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Abstract
Image interpolation is applied to Euclidean, affine and projective transformations in numerous
imaging applications. However, due to the unique characteristics and wide applications of
image interpolation, a separate study of their evaluation methods is crucial. The paper studies
different existing methods for the evaluation of image interpolation techniques. Furthermore,
an evaluation method utilizing ground truth images for the comparisons is proposed. Two
main classes of analysis are proposed as the basis for the assessments: performance evaluation
and cost evaluation. The presented methods are briefly described, followed by comparative
discussions. This survey provides information for the appropriate use of the existing
evaluation methods and their improvement, assisting also in the designing of new evaluation
methods and techniques.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interpolation of image-sampled data is required in many
consumer, medical and industrial imaging applications.
Image interpolation represents an arbitrary continuously
defined function as a discrete sum of weighted and shifted
basis functions. The ideal image interpolation algorithm
should preserve the qualitative characteristics of the output
image since interpolated images suffer from artefacts, such
as blurring, discontinuities in edges and checkerboard
effects. Furthermore, the applied methods should meet some
quantitative attributes especially when they are oriented for
real-time imaging applications such as mobile phones or digital
cameras. The algorithms should introduce low computational
cost and low memory requirements in order to meet the hard
real-time requirements of such implementations.

Widely used algorithms such as the nearest-neighbour
and bilinear interpolation [1] exhibit computational simplicity,
but severe blurring problems particularly in edge regions.
Linear approaches are those most frequently used due to
the fact that although nonlinear methods, such as bicubic
interpolation [2] and spline interpolation [3, 4], produce better

results they have a larger computational burden and involve
blurring. Edge-directed interpolations have been attempted
to overcome such shortcomings by applying a variety of
operators according to the edge directions [5, 6]. The
main disadvantages of this category are the need of an extra
processing stage for the edge extraction and their ability to
identify only certain angles of edges. A Markov random field
model-based edge-directed interpolation method is proposed
in [7] which relates interpolated images to the minimal energy
state of a 2D random field. Neural networks have also been
used for image interpolation [8]. These on the other hand
require a large number of cells in the networks, rendering
them computational-wise too intensive. Fuzzy interpolation
approaches have been proposed [9, 10] for two-dimensional
signal resampling, with optimal visual results but lack in
simplicity and might require additional processing for edge
identification. Area-based interpolation [11–13] computes
each interpolated pixel by proportional area coverage of a
filtering window which is applied to the input image. The
Mitchell and Lanczos [14, 15] interpolation methods use
a window function of limited spatial support in order to
reduce spectral leakage and loss of spatial resolution, requiring
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however a great amount of hardware resources. Adaptively,
quadratic image interpolation [16] has recently been reported
with very good visual results but the computational cost for its
coding remains its main disadvantage.

The development of image interpolation techniques has
attracted significant attention, but relatively fewer attempts
have been spent on their evaluation techniques. Several
and different evaluation techniques can be found in literature
related to image interpolation [17–20]. However, due
to the unique characteristics and wide applications of
image interpolation, a separate study of their evaluation
methods is crucial. Furthermore, the differences between
Euclidean, affine and projective transformations require
different evaluation approaches in contrast to the conventional
metric methods. Such kinds of surveys which present different
measurement evaluation methods for several digital image
processes have been proved to be a very helpful tool for
researches in the past years.

In this paper, we present a novel classification scheme
consisting of two different categories. The first category
includes all the methods that can evaluate the fidelity criteria
of an algorithm. The presented methods can evaluate the
performance features of the output-interpolated image in terms
of artefacts, blurring, discontinuities in edges or checkerboard
effects. A new evaluation method utilizing ground truth
optically captured images for comparisons. More specifically,
the proposed method measures the efficiency of the algorithm
through sets of interpolated images. The first image is
digitally interpolated, using the algorithm under evaluation
and the second image is optically acquired corresponding to the
ground truth image. The second evaluation category includes
methods which measure the cost features of the algorithm
itself. The computational burden of the algorithm and its
memory requirements can be evaluated using these methods.
Finally, we present the applicabilities and trade-offs between
the evaluation methods. The appropriate use of both analysis
categories is crucial in defining which image interpolation
algorithm performs better in specific conditions.

The rest of the paper is organized as follows. In
section 2, we provide an introduction to image interpolation.
In section 3, we classify the evaluation methods in two main
categories. In section 4, we describe the existing evaluation
methods which measure the performance characteristics of
the algorithms. Furthermore, a new evaluation method is
also proposed. In section 5, we present the methods for cost
analysis of the interpolation algorithms. In section 6, we
provide a further discussion presenting the applicabilities and
trade-offs between all presented evaluation methods. Finally,
we give concluding remarks in section 7.

