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Abstract
As an essential component of human cognition, cause–effect relations appear frequently
in text, and curating cause–effect relations from text helps in building causal networks for
predictive tasks. Existing causality extraction techniques include knowledge-based, statis-
tical machine learning (ML)-based, and deep learning-based approaches. Each method has
its advantages and weaknesses. For example, knowledge-based methods are understandable
but require extensive manual domain knowledge and have poor cross-domain applicability.
Statistical machine learning methods are more automated because of natural language pro-
cessing (NLP) toolkits. However, feature engineering is labor-intensive, and toolkits may
lead to error propagation. In the past few years, deep learning techniques attract substantial
attention from NLP researchers because of its powerful representation learning ability and
the rapid increase in computational resources. Their limitations include high computational
costs and a lack of adequate annotated training data. In this paper, we conduct a compre-
hensive survey of causality extraction. We initially introduce primary forms existing in the
causality extraction: explicit intra-sentential causality, implicit causality, and inter-sentential
causality. Next, we list benchmark datasets and modeling assessment methods for causal
relation extraction. Then, we present a structured overview of the three techniques with their
representative systems. Lastly, we highlight existing open challenges with their potential
directions.
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1 Introduction

With the rapid growth of unstructured texts online, information extraction (IE) plays a vital
role in NLP research. It automatically transforms and stores unstructured texts into machine
readable data [20]. The complex syntax and semantics of natural language and its extensive
vocabulary make IE a challenging task. IE is an aggregation of tasks, which includes named
entity recognition (NER), relation extraction (RE), and event extraction.RE refers to extracted
and classified semantic relationships, such aswhole–part, product–producer, and cause–effect
from text. Specifically, the cause–effect relation, which refers to a relationship between two
entities e1 and e2 that the occurrence of e1 results in the occurrence of e2, is essential in
many areas. For example, in medicine, the decision to provide a treatment is based on the
relationship that the treatment leads to an improvement in patient’s condition. Or, the critical
issues of whether a disease is the reason for a symptom depend on if there are cause–effect
relation between them. Extracting such kinds of causal relations from the medical literature
can support constructing a knowledge graph, which can assist doctors in quickly finding
causality, like diseases-cause-symptoms, diseases-bring-complications, treatments-improve-
conditions, and finally customize treatment plans. Similarly, extracting cause–effect relations
from text, which is the study of causality extraction (CE), has received ongoing attention in
media [3,13,19,46,73], biomedical [12,47,63,77], emergency management [78], etc.

The task of CE focuses on developing systems for identifying cause–effect relations
between pairs of labeled nouns from text [5]. From the aspect of techniques, as shown in
Fig. 1, there has been a considerable body of CE systems that can be divided into three groups:
knowledge-based approaches, statistical ML-based approaches, and deep learning-based
approaches. Alternatively, CE studies can be classified in terms of different representation
patterns: explicit or implicit causality, intra- or inter-sentential causality. Explicit causality
has relations that are connected by the following explicit causal connectives: (a) causal links
(e.g., so, hence, therefore, because of, on account of, because, as, since, the result was); (b)
causative verbs (e.g., break, kill); (c) resultative phrases; (d) conditional, i.e., if...then...; and
(e) causative adverbs and adjectives [45]. Implicit causality means explicit causal valence is
replaced by ambiguous connectives, e.g., as, after in the first four examples, or even without
any connectives, as the last example in Table 1. Readers need to use background knowledge
to analyzing and reasoning if there is causality in the text. In intra-sentential causality, the
“cause” and the “effect” lie in a single sentence, while in inter-sentential causality, the “cause”
and the “effect” lie in different sentences. Most CE approaches, like [25,26,47,51,63,79],
identify causality in the basic levels, which are explicit and/or intra-sentential forms.

Fig. 1 Taxonomy of techniques
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Table 1 Examples for implicit causality

Connectives Sentences Labels

As There was no debate as the Senate passed the bill on to
the House [10]

Causal

As It has a fixed time, as collectors well know [10] Non-causal

After Bischoff in a round table discussion claimed he fired
Austin after he refused to do a taping in Atlanta [61]

Causal

After In stark contrast to his predecessor, five days after his
election he spoke of his determination to do what he
could to bring peace [61]

Non-causal

– He derives great joy and happiness from cycling [5] Causal

Table 2 The forms of causal relations

Sentences Causality forms Causality pairs

Financial stress is one of the main
causes of divorce

Explicit with intra-sentential <Financial stress,divorce>

Financial stress can speed divorce up Implicit <Financial stress,divorce>

You may hear that unfaithful can lead
to divorce. On the other hand,
financial stress is another
significant factor

Inter-sentential <Financial stress,divorce>

However, causality in many texts is implicit and/or inter-sentential conditions, which are
more complicated than basic kinds of causality. Table 2 lists three examples, which include
the sentences, causality forms, and the causality pairs.

