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ABSTRACT
Artificial intelligence (AI) emphasises the creation of intelligent machines/systems
that function like humans. AI has been applied to many real-world applications.
Machine learning is a branch of AI based on the idea that systems can learn from
data, identify hidden patterns, and make decisions with little/minimal human in-
tervention. Evolutionary computation is an umbrella of population-based intelli-
gent/learning algorithms inspired by nature, where New Zealand has a good inter-
national reputation. This paper provides a review on evolutionary machine learning,
i.e., evolutionary computation techniques for major machine learning tasks such as
classification, regression and clustering, and emerging topics including combinato-
rial optimisation, computer vision, deep learning, transfer learning, and ensemble
learning. The paper also provides a brief review of evolutionary learning applica-
tions, such as supply chain and manufacturing for milk/dairy, wine and seafood
industries, which are important to New Zealand. Finally, the paper presents current
issues with future perspectives in evolutionary machine learning.

KEYWORDS
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1. Introduction

Artificial intelligence (AI) is a broad umbrella covering a wide range of techniques for
building systems that can simulate human intelligence including thinking, behaviours,
perception in computers. Although AI was first coined in the 1950s, its applications
have flourished in just the last several decades with its core sub-area of machine
learning (ML), where computers exhibit the ability to automatically learn and improve
without being explicitly programmed.

ML has been applied to many applications in different domains, such as manufac-
turing industry, finance, and biomedical problems. Its main tasks include classification,
regression, and clustering. The first two tasks are supervised learning in which a model
is learnt from a set of labelled data, while the last is unsupervised learning that does
not have labelled data. While classification is a task where each example/instance is
classified into one of the predefined categories, regression is to predict numeric out-
puts for instances. However, both aim to build a model that can correctly predict
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the output of an unseen instance by observing a set of labelled instances. On the
other hand, clustering algorithms aim to learn a model that can group instances into
separate clusters based on the intrinsic characteristics of the unlabelled data. Further-
more, solving scheduling and combinatorial optimisation problems such as determining
optimal/good delivering plan and flight schedule, analysing patterns and recognising
objects in computer vision also form important research areas in ML.

Although these ML tasks have been studied for decades, challenges still arise when
more large-scale datasets are collected thanks to the advanced technologies and the
rapidly growing user market. Firstly, the number of features has increased over time
in different domains such as images, gene expression, text and web mining (Zhang
et al. 2016). This means that the search space of recent ML tasks is increasingly
larger. This space could be infinite in some domains such as materials design and
drug discovery (Le and Winkler 2016). Secondly, more and more complex applications
are solved with or without domain expertise. Therefore, a powerful search technique
is needed to find better solutions. Evolutionary computation (EC) is a sub-field of
AI that comprises a family of nature-inspired algorithms. These are population-based
algorithms which maintain a population of candidate solutions (or individuals) and
evolve towards good/optimal solutions. By evolving multiple solutions simultaneously,
EC techniques are well-known for their good global search ability.

EC techniques can be broadly divided into two main categories: evolutionary al-
gorithms and swarm intelligence (Bäck et al. 1997). Evolutionary algorithms refer to
those that apply the Darwinian natural selection principle to search for optimal solu-
tions. Genetic algorithms (GAs) and genetic programming (GP) are two widely-used
algorithms in this category. Both methods use genetic operators such as crossover and
mutation to evolve new individuals. While GAs use a fixed-length bit string repre-
sentation, GP can work with more flexible structures such as trees and graphs with
variable sizes. On the other hand, swarm intelligence techniques are inspired by the
social behaviours of animals. Typical techniques of this branch are particle swarm
optimisation (PSO) and ant colony optimisation (ACO), which mimic birds and ants,
respectively. While PSO works based on the information about the best found solu-
tions shared among particles to guide the search towards more fruitful areas, ACO
works by simulating the special communication system using pheromone between ants
about favourable paths to food. There are also other popular EC algorithms such as
differential evolution (DE), learning classifier systems (LCS), artificial immune systems
(AIS), and artificial bee colony (ABC) algorithms (Bäck et al. 1997).

With the ability to evolve multiple solutions simultaneously, EC techniques have
shown promise in solving multi-objective problems, where optimal solutions need to
be considered in the presence of two or more conflicting objectives, e.g., minimising
both cost and travel time in flight booking. Because it is unlikely to have an optimal
solution that satisfies both conflicting objectives, a multi-objective method returns
a set of nondominated (Pareto optimal) solutions which cannot be improved in one
objective without another objective suffering Zhou et al. (2011). Evolutionary multi-
objective optimisation (EMO) becomes one of the hottest topics with dramatic increase
publications in the last ten years.

Although a number of surveys have been done on the use of EC for machine learning
tasks (EML), they either focus on a particular task/aspect such as feature selection
(Xue et al. 2016), classification using GP (Espejo et al. 2010), a particular EC tech-
nique (Neri and Tirronen 2010), technical orientation such as EC and ML (Zhang et al.
2011), and EMO (Zhou et al. 2011). There is no survey that covers EML techniques
for different tasks with a non-technical presentation to reach a broader range of read-
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ers. Given the rapid development and growth of this field and its role in facilitating
more ML applications, this paper aims to provide a comprehensive survey on using
EC techniques for major ML tasks. The remainder of this section briefly summarises
the current EML applications in different domains.

1.1. Current Evolutionary Machine Learning Applications

EML methods have been widely applied to real-world problems in various fields, includ-
ing agriculture, manufacturing, power and energy, internet/wifi/networking, finance,
and healthcare.

In agriculture, EML techniques have been used to plan agricultural land use (Kaim
et al. 2018). The decision making in farming, e.g., fishing (Cobo et al. 2018) and crop
farming (Pal et al. 2016), have also been addressed by EML.

EML techniques have been widely applied to manufacturing in different industries
such as milk/dairy production (Notte et al. 2016), wine production (Mohais et al.
2012), wood production (Zhao et al. 2017), mineral processing (Yu et al. 2011), trans-
portation scheduling for seafood and milk products (Sethanan and Pitakaso 2016).
EML methods can find solutions that help to reduce time and cost for both production
and transportation. Supply chain is another important field highly related to manu-
facturing but integrates more sectors. EML methods have been employed to reduce
inventory and cost in supply chain of different industries such as food (Cheraghalipour
et al. 2018) and fish (Tabrizi et al. 2018).

EML techniques have been applied to the power and energy industry, e.g., predicting
load forecasting in power system for efficient management (Liao and Tsao 2006) and
allocating wind turbines (Hou et al. 2015).