2. Image interpolation

Image interpolation can be described as the process of using
known data to estimate values at unknown locations. The
interpolated value f (x) at coordinate x in a space of dimension
q can be expressed as a linear combination of samples fk

evaluated at integer coordinates k = (k1, k2, . . . , kk) ∈ Zq

f (x) =
∑
k∈zq

fkϕint(x − k) ∀ x = (x1, x2, . . . , xq) ∈ Rq.

(1)

The sample weights are given by the values of the basis
function ϕint(x − k) [18]. The main idea behind interpolation
is to specify a basis function which approximates the original
input image in order to acquire the output-interpolated
image. Since the basis interpolating function is defined on a
continuous-valued parameter, it may be evaluated at arbitrary
points. The resulting values comprise the interpolated
image. An important requirement is that the interpolating
function must pass through the known image data values.
The order of interpolation refers to the maximum number
of continuous derivatives that the interpolating function is
required to possess. For this reason, higher-ordered B-
spline image interpolation results tend to look smoother and
more continuous. However, this is at the cost of increased
computation.

The simplest of the B-spline interpolators are of the zero
and first orders. These are known as pixel replication and
bilinear interpolation [1], respectively. In pixel replication,
each output pixel simply obtains the value of the closest
input pixel. In bilinear interpolation, the basis function is
piecewise linear which means that each output pixel may
be computed as a linear combination of up to four input
pixels. Both pixel replication and bilinear interpolation are
very common, and they are known to perform satisfactorily for
interpolating smooth textures. On the other hand, they offer
little in terms of edge and detail rendition. Third-order, B-
spline interpolation presents better interpolation quality than
pixel replication and bilinear interpolation [21]. However,
one drawback with cubic B-spline interpolation is that a
considerable amount of computation is required to specify the
interpolating function. Another drawback of cubic B-spline
interpolation is that once the interpolating function has been
obtained, still more computations are required to recover the
desired output samples.

Each of the algorithms described above amounts to the
application of a single linear filter. Since the same filter is
applied to obtain each output pixel, these methods tend to
average image data across high-contrast boundaries such as
edges. The result is that interpolations from these methods
are blocky or blurry. This is especially true in the cases of
pixel replication and bilinear interpolation. In response to
this problem, a wide variety of nonlinear approaches have
been proposed. In edge-directed algorithms, the idea is to
find edges in the source data, and to render them continuous
and sharp in the output image. However, this approach
introduces an extra step for edge identification. In local
regions where edges are detected, the approach is to find the
description of an edge which passes through the local region.
This edge description may be used to interpolate without
blurring the values of pixels which lie on different sides of
the edge. In regions where edges are not detected, many of
the edge-directed algorithms use bilinear interpolation, since it
usually provides very satisfactory results for smooth textures,
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at minimal computational cost. Other nonlinear approaches to
image interpolation employ stochastic models for image data.
The objective is to obtain a high spatial resolution rendering
which is optimal in some well-defined sense.

As we can see, interpolation algorithms vary in the used
interpolation function making them susceptible or not in
certain conditions as well as changing their computational cost.
A decision for which interpolation algorithm performs best
in terms of performance and computational cost is a crucial
but complicated process; thus evaluation methods should be
clearly defined, categorized and carefully used.

3. Evaluation methods

The evaluation methods were classified into two categories.
The first category studies the performance of the algorithms
based on fidelity criteria. Both interpolation algorithms and
output images are subjected to evaluation analysis which can
clarify the efficiency of each algorithm. However, evaluating
output interpolated images requires the application of the
algorithm in certain image transformations. In literature, the
most widely used transformation for evaluation is the scaling
transformation [3, 16, 22]. In our analysis, we expand the
evaluation also in Euclidean transformations such as rotation
and translation. Furthermore, in order to have more thorough
analysis we take into consideration not only the scaling-up
process, which is mainly used in literature, but the scaling-
down process as well.

Until now, all methods characterize different interpolation
algorithms by simply computing the fidelity criteria based
on comparisons between interpolated images without the use
of any prior knowledge of the assumed perfect interpolated
image. In this category, we propose an evaluation method
which uses optically transformed images as the ground truth
for the comparisons. The method relies on the fact that an
optically transformed image corresponds to the ground truth
image of a digitally interpolated one.

However, not all properties of the interpolation algorithms
can be evaluated by the performance analysis. The
second category directly treats the algorithms themselves by
considering their complexity and memory utilization. These
properties could be helpful for selecting suitable algorithms in
specific applications. For example, camera mobile phones
have limited hardware resources, such as memory and
processing power; thus the implementation of sophisticated
and complex interpolation algorithms is inefficient. Low-
power design analysis is also necessary, especially for mobile
multimedia devices.