The rest of the article is structured as follows. We review in detail of previous surveys in
Sect. 2. The benchmark datasets and evaluation metrics for CE system are presented in Sects.
3 and 4, respectively. Then, we survey representative CE systems and summarize them in
Sects. 5 and 6. We propose three open problems of the CE task with their potential solutions
in Sect. 7, and the conclusion of this paper is in Sect. 8.

2 Previous surveys

With limited exceptions, there is a notable paucity of surveys focusing specifically on CE.
It may be because cause–effect is a common relation that researchers scale up to RE litera-
ture reviews. Examples include the generalized survey [96], detailed analyses of RE in the
biomedical domain [41,101], and a survey about the application of distant supervision on
RE [82]. From our point of view, however, CE is different from RE, as the former task is a
binary classification while the later is multiple classification problem. Meanwhile, the two
tasks focus on different kinds of linguistic patterns or features. For example, the punctuation
feature can be used in RE to indicate the relation of Description and Attribution, but it is
useless in the task of CE [44]. Also, RE faces the challenge of extracting relations on open-
domain corpora, that is, the relation types may not be pre-defined [90], while the target of
CE is clear and there are no new relation types.
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In 2016, Asghar [2] separates CE applications into non-statistical techniques, and sta-
tistical and machine learning techniques. Besides reviewing previous approaches, another
contribution is the analysis of strengths and weaknesses of the two categories. Early non-
statistical methods suffer from constructing annotated linguistic and syntactic patterns
manually, while ML-based systems can utilize a small set of seed patterns with algorithms
to find these language patterns automatically. Also, most non-statistical models restricted
their corpora to a particular domain with a specific text type (e.g., narrative, prose, drama).
In comparison, the statistical ML techniques provide better generalization to other domains
and types of text. Meanwhile, unlike non-statistical architectures that only extracted explicit
cause–effect relations, a large number of ML systems (e.g., [9,80,83,92]) have the capability
to explore implicit relations. In the same year with the study of [2], Barik et al. [4] categorize
existing CE approaches into four groups: using handcrafted patterns, using semiautomatic
causal patterns, using supervised learning, and statistical methods. From their point of view,
instead of using manually linguistic clues and domain knowledge, semiautomatic learning
acquires lexico-syntactic patterns from a larger corpus automatically. Then, these patterns
are used to identify in-domain causal relations or evaluate causal patterns in a semiautomated
way. For the supervised learning, there are a large number of corpora that required labeled
prior to modeling. The above two surveys provide comprehensive reviews of CE, one of
their limitations is the lack of review about recent developments in the field, especially deep
learning. Luckily, we will review both of the traditional and modern methods in Sect. 5.

3 Benchmark datasets

As we all know that data is the foundation of experiment. There is a number of datasets
which have been previously used for evaluating CE models. In this section, we describe four
datasets from general domain and two datasets from biomedical domain and summarize them
in terms of their causality sizes, sources, available condition, balanced condition (X and -
represent balanced and imbalanced, respectively), and related works in Table 3.

– SemEval-2007 task 4 It is part of SemEval (Semantic Evaluation), the 4th edition of
the semantic evaluation event [27]. This task provides a dataset for classifying semantic
relations between two nominals. Within the set of seven relations, the organizers split
the Cause–Effect examples into 140 training with 52.0% positive data, and 80 test with
51.0% positive data. This dataset has the following advantages: (a) Strong reputation.
SemEval is one of the most influential, largest scale natural language semantic evaluation
competition. As of 2020, SemEval has been successfully held for fourteen sessions and
has a high impact in both industry and academia. (b) Easily accessible. Each relation
example with the annotated results is collected in a separate TXT file, which can also
reduce the workload of data preprocessing. On the contrary, the main limitation is the
small data amount that 140 training and 80 test examples are far from meeting the needs
for developing a CE system.

– SemEval-2010 task 8 Unlike its predecessor, SemEval-2007 Task 4, which has an inde-
pendent binary-labeled dataset for each kind of relation, this is a multi-classification task
in which relation label for each sample is one of nine kinds of relations [34]. Within the
10,717 annotated examples, there are 1003 training with 13.0% positive data, and 328
test with 12.0% positive data. This small sample amount and imbalanced condition are
the major limitations of this dataset.
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Table 3 Benchmark datasets

Datasets Published
years

Causality sizes Sources Availability BalancedRelated works

SemEval-2007
task 4

2007 220 Wikipedia Publicly
availablea

X [5,28]

SemEval-2010
Task 8

2010 1331 Wikipedia Publicly
availableb

– [51,56,69,83,
89,91,98,99]

PDTB 2.0 2018 9190 WSJ License
requiredc

– [15,35,52,57,
61,73,81]

TACRED 2018 269 Newswire,
Web

License
requiredd

– [97,98]

