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ABSTRACT The smart grid is generally studied as an efficient and powerful electric grid. With

the assistance of information and communication technology (ICT), the electric grid can increase the

performance of the power grid system with smart energy management. On the other hand, with the usage

of renewable energy resources (RERs), smart energy storage, and new transmission technologies in the

power grid system, various new features such as real-time monitoring, fast restoration, battery displays,

automated outage management, etc. have been assimilated into the smart grid. These new features generate

more complexity in energy transmission and constitute important challenges like low energy consumption,

high energy cost, social welfare, etc. while designing energy trading mechanisms in the smart grid. In

the Internet-of-Things (IoT) era, several scenarios such as micro-grids, energy harvesting networks, and

vehicle-to-grid (V2G) networks are present where energy trading plays an important role. However, in these

scenarios, there are energy transmission and distribution, security and privacy, energy consumption, system

reliability, the criticality of data delivery, and a few more challenges caused by distrust, non-transparent,

and uncertain energy markets. Motivated from these challenges, we present a four-layered architecture of

energy trading used in the smart grid. We propose a comprehensive background regarding the main concepts

of energy trading and the implication of enabling technologies that manage the energy imbalances in the

smart grid. Then, we present a problem taxonomy based on incentive, mathematical, and simulation model-

driven approaches, which are widely used to control and maintain the energy trading mechanisms. Based

on the findings from the literature, we also present a solution taxonomy with enabling technologies such

as Energy Internet, Software-defined networking (SDN), and blockchain. In the end, a summary of future

research directions based on the energy trading mechanisms is explored to provide deep insights to the

readers.

INDEX TERMS Smart Grid, Energy Trading, Incentive models, Mathematical models, Simulation models,

Software-defined networking, Energy Internet, Blockchain.

ABBREVIATIONS

The list of abbreviations and definitions used throughout the

paper are shown in Table 1.

I. INTRODUCTION

Internet-of-Things (IoT) is an important part of smart grid to

improve the power grid system by giving timely and efficient

information and communication to the stakeholders [1]. With

the help of IoT-enabled technologies used in the smart grid,

the different phases, i.e., energy generation, distribution,
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TABLE 1: List of Abbreviations

List of Abbreviations Meaning

AMI Advanced metering infrastructure

BFT Byzantine fault tolerance

DDOS Distributed denial-of-service

DDPG Deep deterministic policy gradients

DNO Distributed network operator

DOS Denial-of-service

DR Demand response

DSO Distributed system operator

EAG Energy aggregators

EVs Electric vehicles

IBR Inclining block rate

ICT Information and communication technology

IoT Internet-of-Things

IoE Internet-of-Energy

IT Information technology

KWh Kilowatt hour

PET Power and electronics technology

LCoE Levelized costs of electricity

MDP Markov decision process

MILP Mixed integer linear programming

MINLP Mixed integer non-linear programming

NPV Net present value

PBFT Practical byzantine fault tolerance

PET Power and electronics technology

PHEVs Plug-in hybrid electric vehicles

PoW Peer-of-work

PoS Peer-of-stake

P2P Peer-to-Peer

PPO Proximal policies optimal

PSO Particle swarm optimization

PV Photovoltaic

QoS Quality-of-service

RERs Renewable energy resources

RTP Real-time pricing

SDN Software-defined networking

SQL Structured query language

ToU Time of use

V2G Vehicle-to-Grid

transmission, and consumption are interconnected through

the Internet in the communication network [2]. Therefore,

the smart grid uses a bidirectional flow to transfer the infor-

mation and energy to the end-users effectively.

Vehicle-to-grid (V2G) is an emerging technology in the

smart grid that supports energy exchange between prosumers

and consumers, where energy management plays a vital role

in balancing the demand and supply of energy [3]. Energy

management includes various types of mechanisms such as

energy trading, demand response (DR), and dynamic pricing.

Among all of these mechanisms, energy trading is one of the

most effective mechanisms, which accounts for the concern

of both the supply and the demand sides. In this mechanism,

the prosumers aim to provide electricity to consumers and

adhere to the physical constraints of an electric grid [4].

They can schedule with the generators for generating energy

as per the demand of energy by the end-users [5], [6]. On

the other side, consumers reshape their demands according

to the supply conditions. The energy demand from the con-

sumers is the function of unit price that influences the supply

strategies of the prosumers. The participation of prosumers

and consumers in the wholesale market is accepted as the

inevitable solution to enhance the economic efficiency of

energy markets, reduce peak demand and price volatility, and

improve the reliability of electric power systems. From the

past few years, various DR programs have been promoted by

power system operators to encourage the active involvement

of end-users. Moreover, these programs can provide system

services to the end-users at wholesale electricity markets.

The DR requirements in wholesale markets, such as the

minimum curtailment level, could curtail eligible customers

or leave off potential small customers from participating in

DR programs. The DR aggregation is acknowledged as an

efficient solution to increasing the exposure of large volumes

of consumers to wholesale energy markets. In this way, DR

aggregators work with the customers to offer appropriate DR

programs that would allow customers to participate in the

wholesale energy market. The aggregators work with load-

serving entities to provide customers with advanced metering

data to monitor and control of real-time energy consumption

in the energy market [7]. For this, simulation, incentive, and

mathematical models used in energy trading provide great

potential to the participants by optimizing the energy cost and

energy consumption in the smart grid. Among all the models,

incentive models such as price, bargain, game, auction, and

contract theory are most commonly used for energy trading in

the smart grid. But, to frame the energy trading mechanisms,

game theory is one of the most popular and economic tools

to analyze and maintain the rational interaction between two

or more individuals. With these mechanisms, optimization,

linear programming, Markov decision process (MDP), rein-

forcement learning, etc. are also used, which improve the

energy consumption and find the right behavior of energy

trading participants.

Figure 1 shows the architecture of a smart grid that
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FIGURE 1: Conceptual view of the smart grid

includes renewable energy resources (RERs), smart trans-

portation, power technologies (investigate all aspects of elec-

tric power generation and distribution with significance on

sustainable technology and environmentally sensitive issues),

and widespread electric vehicles (EVs). With this, many

new technologies have been introduced into smart grid such
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as micro-grids (smart building with wind generators, solar

panels etc. and trade energy in a Peer-to-Peer (P2P) manner,

V2G networks (EVs acted as energy storage devices [8].

They can sell their energy to the power grid as well as other

vehicles in a P2P manner using local aggregator and reduce

peak loads [9]), and energy harvesting networks (with this

ability, the nodes can charge their battery from renewable

energy/ mobile charger in a P2P way [10]). Moreover, the

smart grid develops an efficient and green P2P energy trading

[11]. Taking all the characteristics and features of energy

management in the smart grid, the energy trading mecha-

nisms become more complicated. So, there is a big challenge

in the smart grid to improve the social welfare of energy

transactions or exchanges between prosumers and consumers

and make the energy trading system more reliable.

A. ANALYTICAL REVIEWS TO THE EXISTING

LITERATURE

Many research articles have been published on energy trading

that manages the smart grid’s energy demand and supply.

For example, Bayram et al. [12] provided an overview of

distributed energy trading concepts in the smart grid. They

have presented the enabling technologies, which are required

to communicate with trading companies. Similarly, Zhang et

al. [13] discussed the incentive-based approaches adopted in

energy trading control mechanisms. In the same way, Zhou et

al. [14] discussed the existing agent-based simulation models

used for electricity markets. Pierluigi Siano [15] proposed

DR potentials and benefits in the smart grid, facilitating

the coordination of efficiency in the smart grid. Wang et

al. [16] provided a comprehensive survey on communica-

tion architectures used in the power grid system, which

are responsible for delivering electricity and energy-related

information to the end-users. Pagani et al. [17] presented a

survey on different power grid infrastructure using complex

network analysis technologies and methodologies. Abdella et

al. [18] presented a literature review of on-demand response

optimization models, power routing devices, and power rout-

ing algorithms used in P2P energy trading. Similarly, Tushar

et al. [19] provided a comprehensive review on P2P energy

trading using blockchain. They have identified various chal-

lenges that address the virtual and physical layers of energy

trading with the existing research. In the same way, Zhou

et al. [20] proposed a comprehensive survey on P2P energy

trading based on an academic paper, research papers, and

industrial projects.

From the analytical reviews of the literature, we observed

that no research article had been published that describes

all the energy trading approaches and optimization models

used for energy trading mechanisms. So, there is a need

to investigate the various approaches and methods used for

energy trading mechanisms in the smart grid. In this paper,

we present the energy requirements and challenges of this

mechanism, review existing approaches used for energy trad-

ing in the smart grid, and provide a relative comparison of the

state-of-the-art approaches. Table 2 shows the comparative
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FIGURE 2: Organization of the paper

analysis of the proposed survey with the existing surveys.

B. CONTRIBUTION

The main contributions of this paper are described as under.

1) We propose a comprehensive background regarding the

main concepts of energy trading and the implication

of enabling technologies used to manage energy ex-

changes in the smart grid.

2) Then, a problem taxonomy is presented based on exist-

ing models like mathematical, simulation, and incen-

tive, which are used for energy trading in the smart

grid.

3) This paper also describes a solution taxonomy based on

enabling technologies like Software-defined network-

ing (SDN), Energy Internet, and blockchain to improve

the energy cost and energy consumption in the smart

grid effectively and efficiently.

