up the evaluation step by
building an accuracy predictor using data collected from training a few sample networks
in the search space. Once the trained accuracy predictor is available, the search process can
be guided without additional training costs. Alternatively, One-Shot NAS [12,13] reduces
the evaluation costs by training a single super-net from which each sampled network
inherits weights without incurring extra training costs. This weight-sharing across models
in one-shot NAS has allowed major progress in reducing search costs. Although auto-
designed neural networks generally perform well, they may not be suitable for hardware
deployment in all edge devices, owing to their complex structures. To address this problem,
recent hardware-aware NAS approaches [16,17] incorporate hardware constraints, such
as inference latency, energy consumption, and memory footprints, into the search process.
They also minimize the evaluation costs by training a single network that supports diverse
hardware architectures.

3. Hardware Acceleration of Convolutional Neural Networks

Since the beginning of the past decade, the development of DNN solutions has ac-
celerated in many applications. This was enabled by the advent of fast GPUs, which
could satisfy the huge memory bandwidth and computational complexity caused by the
ever-increasing size of DNNs. The deep learning solutions not only limit their applications
to heavy computing machines, but there is also growing interest in deploying DNNs in
edge devices with limited hardware resources and energy. The hardware solutions for
DNNs development and deployment range from general purpose architectures (CPUs and
GPUs) to spatial architectures (FPGA and ASCI).

The multiply-and-accumulate (MAC) operation is the fundamental component in both
the fully connected and convolution layers, which can be parallelized easily to achieve
a high inference speed. The hardware accelerator can either be a conventional hardware
optimization with enhanced compute parallelism or modern accelerators that combine both
hardware and software design capabilities. Recent advancements in developing efficient
DNNs using software solutions provide promising performance with reduced memory
and computing operations. DNN acceleration that uses hardware-software co-design is
the current trend in developing efficient DNN applications. In the following subsections,
we first discuss the available temporal and spatial hardware architectures that are suitable
for DNNs. Next, we briefly review processing in memory (PIM)-based architectures and
their corresponding DNN accelerators. Thereafter, we will focus on the codesign of DNN
accelerators that leverage the capabilities of both hardware architecture and compression
algorithms. Finally, as a case study, we present some well-known representative DNN
accelerators for practical applications.

3.1. Temporal and Spatial Hardware Architectures

In general, CPUs and GPUs use temporal architectures, whereas the ASIC-and FPGA-
based designs use spatial architectures. Although they have similar computational struc-
tures with multiple processing units, they differ in several aspects, such as the control units,
memory structures, and dataflows. The temporal architecture uses a large number of ALUs
as processing units with centralized control. The ALUs in the temporal architecture do not
have their own local memory and cannot communicate with each other directly. However,
in spatial architectures, ALUs can have their own local memory and control logic, also
known as processing elements (PEs). PEs are interconnected in a processing chain so that
they can pass data and directly communicate with each other, as opposed to ALUs, in
temporal architectures.
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For parallelism, CPUs use the single-instruction multiple-data (SIMD) model and
GPUs use the single-instruction multiple-thread (SIMT) execution model. On temporal
platforms, the FC and convolution layers in the DNN are primarily mapped to matrix
multiplication. Software libraries such as OpenBLAS and Intel MKL for CPUs, and cuBLAS
and cuDNN for GPUs are available for the optimization of matrix multiplications. As these
architectures are general purpose and designed to support a wide range of applications,
users are less likely to find such hardware architectures specially designed exclusively for
DNN applications.

For DNNs accelerators with spatial architecture implemented on an ASCI or FPGA, the
bottleneck is in memory access. An array of PEs with a small local buffer and a global buffer
is used to reduce data access from the DRAM. As show in Figure 8, the two-dimensional
network of the PE array performs dataflow processing in an orchestrated network-on-chip
(NoC), which enables direct-message passing between PEs. When performing convolu-
tion, for each MAC, data flows through PE arrays, enabling direct-message passing, thus
increasing data reuse and decreasing the memory bandwidth. Three types of data reuse
(convolution, filter weight, and input feature map) can be exploited in CNNs by storing
the data in the local memory hierarchy. Based on the dataflow characteristics of different
DNNs’ accelerator designs, they are classified into four categories: (a) weight-stationary
(e.g., TPU [95] and [101]), (b) input-stationary (e.g., SCNN [102]), (c) output-stationary (e.g.,
Origami [103] and [104]), and (d) row-stationary (e.g., Eyeriss [105] and Eyeriss-v2 [106]).