Finance is another important application area of EML. Financial data are often
time series data, which are difficult for prediction or analysis due to their temporal
nature. EML methods have been widely employed for financial data analysis (Wagner
et al. 2007), market price prediction (Bagheri et al. 2014), bankrupt ratio analysis
(Lakshmi et al. 2016), and credit risk management (Srinivasan and Kamalakannan
2018).

In healthcare and biomedical applications, EML techniques have been developed for
gene sequence analysis, gene mapping, structure prediction and analysis of DNA (Pal
et al. 2006) and biomarker identification (Ahmed et al. 2014). Prediction of protein
3D structure has also been addressed by many EML methods (Correa et al. 2018).
EML also shows promise in important applications such as drug discovery (Le and
Winkler 2015) and materials design (Le and Winkler 2016), where the search space is
effectively infinite.

In addition, EML techniques have been applied to earthquake prediction (Asim et al.
2018), web service composition (da Silva et al. 2016), cloud computing (Guzek et al.
2015), cyber security (Buczak and Guven 2016), and video games (Yannakakis and
Togelius 2018). Readers are referred to (Chiong et al. 2012) for more EML real-world
applications.

1.2. Organisation

This survey is presented mainly in a task-based manner. The first three sections present
EML algorithms for the classification, regression, and clustering tasks. Sections 5 and 6
discuss two large EML application areas, computer vision, and scheduling and compu-
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Figure 1. Taxonomy and structure of the paper.

tational optimisation, respectively. Section 7 is dedicated to evolutionary deep learning,
an hot topic in ML. Emerging topics and current issues/challenges are described in
Section 8. Finally, Section 9 concludes this paper. Due to the page limit, only some
typical works are referred. Figure 1 shows the taxonomy and structure of the paper.

2. Evolutionary Computation for Classification

EML techniques have been widely used for classification. The aim of classification al-
gorithms is to learn a model/classifier that can correctly classify unseen instances (test
data) by observing a set of given instances (training data). Each instance is usually
presented by a set of attributes/variables/features and a label. The quantity, quality,
and representation of the data are important factors influencing the performance of
the learnt classifiers (Tran et al. 2016b).

Although classifier construction is the main task in classification, some other tasks
related to data preprocessing are also important. The existence of irrelevant and re-
dundant features negatively affects the performance of learning algorithms. Therefore,
feature selection/dimensionality reduction is widely used to remove irrelevant and re-
dundant features, which effectively reduces the search space of a problem and hence
improves the learning ability and running time. Feature construction is typically used
to create high-level features that can better represent the problem.

The following subsections discuss the main EML techniques that have been proposed
for these tasks and other related tasks such as unbalanced data and missing data.

2.1. EC for Classifier Construction

Many EML techniques have been used for classification such as GAs, GP, and PSO.
GAs were the earliest EC technique used to evolve classification rules. Many methods
have been proposed for general classification problems (Vivekanandan et al. 2013)
as well as for specific domains such as text classification (Khaleel et al. 2016) and
medical diagnosis (Fidelis et al. 2000). Chernbumroong et al. (2015) proposed a GA-
based method for activity classification where data from multiple sensors are used to
recognise the activity of a person.
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Using a similar vector representation to GAs, PSO has also been proposed for rule
induction (Zheng et al. 2014). PSO has been shown to be more flexible than GAs and
other classification algorithms.

Unlike PSO and GAs where individuals are represented using vectors, GP has more
flexible representations. Discriminant functions are a form of mathematical expression
which classifies an instance into a class based on different thresholds (Espejo et al.
2010). With a tree-based representation, GP is well suited to develope discriminant
functions (Nag and Pal 2016). GP also has a long history in evolving decision trees
(Zhao 2007) which are more effective than those developed by the traditional ways.
GP is also used in inducing classification rules (Luna et al. 2014) which are more
representative and use fewer conditions. Rivero et al. (2010) developed a GP-based
method to automatically evolve artificial neural networks. LCS is also strong at evolv-
ing rules, having been applied in boolean function/classifier learning for multiplexer
and even-parity problems (Iqbal et al. 2014).

In addition to evolving classifiers, GP can also deal with problems related to clas-
sification. Bhowan et al. (2014) proposed a GP-based classification method that can
effectively cope with unbalanced data: a common problem where the number of in-
stances in one class is much smaller than other class(es), e.g., malignant traffic is
infrequent compared to normal traffic in network intrusion detection. Missing data is
another common problem in real-world applications, which negatively affects the learn-
ing performance or makes some classification algorithms unusable. Tran et al. (2018b)
developed a GP-based imputation method that can effectively impute/predict missing
values based on the other features.

Instance selection is used to reduce learning time by selecting a good subset of
instances that allow maximum classification performance. EC techniques have been
used for this task (Derrac et al. 2010).

By using a population-based search, EML techniques can evolve better classifiers
than using greedy search methods, which use a heuristic for making locally optimal
choices in classfier construction. Readers are referred to (Espejo et al. 2010) for further
information.

2.2. EC for Feature Selection

Feature selection (FS) is a complex problem. With N original features, there are 2N dif-
ferent feature subsets, which is impractical for exhaustive search on high-dimensional
datasets (with thousands or more features). FS is challenging due to the large search
space and possible interactions between features, which makes traditional greedy
search prone to local optima. Many non-EC FS methods have been proposed, however
these tend to be limited by these issues. With a population-based search, EC tech-
niques have shown to be effective thanks to its capabilities of conducting global search
and evaluating the whole feature subset considering possible interactions between fea-
tures.

GAs are probably the first widely-applied EC technique to FS. GAs typically use
an N -dimension binary vector to represent a feature subset where ‘1’ means the cor-
responding feature is selected and ‘0’ for not (Zhu et al. 2010). Many strategies have
been proposed to improve GAs’ performance such as improving the crossover and
mutation operators (Jeong et al. 2015), enhancing the initial population (Oreski and
Oreski 2014) and using different feature subset evaluation methods (Xue et al. 2012)
to better guide the search during the evolutionary process.
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Although PSO was proposed much later than GAs, a larger number of PSO-based
FS methods have been developed during the last decade (Xue et al. 2016). To represent
a feature subset, PSO can use bit-strings (binary PSO) as GAs or continuous vectors
(continuous PSO) where a threshold is used to determine if the corresponding feature
is selected. Although binary PSO representation well matches FS, Engelbrecht (2007)
pointed out its potential limitations leading to inferior performance to continuous PSO.
Unlike GA, PSO adjusts current individuals based on the communication between
individuals about their best solutions found so far. Therefore, fruitful areas in the
search space can be quickly detected and used to guide the search. Researchers continue
to improve PSO’s performance for FS in a number of ways including initialisation
strategies (Xue et al. 2014), representation (Tran et al. 2018a), updating mechanisms
(Gu et al. 2018), integrating local search (Tran et al. 2016a), and evaluating features
based on its intrinsic characteristics (aka filter approach) (Nguyen et al. 2016) and
performance of learning algorithms (aka wrapper approach) (Xue et al. 2014).