4) Then, we provide future research directions, which can
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TABLE 2: Comparative analysis of the proposed survey with the existing surveys

Reference Contribution Taxonomy

available

Comparative

analysis

with existing

approaches using

tables

Incentive

models

Mathematical

models

Simulation

models

Enabling

technologies: SDN,

Energy Internet,

Blockchain

[12] Provided an overview on dis-

tributed energy trading con-

cepts

× × ✓ × × ✓

[13] Provided a comprehensive re-

view on incentive-based ap-

proaches used in energy trad-

ing

× ✓ ✓ × × only Blockchain

[14] Agent-based simulatin models

used in electricity markets

× × × × × ×

[15] Presented a survey on demand

response and smart grid

× ✓ × × × ×

[16] Comprehensive review on

communication architectures

used for power systems in the

smart grid

× × × × × ×

[17] Presented a survey on power

grid systems

× ✓ × × × ×

[18] Presented a survey on P2P dis-

tributed energy trading in the

smart grid

✓ × × × × ✓

[19] Provided a comprehensive re-

view on P2P energy trading

× ✓ ✓ × ✓ only Blockchain

[20] Provided a comprehensive re-

view on P2P energy trading

× × ✓ × × only Blockchain

Our work Presented a survey on energy

trading in the smart grid

✓ ✓ ✓ ✓ ✓ ✓

be beneficial for energy trading mechanisms in the

smart grid.

C. ORGANISATION OF THE PAPER

The rest of the paper is organized as follows. The four-

layered architecture of energy trading is described in Section

II. Section III discusses the problem taxonomy based on

various models used in energy trading. Section IV provides

the solution taxonomy based on enabling technologies. Sec-

tion V describes the open issues of energy trading in the

smart grid, and finally, Section VI concludes the paper. The

pictorial representation of the organization of the paper is

shown in Figure 2.

II. ARCHITECTURE OF ENERGY TRADING IN THE

SMART GRID

A smart grid is considered a typical cyber-physical system

in which all the operations and mechanisms are controlled

and managed by computer-based algorithms. To manage the

energy trading in the smart grid (micro-grids and V2G) and

minimize and optimize the impact of charging/discharging

facilities, secure data exchange among EVs, charging sta-

tions, and distribution power systems, reliable communi-

cation are needed [21]. Based on the architecture of the

smart grid [22], and the framework for the cyber-physical

system [23], we present a four-layered architecture for energy

trading mechanism in the smart grid is as shown in Figure 3.

The energy trading architecture consists of an energy trading

layer, a data acquisition layer, a communication network

layer, and a market layer described as follows.
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FIGURE 3: Architecture of energy trading in the smart grid

A. ENERGY TRADING LAYER

The energy trading layer includes energy aggregators (ad-

vanced metering infrastructure (AMI), local aggregators),

energy nodes (smart buildings, EVs, and charging stations),

and smart meters. The energy aggregators work as energy

brokers to manage an exchange of energy and provide com-

munication services to the network. The energy nodes are

referred to as machines in which energy can be stored or gen-
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erated. Then, this energy is transported via transmission lines,

substations, and transformers to the end-users and customers.

According to the architecture, they play different roles such

as energy buyers and energy sellers in energy trading of the

smart grid. Every node on this layer selects its role as per the

current state of energy and future work plans. The consumed

or used energy can be controlled and maintained by the smart

meter used in the smart grid. It is an electronic device used

for calculating and collecting the records of consuming and

distributed energy in real time. Then, the consumers pay

energy coins or money to the prosumers as per the energy

records recorded on the smart meter.

B. DATA ACQUISITION LAYER

This layer is used to collect important information on energy

consumption and energy distribution from different energy

nodes through sensors, intelligent electronic devices, and

monitoring devices. As per the requirements of an applica-

tion, we can use the data acquisition modules. For example,

in micro-grids, sensors and electronic devices collect data on

energy consumption, such as power density and equipment

power. But in the case of V2G, sensors are used to monitor

the battery status of EVs, such as load, charging/ discharging

status, temperature, current, etc.

C. COMMUNICATION NETWORK LAYER

Information and communication technology (ICT) aims to

support, control, coordinate, and manage an exchange of

energy among EVs, charging stations, and the power grid.

This layer facilitates real-time exchange of energy between

different energy nodes in the smart grid [24]. The commu-

nication infrastructure mainly includes connection devices,

wired/wireless connections used for communicate informa-

tion, servers, routers, circuits, switches, etc. It reduces the

distance and makes the flow of information faster. It also

saves time, budget, Information, ideas, and opinions, which

can be shared among different energy nodes at any given

time.

D. MARKET LAYER

This layer presents the business view of energy trading in

the smart grid. It includes two parts, i.e., (i) the wholesale

market and (ii) the retail market. The major role in the

market domain are energy sellers, energy buyers, and the

distribution system operator (DSO) worked as participants.

The important processes consist of bidding, decision-making,

exchange of energy, and energy settlement of the market

layer. It comprises all the financial and business-related as-

pects of energy trading in the smart grid. Energy market

structures, the micro-economics of energy technologies, and

energy billing belong to this layer. It also considered the

various factors, such as investments, net present value (NPV),

Levelized costs of electricity (LCoE), electricity tariffs, and

pricing mechanisms of energy trading in the smart grid.

E. INTERACTION AMONG ALL LAYERS

This subsection defines the interaction among all the four

layers used for energy in the smart grid. From the users’

layer, i.e., the energy trading layer to the market layer, there

is a need for the virtual energy market and physical energy

network to enable energy trading in the smart grid. The

physical energy network is used to exchange energy among

various entities such as EVs, smart homes, charging stations,

etc., while the virtual energy market platform is required for

selling and buying the energy in a local energy market. The

main aim of this architecture is to emphasize the importance

of each layer and the current knowledge of each layer. The

interaction among four layers show the number of research

activities in the different disciplines and attempt to define

the key elements of smart grids for sustainable energy and

flexibility. It has been used to provide a market platform

to consumers and prosumers that enable energy trading re-

liability and scalability. The architecture’s main advantages

having enhancement of system efficiency, reduced costs of

energy, and deferral of systems upgrade because the data

acquisition layer has various sensors and electronic devices

to keep track of energy data efficiently and securely. Thus,

passing the information to the market layer for consumers

through switches and routers. In this way, the communication

and interaction among these layers will support the real-time

energy exchange among various entities in the smart grid.

F. CYBER SECURITY CHALLENGES AND SOLUTIONS

With ICT rising, which is the backbone of development, or-

ganizations and industries observe the growing cyber security

threats in the smart grid [25]. The primary cyber security

challenges in the smart grid are as follows.

• Hacking: One of the most common cyber security

threats is hacking. It is exploiting a private network or

digital system to gain unauthorized information. The

severity of its impact on the smart grid is also increasing

as hacking exposes sensitive data, leakage of private in-

formation of end-users, and causes major legal trouble.

• Phishing: This cyber security threat is sending out ma-

licious files and deceitful communication that seems to

be from an authentic source, but in reality, is meant to

enter the system and harm the smart grid data.

• Man-in-the-Middle (mitm) attack: This cyber security

attack mostly happens when an attacker includes them-

selves in a two-party transaction as an authenticator.

When the attacker successfully enters the traffic, he can

interrupt communication channels and steal the smart

grid’s information.

• Structured Query Language (SQL) Injection: A SQL

Injection is a cyber security threat that occurs when the

attacker injects harmful code into the system, causing

it to divulge information, which under normal circum-

stances it is not authorized to do.

The key to effectively tackling cyber security challenges are

described as follows.
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• Raise Awareness: Cyber security challenges are not

stagnant. Every day, there is a new threat, and everyone

must be sensitized to the issues. The end-users must

follow safety protocols while dealing with the digital

data in the smart grid.

• Prevent Database Exposure: Some standard methods

to prevent smart meter database exposure are keeping

physical hardware safe, having a web application fire-

wall, encrypting server data, taking regular backups, and

limited access to servers.

• Implement Strong Authentication: Not having enough

authentication processes is a common source of cyber

security threats. At least a 2-step verification process

must be implemented to protect all devices from cyber

security threats in the smart grid.

III. ENERGY TRADING IN SMART GRID: A PROBLEM

TAXONOMY

In this section, we discuss and review existing approaches

used for energy trading in the smart grid based on incentive

models [26] [27], simulation models, and mathematical mod-

els. The detailed view of these models is described in the

following subsections. Figure 4 shows the representation of

problem taxonomy.

A. INCENTIVE MODELS

In this subsection, we presented some theoretical issues based

on incentive economic approaches, focusing on dynamic

pricing, game theory, bargain theory, auction theory, and

contract theory.

1) Auction Theory

Auction is a mechanism used in the energy market to trade

energy between sellers and buyers, which improves their

utilities by purchasing the goods. The first-price sealed-bid

auction, descending-bid auction, ascending-bid auction, and

the second-price sealed-bid auction are the four types of

auction mechanisms [28]. The result of an auction is the

amount of the final price of the goods used for trading. In an

auction theory, several auctioneers value the goods by evalu-

ation criteria for sale. This evaluation information is secret

and private from one another. But there is unsymmetrical

or unbalanced energy information in the auction process in

which selfish auctioneers may change their true valuations by

bidding the good untruthfully. This may harm the efficiency

and truthfulness of the trade. In this context, Zhong et al.

[29] proposed a Vickrey-Clarke-Grove auction mechanism to

solve energy trading in a multi-energy system. This mech-

anism ensures three economic properties like truthfulness,

economic efficiency, and individual rationality. Similarly,

in [30], the authors proposed two auction mechanisms for

two-layered V2G architecture that also ensures economic

properties. In the same way, the authors in [31] proposed a

V2G auction mechanism and analytic target cascading frame-

work for the multiple micro-grids and distribution network to

provide economic properties with social cost minimization.