The interpolation algorithms that we use for applying
the evaluation methods on them are the three most widely
used. The nearest neighbour, the bilinear and the bicubic
interpolation, which are briefly described in section 2. The
purpose of this paper is not to evaluate the previously
mentioned algorithms but to demonstrate the applicability of
the evaluation methods using these widely known interpolation
algorithms.

4. Performance analysis

Transformation comparison tests in this category should
include both synthetic and natural images. For scaling
transformation, the scaling factors should be chosen from
both integers and non-integers in order to realize differences
and weaknesses between methods. Furthermore, a complete
evaluation procedure should include analysis from several
different images and present the average results. In certain
cases, the minimum or maximum errors can be presented
instead. In the following methods, all used images are
greyscale using the equivalent equations. However, all
equations can be adjusted to any colour space. For example,
the peak signal-to-noise ratio (PSNR) of an interpolated colour
image denoted by PSNRp is [23]:

PSNRp = (4 × PSNRY + PSNRU + PSNRV )/6, (2)

where PSNRY , PSNRU , PSNRV are the corresponding PSNR
values of the (4 : 1 : 1) Y, U and V components of the
interpolated image, respectively.

4.1. Fourier analysis

The Fourier analysis compares the interpolation kernel against
the sinc function, which is a perfect reconstructor for band-
limited signals. Figure 1 shows the magnitude of the Fourier
transform of each interpolation kernel. The magnitude of the
Fourier transform for each kernel is plotted within the interval
0 � f � 2 or 0 � ω � 4π , where ω = 2πf . The interval
0 � f � 1/2 is called pass band and the f = 1/2 or ω = π

is the cutoff point. For quality assessment, two characteristics
are of interest in the pass band which are closely related to the
deviation from the ideal reconstructor: how fast the function
starts to fall and the fall step. In the stop band, the best
performance is indicated by the amplitude which is closest to
zero presenting also the least slopes. Deviation within the pass
band causes blurring, and large amplitudes of ripples and side
lobes in the stop band translate into aliasing and fringes. In
Fourier analysis, the sampling of an interpolated (continuous)
image is equivalent to interpolating the (discrete) image with
a sampled interpolation function [24].

4.2. Interpolation quality

This evaluation method requires the repetitive application
of the image interpolation algorithm. Using a starting
input image I (x, y), we employ repetitively the interpolation
algorithm under evaluation in order to acquire the final
interpolated image Î (x, y). The final image must have the
same size and spatial resolution as the input image. Then,
the interpolation quality is assessed by the pixel differences
before and after the successive interpolations. Since all image
transformations can be applied in this method, these criteria
are excellent for visualizing the interpolation error, and thus is
the most widely used evaluation method.

Next, we will apply the evaluation method in scaling
and rotation transformations, using the root mean square
error (RMSE) and the peak signal-to-noise ratio (PSNR)
for measuring the interpolation error. Given an input
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Figure 1. Magnitude of the Fourier transform in a linear scale for
evaluation of pass band performance. The vertical dashed line
determines the cutoff point for f = 1/2.
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Clockwise 
Rotated

Rotated to 
original state

Figure 2. Repetitive image transformations required for the
performance evaluation method: (a) scale down-after-up; (b) scale
up-after-down; (c) successive rotations.

image I (x, y), the testing procedure in order to evaluate an
interpolation algorithm in scaling transformation is as follows.
The method requires two scaling transformations performed
by the same interpolation algorithm as shown in figure 2(a)
for the cameraman image. The first transformation is to scale

Table 1. Comparisons between the reference cameraman image and
the scaled down-after-up interpolated image.

Interpolation method

Metric Nearest Bilinear Bicubic

PSNR (dB) 70.50 73.22 74.43
RMSE 0.0761 0.0556 0.0484

up an image by a magnification factor f . Then, the scaled
image is scaled down by the same magnification factor f .
The final image Î (x, y) has the same spatial resolution as the
original one but it has been twice interpolated. For rotation,
the input image can be successively rotated 16 times by 22.50

in order to reach its initial state, as shown in figure 2(c).
However, for even better evaluation a user can apply several
magnification factors for scaling and several rotation degrees
to obtain the average results. This can be useful for evaluating
interpolation algorithms which present optimal results only
in certain conditions [25]. The RMSE between the original
image I (x, y) and the interpolated image Î (x, y) is given
by [26]