Thanks to the implicit FS process in building GP trees, GP has been proposed for FS
implicitly or explicitly. Implicit FS happens in all GP-based classification algorithms
(Nag and Pal 2016). Explicit FS methods using GP have also been proposed for feature
subset selection (Sandin et al. 2012), feature subset ranking (Neshatian and Zhang
2009a), and feature space exploration (Neshatian and Zhang 2009b). More information
about FS using EC can be found in (Xue et al. 2016).

2.3. EC for Feature Construction

Besides FS, feature construction (FC) is another technique to enhance the representa-
tion of the feature space. FC combines the original features to construct new high-level
features with better discriminating ability. The created features can be used to aug-
ment the original ones (Muharram and Smith 2005) or replace them as a dimensionality
reduction solution (Neshatian et al. 2012).

Compared with FS, FC is more challenging due to its larger search space as it needs
to choose not only a good subset of features but also an appropriate set of operators
to combine them. The optimal model (whether linear or non-linear) to combine the
original features is unknown in practice. With a flexible representation, GP can auto-
matically evolve models without assuming any model structure. Constructed features
can be represented with tree-based GP, where leaf nodes are features/constants and
internal nodes are operators.

Many GP-based FC methods have been proposed using single-tree (Neshatian et al.
2012) or multiple-tree representations (Tran et al. 2017). GP is used to construct
features that are generally good for all classes (class-independent) (Krawiec 2002) or
for a specific class (class-dependent) (Neshatian et al. 2012). Different approaches are
also used to evaluate the constructed features during the evolutionary process such
as filter (Tran et al. 2017), wrapper (Smith and Bull 2005), or a combination of both
(Tran et al. 2016b).

In addition to GP, GAs (Alfred 2008) and PSO (Dai et al. 2014) have also been
proposed and shown promise for FC.

3. Evolutionary Computation for Regression

Regression is a major ML task that attempts to identify and express the underlying
relationship between the input features/variables and the target variable(s). Regression
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analysis is utilised for forecasting in widespread areas, e.g., finance, traffic, medicine,
and biology (Glaeser and Nathanson 2017). To build a regression model, two essential
aspects need to be distinguished, i.e., the mathematical form/structure of the model
and the values of coefficients in the model. Many EC techniques have been proposed
regarding the two aspects.

3.1. EC for Regression Tasks

Model identification: Paterlini and Minerva (2010) developed a new GA method
which not only selects the input variables but also determines the most appropriate
mathematical transformations on these variables. A multi-objective GA method (Sinha
et al. 2015) was proposed to identify regression models with a good balance between
the empirical error and the model complexity. An evolutionary algorithm was proposed
for fuzzy regression by choosing the best fuzzy function within a predefined library
(Buckley and Feuring 2000). PSO was used to generate the structures of the fuzzy
models in nonlinear polynomial form (Chan et al. 2011).

Parameter estimation: A large number of EC methods have been proposed for
parameter estimation for complicated or non-differentiable regression models. A GA
method (Zhou and Wang 2005) was utilised to learn the minimum value of the least
absolute deviation function for measuring the robustness of linear regression models.
GA with seven different crossover operators on parameter estimation has been exam-
ined (Kapanoglu et al. 2007). The convergence of the GA method was explained by
analysing the convergence of parameters in regression models with different levels of
difficulty. Chen et al. (2010) employed PSO to optimise the parameters for orthogonal
forward regression.

3.2. EC for Symbolic Regression

Some EC techniques for regression are able to learn directly from the data and evolve
both the structure and parameters of the regression models simultaneously. This kind
of regression tasks is known as symbolic regression. The distinguishing characteristic
of symbolic regression is its interpretability, which can provide domain experts with
meaningful insight into the underlying data generating process and highlight the most
relevant features.

The symbolic nature of GP solutions and its flexible representation make GP a very
suitable approach for symbolic regression. There are many successful applications of
GP for symbolic regression (Vyas et al. 2018).

Interpretability is a distinct property of symbolic models, with which the models
are able to distil novel knowledge (Schmidt and Lipson 2009). Many studies have been
proposed to improve the interpretability of models evolved by GP. A typical approach
is introducing parsimony pressure into GP, which considers the size of the solutions in
their fitness evaluation. Parsimony pressure has been added to the fitness function as
an adaptive penalty regarding the growth metrics in the individuals and the population
(Poli and McPhee 2008). A new feature selection method based on a permutating test
was developed for GP for symbolic regression and regression models were shown with
good interpretability (Chen et al. 2017).

Prediction/generalisation ability is another important metric for regression
techniques. The validation set, which is the most widespread mechanism for improv-
ing generalisability in ML, was also used for symbolic regression (Schmidt and Lipson
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2009). Geometric semantic GP which drives the search in GP by the semantic infor-
mation, has shown to have good prediction performance (Chen et al. 2018b).

Controlling the functional complexity of models is an effective method to im-
prove prediction performance. Tikhonov regularisation was introduced into GP to
control model complexity (Ni and Rockett 2015). Order of nonlinearity uses the min-
imum degree of Chebyshev polynomials to approximate the complexity of GP models
(Vladislavleva et al. 2009). Chen et al. (2018) introduced Vapnik-Chervonenkis (VC)
dimension to directly measure and control the complexity of GP solutions.

Some other EC techniques are also available for symbolic regression. However, most
of them are in their initial stage. LCS has been used for symbolic regression for the
first time (Naqvi and Browne 2016). AIS (Johnson 2003), which is inspired by the
natural immune systems in responding to attacks on an organism, was applied to
solve symbolic regression tasks. Grammatical evolution (O’Neill and Ryan 2001), which
evolves binary strings to select production rules in a grammar definition to generate
any kind of programs, can also be used for symbolic regression.

4. Evolutionary Computation for Clustering

Often, data may have no labels and so the previously discussed supervised ML meth-
ods cannot be used. ML algorithms developed for this scenario are called unsupervised
learning algorithms, which discover underlying patterns within the data (Nanda and
Panda 2014). There are several approaches to this problem, but the most studied
is clustering. Clustering algorithms split a dataset into a set of clusters, so that data
within a cluster are similar, while data in distinct clusters are different. A good cluster-
ing result (partition) gives insight into a dataset by splitting it into “natural” groups.
Clustering is widely used in real-world tasks such as text mining, bioinformatics, and
image categorisation (Nanda and Panda 2014).