For instance, to buy the same amount of electricity, the grid

or power utility can earn a high price during peak timings

when the energy demand is more as compared to the off-

peak timings. So, to improve the efficiency of electricity

distribution, there is a need for autonomous and distributed

energy management. In this context, the distributed auction

scheme based on blockchain is suitable between local users

and small-scale energy givers for autonomous management.

With the help of this scheme, the private information of the

participants is shared only among local nodes to improve

privacy and security, energy-efficiency and cost-efficiency of

V2G network in the smart grid [32]. On the other hand, to

consider the integrity and privacy of the smart grid, adaptive

hierarchical auction-based energy trading schemes are im-

portant and play a major role for energy management. Due

to increasing demands and limited capacity of the energy

generation resources, one consumer may purchase or sell

energy from the number of energy providers, where a multi-

item energy auction scheme is required. Thus, using auction

schemes in energy trading, the risk of lack of RERs and the

fluctuations produced in generation of energy from RERs

should be taken into consideration.

2) Price Theory

It is a powerful approach for customers to act in an eco-

nomically optimal manner. According to the demand for

electricity, the smart grid load varies with time, which is

analogous to electricity prices at different times. In this order,

the pricing schemes can be categorized into three types [33],

which are described as follows.

• Real-Time Pricing (RTP): It is generally the hourly

rate that applies to customers on the usage of electricity

on an hourly basis. This pricing is time-varying as per

the current conditions of energy demand and must be

informed to customers accurately and timely. So, it is the

most useful type to improve the efficiency and efficacy

of the energy markets [34].

• Time of Use (ToU) Pricing: This pricing is released in

advance and unlike RTP, it is constant for a long period

of time. It does not change with day-to-day changes in

the energy market. It can reduce the overall costs for

both the utility and customers.

• Inclining Block Rate (IBR) Pricing: It is designed

for customers where prices are recognized based on

electricity consumption levels. It charges a high rate per

kWh at higher energy usage levels and a lower rate at

lower usage levels. The average electricity consumption

determines these levels in a period with the fixed thresh-

olds.

In this context, some researchers have used pricing theory to

the manage energy trading efficiently. For example, Wu et

al. [35] proposed a smart micro-grid model based on pricing

theory by local energy traders. This model has benefits for

customers as well as for producers from energy trading. They

have used the two-layered optimization algorithms in which
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Problem Taxonomy 
for 

energy trading

2. Simulation 
Models

1. Incentive 
Models

Reinforcement Learning [69-78]

MDP [70, 79]

Bargain Theory [41-43]

Price Theory [35-37]

Contract Theory [45-47]

Auction Theory [29-31]

3. Mathematical 
Models

Stochastic Programming [94, 95]

MILP [87-90]

Convex Optimization [91, 92]

Meta-heuristic [93] Game Theory [48-54], [57, 58]

Q-Learning [80]

Lyapunov Optimization [96]

FIGURE 4: Energy trading in the smart grid: A Problem Taxonomy

a bottom-layer optimization describes the energy trading

decisions by customers and producers according to the price

announced. In contrast, a top-layer optimization describes

the gain of local energy traders with the benefits of energy

consumers and providers. Similarly, Morstyn et al. [36] de-

veloped a strategy based on marginal pricing that manages

and controls the uncertainty with energy prices and local

energy trading between the producers and the customers. In

the same way, the authors in [37] used the RTP scheme to

satisfy the consumers and optimize the energy benefits of

producers. The relationship between the demanded loads and

the pricing scheme is defined as follows.

L = β.P el (1)

whereas, L represents the demanded loads, el is the price

elasticity, P is the electricity price, and β is a constant. In

this order, the pricing theory also has been used to balance

the load via two-way energy flow between EVs and the smart

grid. This theory solves the amount and time of the exchange

of energy between them in the V2G system [38].

3) Bargain Theory

It can be defined as a negotiation process during meetings be-

tween the workers and the employees to reach an agreement

or to improve pay and conditions in the power electricity mar-

kets [39]. In the bargaining theory, the consumers can tackle

energy consumption for their preferred payment in the smart

grid. Unlike auction theory, which focuses on maximizing

the utility function of bidders and auctioneers, bargain theory

concentrates to achieve a fair and self-executing agreement.

For a specific bargaining solution, it is usual to follow

Nash’s proposal. The solution should satisfy frequent axioms

like efficiency, symmetry, scalar invariance, monotonicity,

etc. So, the Nash bargaining solution is the unique solution

of a classical bargaining problem, which satisfies the the-

ory of scale invariance, symmetry, Pareto optimality, and

independence of irrelevant alternatives. It maximizes the

product of an agent’s utilities on the bargaining set and

many researchers follow the Nash equilibrium to solve the

bargaining problem [40]. For example, Kim et al. [41] pro-

posed a two-phase approach for addressing the nonconvexity

of generalized Nash Bargaining among multiple micro-grids

for direct energy trading. The first phase solves the optimal

power flow problem, and the second phase determines the

market price clearance. Their evaluation results show that

they have reduced the network cost. For bargaining among

the N number of players, the Nash bargaining problem can

be defined as follows.

max
∏

n∈N

(U c
i − Ud

i )

{B∗

n} s.t.(U
c
i ≥ Ud

i ), ∀i ∈ N

(2)

where U c
i and Ud

i are the utilities of player i gained with

and without collaboration respectively, and B∗

n is the Nash

equilibrium solution with constraint of utility of the player

gained with collaboration is greater than the utility of the

player gained without collaboration.

The energy trading process in the smart grid includes

several participants such as EVs, producers, consumers, and

a different types of electric devices. Taking all these par-

ticipants into a centralized bargaining process will increase

the complexity of distributing bidding goods and bidding

costs among collaborators. So, distributed bargaining process

can be scalable and efficient solution with limited informa-

tion exchange. In this context, Wang et al. [42] proposed

a Nash bargaining theory to strengthen and fair benefit in

energy trading. They developed a decentralized solution with

minimum information exchange overhead in energy trading.

Their numerical results show the reduction of total cost of

the interconnected micro-grids operation and an individual

participating micro-grid achieved by 29.4% reduction in its

cost through energy trading [43].

4) Contract Theory

According to the features and characteristics such as energy

generation and energy consumption in energy trading, there

are various types of participants. Commonly, each participant

delivers the best trading scheme to earn more profit or reward.
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Moreover, due to asymmetric information (where one side

participants are not aware of the other side) in energy trading,

the problem may be intensified. So, to address this problem in

energy trading, contract theory can be a viable solution that

incentivizes the participants under asymmetric information

[44].

Considering N number of participants in energy trading

having each participant has its type (ai, bi) where i ∈ N ,

N = 1, 2, 3, ..., N . Here ai is the reward for ith participant

to trade bi amount of electricity.

For designing feasible contracts, it should satisfy the indi-

vidual rationality and incentive compatibility constraints that

are defined as under.

• Individual Rationality: A contract satisfies this con-

straint when the utility (Ui) of each type of participants

must be non-negative, which is as follows.

Ui(ai, bi) ≥ 0, i ∈ N (3)

This constraint motivates the trading where profit can be

gained by self-interested participants.

• Incentive Compatibility: A contract satisfies this con-

straint when the contract of ith participant attain the

highest utility Ui they could obtain as follows.

Ui(ai, bi) ≥ Uj(aj , bj), i, j ∈ N, i ̸= j (4)

So, a well-planned contract mechanism is utilized to max-

imize the benefit in energy trading. For example, Amin et

al. [45] proposed a scheme to categorize energy suppliers

for energy trading between electricity suppliers and an ag-

gregator. They developed an optimal contract-based scheme

that allows energy suppliers to sell their energy at different

prices. Their energy prices are based on the cost of the

production of unit that maximize the benefits of total cost

to the aggregator. Their numerical results show the effective-

ness of contract theory in energy trading. Similarly, Zhang

et al. [46] proposed a contract-based direct energy trading

model for energy buyers and sellers having uncertainty in

the generation of renewable energy resources. In the same

way, the authors in [47] proposed a cloudlet-based vehicle-

to-vehicle energy trading system. This system has been mod-

eled by contract theory. The energy switch center purchases

electricity from discharging vehicles and then resells it to

the charging vehicles without transmission of energy on the

grid. Their simulation results show that the proposed model

increases the profit of energy switch centers compared to the

other mechanisms.

5) Game Theory

This theory can be defined as where producers (suppliers) and

consumers (demanding users) are participating in the local

energy market of the smart grid. The change in one party can

affect the strategies of other party. So, to balance and analyze

the energy trading strategies, game theory can be a viable

solution.

In a game theory, the main three components are set of

players as N , its action as Ai, and its corresponding utility

function Ui, where i represents the number of players N . In

this theory, each player chooses its Ai to maximize the Ui.

The utility function of one player does not depend only on

its action but also depends on the other player’s actions other

than i. In a normal-form game (N, A, U), the expected utility

Ui for player i of the mixed-strategy profile sj = (s1, ..., sn)
is defined as follows.

Ui(s) =
∑

a∈A

Ui(a)
n∏

j=1

sjaj (5)

The main aim of the game players is to minimize and

optimize the utility function by controlling the strategies

like mid value, nash equilibrium, mid value+1, etc. From

all the strategies, the most important one for game theory

is known as the Nash equilibrium. In this strategy, a player

cannot retrieve additional profits from changing actions or

we can say that the other players remain consistent in the

game strategies. According to the players, the game theory

is classified into two types such as cooperative game and

non-cooperative game. In non-cooperative games, individual

players can compete with each other, whereas in cooperative

games, the player can play only for self-enforcing.