As shown in Figure 8, the weight-stationary dataflow stores the weight in the register
file (RF) of the PE, thus exploiting filter-weight reuse and convolution reuse, while inputs
and the partial sum move between PEs. The input-stationary dataflow structure stores the
input feature map values in an array, and convolution is performed by passing the weight
value to the array in the PE. The accumulations of the partial sum are kept in each PE until
the final sum is reached in the output-stationary dataflow, minimizing the read and write
operations of partial sums. The input activation and filter weights are distributed across
the PE arrays, thus reusing the convolution. Finally, row-stationary dataflow architectures
jointly maximize the reuse of the filter weights, input activations, and partial sums. The
convolution operation between one input row and the weight row is performed in the same
PE. Among the dataflow architectures mentioned above, the row-stationary dataflow has
the lowest energy consumption. For instance, Eyeriss [105] is a popular DNN accelerator
using row-stationary dataflow.

Figure 8. Overview of neural processing array core modules in weight-stationary dataflow.
(Reprinted from ref. [101]).
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3.2. Processing-in-Memory (PIM) Architectures

The energy consumption in FPGAs and ASIC architectures is mostly dominated by
data movement between memory and processing elements because of the limited on-
chip memory and data transfer bandwidth. Several efforts have been made to solve this
issue using new memory technologies such as dynamic random access memory (DRAM),
resistive random access memory (ReRAM) [107], and hybrid memory cube (HMC) [108] to
enable the direct integration of the processing engine and memory storage known as PIM.
The PIM technique minimizes data movement by performing some computations within the
memory itself, thus reducing penalties incurred by memory accesses. Some representative
studies using DRAM, ReRAM, and HMC-based PIM architectures for DNNs acceleration
are DrAcc [109], PRIME [110] and PattPIM [111], and Neurocube [112], respectively.

The DrAcc [109] accelerator is designed for ternary weight CNNs by performing
in-DRAM bit operations that can achieve almost 84 frames per second (FPS) inference
speed at 2 W of power consumption. In ReRAM, which is an emerging nonvolatile memory,
the ReRAM array can be used as a computation engine for matrix-vector multiplication.
PRIME [110] replaces DRAM with ReRAM, which is used for both storage and computation.
It uses a 256× 256 ReRAM array configured for a 4-bit multilevel cell computation or 1-bit
single-level cell storage. Recently, in PattPIM [111], the ReRAM crossbar array was utilized
for space compression and computation reuse by exploiting the weight pattern repetition
characteristics in a CNN. An intra-processing engine pipeline was designed to enhance
parallel computing within the ReRAM memory itself. Although the ReRAM-based PIM
technique seems to have great potential in DDN accelerator design, the actual fabrication of
large ReRAM arrays is still a challenging research task. In another memory structure, HMC,
also known as 3-D memory, DRAM is vertically stacked on top of the chip, enabling low
latency and high memory bandwidth. Neurocube [112] consists of a cluster of processing
engines, in which the processing engine clusters can access multiple memory channels
(vaults) of the HMC’s DRAM in parallel. This integrates the processing engine into the
logic die of the HMC to bring MAC computing and memory closer.

3.3. Co-Design of Hardware Architecture and Compression Algorithm

CNN compression algorithms such as pruning and quantization are widely used to
obtain efficient CNN structures, and the hardware acceleration of the CNN can be optimized
further by designing a hardware accelerator, particularly for efficient CNN structures
obtained via compression algorithms. Network pruning, specifically unstructured pruning,
helps to reduce off-chip memory access by significantly removing unimportant weights
or activations [31–39]. Similarly, quantization can help reduce computation and memory
storage by operating with low-bit precision [10,51–68]. In addition, hardware-aware NAS
techniques have been developed to improve the performance of CNNs automatically
on target hardware by considering inference latency, energy consumption, and memory
footprints [16,17,30,101,113].