EML has been widely applied to clustering problems (Hruschka et al. 2009) due
to its ability to find good partitions in reasonable computational time on “big data”
or when the number of clusters (K) is not known in advance (Garćıa and Gómez-
Flores 2016). The field of evolutionary clustering algorithms can be split into two
categories: fixed algorithms that require that K is known, and automatic algorithms
which discover K themselves. Fixed clustering algorithms are prevalent historically,
whereas most recent work tackles the more difficult automatic clustering problem.
The third category of algorithms which has emerged recently uses feature reduction to
improve clustering performance. Traditional clustering approaches assume all features
of a dataset to be equally useful. This is often untrue: for example, clustering weather
records by “day of week” is clearly less useful than by “daily rainfall”. This becomes
even more problematic in high-dimensional datasets. EC has recently been used to
reduce the dimensionality of data in clustering (Alelyani et al. 2013). Each of these
three categories will be discussed in turn.

4.1. Evolutionary Fixed Clustering

The first EC methods used for clustering were GAs, and this continues to be the most
popular approach. Initial work (Krovi 1992) used primitive encodings (representations)
on small datasets, with two or three clusters and at most 150 instances. Since then,
substantial progress has been made on extending GAs to much more difficult problems,
with over 40 clusters, and thousands of instances. Several new encoding schemes have

8



been proposed that are suited to different clustering problems (Hruschka et al. 2009).
The label-based encoding scheme represents a partition as a vector of length N for

N instances, where each instance has a label of the cluster it is in. This encoding was
first proposed in the binary form (K = 2) (Krovi 1992), but more general forms have
been explored since, such as bioinformatics with 16 clusters (Lu et al. 2004). In recent
years, as clustering has been applied to larger datasets, this encoding is seldom used
due to its inefficient representation.

The centroid-based encoding scheme is the most popular in recent EC clustering
work, with an encoding length of K ×D for D dimensions in the data. This encoding
represents each cluster by a set of D features which form the cluster centre (centroid).
Each instance is assigned to the cluster whose centroid is closest by distance. One of
the pioneering works in this field proposed a hybrid approach of a GA and k-means
clustering to balance global and local search (Bandyopadhyay and Maulik 2002). PSO
is also often used with this encoding as it can efficiently optimise real-valued problems.
The first approach was proposed for image clustering (Omran et al. 2005), with good
results compared to GA and traditional methods. Other swarm intelligence methods
such as ACO have also seen some use (Handl and Meyer 2007).

GP has also been briefly investigated for fixed clustering. Multi-tree GP was pro-
posed for clustering, where each tree represents a cluster, and an instance is assigned
to the tree producing the maximum output (Boric and Estévez 2007). GP is also
used to build ensembles of clustering algorithms to produce more robust and accurate
partitions (Coelho et al. 2011).

4.2. Evolutionary Automatic Clustering

One of the seminal works in evolutionary automatic clustering is MOCK (Handl and
Knowles 2007). MOCK uses a graph-inspired label (locus) GA representation, where
each instance’s label indicates an instance it has an edge to. The set of graphs in this
encoding represents the set of clusters. This encoding is shape-invariant, i.e. clusters
are not assumed to be a certain shape (e.g. hyper-spherical) as in many clustering
methods. The use of a multi-objective fitness function was also very novel. Recently,
many EMO clustering methods have been proposed (Garćıa and Gómez-Flores 2016),
including a number of extensions to MOCK (Garza-Fabre et al. 2018). Other graph-
inspired techniques have been proposed, including GPGC, which uses GP to evolve
tailored similarity measures for clustering problems (Lensen et al. 2017a).

A flexible-length centroid encoding (Sheng et al. 2016) and a medoid-based encoding
have also been used for automatic clustering, primarily with GAs or PSO. A medoid-
based encoding is a binary encoding of length N , where an instance is coded as a ‘1’
if it is a medoid and ‘0’ if it is not. A medoid indicates that an instance is the centre
of a cluster. This has the advantages of a fixed-length encoding, while also allowing K
to be discovered automatically (Lensen et al. 2016).

Many other EC algorithms such as DE, ABC, and GP have also seen some use for
automatic clustering (Garćıa and Gómez-Flores 2016).

4.3. Evolutionary Clustering with Feature Reduction

NMA CFS (Sheng et al. 2008) was a pioneering GA method that simultaneously per-
forms feature selection and clustering, selecting features tailored to the clusters found.
Recently, PSO-based approaches have been investigated using sophisticated initialisa-
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tion and local search methods (Lensen et al. 2017c). Feature weighting for clustering
has also been proposed (O’Neill et al. 2018).

FC methods are very effective at improving performance in classification tasks (Es-
pejo et al. 2010), but have seen little use in clustering. An initial wrapper approach
was proposed using GP for FC to improve k-means clustering (Lensen et al. 2017b),
and embedded approaches have also been proposed (Nanda and Panda 2014). Given
the upsurge of high-dimensional data, it is expected that future evolutionary cluster-
ing work will focus on new ways of incorporating feature manipulation techniques into
clustering.

5. Evolutionary Computer Vision

Utilising EML to tackle a variety of problems in different computer vision tasks have
received more attention over the last few decades, e.g., image classification, image
segmentation, object detection, feature extraction, image compression, image registra-
tion, image restoration, and image enhancement. Generally, EML for computer vision
problems and applications can be categorised based on the application domain (e.g.
medical, military, and environment), task (e.g. classification, segmentation, and feature
manipulation), and the solution representation (e.g. tree structure, and chromosomes
or strings of bits). A brief review of EML methods in computer vision is provided in
the following subsections, and interested readers can check (Olague 2016).

5.1. EC Techniques for Image Preprocessing

Designing a method to handle tasks such as noise cancellation, image segmentation and
image enhancement, often, requires human intervention and sufficient domain knowl-
edge. EC techniques have been successfully utilised to automatically handle such tasks
and such methods do not only remove/reduce the human intervention requirement,
but also have been shown to evolve potentially better models compared to the domain-
expert designed ones.

Image segmentation aims at dividing an image into different regions based on some
criteria such as the connectivity of the pixels. GP has been applied to image seg-
mentation by automatically evolving a similarity measure in (Vojodi et al. 2013). In
(Liang et al. 2015), GP was used to segment objects of interest, whereas PSO was
utilised for road signs segmentation (Mussi et al. 2010), and region identification via
image segmentation (Dhanalakshmi et al. 2016). Defining the threshold values for im-
age segmentation is a challenging task that has been tackled using AIS (Cuevas et al.
2012). Other EC techniques, such as DE (Maulik and Saha 2009) and ACO (Tao et al.
2007), have been very promising to improve fuzzy clustering for image segmentation
by grouping pixels into different clusters.