RMSE =
⎛
⎝ 1

m × n

m−1∑
x=0

n−1∑
y=0

(Î (x, y) − I (x, y))2

⎞
⎠

1/2

, (3)

where the images are of size m × n.
The PSNR metric can be also used which is closely related

to RMSE. The PSNR in decibels (dB) between the original
image I (x, y) and the interpolated image Î (x, y) is given
by [27]

PSNR = 20 × log10

(
MAXI

RMSE

)
, (4)

where MAXI is the maximum pixel value of the images. When
the pixels are represented using eight bits per sample, this is
255. To avoid border effects, it is recommended to extract
centred subimages before computation. However, the actual
value is not meaningful, and only the comparison between
different interpolation results provides a measure of quality.
The results presented in table 1 demonstrate the RMSE and
PSNR metrics for the cameraman image after the scale down-
after-up image transformation.

The reverse operation, of first scaling down and then
scaling up, is shown in figure 2(b). While it may be expected
that this reverse operation may present the same error as the
previous procedure, the errors produced are different from
the previous ones since many interpolation algorithms have
different behaviour between scaling-up and scaling-down.
Especially, in the case of scale up-after-down, the RMSE
values of the scaled images by nearest neighbour are zero
because the point sampling returns back the original image.

The main feature of this method is that many different
interpolation errors can be evaluated in the results. For
example, an algorithm which has outstanding performance in
scaling process but inadequate performance in rotation, would
present average overall performance results.
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4.3. Step edge response

The following evaluation method is related to picture quality
and especially to interpolation edge behaviour. Similar
measurements can be extracted also from Fourier analysis
as defined in section 4.1. However, this method can
be applied also to interpolation algorithms which are not
expressed by a basis function. These algorithms can be area-
based interpolations, interpolations using neural networks and
interpolations based on local features. While there are various
types of edges in an image, step edges are visually more distinct
than other types of edges. Therefore, preservation of the
sharpness and continuity of the step edges is a key feature. The
objective of this method is to evaluate whether the algorithm
preserves the original step edges sharp and continuous. In
order to evaluate this, a synthetic input image containing only
two different area intensities of 225 and 25 is geometrically
transformed. In the case of scaling transformation, the
image is scaled up and depending on the algorithm used,
an unwanted area might arise with a progressive transition
from 225 to 25. The same effect can appear after translation
of the image or after rotation. Generally, faster transition
provides better performance. Figure 3, illustrates the step
edge response from 225 to 25. More precisely, figures 3(a)
and (b) present the spatial performance of each algorithm for
scaling and rotation transformation, respectively. The results
are more distinctive in the figure 3(c) performance diagram.
For bilinear interpolation, a single new spatial area arises,
caused by the modest low-pass filter that bilinear interpolation
uses. New spatial areas are even more considerable in bicubic
interpolation due to the over smoothing in the pass band. In this
task, nearest neighbour interpolation presents the best results
since it reproduces exactly the interpolated pixels. However,
this feature also results in the strong aliasing effects that are
associated with the nearest neighbour interpolation.

This evaluation method is also widely used in text-oriented
interpolation methods [28, 29], where high-frequency input
images are studied.

For calculating the kernel error we can compare f (x) with
fh(x) using the following equation:

ε2(h) =
∫ ∞

−∞
(f (x) − fh(x))2 dx1 dx2 · · · dxq

∀ x = (x1, x2, . . . , xq) ∈ Rq, (5)

where h > 0 is the sampling step and fh(x) is the interpolated
function in certain intervals denoted by h. This difference
between f (x) and fh(x) describes how fast the interpolated
function fh converges to the true function f , when the sample
steps are becoming smaller and smaller.

4.4. Evaluation with ground truth images

Here we propose a method which facilitates the attributes
of raw captured images, since modern imaging devices can
perform the desired transformations without the use of digital
image processing. More specifically, we can capture zoomed,
rotated and translated images. Using this a priori knowledge,
we can finally have sets of optically and digitally transformed
images and apply the evaluation methods on these sets of
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Figure 3. Step edge performance comparison of a synthetic original
image containing only two different area intensities of 225 and 25:
(a) scaled images; (b) rotated images; (c) performance diagram.

images. Depending on the transformation certain procedures
must be followed. For rotation and translation we only need
the physical position change of the imaging device. Since we
need high precision, a user can find some external equipment
such as high-precision tripods very helpful. For scaling
transformation, the optical zooming feature of the imaging
device will be used.