BioInfer 2007 1461 PubMed Publicly
availablee

X [1,14]

ADE 2012 6821 PubMed Publicly
availablef

– [6,7,33,42,55,
88,100]

ahttps://sites.google.com/site/semeval2007task4/data
bhttps://github.com/sahitya0000/Relation-Classification/tree/master/corpus
chttps://catalog.ldc.upenn.edu/LDC2008T05
dhttps://catalog.ldc.upenn.edu/LDC2018T24
ehttp://mars.cs.utu.fi/BioInfer/?q=download
fhttps://sites.google.com/site/adecorpus/

– PDTB 2.0 The second release of the penn discourse treebank (PDTB) dataset from
Prasad et al. [74] is the largest annotated corpus of discourse relations. It includes 72,135
non-causal and 9190 causal examples from 2312 Wall Street Journal (WSJ) articles. In
addition, there is a type of implicit relation in the dataset known as AltLex (Alternative
lexicalization) corpus, in which causal meanings are not expressed by explicit causal
lexical markers. However, the authors store PDTB in a complex way that researchers
need to use tools to convert it into easy-to-operate files.

– TACRED Similar to SemEval, the Text Analysis Conference (TAC) is a series of evalu-
ation workshops about NLP research. The TAC Relation Extraction Dataset (TACRED)
contains 106,264 newswire and online text that have been collected from the TAC
KBP challenge.1 during the year from 2009 to 2014 [97]. The sentences are annotated
with person- and organization-oriented related type (e.g., per:title, org:founded). The
main limitation of TACRED is the small number of examples that there are only 269
cause_of_death instances available for CE task.

The above four corpora are collected from large general-purpose texts, like English
Wikipedia and WSJ. At the same time, datasets in specific domains are needed to train
and evaluate specific CE systems. Here, we list two causality datasets in the biomedical
domain.

– BioInfer Pyysalo et al. [75] introduce an annotated corpus, BioInfer (Bio Information
ExtractionResource),which contains 1100 sentenceswith the relations of genes, proteins,
and RNA from biomedical publications. There are 2662 relations in the 1100 sentences,
of these 1461 (54.9%) are causal-effect. The original data is collected in detail in the
XML form, including sentence with entity markup.

– ADE The corresponding ADE task aims to extract two entities (drugs and diseases) and
relations about drugs with their adverse effects (ADEs) [33,55]. Dataset in the task is

1 https://www.ldc.upenn.edu/collaborations/current-projects/tac-kbp.
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collected from 1644 PubMed abstracts, in which 6821 sentences have at least one ADE
relation, and 16,695 sentences are annotated as non-ADE sentences. Annotators only
label drugs and diseases in the ADE sentences, so some studies, like [55], only use the
6821 sentences in the experiments.

4 Evaluationmetrics

To evaluate the performance of a CE system, the following four metrics are commonly used:

Precision = TP

(TP + FP)
(1)

Recall = TP

(TP + FN)
(2)

F-score = 2 ∗ TP

(2 ∗ TP + FN + FP)
(3)

Accuracy = (TP + TN)

(TP + FP + TN + FN)
(4)

As many researchers define their CE systems as relation extraction tasks, that is, to determine
whether the annotated causal pair in the input text has causality. Within their evaluation
metrics, TP (true positive) is the number of correctly identified causal pairs. FP (false positive)
refers to the number of causal pairs identified as non-causal pairs. TN (true negative) is the
number of correctly identified non-causal pairs, and FN (false negative) is the number of
non-causal pairs that are identified as causal pairs.

Accuracy and F-score have been (and still are) among the most popular adopted metrics in
most classification tasks. However, they may generate overoptimistic, misleading results on
imbalanced datasets, as they failed to consider the ratio between positive and negative classes
[16]. In contrast, Matthews correlation coefficient (MCC) [62] views two classes are equal
importance. It is high only when the classifier is doing well in both positive and negative
classes:

MCC = (TP ∗ TN − FP ∗ FN)√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(5)

TheMCC has been used for classifier evaluation over imbalanced datasets, as the publication
of [23,54,58].

The geometric mean [50], G-mean, also indicates the balance between performances on
both classes. A poor performance in positive examples prediction will lead to a low G-mean
value, even if negative instances are correctly classified by the classifier [31]:

G-mean =
√

TP

(TP + FN)
∗ TN

(TN + FP)
(6)

The effectiveness of G-mean for classifier assessment over imbalanced datasets has been
shown in many studies, like [24,43,84].

The entity labeling metrics is also applied to evaluate the models. For example, Khoo
et al. [46] use average precision and recall to judge whether the model can identify both
the boundary of cause and effect. Dasgupta et al. [21] compare F-score of labeling “C”
(cause), “E” (effect), “CC” (causal connectives), and “N” (None) tags with baseline models.
Compared with the relation extraction method, evaluate in a labeling way is more suitable
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for these systems: Both cause and effect have more than one word, and there is no entity
mask in the original sentence.