Detecting edges also represents a very important task that aims at finding the
edges between different regions in an image, which helps in finding the boundaries of
an object of interest. In (Lu and Chen 2008), ACO has been utilised to improve the
performance of edge detection, whereas GP has been used to automatically evolve an
edge detector in (Fu et al. 2015).

Salient object detection (SOD) aims at identifying the most attention grabbing
regions in an image, which represents a preprocessing task to focus the search into a
specific part of the image. Finding an optimal set of weights for different features to
improve SOD has been achieved by utilising PSO (Afzali et al. 2017).
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5.2. EC Techniques for Image Feature Manipulation

Traditionally, building or training an image classifier requires a set of features as
operating directly on the raw pixel values is very challenging due to the large search
space. Feature manipulation, including feature extraction, feature construction and
feature selection, is very important in computer vision and pattern recognition.

GP has been utilised for automatically evolving models that improve existing im-
age descriptors such as scale-invariant features (SIFT) (Hindmarsh et al. 2012), and
speeded-up robust features (Perez and Olague 2013); whereas EMO is adopted for
extracting image features (Albukhanajer et al. 2015).

Image descriptors aim at identifying different image keypoints, e.g., lines, corners
and spots, in an image and generating the corresponding feature vector. In (Al-Sahaf
et al. 2017), GP has been utilised to automatically evolve image descriptors that au-
tomatically detect designed keypoints for multi-class texture image classification. This
method mimics the well-known and largely utilised local binary pattern (LBP) im-
age descriptor. While both methods operate in a similar fashion, i.e., using a sliding
window, they differ in being manually designed by domain-experts (LBP) or auto-
matically designed by the evolutionary process. Moreover, LBP has been designed to
detect a specific set of keypoints whereas GP-based descriptors automatically design
the keypoints to be detected.

PSO has also been used in conjunction with SIFT for face recognition (Lanzarini
et al. 2010). Furthermore, selecting optimal image features by utilising accelerated
binary PSO is investigated in (Aneesh et al. 2011). In (Valarmathy and Vanitha 2017),
AIS has been investigated for image feature selection in MRI images.

5.3. EC Techniques for Object Detection and Image Classification

Object detection aims at localising the different objects in an image. In (Bhanu and
Lin 2004), GP has been utilised and shown promise in this task.

Image classification is the task of categorising images into different groups or classes
based on their visual content. In order to detect breast cancer in images, GP has
been used to classify different cut-outs of medical images into malignant and benign
classes (Ryan et al. 2015), whereas Ain et al. (2017) tackled the problem of skin
cancer classification in images by utilising GP with a mix of biomedical and LBP
features. A GP-based classification method for identifying active tuberculosis in X-
ray images was proposed in (Burks and Punch 2018). Motivated by the promising
results achieved in (Li and Ciesielski 2004), Abdulhamid et al. (2011) have further
investigated the potential of utilising loops with GP for binary image classification and
similar observations have been revealed based on the experimental results compared
to that was found in (Li and Ciesielski 2004).

Feature extraction represents a very crucial task that aims at identifying and gener-
ating some informative features to discriminate the different classes/objects. GP has
been shown to perform very well in this regard in (Al-Sahaf et al. 2012) and even with
the presence of noise in (Albukhanajer et al. 2015). Perez et al. (2010) utilised PSO
to extract features for face and iris localisation, whereas PSO was employed for object
recognition in (Perlin et al. 2008) and face recognition in (Ramadan and Abdel-Kader
2009)

Template matching is a well-known approach for object detection and recognition.
An ACO-based method for finger print matching was proposed in (Cao et al. 2012),
and the results have been shown to outperform the state-of-art methods.
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Other EC techniques such as LCSs (Kukenys et al. 2011), and AISs (Wang et al.
2008) have been proposed for image classification, and an AIS based identity recogni-
tion system is proposed in (Silva et al. 2015).

6. Evolutionary Computation for Scheduling and Combinatorial
Optimisation

Scheduling and combinatorial optimisation is an important research area with many
real-world applications such as manufacturing and cloud computing. They have been
studied extensively as pure optimisation problems. Recently, more research treats them
as machine learning tasks due to the following two main motivations.

First, the environment is often dynamic in reality. For example, in manufacturing,
job orders arrive in real time and need to be scheduled immediately. Traditional opti-
misation approaches such as mathematical programming and GAs are not fast enough
to respond, and it is necessary to find a heuristic/rule that can generate/adjust the
solution in real time effectively.

Second, manually designing an effective optimisation algorithm for a complex prob-
lem requires much domain expertise and time. Using ML techniques to automatically
design algorithms/heuristics can save much human effort.

The ML approaches that search for promising heuristics are called hyper-heuristics
(Burke et al. 2013). EC has been successfully applied as hyper-heuristics. In contrast
to being used for conventional optimisation, the fitness evaluation is the key difference
when EC is used as hyper-heuristics, where each individual is a heuristic. To evaluate
a heuristic, it is applied to a set of training instances and generates solutions to them.
The fitness of a heuristic is set as the average quality of the solutions it generates.

In the rest of this section, we will provide a brief review on evolutionary hyper-
heuristics for classic problems including scheduling, routing and bin packing.

6.1. Evolutionary Hyper-heuristics for Scheduling

Scheduling aims to design a schedule to process a set of jobs by a set of machines
with minimum cost/time. Dispatching rule is commonly used to generate schedules in
an online fashion. GP-based Hyper-Heuristic (GPHH) has achieved great success in
automatically designing dispatching rules.

In a standard job shop scheduling problem, a dispatching rule is invoked whenever a
machine becomes idle. It uses a priority function to prioritise the jobs in the machine’s
queue, and decides the job to be processed next. There have been a number of stud-
ies on developing GPHH to evolve such priority functions for the standard job shop
scheduling problem. Branke et al. (2016) and Nguyen et al. (2017) give comprehensive
surveys of this area.

In addition to the standard job shop scheduling problem, people have also applied
GPHH for solving other problem variants, such as multi-objective job shop scheduling
(Nguyen et al. 2014) and flexible job shop scheduling (Yska et al. 2018).

6.2. Evolutionary Hyper-heuristics for Routing

A routing problem seeks optimal routes subject to some constraints, e.g., serving all
the customers for delivery or visiting all the attractions in a trip.
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Oltean and Dumitrescu (2004) employed GPHH to evolve heuristics for travelling
salesman problem, which decides the next node to be added into the current partial
tour. Weise et al. (2012) developed a GPHH algorithm to evolve heuristics for the
arc routing problem, which uses a vehicle to serve the streets on a road network,
where each street has an uncertain request. Whenever the vehicle becomes idle, it
calculates the priority of the remaining streets to decide the street to be served next.
Here, GPHH evolves the priority function. Liu et al. (2017) considered a more realistic
problem model, and improved the performance of GPHH by designing more features.
Jacobsen-Grocott et al. (2017) developed a GPHH approach to vehicle routing problem
with time windows, which serves the nodes rather than edges.