The focal length of a lens is defined as the distance in mm
from the optical centre of the lens to the focal point, which
is located on the solid-state sensor. A change in focal length
allows the user to come closer to the subject or to move away
from it. The optical zooming factor is calculated by

Optical zooming factor = fmax

fmin
, (6)

where fmax represents the maximum focal length and fmin

the minimum focal length. Modern imaging devices provide
an accurate estimation of (6) to the user’s camera screen.
Utilizing the previous feature, we can acquire pictures
with different optical zooming settings as illustrated in
figure 4. More specifically, with this procedure we can
construct a database consisting of the original images,
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Figure 4. Various settings of an optical zooming system: ×1
magnification factor; ×2.5 magnification factor; ×10 magnification
factor.

figure 5(a) and the optically scaled images, figure 5(b), with
a known magnification factor. Then, a digitally scaled image,
magnified by the known magnification factor, will be produced
by the algorithm under study, figure 5(c).

The proposed method creates a ground truth image
for comparisons with the under-evaluation algorithms. All
further test images will digitally be interpolated from the
original image, for example figure 5(a). An online database
with similar sets of pictures can be created for comparison
purposes and tests. The qualitative measurements can be
done with metrics such as RMSE or PSNR, as mentioned in
section 4.2. Comparison results for the scaling transformation
are presented in table 2. Based on the results, bicubic
interpolation demonstrates an overall superiority against the
interpolations of bilinear and nearest neighbour.

4.5. Subjective observation

Judgements based on subjective observations are accepted
and widely used in bibliography [5]. Experienced observers
can report useful measurements especially when a number of
images are evaluated and results are processed with the help
of analytical methods. In figure 6, we demonstrate the visual

(a) (b) (c)

Figure 5. The original image and the two under evaluation images: (a) original image; (b) optically scaled image (ground truth);
(c) digitally scaled image.

Table 2. Comparisons between optically scaled image figure 5(b)
(ground truth) and digitally scaled images figure 5(c) by different
interpolation algorithms.

Interpolation method

Metric Nearest Bilinear Bicubic

PSNR (dB) 67.28 67.39 67.56
RMSE 0.1102 0.1089 0.1067

Table 3. Number of operations per pixel.

Interpolation method

Operation Nearest Bilinear Bicubic

Addition 2 16 22
Multiplication 0 18 29

results, scaling the cameraman image by a scaling factor of 1.5,
in order to provide a subjective comparison between nearest
neighbour, bilinear interpolation and bicubic interpolation.

5. Cost analysis

The second evaluation category includes methods for
the cost analysis of the interpolation algorithm itself. The
computational burden and memory requirements of the
algorithm are evaluated in this category. Such methods provide
overall criteria and especially indicate the applicability of each
interpolation algorithm in certain applications such as real-
time implementations.

5.1. Computational Burden

Defining the complexity of an algorithm is a crucial but
difficult task in literature [30, 31]. However, some methods
have been used in works related to image interpolation.
The number of operations required for a pixel interpolation
is a widely accepted method. This number includes the
operations required for the convolution as well as the number
required for the calculation of the basis function. The
convolution of an N × N mask needs N2 multiplications and
N2 − 1 additions. Table 3 reports the number of operations
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(a) (b)

(c) (d)

Figure 6. Visual interpolation results for cameraman: (a) original; (b) nearest interpolation; (c) bilinear interpolation; (d) bicubic
interpolation.

per pixel for the nearest neighbour, bilinear and bicubic
interpolations. However, this method is appropriate only for
simple and straightforward algorithm implementations and
its applicability is constrained in sophisticated algorithms.
Additional operations need implementations which use
prefiltering steps and basis functions that include mathematical
functions such as sine or cosine.

5.2. Runtime comparisons

Execution times have also been used in [32, 33] for evaluating
the computational cost of algorithms. The comparison tests
are performed for several transformations on computers with
known characteristics. The compared execution times provide
a measure of the lowest complexity technique. For even better
comparisons, detailed statistics such as internal core cycles,
the number of sequential or non-sequential cycles and the
number of program instructions executed can be provided from
dedicated processor emulators.

Summary charts which include both performance and
cost metrics are also very useful as they provide an overall
analysis for each algorithm compared to others. Figure 7
shows a chart, where the x-axis corresponds to the execution
time for the rotation of an image and the y-axis corresponds
to the equivalent interpolation quality using PSNR measure.
Based on the chart, bicubic interpolation demonstrates a

0 0.2 0.4 0.6 0.8 1
67.50

67.55

67.60

67.65

67.70

67.75

67.80

Bicubic

Bilinear

Nearest-neighbor

Figure 7. Performance chart for rotation transformation.

PSNR superiority against the other interpolations, presenting
however longer execution times.