Meanwhile, some approaches evaluate their models based on their topics. The studies
of [66–68] aim to recognize causality for finding proper answers in why-QA (question-
answering) system. So the authors evaluate their models by precision of the top answer
(P@N) and mean average precision (MAP), where P@N measures the number of questions
that have correct answers in the top-N passages, andMAPmeasures the quality of the answer
passages ranked by systems. Kim et al. [48] report causality confidence and topic purity to
measure the quality formining causality topics. For causality confidence, they use the p-value
of the Granger causality testing [30] between two variables. For topic purity, they calculate
the entropy of cause word distributions and normalize it to the [0, 100] range.

5 Causal relation extractionmethods

Many researchers have devoted themselves to the study of causality extraction. In the follow-
ing subsections, we summarize and classify existing methods for causality extraction, based
on the underlying techniques and on the causality forms identified.

5.1 Knowledge-based approaches

Knowledge-based CE systems can be divided into pattern-based approaches and rule-based
approaches. Some of the former systems express linguistic patterns by means of pre-defined
graphical patterns, or keywords (e.g., thanks to, because, lead to). On the other hand, patterns
can also be explored through sentence structure analyses, like lexico-semantic or syntactic
analysis. These structure analysis techniques lead to performance improvements and addi-
tionally are more likely to extract implicit causality relations. As to rule-based approaches,
while some systems (similarly to pattern-based approaches) rely on patterns or templates
to identify candidate causal instances directly, other systems employ a set of procedures or
heuristic algorithms on the syntactic structure of sentences.

In the following paragraphs we will review how the existing systems, described in the
literature, employ knowledge-based techniques to extract causality in different forms.

5.1.1 Explicit intra-sentential causality

Garcia et al. [25] and Khoo et al. [47] use patterns to identify explicitly expressed causal
relations, within a single sentence. The tool developed by Garcia and colleagues, COATIS,
extracts causality from French texts through lexico-syntactic patterns based on 23 explicit
causal verbs, like provoke, disturb, result, lead to. Due to the special attention given to the
syntactic positions of causal verbs and their surrounding noun phrases, COATIS achieves
a reasonable precision of 85.2%. Even though it can only be applied to small fragments of
French text, it illustrates how to implement a domain-independent CE system via pre-defined
patterns. Khoo et al. [47] introduce an approach to explore causality in medical textual
databases. The authors use (medical) domain-specific causal knowledge, such as common
causal expressions for depression, schizophrenia, AIDS, and heart diseases, as linguistic
clues. Even though these clues play a key role in improving performance, their domain
specificity results in a system that can only performwell within themedical domain. Radinsky
et al. [79] propose a Pundit algorithm to generate causality pairs from news articles. This
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Table 4 Examples of causal patterns from Wikipedia in Ittoo and Bouma [38]

Causal pattern Linguistic realization

Destroy “short-circuit in brake wiring destroyed the power supply”

Prevent “message box prevented viewer from starting”

Exceed “breaker voltage exceeded allowable limit”

Reduce “resistor reduced voltage output”

Cause “gray lines caused by magnetic influence”

Induce “bad cable extension might have induced the motion problem”

Due to “replacement of geometry connection cable due to wear and tear”

Mar “cluttered options mars console menu”

rule-based approach achieves higher automation than the above two pattern-based systems,
thanks to the use of the generalization rule, <Pattern, Constraint, Priority>. The system
obtains 70.4% precision on titles taken from news articles spreading over a period of 150
years. However, since the rules only cover obvious causality cases, this system achieves a
poor recall metric value of 10.0%. Based on the idea that noun–noun pairs can encode the
same semantic relation if they have the same or similar sense collocation, Beamer et al. [5]
propose a WordNet-based learning model to capture noun features from WordNet’s IS-A
backbone. A different approach is followed by Girju et al. [28] that instead of using manually
constructed resources, they introduce a model that automatically constructs a set of patterns
using a pattern cluster algorithm. Even though [5] outperforms [28] on SemEval-2007 Task 4
by an F-score of 4.8%, it should be noted that the former system has poor portability, since it
may be unfeasible to use WordNet and additional resources in other applications or corpora.