6.3. Evolutionary Hyper-heuristics for Bin Packing

Bin packing aims to minimise the number of bins to place all the items. A typical
heuristic for bin packing starts with empty bins. Then, for each item, the heuristic
calculates a priority value for each bin based on the current situation, and places the
item into the bin with the best priority. Then, GPHH is employed to evolve the priority
function. Burke et al. (2006) developed GPHH for one-dimensional bin packing. Burke
et al. (2010) and Allen et al. (2009) extended the problem to two-dimensional and
3-dimensional packing, respectively.

7. Evolutionary Deep Learning

Deep learning (DL) is a class of ML algorithms that use multiple layers of nonlinear
processing units to solve a problem (LeCun et al. 2015). DL has shown a remarkable
performance in addressing increasingly complex data with large feature sizes from
different domains such as images, gene expression, text and web mining (Zhang et al.
2016), owing to it automatic feature generation and selection capabilities (Bengio et al.
2009). Evolutionary DL (EDL) aims at using EC approaches to promoting the usability
or improving the performance of DL algorithms. Existing EDL algorithms are mainly
composed of neural network-based EDL (NN-EDL) algorithms and GP-based EDL
(GP-EDL) algorithms.

7.1. Neural Network-based Evolutionary Deep Learning

NN-EDL algorithms mainly focus on designing network architectures, optimising the
weights, and solving multi-objective optimisation problems.

Existing approaches for designing architectures can be divided into two different
categories: supervised NN-EDL and unsupervised NN-EDL. One typical work on NN-
EDL for unsupervised deep learning is the EUDNN method (Sun et al. 2018). Exist-
ing supervised NN-EDL algorithms includes Large-scale Evolution (Real et al. 2017),
EvoCNN (Sun et al. 2017), and so on.

There are two different strategies for optimising the weights. The first is to directly
encode the weights (Lehman et al. 2018). The second is to search for the best weights
indirectly (Sun et al. 2018).

An NN-based deep learning algorithm with promising performance usually has a
large number of parameters, which would take a large amount of computational re-
source. However, the computational resources are often limited, such as on mobile de-
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vices. In this regard, maximising performance and minimising computational resources
are two conflicting objectives, i.e., a multi-objective (MO) optimisation problem. NN-
EDL for MO has been first pointed out by Sun et al. (2017), and then is specifically
investigated by Dong et al. (2018).

Because NN-based DL often has a large number of parameters, some high-
performance hardware has been developed and used to accelerate their performance,
such as graphic processing unit (GPU), field-programmable gate array and tensor
processing unit.

7.2. GP-based Evolutionary Deep Learning

GP has been developed to achieve DL without NNs. The flexible structure of GP
allows it to learn abstract and compact representation with suitable model complexity
in a layer-by-layer feature transformation manner, which meets the key points of DL.

GP-EDL has been developed to integrate multiple steps to learn a single high-level
feature for image classification in a single GP tree. The first method is perhaps the
multi-tier GP with an image filtering tier, an aggregation tier and a classification tier
to perform region detection, feature extraction, feature construction, and image clas-
sification, simultaneously (Atkins et al. 2011). Bi et al. (2018) proposed a multi-layer
GP method with a utilisation of image-related operators to learn high-level features
for image classification.

GP-EDL has been proposed to learn multiple features instead of a single feature
from raw data. Shao et al. (2014) proposed a multi-objective GP with a multi-layer
structure to learn features for difficult image classification tasks. Rodriguez-Coayahuitl
et al. (2018) defined the structured layered GP for representation learning and intro-
duced deep GP. A GP auto-encoder was designed with an encoding forest and a
decoding forest to transform an original representation into a new representation of
fewer features using arithmetic operators.

8. Emerging Topics and Current Issues

This section provides a number of emerging topics and summarises the major is-
sues/challenges in EML with future perspectives.

8.1. Emerging Topics

Evolutionary Transfer Learning: Transfer learning becomes increasingly popular
in ML in recent years. It aims to improve the performance of learning algorithms
in the target tasks/domains by using useful knowledge extracted from the source
tasks/domains (Pan et al. 2010). In transfer learning, it is important to address three
questions: what to transfer, when to transfer and how to transfer (Pan et al. 2010).

Recently, EC methods have been used with transfer learning. Iqbal et al. (2017)
transferred subtrees learnt by GP on the source domain to improve performance of
GP on related target tasks. Jiang et al. (2018) transferred the probability distributions
of solutions to population generation in a dynamic MO algorithm to reduce the com-
putation cost. The parameters of DE learnt from the source problems were transferred
to the target problems by Gong et al. (2015).

More approaches can be investigated in EC using instances transfer, feature
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representation transfer, parameter transfer, and rational-knowledge transfer (Pan
et al. 2010).

Evolutionary Ensemble Learning: Ensemble learning is an important area in ML.
Ensemble learning algorithms learn multiple learners/models from the training data
to solve a problem. An ensemble consists of a number of base learners, which are learnt
using traditional learning algorithms. Commonly used ensemble methods include bag-
ging, boosting and stacking (Zhou 2012). Generally, to construct a strong ensemble,
the base learner needs to be accurate and diverse (Zhou 2012).

EC methods are also beneficial for in ensemble learning in different ways. Firstly,
EC has been combined with learning algorithms to obtain strong SVM ensembles
(de Araújo Padilha et al. 2016) or NN ensembles (Pulido et al. 2014). Secondly, EC
has also been used to evolve ensembles using bagging and boosting (Folino et al.
2006). Finally, EMO has been used to improve the diversity of ensembles for difficult
problems (Bhowan et al. 2013). Further development of EC in ensemble learning is
expected to see in addressing the diversity of base learners and the interpretability of
the ensembles.

Automated Machine Learning (AutoML): AutoML aims at automating ML
techniques to allow people without ML domain knowledge to use them for problem
solving. An AutoML method optimises the integration of different methods and their
hyper-parameters for data preprocessing, feature engineering, and learning processes.
Well-known AutoML methods include Auto-WEKA, Auto-Sklearn and Auto-Keras,
which are based on existing ML libraries.

EC methods have also been employed in AutoML. For example, the well-known
tree-based pipeline optimisation tool (TPOT) uses GP to evolve a set of data trans-
formations and ML models (Olson and Moore 2016). Chen et al. (2018a) developed
an Autostacker method, where an EC algorithm was used to find the optimal hyper-
parameters for ML pipelines. Besides the achievements of these methods, there are
still many unexplored opportunities in this topic, such as EMO for AutoML, which
needs to be investigated in the future.