However, we should mention that in the last few years
there has been an increase in research in the area of
using graphics processing units (GPUs) for image processing
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algorithms instead of general purpose computing. These
GPUs are designed to perform a limited number of operations
on very large amounts of data. They typically have more
than one processing pipeline working in parallel with each
other. For this reason, detailed comparisons should be clearly
discriminated based on the processor type used. Run-time
comparisons for image interpolation algorithms using GPUs
have been reported in [34, 35].

5.3. Data memory requirements

While the computational burden reflects mostly on the
processor utilization, the demands on memory resources
cannot be estimated with the same metrics. Imaging
devices such as mobile phones, digital cameras and PDAs
share a restricted amount of embedded memory for image
processing. Thus, interpolation algorithms must be designed
and optimized for these applications in order to meet the
real-time performance restrictions. While most techniques
use convolution operations, the data memory requirements
are strictly connected to the contributing input pixels. The
convolution of an N × N mask needs N2 + 1 memory
accesses. Furthermore, the amount of embedded memory
needed is closely related to the basis function. For example,
bilinear interpolation uses four neighbouring pixels for each
calculation. This means that regardless of the image
transformation, the operation can be done with only two line
buffers. Thus, an 8 bit colour 640 × 480 pixel resolution
input image would require an amount of 8 × 3 × 640 × 2 =
3.75 KB of internal memory. However, bicubic interpolation
which uses 16 neighbour input pixels, needs four line buffers
for each operation which is equal to 8 × 3 × 640 × 4 =
7.5 KB of internal memory.

Interpolation algorithm memory tests can be implemented
also with the aid of a processor developer suite. The suite
enables the user to specify specific layers of the memory that
have specific characteristics. This functionality can help users
to simulate certain memory models even for memory-limited
applications. The algorithms, written in C language, are cross-
compiled into the processor codes and mapped to the memory.
The accurately simulated processor reads and executes the
machine codes for memory testing. The process can easily
be modified for various purposes and several processors.
Simulation measurements give all the memory map details
of the algorithm under evaluation such as the number of
accesses on off-chip memory, the number of accesses on
on-chip memory and wait times. The algorithm with lower
accesses and wait times presents the best performance.

5.4. Power requirements

The power evaluation method can provide a metric of power
consumption needed by the interpolation algorithm. In
systems that involve multidimensional streams of signals
such as images or video sequences, it has been shown
that the majority of power cost is due to the off-chip
memory interactions [36]. These interactions include data
and instruction memory use. It is obvious that the data
memory power consumption is closely related to the memory

requirements of each interpolation method, and that the
instruction memory power consumption is equivalent to the
algorithm computational burden. The relatively low data
memory requirements of image interpolation algorithms also
present a low impact on the total power consumption. The
dominant consumption is derived from the instruction memory
use.

The starting point of this evaluation method is the
description of the interpolation in a high-level language. Next,
using processor developer suites we can acquire the number of
instructions and core cycles needed from the algorithm. Next,
with the use of estimators of energy and performance models
we can have power consumption predictions for the under-
evaluation algorithms [37, 38]. The models that describe the
energy and performance characteristics of the memory layers
must be real memory models, which are based on propriety
memory models of industrial vendors. Summarizing, in power
critical applications, image interpolation algorithms should
follow design strategies for a low number of memory accesses
since they reduce the power consumption due to memory
traffic.

6. Further discussion

Although image interpolation is widely used in image
processing, each application has its specific requirements.
Thus, depending on the application, an appropriate choice of
evaluation methods should be made. Furthermore, whether
an evaluation method is optimal or not is associated with
the interpolation technique, the content of the image and the
geometric transform. The proposed evaluation categorization
makes a discrete separation between performance and cost
requirements.

For applications such as medical imaging, where the most
crucial feature is the fidelity of the output image, the most
appropriate methods are included in the performance category.
More specifically, since the contents are low-frequency images
the interpolation quality criteria should be used, since it can
give an overall measure of quality. For applications which
include high-frequency images, such as text or document
processing, Fourier analysis or the step-edge response metrics
should be preferred. However, sophisticated interpolation
algorithms which can not be expressed by a single basis
function such as neural network or fuzzy approaches can be
evaluated only using the step-edge response method.