5.1.2 Implicit causality

Ittoo and Bouma [38] develop a minimally supervised method to identify three pre-defined
types of implicit causality in an iterative way. The first type involves resultative verbal pat-
terns, which include verbs like increase, reduce, kill, become. The second type involves
patterns that make cause and effect inseparable. The third one involves nonverbal patterns,
like rise in and due to. One innovation of this work is the fact that such defined causal patterns
are acquired from Wikipedia, as exemplified in Table 4. An experimental study involving
32,545 documents in the Product Development Customer Service (PD-CS) domain achieved
an 85.0% F-score, a result which is comparable to those obtained by state-of-the-art systems.
In a study published in 2014, Kang et al. [42] focus on the extraction of adverse drug effects
from the ADE corpus. This system consists of a concept identification module that recog-
nizes drugs and adverse effects in sentences, and a knowledge-based module for identifying
whether a relationship exists between the recognized concepts. A rule-based NLP module,
which consists of a number of rules, is combined with a dictionary-based concept recognition
and normalization tool, namely Peregrine, to recognize relevant concepts.

5.1.3 Inter-sentential causality

Khoo et al. [46] propose an approach relying on four kinds of causal links and 2082 causative
verbs to construct a set of verbal linguistic CE patterns. A computer program finds all parts
of the document that match any of the linguistic patterns, so it is able to identify causal
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relations both within a sentence and between adjacent sentences. It achieves an accuracy of
68.0% on a set of 1082 sentences taken from the WSJ newspaper, with many errors caused
by complex sentence structure and the lack of inferencing capability from world knowledge.
Verbal-linguistic patterns are used to extract relations between mutations in viral genomes
(cause) and HIV drugs (effect) in the system of Bui et al. [12]. An initial text retrieval phase
sorts out intra- and inter-sentence candidates if there are<mutation, relation, drug> triplets.
A subsequent text preprocessing phase simplifies candidate sentences andmanually analyzes
the existence of causality based on a list of pre-defined keywords. A final relation extraction
phase applies eleven causality rules to form linguistic patterns. This system is used in five
hospitals to find resistance data in medical literature. However, due to the large number of
noun phrases and technical terms, it can be significantly time-consuming and laborious to
simplify sentences, which includes removing parenthetical remarks, replacing known terms,
grouping mutation and drug names, normalizing sentences, and resolving anaphoras.

5.2 Statistical machine learning-based approaches

Statistical machine learning-based approaches require less manual pre-defined patterns than
knowledge-based approaches. They usually employ third-party NLP tools (e.g., Spacy [36],
Stanford CoreNLP [59], Stanza [76]) to generate a set of features for a given collection of
labeled data, and subsequently use ML algorithms (e.g., support vector machine (SVM),
maximum entropy (ME), naÏve bayes (NB), and logistic regression (LG)) to perform the
relevant classification. In the following paragraphs we explain in more detail how statistical
machine learning techniques are used in CE systems.

5.2.1 Explicit Intra-sentential causality

Inspired by a previous work which uses lexico-syntactic patterns to infer causation in a
semi-automatic way, in 2003, Girju [26] proposes a model to detect causal relations in a QA
system. This model focuses on the most frequent explicit intra-sentential causality patterns,
<NP1, verb, NP2>, where the verb is a simple causative, and then validates those patterns
referring to causation through a set of features based on a decision tree (DT). Blanco et
al. [10] identify causality following the <VerbPhrase, relator, Cause> pattern only, where
relator is one of because, since, after, as. The authors use seven kinds of features with a DT
on a popular question classification dataset known as TREC [85], and achieve an F-score of
91.3%. Most errors in this system occur when the relator in the pattern is as or after. This
means that the system tends to only perform well when the instances have clear occurrences
of the because or since keywords. Pakray and Gelbukh [69], Sorgente et al. [83], and Zhao et
al. [99] evaluate their models on the corpus of SemEval-2010 Task 8. The first two methods
identify plausible causality instances based on some common sentence-level features, e.g.,
contextual, constituent parse, and dependency parse features, and then use DT and Bayesian
inference, respectively, to discard non-causal instances. Based on the idea that similar causal
connectives have similar ways of expressing causality, Zhao et al. [99] introduce a new causal
connective feature, which is collected from the similarity of the sentence’s syntactic structure,
to divide connectives into difference classes. A Restricted Hidden Naive Bayes (RHNB) is
used to process features and the interactions between causal connectives and lexico-syntactic
patterns. The performance of these threemodels, with F-scores of respectively 85.8%, 73.9%,
and 85.6%, demonstrates that the identification of appropriate rules and/or features plays a
crucial role in machine learning-based frameworks. Kim et al. [48] combine a probabilistic
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Fig. 2 Sample results in Kim et al. [48]

topic model with time-series causal analysis in order to mine causal topics. It iteratively
refines topics, increasing the correlation between discovered topics with time-series data. In
one experiment, specific topics that were expected to affect the 2000 presidential election
were mined. Figure 2 shows several important issues (e.g., tax cuts, oil energy, and abortion);
such topics are typically also cited in the politics-related literature, which shows the efficiency
of this model. Lin et al. [57] employ four kinds of features, (production rules, dependency
rules,word pairs, and contextual)with anMEclassifier.An experiment onPDTB2.0 indicates
that the production rules feature contributes the most to the RE task, followed by word pairs,
dependency rules, and contextual features. However, as cause–effect is the most predominant
relation in the training set, this model tends to label uncertain relations as causality instances.
Thus, it gives this relation high recall but very low precision, leading to an F-score of only
51.0%. Rutherford and Xue [81] employ Brown cluster [11] pairs to represent relations and
employ coreference patterns to identify meaningful relations in PDTB 2.0.