8.2. Current Issues

Despite its successes, EML remains a promising field with challenges and opportunities.
This section discusses some of its major issues in theoretical foundation, computational
cost, scalability, generalisability, and interpretability.

There has been some theoretical analysis of EML methods on running time, con-
vergence guarantee and parameter settings (Auger and Doerr 2011). However, current
EML methods still lack of mathematical foundation, which might prevent scientists
and practitioners from using EML methods.

Being computationally expensive is another major issue of the existing EML meth-
ods. EML methods are population-based and need to evaluate a population of indi-
viduals/solutions at each generation, which often makes the methods more expensive
than many traditional ML methods.

Scalability is a common problem in EML, where the learning methods cannot scale
well when the datasets become larger. An increase in the number of features and the
number of instances often requires larger memory and longer computation time. This
might limit the applications of EML methods to large-scale problems.
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Like most ML techniques, EML methods also face the challenge of poor generalis-
ability, which may due to insufficient data, overfitting, poor feature choice or availabil-
ity. For EML methods, poor generalisability often refers to the problem of overfitting,
which means that the learnt model can perfectly fit the training data, but sometimes
work poorly on the unseen data. The issue of overfitting in EML needs further inves-
tigation in the future.

Interpretability is another important issue in EML and ML. Good interpretability
of a learnt model not only provides better insights in why it obtains a better/worse
result, but also encourages experts to accept and reuse the model. The use of arcane
features and complex functions/models can often lead to poor interpretability. Among
EML methods, several methods such as tree-based GP have good interpretability of
solutions, which can be further investigated in the future.

9. Conclusions

This paper provided a comprehensive review of major EC techniques for ML tasks,
which covers both supervised and unsupervised tasks and applications. In addition
to a number of emergent techniques such as evolutionary deep learning and trans-
fer learning, this paper also discussed major current issues and challenges in this
area, including scalability, generalisability, and interpretability/comprehensibility of
the evolved models.

Having said that, the fast development of the hardware such as GPU devices and
cloud computing facilities has enabled previously impossible EML tasks become reality.
The involvement and investment from large corporations such as Google, Microsoft,
Uber, Huawei, and IBM have been making EML methods more practical. It is expected
that EML methods will play a significant role in AI and ML in the next ten years.
EML is expected to be applied to most real-world data mining and big data tasks
and applications in our daily life. In the future, the AI and EC/ML group at Victoria
University of Wellington will seek research collaborations with colleagues who are
interested in AI in science, engineering, commerce/business, humanities and social
sciences, education and law as well as the primary industry in New Zealand.
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Boric N, Estévez PA. 2007. Genetic programming-based clustering using an information theo-
retic fitness measure. In: Proceedings of the IEEE Congress on Evolutionary Computation.

17



p. 31–38.
Branke J, Nguyen S, Pickardt CW, Zhang M. 2016. Automated design of production scheduling

heuristics: A review. IEEE Transactions on Evolutionary Computation. 20(1):110–124.
Buckley JJ, Feuring T. 2000. Linear and non-linear fuzzy regression: Evolutionary algorithm

solutions. Fuzzy Sets and Systems. 112(3):381–394.
Buczak AL, Guven E. 2016. A survey of data mining and machine learning methods for cyber

security intrusion detection. IEEE Communications Surveys & Tutorials. 18(2):1153–1176.
Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R. 2013. Hyper-heuristics:
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binary PSO descriptors. In: Proceedings of the 32nd International Conference on Information
Technology Interfaces. IEEE. p. 557–562.

Le TC, Winkler DA. 2015. A bright future for evolutionary methods in drug design. ChemMed-
Chem. 10(8):1296–1300.

Le TC, Winkler DA. 2016. Discovery and optimization of materials using evolutionary ap-
proaches. Chemical Reviews. 116(10):6107–6132.

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436.
Lehman J, Chen J, Clune J, Stanley KO. 2018. ES is more than just a traditional finite-

difference approximator. In: Proceedings of the Genetic and Evolutionary Computation
Conference. ACM. p. 450–457.

Lensen A, Xue B, Zhang M. 2016. Particle swarm optimisation representations for simultaneous
clustering and feature selection. In: Proceedings of the Symposium Series on Computational
Intelligence. IEEE. p. 1–8.

Lensen A, Xue B, Zhang M. 2017a. GPGC: genetic programming for automatic clustering
using a flexible non-hyper-spherical graph-based approach. In: Proceedings of the Genetic
and Evolutionary Computation Conference. ACM. p. 449–456.

Lensen A, Xue B, Zhang M. 2017b. New representations in genetic programming for feature

20



construction in k-means clustering. In: Simulated Evolution and Learning. Springer. p. 543–
555.

Lensen A, Xue B, Zhang M. 2017c. Using particle swarm optimisation and the silhouette metric
to estimate the number of clusters, select features, and perform clustering. In: Proceedings
of the Applications of Evolutionary Computation. Springer. p. 538–554.

Li X, Ciesielski V. 2004. Using loops in genetic programming for a two class binary image
classification problem. In: Proceedings of the 17th Australian Joint Conference on Artificial
Intelligence; vol. 3339. Springer. p. 898–909.

Liang Y, Zhang M, Browne W. 2015. A supervised figure-ground segmentation method using
genetic programming. In: Proceedings of the 18th European Conference on the Applications
of Evolutionary Computation; vol. 9028. Springer. p. 491–503.

Liao GC, Tsao TP. 2006. Application of a fuzzy neural network combined with a chaos genetic
algorithm and simulated annealing to short-term load forecasting. IEEE Transactions on
Evolutionary Computation. 10(3):330–340.

Liu Y, Mei Y, Zhang M, Zhang Z. 2017. Automated heuristic design using genetic programming
hyper-heuristic for uncertain capacitated arc routing problem. In: Proceedings of Genetic
and Evolutionary Computation Conference. ACM. p. 290–297.

Lu DS, Chen CC. 2008. Edge detection improvement by ant colony optimization. Pattern
Recognition Letters. 29(4):416–425.

Lu Y, Lu S, Fotouhi F, Deng Y, Brown SJ. 2004. Incremental genetic k-means algorithm and
its application in gene expression data analysis. BMC Bioinformatics. 5:172–181.

Luna JM, Romero JR, Romero C, Ventura S. 2014. On the use of genetic programming for
mining comprehensible rules in subgroup discovery. IEEE Transactions on Cybernetics.
44(12):2329–2341.

Maulik U, Saha I. 2009. Modified differential evolution based fuzzy clustering for pixel classi-
fication in remote sensing imagery. Pattern Recognition. 42(9):2135–2149.