In this order, non-cooperative games are suitable for P2P

energy trading between the prosumers and the consumers.

Instead, cooperative games are suitable for improving social

welfare in energy trading with the help of a communication

network. Several research articles have been published on

energy trading in the smart grid using game theory. For ex-

ample, El Rahi et al. [48] proposed a game to maintain price

uncertainty in prosumer-centric energy trading. They for-

mulated a single-leader, multiple-follower Stackelberg game

where the power company acts as a leader that declares its

price strategy for maximum profits. Prosumers act as follow-

ers who choose the optimal energy bid. Latifi et al. [49] pro-

posed a solution for energy management and energy trading

in the smart grid. They described the solution in three phases,

i.e., (i) a game-theory based energy management model with

reinforcement learning to schedule the power consumptions

in micro/nano-grids, (ii) an incentive-based double auction

mechanism for directly trading in micro/nano-grids, and (iii)

an optimal power allocation program that reduces transmis-

sion loss and destructive effects of power in energy trading.

Park et al. [50] designed an energy trading mechanism based

on a contribution energy allocation scheme in the smart

grid. A distributor distributes its energy to customers based

on their contribution level, whereas customers receive this

energy to maximize their utility. They have formulated the

problem using non-cooperative game theory with the exis-

tence and uniqueness of the Nash equilibrium. Tushar et al.

[51] proposed a cake cutting game that discriminates price

technique and ensures envy-free energy trading. In this game,

energy users set the price per unit of energy to sell surplus

energy and study fairness criteria to attain maximum benefits.

Their results show that the game possesses a socially optimal
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called Pareto optimal solution. The authors proposed a Stack-

elberg game model in event-driven energy trading in micro-

grids. This model provides an optimal bidding algorithm for

retailers. Their simulation results show that this model has

linearithmic complexity with acceptable expandability and

applicable in time-varying cases [52]. Similarly, the authors

in [53] proposed a game-theoretic approach for solving en-

ergy trading, which allows consumers to minimize the energy

bill and producers to make a profit from their excess of

energy. In the same way, Alsalloum et al. [54] proposed a

game theory that frames the different interactions (different

prices for the buyers) between the prosumers and the smart

grid.

EVs are one of the prominent solutions for the sustain-

ability issues needing critical attention like global warming,

depleting fossil fuel reserves, and greenhouse gas emissions.

They can also act as a storage system, to mitigate the

challenges associated with renewable energy sources and

to provide the grid with ancillary services, such as volt-

age regulation, frequency regulation, spinning reserve, etc.

For extracting maximum benefits from EVs and minimizing

the associated impact on the distribution network, optimal

integration of EVs has been done. Mohammad et al. [55]

proposed a literature on the modelling of grid-connected EV-

PV (photovoltaic) systems. They presented a comprehen-

sive review of modelling a grid-connected EV-PV system

via, control architectures, charging algorithms, and uncer-

tainty analysis. With this, EVs are various advantages like

environmentally friendly, low noise production etc. to use

EVs in the smart grid. But, some problems, such as energy

consumption by EVs, are unstable and unpredictable [56].

However, EVs are sensitive to the decisions taken by their

owners, which specifies their charging/discharging rates and

the payments. For example, the authors in [57] proposed a

both models, such as DR management and energy trading for

EVs in an off-grid system. The hierarchical decision-making

scheme of this model has been analyzed as a single-leader-

heterogeneous multi-follower Stackelberg game. Their simu-

lation results show that the transaction price decreases in the

proposed market model as compared to an existing energy

market models. Similarly, the authors in [58] discussed the

network topology of energy trading for EVs in the smart grid,

which has been considered as a multi-leader multi-follower

Stackelberg game. Hence, by designing optimal game theo-

ries, EVs are accelerated to provide additional assistance to

the V2G network and help to meet the service demand of the

smart grid.

From the above-mentioned incentive-based approaches,

we observed that game theory is one of the most popular and

widely used techniques for energy trading in the smart grid.

It optimizes the utility function that captures the tradeoff be-

tween economic benefits and related costs, such as reducing

battery life, storage efficiency, etc. in energy trading.

B. SIMULATION MODELS

The simulation model-based study is used to exemplary the

management and performance of multiple type of models

at different scale of decision-making processes in the smart

grid. These multiple models are the use of statistical learning

algorithms such as reinforcement learning [59], Q-learning

[60], so that energy traders can acquire long-term policies

based on profit standards in an autonomous way [61], [62].

1) Reinforcement Learning

It is an area of machine learning in which the products depend

on the present input state and the next computation of product

depends on the previous product output. In this learning,

the output decision is dependent on the parameters that has

been decided for the production [63]. Initially, reinforcement

learning has been used for video and strategy board games

but recently used for optimizing the storage of energy and

generation of energy from RERs in the smart grid [64]–

[66]. The optimal energy trading approach depends on the

dynamic demand-supply and time-varying energy prices in

the grid. Hence, it is very difficult for the grid to acquire

such information in time [67], [68]. So, many researchers

have used reinforcement learning that impacts the grid’s

future battery level and trading policies. For example, Chen

et al. [69] described the learning module based on deep

reinforcement learning in a holistic market model design as

shown in Figure 5. The local energy market in the smart

grid facilitates short-term and prompt energy exchanges [52].

The DSO or distribution network operator (DNO) is used

for the regulation of energy markets in the smart grid having

reinforcement learning. The utility providers provide energy

not only to customers but also attempt several retail plans for

long-term policies. Meantime, energy producers also develop

their energy exchange approaches having several energy

devices such as batteries and distributed energy resources.

A local energy exchange can be satisfied by the advantage

of the present distribution line and smart meters for billing

and payment [70]. The authors in [71] developed a model

for energy trading in the smart grid having reinforcement

learning. This model optimizes the micro-grid battery level,

estimation of energy generation from renewable energy re-

sources, and the current demand of electricity in the smart

grid. However, its performance degenerates at the large-scale

of the smart grid with strict energy demand estimation error

and latency [72]. To enhance the energy trading in the micro-

grids, the authors have compared the deep reinforcement

learning-based algorithms such as Proximal policies optimal

(PPO) and Deep deterministic policy gradients (DDPG) [73].

Zhang et al. [74] proposed a deep reinforcement learning-

based double auction energy trading scheme to maximize the

benefits of all agents, i.e., buyers and sellers. Their simulation

results show that profits has increased for sellers and cost

has decreased for buyers. Similarly, Lu et al. [75] proposed

a deep reinforcement learning model for energy trading to

solve the demand-supply mismatch problem and to optimize

the battery level of the grid. Their simulation results based
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on the smart grid with three micro-grids each equipped with

wind turbines show that this scheme increases the micro-grid

utility compared to the existing schemes. Shateri et al. [76]

proposed a deep reinforcement learning algorithm named

deep double Q-learning to manage the privacy cost in smart

meters during energy trading in the smart grid. Wang et al.

[77] proposed an energy trading model based on the repeated

game in which each micro-grid chooses its approach indi-

vidually and randomly for trading and maximize its revenue.

They have used two learning automation algorithms based

on reinforcement learning that protects the grid’s private

strategy. Similarly, Peters et al. [78] used autonomous broker

agents with reinforcement learning between sellers and buy-

ers, which can operate in smart electricity markets and ensure

profit-maximization and long-term energy trading policies. In

the same way, the authors in [79] used broker agents modeled

with MDP and Q-learning techniques.

Q-Learning is a classic form of reinforcement learning

Minutes-Hours            Event-driven Month-Year Daily

Time Scale

Prosumers Retail Energy 
Broker Electric Utility DSO/DNO

Holistic Market Model and Local Energy Trading Framework

Intelligent Local 
Energy Trading

System Reliability 
Check

Retail Plan 
Recommender

Self-Adapted 
Learning Module

Long-term retail 
contract

Buy/Sell

Local market 
price

Event-driven
Security check

Available system 
operation margin

FIGURE 5: Holistic energy trading model based on rein-

forcement learning [69]

that uses Q-values (also known as action values). These

action values improve the performance and efficiency of

learning agent iteratively. This learning algorithm helps to

make long-term trading policies for traders independently.

For example, the authors in [70] proposed an indirect user-

to-user energy trading model in a localized event-driven

market. They utilized reinforcement learning techniques built

on MDP with a modified Q-learning to benefit all market

participants. Furthermore, the work discussed by the authors

in [80] proposed simulation-based modelling for local energy

trading.

As per the discussion and existing proposals on simulation

models, we observed that there is a need for more research on

simulation models so that energy trading mechanisms utilize

the deep reinforcement learning adequately and efficiently in

the smart grid.

C. MATHEMATICAL MODELS

As time passes, there is an exponential increase in energy

demand [81]. If this energy demand is not controlled and

coordinated by equivalent energy response then there is a

cause of peak hour load that leads to frequency deviation

from normal values. This whole deviation destroys the energy

trading system. So, various techniques must be executed

by utility companies to assuage energy demand and control

this balance. The strategy can either be used RERs for

trading during off-peak timings to control and assuage the

high energy demands or to handle the power grid units to

generate high amount of energy that completes the demand

of trading. However, this may result in high maintenance

and operational costs and reduce performance because of

underutilization. In this case, mathematical models are ca-

pable to find an optimal energy load to be traded. By the

mathematical models like mixed-integer linear programming

(MILP) [82], convex optimization [83], particle swarm op-

timization (PSO) [84], Lyapunov optimization [85], many

researchers described the energy trading in the smart grid.