As discussed in Section 2.1.1, many weights or connections in CNNs can be pruned
to zero with or without minimal accuracy loss, resulting in highly sparse network. The
sparse hardware accelerator can be designed for such sparse networks providing room for
saving large amounts of energy and storage. Cambricon-X [114] is an early sparse CNN
accelerator skipping MAC operations for zero weights. The required weights are accessed
by the PE using index of the weights that are stored in sparse format. Later, Cambricon-
S [115] improved the weight indexing overhead by addressing memory access irregularities
using a cooperative hardware–software approach. The SCNN in [102] supported the
processing of a convolutional layer in a compressed domain by exploiting both zero-valued
weights arising from pruning and zero-valued activation from having a common ReLU
operator during inference. The input stationary dataflow is used to maintain the weights
and activations in the compressed domain, eliminating unnecessary data transfer and
storage. A drawback of this method is that it results in massive write-back traffic and
supports only the convolutional layer. Eyeriss-v2 [106] also processes nonzero weights and
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activations in the compressed domain of a sparse network by adapting the Eyeriss-like
row stationary dataflow [105] to avoid memory access overhead. SNAP [116] uses an
associative index-matching search to find matching non-zero input activations and weight
kernels. It supports a general convolution, pointwise convolution, and fully connected
layers. Two-level partial sum reduction (PE level and core level) is used to process the
output neurons, reducing write-back traffic and memory access.

As discussed in Section 2.2, quantized architectures aggressively reduce the bit width
of the weight and activations up to 1-bit to obtain an ultra-high inference speed with a
certain degree of accuracy loss. The special purpose hardware accelerator that utilizes
both variable-bitwidth arithmetic (e.g., Stripes [117], BitFusion [118], UNPU [119], and
BitBlade [120]), and fixed-bitwidth arithmetic (e.g., [121], and YodaNN [122]), has been
developed for quantized neural networks. If weights and activations are both binarized or
ternarized, the MAC operations can be replaced with simple XNOR and pop-count opera-
tions. The architectures with fixed-bitwidth arithmetic, such as [121] and YodaNN [122], are
similar to the hardware accelerators used for uncompressed CNNs, but complex MAC op-
erations are replaced with simpler lower-bit logic. Quantized CNNs with variable bitwidth
representation can achieve better results with a reduced model size [56]. Stripes [117] used
the AND logic operation and shifted accumulations with bit-serial computations, where
the bit width of the weights is fixed, and variable bitwidth is used for activations. Similar
to Stripes [117], UNPU [119] also used bit-serial computation, but a 16-bit fixed-bitwidth
was used for activations and a 1-bit to 16-bit variable bitwidth was used for filter weights.
BitFusion [118] dynamically fuses an array of bit-level PEs to match the bitwidth of different
DNN layers and minimize computation and communication with no loss of accuracy. The
recently proposed BitBlade [120] further improved the BitFusion [118] accelerator by re-
placing shift-add logic with bitwise summation. Several binary or ternary neural networks
have also been implemented in FPGA specialized architectures [96,123–125]. A quantized
neural network with 3-bit features was implemented in the Zynq UltraScale+ FPGAs and
ARM NEON CPU processor by [123]. However, in their accelerator design, the first and last
layers of the Tiny-YOLO network used 8-bit arithmetic operations. FINN [124] is another
BNN inference framework implemented in an FPGA, in which all fully connected, convolu-
tional, and pooling layers are binarized. The more recent reconfigurable BNN accelerator
proposed in [125] applies adaptive parallelism based on the target-layer parameters and
achieved 9.69 times higher area—speed efficiency than traditional FPGA implementations.
In addition to specialized hardware, quantized neural networks (especially INT8) are also
widely supported in general purpose ARM CPU hardware architectures (e.g., ARM Cortex-
A75 and Mali-G76). These ARM CPUs support CNN acceleration, enabling INT8 matrix
operations in ARM NEON, which is an advanced SIMD architecture extension.

In addition to network quantization and pruning, tensor decomposition is another
compression algorithm for CNN acceleration. Although the resultant networks are still
dense after tensor decomposition and can run on general purpose hardware, in some
cases, such as TT decomposition, hardware support is needed to further improve network
efficiency. In the TIE [97] hardware accelerator, expensive tensor reshape and transpose
operations are implemented at almost zero cost by partitioning the working SRAM into
multiple groups with a well-designed data selection mechanism. Recently, Ref. [126] ac-
celerated the TT decomposition process using an algorithm–hardware co-design with a
customized hardware architecture. The SVD computation pattern within each TT decom-
position iteration is adjusted to reduce the overall computational cost.