5.2.2 Implicit causality

In order to alleviate the shortage of causal connectives, Hidey and McKeown [35] use con-
nectives from PDTB 2.0 AltLex as seed data to identify new alternative lexicalizations from
parallel corpora. They train an SVM classifier to process the parallel connectives and lexico-
semantic features. The two kinds of features assist the model in achieving the F-score of
75.3%,which is a significant 11.1% improvement over its baseline onAltLex corpus. Inspired
by the success of kernel-based machine learning methods on RE, Airola et al. [1] use a
dependency-path kernel to extract protein-protein interactions (PPIs) from BioInfer. Each
instance is represented by two graphs, one corresponding to the syntactic structure of sen-
tences, and the other to their linear order. In Keskes et al. [44], a ME model is proposed to
learn causality in Arabic. Eight linguistic features make significant contributions to identify-
ing implicit relations, like the modality feature to check if a sentence has Arabic modal words
based on a manually constructed lexicon. The experiment on newswire stories achieves an
F-score of 78.1% and accuracy of 80.6%. However, these rich and complex feature lists rely
heavily on NLP tools like the Standard Arabic Morphological Analyzer and Stanford parser.
Unfortunately, due to the specific characteristics of different languages, some features that
are well extracted may be useless in other languages. Pechsiri et al. [70] utilize verb-pair
rules to train NB and SVM to mine implicit causality from Thai texts. WordNet and pre-
defined plant disease information are used to collect the cause and effect verb concepts as a
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set of verb-pair rules. The experiment on 3000 agriculture-related sentences obtain precision
and recall metrics of 86.0% and 70.0%, respectively. Unlike many other methods that use
rich sets of features to represent the input instances, this model focuses on the leverage of
task-specific background knowledge, which means that the model can only be applied on a
small number of domain-specific texts. In [33] Gurulingappa (the ADE corpus creator) and
colleagues train a ME model with simple features, like words in the sentence, to signal the
availability of the corpus. Their experimental results, with an F-score of 70.0%, are used as
baseline performance values for other systems.

5.2.3 Inter-sentential causality

Marcu and Echihabi [60] utilize lexical pair probability to discriminate causality in inter-
sentential forms. They use sentence connecting keywords Because of and Thus to find
candidate sentence pairs and use pre-collected explicit causality nouns, verbs and adverbs to
explore causal lexical pairs. Non-causal lexical pairs are obtained from randomly selected
sentence pairs. Oh et al. [66] propose a system to explore both intra- and inter-sentential
causal relations in a Japanese why-QA system. They utilize regular expressions with explicit
keywords in order to identify cue phrases for causality. For each identified cue phrase, the
system then extracts three sentences as one causality candidate, including the cue phrase
with its left and right sentences. In the process of extracting candidate answers, semantic
and syntactic features are used to train a conditional random field (CRF) model to generate
cause–effect labels for each word. Finally, to understand chemical induced disease (CID)
relations from biomedical articles, Qian and Zhou [77] propose two ME models to extract
CID at both the intra- and inter-sentential levels, respectively. They construct training and test
instances at inter-sentence level complying with three heuristic rules: (a) only pairs of enti-
ties that are not involved in any intra-sentential instance are considered at the inter-sentence
level; (b) the sentence distance between two entities should be less than three; (c) if there
are multiple entities in the same instance, keep the entity pairs with the shortest distance.
The authors then use an ME classifier with lexical features to extract this relationship from
a collection of 1500 medical articles.

5.3 Deep learning-based approaches

Neural networks (NNs) are basic algorithms for deep learning (DL). Similarly to a human’s
neural system, an NN is composed of neurons in three kinds of layers: input, hidden, and
output. Each neuron receives input from preceding neurons and produces an output for
subsequent neurons. When an NN learns multiple levels of representation from multiple
hidden layers, it is said to be a “deep” neural network, and the process is referred to as ’deep
learning’ [53].

Compared with knowledge-based and statistical ML-based models, deep learning models
map words and features into low-dimensional dense vectors, which may alleviate the feature
sparsity problem. Furthermore, the use of an attention mechanism to selectively concentrate
on relevant aspects, while ignoring others, tends to make deep learning models more effec-
tive. The most typical deep learning models include convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and variants of the latter like long short-term memory
(LSTM) and gated recurrent units (GRU). Later, the introduction of unsupervised pretraining
language models (PTMs) like BERT [22], which return contextualized embeddings for each
token, significantly improved the performance onmanyNLP tasks [8]. BothCNNs andRNNs
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can be viewed as sequential-based models, which embed semantic and syntactic information
in local consecutive word sequences [93]. In comparison, graph-based models, like graph
convolutional networks (GCNs) and graph attention networks (GATs), which model a set of
points (nodes) and their relationships (edges), have also received the attention of researchers.