These optimization techniques help study the effects of dif-

ferent components in energy trading and make predictions

about behavior [86]. For example, Alam et al. [87] proposed

an energy cost optimization algorithm to minimize the total

cost of energy trading. Their simulation results show that

99% of solutions provided by this optimization algorithm are

optimal ones. Lin et al. [88] established a model based on

MILP to optimize the decision of a single end-user, which

further decides the charge/discharge of the energy storage

and the EVs on the Internet of Energy. Similarly, Zhong et

al. [89] used the MILP for non-convex-based social welfare

maximization and energy trading problems between the buy-

ers and the sellers in a cooperative energy market. Alam et al.

[90] addressed the residential energy cost optimization prob-

lem in the smart grid. The authors break down the mixed-

integer non-linear programming (MINLP) problem having

NP-hard complexity into multiple MILP modules and solve

these modules iteratively. They have maintained the Pareto

optimality so that no households are worse-off to improve

the cost of others. In this paper [91], authors presented a

distributed convex optimization technique for energy trading

among various micro-grids. Their main aim is to minimize

the total operational cost of the system by optimal exchange

of energy by the micro-grids. Their simulation results show

that the cost minimization algorithm proved convergence

over non-connected micro-grids. Similarly, the authors in

[92] proposed a centralized and distributed solution for en-

ergy trading between two micro-grids. The central controller

has accessed all the information, whereas a distributed ap-

proach solved a local optimization problem iteratively. They

have used a convex optimization technique, which minimizes

the transportation cost of energy exchange and total cost of

the energy generation. Ramachandran et al. [93] employed

a PSO scheme to minimize the cost of energy generation

for realistic energy market prices, distributed generator bids
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chasing operational costs, and load bids as per consumers’

priorities. They have used an auction process for the trading

strategy. Their simulation results indicate that the viability

and efficiency of the proposed system reduce the cost of

energy by 37% as compared to the conventional method

reduces only up to 35%.

In an another case, the energy generation from RERs

and stochastic optimization methods used that addresses the

ambiguity, mistrust, and uncertainty in energy generation. In

this context, the authors presented a model in [94] where

they proposed a profit maximization problem from con-

sumers standpoint using stochastic programming. Similarly,

Do Prado and Qiao [95] proposed a decision-making energy

trading scheme between the customers and energy retailers.

The authors have considered the stochastic native of DR

participation of customers, which is solved by MILP. Hu

et al. [96] proposed an energy management scheme in a

micro-grid with multiple conventional generators, renewable

generators, and energy storage systems. They have presented

a robust two-stage optimization approach using Lyapunov

optimization, which meets quality-of-service (QoS) to handle

large difficulties in the load demands and renewable energy

generation, and provides an efficient solution under limited

computational resources.

From the facts discussed in mathematical models, we

found that optimization techniques used in energy trading

mechanisms are highly useful. Further, these techniques op-

timizing energy consumption and energy transmission cost.

Table 3 shows the detailed summary of the existing proposals

mentioned in the problem taxonomy of energy trading in the

smart grid.

IV. SOLUTION TAXONOMY FOR ENERGY TRADING:

ENABLING TECHNOLOGIES

This subsection discusses three enabling technologies for

future energy trading in the smart grid, such as SDN, Energy

Internet, and blockchain. These technologies are used in

the energy trading mechanism because the traditional power

system is highly dependent on a central authority that leads

to a single point of failure. Also, there is a chance of de-

struction of private information of the participants, which

causes security and privacy issues in the energy trading. So,

to resolve and address these issues, we explore the energy

trading mechanisms in terms of enabling technologies. The

detailed view of these technologies is described as follows.

Figure 6 shows the representation of solution taxonomy.

Solution Taxonomy 
for 

Energy Trading

A. Software-defined 
networking  

[103]

B. Energy Trading
[108, 109]

C. Blockchain 
[19], [125-134], 

[136-164], [167-171]

FIGURE 6: Solution taxonomy for energy trading in the

smart grid

A. SOFTWARE-DEFINED NETWORKING-BASED

ENERGY TRADING

Power routers play an important role in energy trading, which

provides various key functionalities such as bi-directional en-

ergy flow, energy conversion i.e. kinetic energy to electrical

energy and vice-versa, routing, and transmission scheduling.

It is one of the core elements of the Energy Internet that

provides bidirectional communication and two-way energy

flow. For adequate, efficient, and effective management of

power routers, there is a need for an influential routing,

coordination, and powerful communication that are essential

between routers to achieve global stability. In this context,

many researchers have proposed a SDN architecture as a

possible solution for managing the network infrastructure

in smart grid [98]–[102]. Unlike traditional networking sys-

tems, SDN allows the rules of centralized control system and

follows the dynamic configuration of network devices. We

observed from the literature survey that SDN-based network-

ing had been used in the existing smart grid systems for better

efficiency and achieves better QoS. For example, the authors

in [103] suggested an SDN-based networking architecture

for digital grids routers in which control, data, and energy

planes are separated. The control plane is referred to as a

part of a centralized software controller. There are software-

defined data and energy controllers used for data and energy

flow control in this plane, respectively. In the data plane,

various data types have been generated and transmitted. In

contrast, in the energy plane, distributed renewable resources

and energy storage are deployed at the user side and P2P

energy trading can also done.

From the aforementioned facts, we believed that a SDN-

based communication network could provide improved en-

ergy scheduling and energy optimization. Moreover, novel

and efficient routing algorithms should developed to improve

energy trading performance and quality in the smart grid

system. Figure 7 shows the proposed SDN-based architecture

used for energy trading in the smart grid. This architecture

has three planes include control plane, data and energy plane,

and infrastructure plane. It provides a better solution to

energy trading to control and manage the data and energy in

the smart grid. Thus, an essential feature of this architecture

is the separation of the control, data, and energy planes. The

technologies in the three planes, such as controllers, network

devices, and grid devices, can be developed independently.

These devices can communicate with each other by open

interfaces and makes the infrastructure more flexible and

energy-efficient. The control plane is used to manage the

data dynamically and energy plane with their respective

controllers. This plane achieves programmability and flexible

cooperation between data and energy plane. The data plane is

responsible for providing energy-related data services, while

the energy plane is responsible for physical energy flow

control. The infrastructure plane is referred to as a layer of

users. The bottom layer of Figure 7 shows the three scenarios,

such as micro-grid, V2G, and energy harvesting networks,
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TABLE 3: Detailed summary of the existing proposals described in the problem taxonomy

Reference Model Type and No. of traders sup-

ported by Model

Privacy

Consid-

eration

Consider-

ation of

RERs

Consider-

ation of

EVs

Energy-

efficient

Cost-efficient by

means of energy

production +

transportation cost

[29] Vickrey-Clarke-Grove auction

mechanism

Manager and user within

multi-energy district. Fulfilled

three essentials truthfulness,

individual rationality,

economic efficiency

× × × ✓ ✓

[30] Auction mechanism 1000 households within smart

grid. Fulfilled three essentials

truthfulness, individual ratio-

nality, economic efficiency

× × ✓ ✓ ✓(Social cost)

[31] Auction mechanism Multiple Micro-grids.

Fulfilled three essentials

truthfulness, individual

rationality, economic

efficiency

× × ✓ ✓ ✓(Social cost)

[35] Price theory Local prosumeras nad con-

sumers

× × × × ✓(Energy trading

cost)

[36] Price theory Prosumer-to-Prosumer × ✓ × ✓ ✓(Energy trading

cost)

[37] Price theory Any number of traders × × × ✓ ✓(Energy trading

real-time pricing)

[41] Bargain theory 4 Micro-grids ✓ ✓ × ✓ ✓

[42] Bargain theory Among Micro-grids × ✓ × ✓ ✓

[43] Bargain theory Among Micro-grids × ✓ × ✓ ✓

[45] Contract theory Multiple electricity suppliers

and single aggregator

× ✓ × ✓ ✓

[46] Contract theory One electricity consumer and

80 small-scale electricity sup-

pliers

× ✓ × ✓ ✓

[47] Contract theory Multiple electric vehicles and

one energy switch center

× ✓ ✓ ✓ ✓(maximum profit

to energy switch

center)

[48] Stackelberg Game theory Multiple Prosumer and Single

Consumer

× × × ✓ ✓

[49] Stackelberg game theory + re-

inforcement learning + double

auction

10 Micro-grids each having

100 appliances randomly

chosen between low/mid/high-

flexible appliances

× ✓ ✓ ✓ ✓(transmission

cost)

[50] non-cooperative game theory Local Consumers × × × ✓ ×

[51] cake-cutting game theory Any number of energy users ✓ × × ✓ ✓(energy trading

cost)

[52] Stackelberg game theory 7 no. of providers × × × ✓ ×

[53] Game theory Multiple buyers and sellers ✓ ✓ × ✓ ✓(energy cost)

[54] Game theory Buyer and seller × ✓ × ✓ ✓(energy cost)

[57] Stackelberg Game theory 8-10 electric vehicle’s users × ✓ ✓ ✓ ✓(energy cost)

[58] Stackelberg Game theory 5000 electric vehicles and 4

micro-grids

× ✓ ✓ ✓ ✓(energy

generation cost)

[69] Deep reinforcement learning

model

Multiple electric vehicles and

one energy switch center

× ✓ × ✓ ×

[71] Game theory + Deep rein-

forcement learning model

Multiple micro-grids × ✓ × ✓ ×

[70] Reinforcement learning model

+ Markov decision process

Customers and Prosumers × ✓ × ✓ ✓

[72] Energy management model 30 users within micro-grid ✓ ✓ × ✓ ✓(Communication

cost)