In contrast to quality performance demanding
applications, the cost analysis is appropriate to
applications with limited resources. Depending on the
critical resource of the application, the equivalent evaluation
method should be applied. If there are real-time constraints,
the design and evaluation strategy should be based upon
minimizing the runtime factor. Before establishing an
interpolation algorithm in a mobile embedded device,
power requirement analysis must be performed since in this
application the most critical factor is power consumption
which is equal to increased memory standby time. Data
memory and computational burden analysis is vital in
applications that interpolate large spatial resolution images
such as GIS applications.
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7. Conclusion

In this paper, we studied the methods so far proposed for image
interpolation evaluation and comparison. We also proposed
a new evaluation method utilizing ground truth optically
captured images for comparisons. A method classification
scheme has also been proposed. Each method we studied in
this paper has advantages and limitations. From an application
point of view, those that belong to different groups are more
complementary than competitive. Besides, the performance
of interpolation algorithms is influenced by many factors;
thus only one evaluation method would not be adequate to
evaluate all properties of an algorithm and different methods
should be combined. This survey provides information for the
appropriate use of the existing evaluation methods and their
improvement, assisting also in the designing of new evaluation
methods and techniques.

References

[1] Jain A K 1989 Fundamentals of Digital Image Processing
(Upper Saddle River, NJ: Prentice-Hall)

[2] Keys R G 1981 Cubic convolution interpolation for digital
image processing IEEE Trans. Acoust., Speech, Signal
Process. 29 1153–60

[3] Hwang J W and Lee H S 2004 Adaptive image interpolation
based on local gradient features IEEE Signal Process. Lett.
11 359–62

[4] Unser M, Aldroubi A and Eden M 1991 Fast B-spline
transforms for continuous image representation and
interpolation IEEE Trans. Pattern Anal. Mach. Intell.
13 277–85

[5] Battiato S, Gallo G and Stanco F 2002 A locally adaptive
zooming algorithm for digital images Image Vis. Comput.
20 805–12

[6] Cha Y and Kim S 2007 The error-amended sharp edge (EASE)
scheme for image zooming IEEE Trans. Image Process.
16 1496–505

[7] Li M and Nguyen T Q 2008 Markov random field
model-based edge-directed image interpolation IEEE Trans.
Image Process. 17 1121–8

[8] Plaziac N, Syst E M and Woodbury N 1999 Image
interpolation using neural networks IEEE Trans. Image
Process. 8 1647–51

[9] Chen J L, Chang J Y and Shieh K L 2000 2D discrete signal
interpolation and its image resampling application using
fuzzy rule-based inference Fuzzy Sets Syst. 114 225–38

[10] Ting H and Hang H 1997 Edge preserving interpolation of
digital images using fuzzy inference J. Vis. Commun. Image
Represent. 8 338–55

[11] Amanatiadis A, Andreadis I and Konstantinidis K 2008 Design
and implementation of a fuzzy area-based image-scaling
technique IEEE Trans. Instrum. Meas. 57 1504–13

[12] Amanatiadis A, Andreadis I and Gasteratos A 2007 A
Log-Polar interpolation applied to image scaling Proc.
IEEE Int. Workshop on Imaging Systems and Techniques
pp 1–5

[13] Kim C H, Seong S M, Lee J A and Kim L S 2003 Winscale:
An image-scaling algorithm using an area pixel model
IEEE Trans. Circuits Syst. Video Technol. 13 549–53

[14] Mitchell D P and Netravali A N 1988 Reconstruction filters in
computer-graphics Proc. 15th Ann. Conf. on Computer
Graphics and Interactive Techniques
pp 221–8

[15] Grevera G J and Udupa J K 1996 Shape-based interpolation of
multidimensional grey-level images IEEE Trans. Med.
Imag. 15 881–92

[16] Muresan D and Parks T 2004 Adaptively quadratic (AQua)
image interpolation IEEE Trans. Image Process. 13 690–8

[17] Lehmann T M, Gonner C and Spitzer K 1999 Survey:
Interpolation methods in medical image processing
IEEE Trans. Med. Imag. 18 1049–75

[18] Thevenaz P, Blu T and Unser M 2000 Interpolation revisited
IEEE Trans. Med. Imag. 19 739–58

[19] Meijering E H W, Niessen W J and Viergever M A 2001
Quantitative evaluation of convolution-based methods for
medical image interpolation Med. Image Anal. 5 111–26

[20] Amanatiadis A and Andreadis I 2008 Performance evaluation
techniques for image scaling algorithms Proc. IEEE Int.
Workshop on Imaging Systems and Techniques p 114–8

[21] Unser M, Thevenaz P and Yaroslavsky L 1995
Convolution-based interpolation for fast, high-quality
rotation of images IEEE Trans. Image Process. 4 1371–81

[22] Ramponi G 1999 Warped distance for space-variant linear
image interpolation IEEE Trans. Image Process. 8 629–39

[23] Chuah C S and Leou J J 2001 An adaptive image interpolation
algorithm for image/video processing Pattern Recognit.
34 2383–93

[24] Parker J A, Kenyon R V and Troxel D E 1983 Comparison of
interpolating methods for image resampling IEEE Trans.
Med. Imag. 2 31–9