In the following paragraphs we discuss how deep learning architectures have been used
to solve the CE problem.

5.3.1 Explicit intra-sentential causality

The studies of [51,56,89,91,98] employ different deep learning models in order to extract
causality from the SemEval-2010 Task 8 dataset. Xu et al. [91] use LSTM to learn higher-
level semantic and syntactic representations along the shortest dependency path (SDP), while
Li et al. [56] combine BiLSTM with multi-head self-attention (MHSA) to direct attention
to long-range dependencies between words. Cases analysis shows that MHSA significantly
improves the performance when the causality distance is greater than 10. Wang et al. [89]
propose a multi-level attention-based CNN model to capture entity-specific and relation-
specific information. More specifically, an attention pooling layer is used to capture the
most useful convolved features of CNN. The studies of [56,89] demonstrate the efficiency
of attention, especially of the multi-attention mechanism, in the CE task. Zhang et al. [98]
propose a dependency tree-based GCN model to extract relationships. A new tree pruning
strategy is applied in order to incorporate relevant information and remove irrelevant context,
keeping words that are directly connected to the SDP. Similarly to [91], this technique is
based on the definition of the SDP that is used in NLP tools, which will inevitably generate
cascading errors. This is the main reason for the F-score of [98] to be lower than [89]
by 3.2%. Kyriakakis et al. [51] explore the application of PTMs like BERT and ELMO
[72] in the context of CE, by using bidirectional GRU with self-attention (BIGRUATT) as
the baseline. The experimental results show that PTMs are only helpful for datasets with
hundreds of training examples, and that BIGRUATT reaches a performance plateau when
thousands of training instances are available. It should be noted that this finding is inconsistent
with the results of other studies, which have shown that PTMs are helpful regardless of the
magnitudes of the training sets. The TACRED creators, Zhang et al. [97], combine LSTM
with entity position-aware attention to encode both semantic information and global positions
of the entities. The ablation studies show that this position-aware mechanism is effective and
pushes the F-score up by 3.9%. Ponti and Korhonen [73], Chen et al. [15], Lan et al. [52]
focus on causality extraction from the PDTB 2.0 corpus. Ponti and Korhonen [73] develop a
feedforward neural network (FNN)model that combines positional and event-related features
with basic lexical features to obtain an enriched feature set. Positional features encode the
distance between each word to the cause and effect, while event-related features account
for the semantics of the input sentences. Experimental evaluation of performance indicates
that positional features have a positive impact on causality identification. Instead of relying
on LSTM only, Chen et al. [15] incorporate BiLSTM with GRU in order to capture more
complex semantic interactions between text segments. Finally, the method followed in [52]
is an attention-based LSTM model that can perform two kinds of representation learning
simultaneously: The attention-based module conducts relation representation learning from
the interaction between two segments, while a multi-task learning framework uses external
corpora to continually improve the performance.
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Fig. 3 Sample results in Martínez-Cámara et al. [61]

5.3.2 Implicit causality

Martínez-Cámara et al. [61] believe that the use of linguistic features may restrict the ability
to represent causality, so they propose an LSTMmodel incorporating only word embeddings
as input. The experimental results obtained on the PDTB 2.0 AltLex corpus show an F-score
of 81.9%. Figure 3 shows five examples from this study. For instance, the first example in
the figure indicates that the verb break mostly has a causal meaning in training examples, but
is not a causative verb in the test sentence. It is misclassified by B2 (a baseline model), but
correctly classified by the proposed approach. In the study of [14], the authors first incorpo-
rate reinforcement learning (RL) to relabel noisy-labeled instances, and then use PCNN, a
piece-wise CNN-based model, to iteratively retrain relation extractors with adjusted labels.
As the joint entity-relation extraction method can benefit from a close interaction between
entities and their relations, Li et al. [55], Wang and Lu [88], Zhao et al. [100] propose joint
models for entity and relation extraction from the ADE corpus. Li et al. [55] feed character-
level representations, word and part-of-speech (POS) embeddings into a BiLSTM to learn
entities and context representations. Another BiLSTM is used to learn the relation represen-
tation along with the SDP. Wang and Lu [88] focus on encoding sequence representations
and table representations for recognizing entities and their relations, respectively; the two
representations then interact with each other attempting to capture task-specific information.
The cross-modal attention network (CMAN) in [100] is constructed by stacking two atten-
tion units, known as BiLSTM-enhanced self-attention (BSA) unit and BiLSTM-enhanced
label-attention (BLA) unit, in order to obtain dense correlations over token and label spaces.
Another BLA unit captures token–relation interactions to form the final label-aware token
features. The experimental results on ADE show that CMAN achieves state-of-the-art per-
formance with an F-score of 81.1%, surpassing [88] by 1.0%. Two other joint models for
ADE extraction can be found in [6,7].