[73] PPO and DDPG 3 villages Northern Kordufan

State, Hamza ELsheikh, Tan-

nah, and Um Bader

× ✓ × ✓ ✓

[74] Double Auction, Deep Rein-

forcement Learning

10,000 training episodes with

each has 24 training steps

× × × × ✓

[75] Deep reinforcement learning Three micro-grids × ✓ × ✓ ×

[76] Deep reinforcement learning,

Q-learning algorithm, Deep

double Q-learning

Data set ✓ ✓ × ✓ ✓

[77] Reinforcement learning model

+ Stackelberg game theory

Among micro-grids ✓ × × × ×

[78] Reinforcement learning model Broker agents × × × ✓ ×

[79] Reinforcement learning model

+ Markov decision process

Broker agents × × × ✓ ×

[80] Simulation model Agent-based simulation × × × ✓ ✓

[87] Bi-linear optimization model Datasets collected in Ottawa

Canada [97]

× ✓ ✓ ✓ ✓
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Reference Model Type and No. of traders sup-

ported by Model

Privacy

Consid-

eration

Consider-

ation of

RERs

Consider-

ation of

EVs

Energy-

efficient

Cost-efficient by

means of energy

production +

transportation cost

[88] Mathematical mixed-integer

linear programming model

Energy storage and electric ve-

hicle of an individual

× ✓ ✓ ✓ ×

[89] MILP-Based Nash Bargaining

Solution

15-node network with 2 sellers

and 13 buyers

× ✓ × ✓ ✓

[90] Mixed-integer linear program-

ming model

Tesla Model 3 2017 and Tesla

Powerwall 2

× ✓ ✓ ✓ ✓

[91] Convex optimization model "M" no. of multiple micro-

grids

✓ ✓ × ✓ ✓

[92] Convex optimization model Two micro-grids × ✓ × ✓ ✓

[93] Particle swarm optimization Local prosumer and consumer × ✓ × ✓ ✓

[94] Stochastic programming end-users (homes, buildings,

and communities)

× ✓ × ✓ ✓

[95] Stochastic optimization PJM historical data × ✓ × ✓ ✓

[96] Lyapunov optimization Multiple micro-grids × ✓ × ✓ ✓

which are used for energy trading in the smart grid.
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FIGURE 7: SDN-based energy trading architecture in the

smart grid

B. INTERNET OF ENERGY-BASED ENERGY TRADING

Today’s energy trading of the smart grid accommodates only

power energy. However, energy can be generated from re-

newable and non-renewable energy resources such as chem-

ical, thermal, and electromagnetic. From the study, we ob-

served that the next generation will not only limited to

electrical energy for energy exchanges but will incorporate

all energy resources. The new and latest power systems are

being created from this interconnection, which is known

as Energy Internet [104]. It is anticipated as the Internet

of energy networks, which aggregates all energy resources

in an open inter-connection similar to the Internet. It is

the the combination of information technology (IT), power

and electronics technology (PET), and smart management

technology, and a large number of power networks, which are

composed of distributed energy storage devices and various

types of loads. Moreover, it provides flexible energy schedul-

ing, bidirectional energy flow, and power conversions from

one energy to other in the smart grid [105]. So, it is one of the

promising technologies for P2P energy trading, and its con-

sequences have been discussed in [106], [107]. According to

the [108], Energy Internet solves a peak load shifting method

in energy trading. The authors provided a P2P energy trading

framework to end-users to trade the stored energy in their

respective distributed energy storage facilities. Similarly, Lin

et al. [109] proposed a energy sharing between the houses of

the smart grid via Energy Internet. Their simulation results

show that after sharing the energy, each house make a high

profit in one day as compared to the existing energy sharing

methods.

However, Energy Internet is developing technology that

has not been consistent and standardized in the real world. Its

concepts and methods have not yet been fixed, which makes

it an interesting area for future investigation. But, energy

trading based on the Internet-of-Energy (IoE) can encourage

end-users to develop and store renewable energies to address

energy issues (electricity demand) in the smart grid.

C. BLOCKCHAIN-BASED ENERGY TRADING

A big limitation in an existing V2G network is the lack

of privacy and security of the energy transactions between

consumers and prosumers [110]. The conventional energy

trading architecture in the smart grid leads to high oper-

ating costs, high maintenance cost with low performance

and productivity [18]. In an another way, a P2P energy

trading architecture having blockchain offers a distributed

platform that provides secure energy exchanges [111], [112].

In the traditional energy sector, due to high amounts of

carbon emissions produced by the high carbon intensity of

combustion of fossil fuels, which leads to air pollution and

irreversible effects of climate change. Facing these environ-

mental issues, on one hand, facilitate distributed RERs to

be integrated into distribution systems for carbon mitigation

and transmission efficiency. On the other hand, the authors

have formulated a carbon pricing scheme using blockchain

to charge carbon producers for allowances to phase out
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the power plants with extremely high carbon intensities.

[113]. Blockchain is an emerging technology, which en-

sures immutability, security, privacy, tamper-proof payment

transactions in an energy trading of the smart grid [114],

[115] [116]. It allows verification, exchange, and the public

storage of information in a distributed manner. It prevents the

information from being changed or manipulated and provides

verifiable of historical events and user anonymity without the

involvement of central authority [117], [118]. The identity

privacy and authentication of energy transactions are higher

in a distributed platform instead of traditional platform [119],

[120]. Also, this technology promotes electronic contracts

named smart contracts between the energy prosumers and the

energy consumers [121]–[124]. Moreover, it also supports

the energy trading between the EVs that dynamically enter

and leave the network in the smart grid system. These char-

acteristics make the blockchain a viable solution to serve the

distributed energy exchange market. In this context, Saxena

et al. [125] proposed a blockchain-based P2P energy trading

scheme that reduces peak demand and smart home electricity

bills. Their simulation results show that peak demand re-

duces with weekly savings in a Canadian micro-grid using

the Hyperledger platform. Having the same platform, the

authors in [126] demonstrated a P2P energy trading and

energy sharing model having blockchain that reduces energy

consumption at peak hours [127]. In a same way, Jamil et

al. [128] proposed an energy model based on blockchain

having Hyperledger Fabric network between the prosumers

and the consumers to aggregate the information for moni-

toring real-time load. They have also used the data analytics

technique for extracting hidden patterns and information for

right decision-making and managing energy distribution. Ab-

della et al. [129] proposed Istanbul Byzantine fault tolerance

(BFT) consensus having permissioned blockchain for energy

trading in the smart grid. They have compared the proposed

consensus with the existing ones such as ethereum clique,

Hyperledger Fabric, and proof-of-work (PoW) and show

the results that the proposed consensus has 15 times low

latency and double the throughput. Khorasany et al. [130]

proposed a proof of location consensus that provides location

awareness in P2P energy trading of the smart grid. Petri et

al. [131] implemented a P2P energy trading framework to

support energy clusters and study the interactions between

producers and consumers in the power grid. Their simulation

results show that this implementation reduces the fluctua-

tion in energy exchanges and costs. Similarly, Khalid et al.

[132] implemented a hybrid P2P energy trading model using

blockchain that reduces cost and peak to the average rate of

electricity in the smart grid. In the same way, Aggarwal et al.

[133] proposed a blockchain model for storing and accessing

the data generated by smart homes in a secure manner. The

model has 3 phases: 1) selecting smart home as miner node

based on power capacity, 2) a block creation and validation,

and 3) transaction handling for secure energy trading. Their

evaluation results show that EnergyChain model performs

better in terms of communication cost and computation time

than the existing models. Wang et al. [134] proposed a

minimum cut maximum flow theory to schedule distributed

energy sources. They have used blockchain to record the

information and management of power energy trading. Their

simulation results show that the proposed system is cost-

efficient for power energy consumption than the existing

ones.

With this, game theory has been widely used for design-

ing and analyzing energy systems. In this context, many

researchers have used dynamic programming to maximize

the benefits for trading participants [135] while others have

used the incentive models and game theory for the purpose

and framework of P2P energy trading in the smart grid [136].

These P2P energy trading models reduce the burden of elec-

tricity on a centralized power system to balance the load on

the peak demand period [137], [138] and increases the profit

of energy market participants [139], [140]. In addition, Esmat

et al. [141] used the ant colony optimization with auction

in a blockchain-based energy trading to provide fast trading

settlements, security, and high level of automation. The main

aim of blockchain-based energy trading is to inspire and

strengthen the energy trading users to trade energy with one

another so that the charging rates of central power stations

may not affect the productivity and efficiency of the P2P

energy trading [19], [142]. For example, Hassija et al. [143]

proposed a blockchain-based protocol, i.e., directed acyclic

graph for energy trading in V2G networks. They have used

the game theory for the negotiation between the vehicles

and the grid at an optimized cost [144]. Similarly, Liu et al.

[145] proposed a non-cooperative Stackelberg game model

to discuss the relationship between the sellers and the buyers

in P2P energy trading. In the same way, Anoh et al. [146]

proposed a Stackelberg game-theoretical model to secure the

interactions between producers and the consumers in a virtual

micro-grid. Their simulation results show that their trading

model gives higher benefits to the trading participants than

the other existing game models. Ullah et al. [147] proposed a

two-tier clearing market model in a distributed P2P energy

trading of smart grid that improves the economic benefits

than conventional single-tier market model. Similarly, Elka-

zaz et al. [148] proposed a decentralized-based and hierarchal

P2P energy trading model for the management of energy of

smart homes. They have used the MILP and shows the cost

reduction in annual household energy management system.