More recently, as shown in Figure 9, NAS techniques for searching efficient CNNs also
integrated hardware accelerator design considerations into the search loop to jointly search
for the model–accelerator pair with the best accuracy and efficiency. MnasNet [30] searched
for an efficient CNN for mobile devices in which model latency was explicitly incorporated
into the main objective to achieve a good trade-off between model accuracy and latency.
Similarly, Ref. [17] also included hardware platform constraints while searching for an
efficient CNN. The Codesign-NAS [113] moves one step further and searches for a CNN–
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accelerator pair for the best accuracy and efficiency. A recently proposed polynomial
regression-based (q, s) NAS [127] technique searches through different combinations of
quantization (q) and scaling (s) factors of the model architecture to satisfy the target
accuracy. Next, for the model with optimized (q) and (s), they searched through different
combinations of MACs and PEs to design an optimal hardware accelerator regarding
energy consumption. In general, the hardware-aware NAS techniques proposed in [17,30]
only explore the NAS space while assuming a fixed hardware architecture design, while
the techniques proposed in [113,127] simultaneously explore both the architecture search
space and hardware design space to find the best model–accelerator pairs that maximize
both inference accuracy and hardware efficiency.

Figure 9. Analogy of the NAS-based co-design of an efficient CNN–accelerator pair.

3.4. Practical Applications: Case Study

In this section, we survey the practical applications of temporal and spatial hardware
architectures. There are various implementation technologies, including high-performance
GPUs/CPUs, CPU-controlled FPGA solutions, and specialized accelerators. One of the
most successful cases is the general-purpose graphics processor architecture developed by
NVIDIA. GPUs, originally developed to support video games, are now increasingly being
used for deep learning within Tesla, Fermi, Kepler, Maxwell, Pascal, Volta, Turing, and
Ampere architectures. The NVIDIA cards with CUDA libraries are supported by the widest
variety of deep learning applications. AMD GPUs, such as the RADEON series, are also
effective regarding computational performance and memory bandwidth, but, because of
lacking community, software, and tensor cores, they will probably not be able to compete
with NVIDIA GPGPU solutions. In many servers and workstations, NVIDIA solutions,
such as DGX systems, are utilized to train deep learning models. Google has released
four versions of its tensor processing unit (TPU) for data-center deployment. The TPU,
initially only intended for inference, was soon improved for both training and inference.
As a GPU-based accelerator it is a generalized structure and, therefore, is not optimized for
resource-constrained contexts.

Several smartphone vendors, such as Apple (A-series), Huawei (Kirin), and Samsung
(Exynos), embed GPU-based neural engines or so-called neural processing units (NPUs)
in their smartphones to enable inference-based tasks. Systems in this category are also
aimed at autonomous vehicles, robots, and UAVs. They have several ARM cores that
are mated with GPGPU cores, such as the NVIDIA Jetson-TX1/TX2, Nano, and NVIDIA
Xavier. For low-power devices, the edge TPU is a small ASIC designed by Google that
provides high-performance AI/ML inference. ARM Ethos, CEVA NeuPro, and Hailo AI
chips are also suitable for embedded platforms or edge devices. The use of FPGAs for
neural networks has been studied primarily in university and industry research laboratories.
For example, Bruhnspace, in collaboration with Unibap AB and Mälardalen University,
provides experimental packages of ROCm with AMD APUs support for research purposes.
One of the Intel solutions pairs an Intel Xeon CPU with a reconfigurable Alteran Arria
FPGA. Microsoft Brainwave is a programmable Intel Stratix FPGA that was deployed as
part of the Catapult project. Although a few have announced or are offering products with
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spatial architecture, many architectures and software have been actively researched in the
CPU-–FPGA–ASIC paradigm.

4. Discussions

Several algorithm-based solutions and hardware acceleration approaches for designing
efficient CNNs are presented in this paper, including hardware–software codesign. The
intuitive means of designing the best solution is to use a suitable compression algorithm
to obtain a light-weight CNN and design the corresponding hardware architecture with
optimal energy savings. Various matrices should be considered for measuring the strengths
and weaknesses of the proposed efficient CNN accelerator design technique, which includes
model accuracy, energy consumption, latency, and cost. However, there is no golden rule
for selecting which compression algorithm and hardware architecture design will produce
the best results in terms of the above matrices. Choosing a suitable method strictly depends
on the specific applications and requirements. In this section, we discuss the efficient
CNN’s design approaches based on the strengths and weaknesses of both the hardware
and software solutions, including potential research opportunities.