Mohais A, Schellenberg S, Ibrahimov M, Wagner N, Michalewicz Z. 2012. An evolutionary
approach to practical constraints in scheduling: A case-study of the wine bottling problem.
Springer Berlin Heidelberg. p. 31–58.

Muharram M, Smith G. 2005. Evolutionary constructive induction. IEEE Transactions on
Knowledge and Data Engineering. 17:1518–1528.

Mussi L, Cagnoni S, Cardarelli E, Daolio F, Medici P, Porta PP. 2010. GPU implementation
of a road sign detector based on particle swarm optimization. Evolutionary Intelligence.
3(3):155–169.

Nag K, Pal N. 2016. A multiobjective genetic programming-based ensemble for simultaneous
feature selection and classification. IEEE Transactions on Cybernetics. 46(2):499–510.

Nanda SJ, Panda G. 2014. A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm and Evolutionary Computation. 16:1–18.

Naqvi SS, Browne WN. 2016. Adapting learning classifier systems to symbolic regression. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC). p. 2209–2216.

Neri F, Tirronen V. 2010. Recent advances in differential evolution: A survey and experimental
analysis. Artificial Intelligence Review. 33(1-2):61–106.

Neshatian K, Zhang M. 2009a. Genetic programming for feature subset ranking in binary
classification problems. In: Vanneschi L, Gustafson S, Moraglio A, De Falco I, Ebner M,
editors. Genetic Programming. Springer Berlin Heidelberg. p. 121–132.

Neshatian K, Zhang M. 2009b. Pareto front feature selection: Using genetic programming
to explore feature space. In: Proceedings of the Conference on Genetic and Evolutionary
Computation. p. 1027–1034.

Neshatian K, Zhang M, Andreae P. 2012. A filter approach to multiple feature construction for
symbolic learning classifiers using genetic programming. IEEE Transactions on Evolutionary
Computation. 16(5):645–661.

Nguyen BH, Xue B, Andreae P. 2016. Mutual information for feature selection: Estimation or
counting? Evolutionary Intelligence. 9(3):95–110.

Nguyen S, Mei Y, Zhang M. 2017. Genetic programming for production scheduling: A survey

21



with a unified framework. Complex & Intelligent Systems. 3(1):41–66.
Nguyen S, Zhang M, Johnston M, Tan KC. 2014. Automatic design of scheduling policies for

dynamic multi-objective job shop scheduling via cooperative coevolution genetic program-
ming. IEEE Transactions on Evolutionary Computation. 18(2):193–208.

Ni J, Rockett P. 2015. Tikhonov regularization as a complexity measure in Multiobjective
Genetic Programming. IEEE Transactions on Evolutionary Computation. 19(2):157–166.

Notte G, Pedemonte M, Cancela H, Chilibroste P. 2016. Resource allocation in pastoral dairy
production systems: Evaluating exact and genetic algorithms approaches. Agricultural Sys-
tems. 148:114–123.

Olague G. 2016. Evolutionary computer vision: The first footprints. Springer.
Olson RS, Moore JH. 2016. Tpot: A tree-based pipeline optimization tool for automating

machine learning. In: Proceedings of the Workshop on Automatic Machine Learning. p.
66–74.

Oltean M, Dumitrescu D. 2004. Evolving TSP heuristics using multi expression programming.
In: Proceedings of the International Conference on Computational Science. Springer. p.
670–673.

Omran MGH, Engelbrecht AP, Salman AA. 2005. Particle swarm optimization method for
image clustering. International Journal of Pattern Recognition and Artificial Intelligence.
19(3):297–321.

O’Neill D, Lensen A, Xue B, Zhang M. 2018. Particle swarm optimisation for feature selection
and weighting in high-dimensional clustering. In: Proceedings of the IEEE Congress on
Evolutionary Computation. IEEE. p. 1–8.

O’Neill M, Ryan C. 2001. Grammatical evolution. IEEE Transactions on Evolutionary Com-
putation. 5(4):349–358.

Oreski S, Oreski G. 2014. Genetic algorithm-based heuristic for feature selection in credit risk
assessment. Expert Systems with Applications. 41(4):2052 – 2064.

Pal BB, Roy S, Kumar M. 2016. A genetic algorithm to goal programming model for crop
production with interval data uncertainty. In: Handbook of research on natural computing
for optimization problems. IGI Global; p. 30–65.

Pal SK, Bandyopadhyay S, Ray SS. 2006. Evolutionary computation in bioinformatics: A
review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews). 36(5):601–615.

Pan SJ, Yang Q, et al. 2010. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering. 22(10):1345–1359.

Paterlini S, Minerva T. 2010. Regression model selection using genetic algorithms. In: Pro-
ceedings of the 11th WSEAS international conference on evolutionary computing. p. 19–27.

Perez CA, Aravena CM, Vallejos JI, Estevez PA, Held CM. 2010. Face and iris localiza-
tion using templates designed by particle swarm optimization. Pattern Recognition Letters.
31(9):857–868.

Perez CB, Olague G. 2013. Genetic programming as strategy for learning image descriptor
operators. Intelligent Data Analysis. 17(4):561–583.

Perlin HA, Lopes HS, Centeno TM. 2008. Particle swarm optimization for object recognition in
computer vision. In: Proceedings of the International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems. Springer. p. 11–21.

Poli R, McPhee NF. 2008. Parsimony pressure made easy. In: Proceedings of the Genetic and
Evolutionary Computation Conference. ACM. p. 1267–1274.

Pulido M, Melin P, Castillo O. 2014. Particle swarm optimization of ensemble neural networks
with fuzzy aggregation for time series prediction of the mexican stock exchange. Information
Sciences. 280:188–204.

Ramadan RM, Abdel-Kader RF. 2009. Particle swarm optimization for human face recogni-
tion. In: Proceedings of the 2009 IEEE International Symposium on Signal Processing and
Information Technology. IEEE. p. 579–584.

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le Q, Kurakin A. 2017. Large-scale
evolution of image classifiers. In: Proceedings of Machine Learning Research. p. 2902–2911.

22



Rivero D, Dorado J, Rabunal J, Pazos A. 2010. Generation and simplification of artificial
neural networks by means of genetic programming. Neurocomputing. 73(16):3200 – 3223.

Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ. 2018. Structurally layered represen-
tation learning: Towards deep learning through genetic programming. In: Proceedings of the
European Conference on Genetic Programming. Springer. p. 271–288.

Ryan C, Fitzgerald J, Krawiec K, Medernach D. 2015. Image classification with genetic pro-
gramming: Building a stage 1 computer aided detector for breast cancer. In: Handbook of
Genetic Programming Applications. Springer. p. 245–287.

Sandin I, Andrade G, Viegas F, Madeira D, Rocha L, Salles T, Gonçalves M. 2012. Aggressive
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