Chen et al. [149] proposed an incentive-based game theory

model to secure energy trading between the EVs. To provide

consistency in the data blocks, they have used a practical

byzantine fault-tolerant (PBFT) mechanism that increases

transaction throughput and reduces transmission delay. Their

simulation results show that this model saves 64.55% com-

munication overhead as compared to the existing models.

In addition, Zhou et al. [150] proposed a blockchain-based

secure energy trading for information asymmetry. They have

used the contract theory and solves the optimization problem

by the convex-concave algorithm. Their evaluation results

show that the proposed model has achieved a high successful
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probability in block creation for energy trading transactions.

Morstyn et al. [151] developed a bilateral contract networks

between energy generators and consumers. Their network

ensures scalability and price adjustment among traders.

Some researchers have used the P2P energy trading model

to solve security and privacy problems in energy trading. In

this context, the authors in [152] used the state channel-based

energy trading that increases the throughput of blockchain

and solves security and privacy problems in the smart grid.

Similarly, Lu et al. [153] proposed a blockchain-based re-

newable energy trading model to provide security and privacy

in the smart grid. Their evaluation results proved that the

model gives high operational efficiency and low compu-

tational overhead. In a same way, Guan et al. [154] pro-

posed an efficient secure and privacy-based energy trading

scheme. They have used the attribute-based encryption with

blockchain technology having credibility-based equity proof

mechanism. Mezquita et al. [155] developed a smart con-

tract on the Ethereum platform for blockchain-based energy

trading in a micro-grid. This model provides security to

the traders and ensures minimal energy cost and profitable

energy production. In the same way, Gai et al. [156] solved

the problem of privacy leakage in P2P energy trading us-

ing blockchain. Yi et al. [157] proposed a homomorphic

encryption scheme for blockchain-based energy trading that

provides privacy-preservation to the electric vehicles in the

smart grid. Kang et al. [158] proposed a localized P2P elec-

tricity trading system with consortium blockchain method

to achieve trust and secure electricity trading. They have

used the auction mechanism to optimize electricity pricing

and traded electricity among Plug-in hybrid electric vehi-

cles (PHEVs). Similarly, Muzumdar et al. [159] proposed a

Vickrey auction for blockchain-based P2P energy trading that

ensures trustworthy, average throughput, and average cost-

efficient. They have used the proof-of-stake (PoS) consensus

having ethereum platform to aggregate the information of

energy trading in the smart grid. In an another work, Hassan

et al. [160] developed a differentially private energy auction

for the blockchain-based micro-grid system, which modifies

the Vickrey–Clarke–Groves auction mechanism. Their auc-

tion mechanism performs better in terms of cost, security,

and privacy. It outperforms the traditional mechanisms to

maintain the profit of overall network and social welfare and

also maximizing the sellers’ fund. Doan et al. [161] proposed

a double auction mechanism for energy trading scheme in the

smart grid. They have used the blockchain technology and

maximizes the profit of all participants who are participated

in the network and to achieve social welfare. Similarly,

Guerrero et al. [162] proposed a P2P energy trading model

based on continuous double auction and stable matching

algorithm to find the shortest path between the agents. Their

evaluation results show that the proposed system reduces the

losses and line congestion in the energy markets. In the same

way, Bandara et al. [163] proposed a flocking-based double

auction in a decentralized P2P energy trading. Their trading

model shows that they have 80% successful trading simula-

tion results within neighbourhoods. In addition, Gomes et al.

[164] proved by a case study that auction-based P2P energy

trading decreases the energy costs without the need for load

shifting consumption optimization or the acquisition of new

equipment.

There exists a finite number of articles based on distributed

P2P energy trading having blockchain [165]. However, it is

a new technology and their integration with smart grid is not

yet examined and analyzed to its full potential. Moreover, in

many countries, blockchain-based standards and regulations

do not recognize for P2P energy markets in the smart grid

[166]. Hence, proper energy rules and standard need to be

modified and explored before the implementation of P2P

energy markets. In this context, Lu et al. [167] have discussed

the blockchain technology in SDN-based distributed energy

trading scheme in the Energy Internet. First, in a distributed

Energy Internet architecture, the sheer volume of data makes

it difficult for centralized systems to meet demand. Second,

the security and privacy-preserving of distributed systems are

difficult to solve. So, the authors have used RERs for energy

generation, blockchain technology for protecting the privacy

of energy transactions, and SDN has been applied to operate,

control, and manage all parts of the system model as shown

in Figure 8. Similarly, Chaudhary et al. [168] proposed an

SDN in secure energy trading using blockchain in the smart

transportation system. The distributed secure system used to

authenticate, audit,verify, and validate the EVs participating

in the network. Qian et al. [169] proposed a secure and

efficient scheme for data aggregation in the smart grid. The

authors have used homomorphic encryption that reduces the

computation cost and resist quantum attacks on the data. It

also provides security, data privacy and data integrity on the

aggregated data in the smart grid. Similarly, Chen et al. [170]

discussed the security, privacy, and anonymity in exchanges

of energy flows and financial activity in the smart grid

using blockchain implementation. Liu et al. [171] proposed

a blockchain-based renewable energy incentive-based power

trading mechanism in the smart grid. This framework pro-

vides security to the participants and improves the efficiency

of power trading and renewable energy consumption. With

security and privacy of the agents, the privacy-preservation

of smart meter data in the smart grid is also a major concern

[172]. For example, Shen et al. [173] presented a privacy-

preserving two-level random permutation method adequately

and securely between massive meter data and their sources

in the smart grid. Similarly, Mohammadali et al. [174]

presented a privacy-preserving homomorphic scheme with

multiple dimensions and fault tolerance for metering data

aggregation in the smart grid. In the same way, Sanduleac

et al. [175] Proposed a framework for knowledge extraction

from high reporting rate smart meters data to enhance the grid

monitoring services with privacy-preservation of the user.

By gaining the knowledge from literature review, we de-

signed a P2P energy trading architecture using blockchain

technology as shown in Figure 9. In this architecture, the

energy coins are transferred from an energy buyer’s wallet
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address to the energy seller’s wallet address after the energy

exchanges between them. The memory pool of energy ag-

gregators (EAG) has latest energy blockchain data for veri-

fying the payment transaction. The new transaction records

generated by the energy buyers are uploaded to EAGs for

auditing, which are further verified and digitally identified

by the energy sellers. Therefore to obtain the proper balance

between demand and supply on a blockchain energy, we

implement incentives that reassure energy nodes to fulfil the

energy demands out of self-interest. As per the duration of

an energy trading, the energy seller is rewarded with energy

coins with the contribution of energy exchanges between the

energy sellers and the buyers. The PoW consensus mecha-

nism is used on a blockchain to verify and validate the energy

transactions between the energy sellers and buyers.

Table 4 shows the detailed summary of existing proposals

mentioned in the solution taxonomy of energy trading inthe

smart grid. It includes various parameters such as technology,

type and No. of traders supported by the model, privacy

and security, consideration of EVs, consideration of RERs,

and cost-efficient energy production and transportation cost,

which describes the difference among various existing pro-

posals having enabling technologies.

Energy 
generation

Energy 
consumption

Blockchain Network

SDN

FIGURE 8: Blockchain-based distributed energy trading in

Energy Internet: SDN-driven approach [167]

V. FUTURE RESEARCH DIRECTIONS

To manage the demand and supply of electricity during

energy trading is an interesting field of research. In this direc-

tion, a very less efforts have been done by the researchers and

much more can be done. Here, we discussed some research

directions based on P2P energy trading, which are described

as follows.

Transaction 
record

Energy 
Blockchain

EAG

Energy 
sellers

Energy 
buyers1.Seller      Buyer: Energy

3.Consortium Blockchain

2.Buyer      Seller: Energy 
coins or tokensWallet Wallet

4.Credit4.Credit

Energy aggregator

Memory 
pool

Account 
pool

Credit 
bank Transaction server

Controller

EAG

EAG EAG

EAG

EAG

FIGURE 9: Architecture for P2P energy trading in the smart

grid

1) Inter and Intra-community trading: In an energy

trading, a energy producer should itself chose and have

rights to choose whether it prefers to exchange en-

ergy with the consumers of intra-community or inter-

community. Similarly, there is a need for policies and

methodologies ready in the energy market to solve

this confusion, accommodating such flexibility to pro-

sumers.

2) Privacy Consideration: The power system in the

smart grid continuously collects data from micro-grids,

V2G networks, which may cause some violation of the

privacy of the participants. Data privacy in the smart

grid is a major concern because this data may be used

in various applications for analyzing and predicting

data accuracy. So, blockchain-based P2P energy trad-

ing is a viable solution to ensure security, privacy, and

tamper-proof data sharing among the prosumers and

the consumers.

3) Security: The energy trading mechanisms in the smart

grid may face several attacks like distributed denial-of-

service (DDoS), denial-of-service (DoS), eavesdrop-

ping, hijacking, etc. at the time of energy exchange

among EVs, charging stations, and the grid. But

blockchain-based P2P provides immutability, trans-

parency, and security against attacks and maintains the

network security.