The most common and widely used CNN compression algorithms fall into the cat-
egories of pruning and quantization. In many cases, pruning and quantization are used
jointly to obtain the optimal compression ratio [10,51]. Weight pruning and connection
pruning result in unstructured networks, whereas filter and channel pruning result in struc-
tured networks. The advantages of weight pruning and connection pruning are that they
can achieve large compression ratios with reasonable performance but require a specialized
hardware accelerator design for deployment. Hardware-accelerator-skipping MAC opera-
tions for zero weights and input activations with suitable data reuse and dataflow schemes
can reduce energy and storage [102,106,114,115]. Conversely, after structural pruning,
networks can still run in general purpose hardware as the original structure of the network
will not be distorted. However, it is difficult to maintain the accuracy, because entire filters
or channels will be removed, causing some important parameters to be lost. Recent re-
search proves that, rather than following the conventional approach of pruning (training →
pruning → fine-tuning), in structural pruning, training the pruned network structure from
scratch with randomly initialized weights will produce even better performance [52–54].
Quantization, on other other hand, reduces the bit width of the data flowing through
the network, thus enabling reduced storage and simplified computations. Non-uniform
quantization better captures the original information of the model but requires specialized
hardware for deployment, whereas uniform quantization is more common because of
its simplicity and ability to run in general hardware architectures. However, uniform
quantization may reduce performance. Mixed-precision quantization proved to be better
regarding both accuracy and hardware efficiency with reduced memory storage [117–120].
In applications where accuracy is not critical, extreme quantization, such as binarization,
can benefit from deployment on extremely low-cost hardware. Binarization of the CNN
proved to perform reasonably well in image classification tasks, but other applications,
such as object detection and semantic segmentation, are still open research challenges.

Model compression using tensor decomposition has promising potential, but its
success is currently limited to the compression of RNN models [81]. CNN compression
using tensor decomposition suffers significant accuracy loss, even for small compression
ratios. For example, in the recently proposed TR decomposition method [100], a 1.9% of
accuracy compromise achieves only a 5.8% compression ratio. The main problem lies in
training the tensor-decomposed CNN models. Therefore, to utilize the potential of tensor
decomposition in the compression of CNN, more focus should be given to the efficient
training and development of more general decomposition methods.

Another CNN compression algorithm, namely knowledge distillation, is applicable
when the training dataset is insufficient. The resulting compressed student model benefits
from the teacher model through knowledge transfer. The advantage of compression using
this technique is that, without any special hardware support, a significant compression
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ratio can be achieved; thus, it is applicable even in general purpose hardware architectures.
Knowledge distillation can be used in combination with NAS further to improve the
computational cost and parameters in the resulting compressed student network [128].

Traditional NAS approaches suffer from high computational costs and training times,
because each network sampled from a vast search space is trained from scratch and evalu-
ated to obtain the final compressed network architecture [11]. A recent approach solves
this issue by training a single super network, in which each sampled network shares the
weights from the supernet without requiring retraining for performance evaluation [12,29].
More recently, researchers have taken a step toward simultaneously automating CNN
compression and hardware accelerator design by using NAS to search for CNN–accelerator
pairs [113,127]. As diverse hardware architectures ranging from general proposals to spatial
accelerators are becoming publicly available, NAS research should focus on moving in the
same direction to develop a more general framework to design efficient CNN–accelerator
pairs, producing maximum efficiency at minimum cost.

Hardware–software co-design benefits from exploiting the compression techniques
in hardware accelerator design. Section 3.3 reviews several techniques employed in the
co-design of an efficient CNN accelerator. Joint-way compression with quantization and
sparsification appears to be the most common technique, even in hardware accelerator
design. While designing the final CNN accelerator, several matrices should be considered,
including model accuracy, model architecture, number of MACs, memory requirement,
power and energy consumption, latency, and cost. Accelerator designs that use emerging
memory technology seem to have great potential but must still address several research
challenges. This can be one of the potential research opportunities for both academic and
industrial CNNs applications.

5. Conclusions

In this study, we provide a comprehensive survey of efficient CNN design and deploy-
ment techniques, with a focus on current research trends. Both algorithm and hardware
architecture design cover diverse topics. We have presented the most recent progress
in all aspects of efficient CNN designs and discussed their weaknesses, strengths, and
potential research opportunities. Pruning, quantization, and tensor decomposition are
the most popular and well-established neural network compression algorithms, whereas
knowledge distillation and NAS are popular in the era of deep learning. The most ad-
vanced and efficient CNN design approach, NAS, focuses on automatically designing
neural architectures in combination with a target hardware accelerator that overcomes
the weaknesses of traditional manual design approaches using limited human expert
knowledge. Hardware architecture design also ranges from general purposed solutions
to specialized architectures, including processing-in-memory architectures. The selection
of the best compression technique, along with suitable hardware deployment, depends
on several evaluation matrices, including accuracy, energy, and cost, along with the target
application and user requirements.
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