[25] Chang C C, Chou Y C, Yu Y H and Shih K J 2005 An image
zooming technique based on vector quantization
approximation Image Vis. Comput. 23 1214–25

[26] Loia V and Sessa S 2005 Fuzzy relation equations for
coding/decoding processes of images and videos Inf. Sci.
171 145–72

[27] Sung M M, Kim H J, Kim E K, Kwak J Y, Yoo J K and
Yoo H S 2002 Clinical evaluation of JPEG2000
compression for digital mammography IEEE Trans. Nucl.
Sci. 49 827–32

[28] Ye J, Fu G and Poudel U P 2005 High-accuracy edge detection
with blurred edge model Image Vis. Comput. 23 453–67

[29] Leu J G 2000 Image enlargement based on a step edge model
Pattern Recognit. 33 2055–73

[30] Papadimitriou C H and Steiglitz K 1998 Combinatorial
Optimization: Algorithms and Complexity (Mineola, NY:
Courier Dover Publications)

[31] Ausiello G 1999 Complexity and Approximation:
Combinatorial Optimization Problems and their
Approximability Properties (Berlin: Springer)

[32] Chung K H and Chan Y H 2007 A low-complexity joint color
demosaicking and zooming algorithm for digital camera
IEEE Trans. Image Process. 16 1705–15

[33] Lukac R and Plataniotis K N 2005 Digital zooming for color
filter array-based image sensors Real-Time Imaging
11 129–38

[34] Kelly F and Kokaram A 2004 Fast image interpolation for
motion estimation using graphics hardware Proc. SPIE
vol 5297 pp 184–94

[35] Ruijters D, Haar-Romeny B M and Suetens P 2008 Accuracy
of GPU-based B-Spline evaluation Proc. 10th IASTED Int.
Conf. Computer Graphics and Imaging p 117–22

[36] Catthoor F 1998 Custom Memory Management Methodology:
Exploration of Memory Organisation for Embedded
Multimedia System Design (Berlin: Springer)

[37] Wilton S and Jouppi N 1996 CACTI: an enhanced cache
access and cycle time model IEEE J. Solid-State Circuits
31 677–88

[38] Landman P and Rabaey J 1995 Architectural power analysis:
The dual bit type method IEEE Trans. Very Large Scale
Integration (VLSI) Syst. 3 173–87

9

http://dx.doi.org/10.1109/TASSP.1981.1163711
http://dx.doi.org/10.1109/LSP.2003.821718
http://dx.doi.org/10.1109/34.75515
http://dx.doi.org/10.1016/S0262-8856(02)00089-6
http://dx.doi.org/10.1109/TIP.2007.896645
http://dx.doi.org/10.1109/TIP.2008.924289
http://dx.doi.org/10.1109/83.799893
http://dx.doi.org/10.1016/S0165-0114(98)00090-6
http://dx.doi.org/10.1006/jvci.1997.0364
http://dx.doi.org/10.1109/TIM.2008.925723
http://dx.doi.org/10.1109/TCSVT.2003.813431
http://dx.doi.org/10.1109/42.544506
http://dx.doi.org/10.1109/TIP.2004.826097
http://dx.doi.org/10.1109/42.816070
http://dx.doi.org/10.1109/42.875199
http://dx.doi.org/10.1016/S1361-8415(00)00040-2
http://dx.doi.org/10.1109/83.465102
http://dx.doi.org/10.1109/83.760311
http://dx.doi.org/10.1016/S0031-3203(00)00157-6
http://dx.doi.org/10.1109/TMI.1983.4307610
http://dx.doi.org/10.1016/j.imavis.2005.07.020
http://dx.doi.org/10.1016/j.ins.2004.04.003
http://dx.doi.org/10.1109/TNS.2002.1039571
http://dx.doi.org/10.1016/j.imavis.2004.07.007
http://dx.doi.org/10.1016/S0031-3203(99)00184-3
http://dx.doi.org/10.1109/TIP.2007.898997
http://dx.doi.org/10.1016/j.rti.2005.01.002
http://dx.doi.org/10.1109/4.509850
http://dx.doi.org/10.1109/92.386219

	1. Introduction
	2. Image interpolation
	3. Evaluation methods
	4. Performance analysis
	4.1. Fourier analysis
	4.2. Interpolation quality
	4.3. Step edge response
	4.4. Evaluation with ground truth images
	4.5. Subjective observation

	5. Cost analysis
	5.1. Computational Burden
	5.2. Runtime comparisons
	5.3. Data memory requirements
	5.4. Power requirements

	6. Further discussion
	7. Conclusion
	References