4) Electricity bill identification: Unlike traditional

power systems, the users generate electricity, where
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TABLE 4: Detailed summary of the existing proposals described in the solution taxonomy

Reference Technology Model Type and No. of traders

supported by Model

Privacy

and

Security

Consider-

ation of

EVs

Consider-

ation of

RERs

Cost-efficient by

means of energy

production +

transportation cost

[103] SDN-Centralized SDN approach Three groups of energy

service providers

customers

× ✓ ✓ ✓(energy generation,

storage and transmis-

sion cost)

[108] Energy Internet-

Decentralized

Mathematical

programming

model

Smart energy building

and smart polygenic

micro-grid

× × ✓ ✓(energy cost)

[109] Energy Internet Hybrid approach

with harmony

search

- × × × ✓

[111] Blockchain-

Decentralized

- Consumers and

Distribution system

Operator-Ethereum

implementation

× × × ×

[113] Blockchain-

Decentralized

Pay-to-public hash

with multiple signa-

tures

Number of 7 prosumers ✓ × ✓ ✓

[125] Permissioned

Blockchain-

Decentralized

Auction mechanism 4 smart homes within

Canadian Kontright Cen-

tre Micro-grid

✓ ✓ ✓ ✓

[127] Permissioned

Blockchain-

Decentralized

Proof-of- Energy

Generation and

Proof-of-Energy

Consumption

Number of 5 prosumers × × ✓ ✓(energy consumption

cost)

[128] P2P Blockchain Predictive analysis

(RNN model)

Dataset of smart grid

with 1,16,189 instances

✓ × ✓ ✓

[129] Blockchain Istanbul BFT HyperledgerBesu with 10

validator nodes

✓ × × ×

[130] Blockchain-

Distributed

Proof of Location

mechanism

IEEE-33 bus system with

14 producers and 18 con-

sumers

✓ × × ✓

[131] P2P-Decentralized Cluster Federation Number of energy pro-

ducers and consumers

× ✓ ✓ ✓(energy consumption

cost)

[132] Blockchain-

Decentralized

Smart Contracts on

Ethereum

600 electricity prosumers

and 400 consumers

✓ × ✓ ✓(energy consumption

cost)

[133] Blockchain-

Decentralized

EnergyChain - ✓ × × ✓(communication

cost)

[134] Blockchain-

Distributed

Minimum Cut Max-

imum Flow theory

China Southern Power

Grid Data

✓ × × ✓

[135] P2P-Decentralized Dynamic

programming +

Auction mechanism

1 seller and 4 buyers

within micro-grid

× × ✓ ×

[137] P2P-Centralized Game theory + Auc-

tion mechanism

Number of 12 prosumers × × × ✓(energy production

and transmission cost)

[138] Blockchain-

Decentralized

- - ✓ × × ✓(energy production

and transmission cost)

[139] P2P-Centralized Non-cooperative

game theory

20 photovoltaic house-

holds and 30 electric con-

sumers

× × ✓ ✓(energy production

and transmission cost)

[140] Blockchain-

Decentralized

Reverse auction

mechanism

5 charging and 6 dis-

charging electric vehicles

✓ × ✓ ✓(electricity purchas-

ing cost)

[141] Blockchain Ant Optimization +

Auction mechanism

3 buyers & 3 sellers +

feeders with 17 primary

nodes with smart meter

✓ × × ✓

[19] Blockchain-

Decentralized

Auction mechanism

+ Game theory

Number of sellers and

buyers

× × ✓ ✓(energy production

and transmission cost)

[143] Blockchain-

Decentralized

Non-cooperative

game theory

3 grids and 10 electric ve-

hicles

× ✓ × ✓(energy selling cost)

[144] Blockchain-

Decentralized

- - × ✓ × ✓(electricity selling

cost)

[145] P2P-Distributed Non-cooperative

Stackelberg game

theory

4 micro-grids × × ✓ ✓(energy cost)

[146] P2P-Distributed Non-cooperative

Stackelberg game

theory

Number of 10 prosumers × × ✓ ✓(energy cost)

[147] P2P-Distributed Two-tier market

clearing

4 area with 9 prosumers × × × ×

[148] P2P-Decentralized Mixed-integer Lin-

ear Programming

Data of 4 houses in com-

munity

× × × ✓
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Reference Technology Model Type and No. of traders

supported by Model

Privacy

and

Security

Consider-

ation of

EVs

Consider-

ation of

RERs

Cost-efficient by

means of energy

production +

transportation cost

[149] Blockchain-

Decentralized

Elliptic curve +

Game theory

2 average number of

electric vehicles

✓ ✓ × ×

[150] Blockchain-

Decentralized

Contract theory +

Stackelberg game

theory

Number of 20 electric ve-

hicles

✓ ✓ × ✓

[151] P2P-Decentralized Bilateral contract

theory + Game

theory

Micro-grid with diesel

generator, an intermedi-

ate supplier and 25 pro-

sumers

× × ✓ ✓

[152] Blockchain-

Decentralized

State channel theory - ✓ × × ×

[153] Blockchain-

Distributed

Credibility-based

equity proof

mechanism

- ✓ × ✓ ×

[154] Blockchain-

Distributed

Credibility-based

equity proof

mechanism

- ✓ × ✓ ×

[155] Blockchain-

Distributed

Multi-agent system Negotiating between

agents in the micro-grid

× × × ✓(energy transmission

cost)

[156] Consortium

Blockchain-

Decentralized

Privacy-preserving

blockchain-enabled

model

Multiple neighboring

users in smart grid

✓ × × ×

[157] Blockchain Homomorphic

encryption

- ✓ ✓ × ×

[158] Energy Internet

+ Blockchain-

Decentralized

Double auction

mechanism

Real dataset: Urban area

of Texas

✓ ✓ × ✓(electricity pricing)

[159] Distributed-based

Blockchain

Vickrey Auction

mechanism

20 consumers and 19 pro-

sumers

✓ × × ✓

[160] Blockchain-

Decentralized

Game theory + Auc-

tion mechanism

50-250 buyers (if ’n’

buyers then, ’n-1’ sellers)

✓ × ✓ ✓(social welfare)

[161] Blockchain Double Auction-

based Stackelberg

Hyperledger (chaincode)

5-22 prosumers

✓ × ✓ ✓(social welfare)

[162] P2P-Blockchain Continous Double

auction mechanism

50 prosumers and 50 con-

sumers

✓ × ✓ ✓

[163] P2P-Decentralized Double auction

mechanism

Road network data from

California state (50

houses)

× × ✓ ×

[164] P2P-Decentralized Auction mechanism Weekly energy consump-

tion of local micro-grid

× × × ✓(energy pricing)

[168] Blockchain-

Decentralized

SDN-approach 200 electric vehicles, 10

charging stations, and i

transaction server con-

troller

✓ ✓ × ×

they do not use the whole energy network for energy

exchanges. Therefore, their electricity bills need to

be re-investigated and adjusted under the P2P energy

trading paradigm for transparency.

5) P2P energy trading: In traditional energy trading,

most of the power systems are worked under central

authority, which leads to a single point of failure. So,

there is a need for P2P energy trading in which traders

can trade electricity in any flow of direction, according

to the energy demand and supply. However, the benefit

of P2P energy trading to the distribution grid also needs

to be demonstrated.

6) Storage management: With P2P trading, each com-

munity has a different type of storage facilities such as

small batteries at the smart home users basis, medium

community storage at the community level, and grid

storage at the high level. So, there is a need for coor-

dination among these storage devices at all levels in an

economical and social way. Also, there is a need for

innovative scheduling and optimization techniques for

storage management in P2P energy trading.

7) Additional services to the grid: P2P trading has the

potential to attain a private, reliable, secure, and cost-

effective energy trading among participants and make

new alliances. So, there is a need for an extension

that finds how such smart appliances and new services

can help to provide better future in the smart grid to

the end-users, such as smart appliances operated with

virtual power plants.

8) Energy-efficiency: Energy consumption is the bottle-

neck of the EVs in smart grid communication. The

charging/discharging capacity of the EVs depends on

the energy present at their end. To enhance the energy-

efficiency of the EVs in the smart grid, green energy re-

sources, such as solar energy, wind energy are required

to charge the battery of the EVs.

9) Cost-efficiency: The prosumers can collect high rates

for trading electricity from the consumers to earn more

profit. So, there is a need for P2P energy trading that

provides a distributed platform between the producers

and the consumers to earn equally profit. Also, there

are several mechanisms used such as game theory,
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price theory, etc. to ensure optimized energy cost,

energy distribution, energy transmission, and energy

consumption at the time of P2P energy trading.

10) Smart contracts: A smart contract is a self-executing

contract with the rules and regulations of the agreement

that is directly written into programming lines of code.

These are used for distributed applications to build trust

between untrusted parties by making trust between

them without any interference of a central authority,

which may lead to various attacks (like mitm). Hence,

for secure smart grid system, a need of smart contract

solutions are required [176], [177].

11) Lacks of standards and organizations : Many in-

dustries and organizations like VISA, Walmart, IBM,

IEEE, and ITU are working on blockchain in various

sectors like healthcare, financial services, supply chain,

etc. to release new standards or upgrade versions in the

existing ones. With this, the integration of blockchain

with the other technologies is also explored. Still, there

is a requirement of laws and proofs to implement the

integration of blockchain with others in a real-time

world. So, proper technical standards are needed to be

developed to make efficient use of blockchain in P2P

energy trading.

VI. CONCLUSION

In this paper, we reviewed and examined the energy trading

mechanisms used in the smart grid. A discussion on the

four-layered architecture and requirements of the energy

trading mechanism is carried out. Then, we reviewed a prob-

lem taxonomy on several typical models, such as incentive,

mathematical, and simulation-based energy trading schemes.

Especially, we mainly targeted on the approved schemes in

which energy trading mechanisms constitute various design

challenges. Further, a solution taxonomy based on energy

trading having enabling technologies is discussed. From the

literature review, several unsolved issues were extracted in

energy trading between prosumers and consumers. Then, we

provide a viable solution on a large view on SDN, Energy In-

ternet, and blockchain, which provide efficient and effective

energy trading in the smart grid. Finally, some future research

directions have been considered based on our study.
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