5.3.3 Inter-sentential causality

Taking full advantage of the fact that BiLSTMmay alleviate the issue of learning long-range
dependencies from a sequence of words, Jin et al. [39] use CNN to capture essential features
from input examples, and then utilize BiLSTM to obtain deeper contextual semantic infor-
mation between cause and effect. Similarly, after extending the annotation of SemEval2010
Task 8 to phrase-level, Dasgupta et al. [21] propose a linguistically informed BiLSTMmodel
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to encode word embeddings with linguistic features. The main reason for the misclassi-
fication of causal instances as non-causal instances is that the dependency parser fails to
parse the texts correctly, and thus returns improperly syntactic features. Kruengkrai et al.
[49] introduce a variant of CNN, called multi-column CNN, to recognize event causalities.
Based on the assumption that dependency paths between cause and effect can be viewed as
background knowledge, they use a wide range of such paths, regardless of whether cause
and effect appear within one sentence or in adjacent sentences, taking web texts as extra
input. Within this model, different columns represent different inputs, such as event causality
candidates, contextual information, and background knowledge, with each column having
its independent convolutional and pooling layers. All the outputs are concatenated into a
SoftMax function to perform the classification. The experimental results demonstrate that
related background knowledge significantly improves the performance.

6 Systems summary

In the previous section we reviewed 45 systems regarding the different causality forms
extracted, i.e., explicit intra-sentential, implicit, and inter-sentential causality, and the dif-
ferent techniques and models employed, i.e., knowledge-based, statistical ML-based, and
deep learning-based. Figure 4 contains a statistical summary of the reviewed models. In
terms of causality forms, 18.2%, 31.8%, and 50.0% of the 45 systems focus respectively on
inter-sentential, implicit and explicit intra-sentential causality. In terms of techniques, 20.4%,
36.4%, and 43.2% of the systems utilize knowledge-based, statistical ML-based, and deep
learning-basedmodels. In the next three paragraphs, we separately summarize the advantages
and limitations of using each of the three families of techniques.

Fig. 4 Statistical summary of the reviewed systems
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6.1 Knowledge-based approaches

These approaches rely on the most straightforward methods, using predefined linguistic
rules or patterns to detect whether there exist causal relations hidden in the context. There-
fore, they can make use of clear keywords in explicit intra-sentential causality as linguistic
clues. On the other hand, since explicit connectives are missing in both implicit and inter-
sentential causality, these systems require significant effort to prepare complicated clues,
especially involving word-level patterns. Causality extraction by pattern or rule matching
can perform well in restricted domains; however, since preparing various kinds of clues is a
time-consuming task, knowledge-based methods are unsuitable when the consistency of the
dataset is poor.

6.2 Statistical machine learning-based approaches

Instead of collecting predefined patterns or rules, traditional ML-based models utilize rich
linguistic features or elaborately designed kernels. When the annotated dataset is in the
explicit intra-sentential causality form, these systems apply classifiers, with manually or
automatically collected features, to remove non-causal instances. When explicit keywords
are missing, more complicated features may also need to be prepared. Statistical ML-based
approaches usually achieve better performance than knowledge-based systems; however,
well-prepared features or kernels may lead to weak portability downstream.

6.3 Deep learning-based approaches

Since deep learning can automatically deduce higher-level information from input vectors and
make adjustments to the expected results, these systems are able to focusmore on the choice of
input features andmodel architecture, rather than on the preparation of linguistic information.
Deep learning-based systems thus have better portability to different applications. However,
they require access to larger corpora and more substantial computational resources than the
other two techniques.

In conclusion, as illustrated in Fig. 5, specific needs and other contextual aspects should
be taken into consideration in order to choose an appropriate method for causality extraction.

Among the reviewed systems, 28 approaches evaluate their models using the benchmark
datasets that we introduced in Sect. 3. From Table 5, we can see that deep learning-based
methods achieve new state-of-the-art results, and even show substantial improvements in
most of the benchmark datasets. For instance, the F-score of Kyriakakis et al. [51] surpasses
[83] by 16.7% (on the SemEval-2010 Task 8 corpus), and [100] achieves a higher F-score
than [42] by 25.8% (on the ADE corpus ). A notable exception is the deep learning-based
model of [14], which achieves an F-score of only 49.8% on BioInfer, poorer than [1] by
11.5%. The main reason for this is that the model extracts relations after relabeling noise
data iteratively, which alerts us to the fact that model performance is closely related to data
quality. On the other hand, performance is not the only criterion for judging or choosing an
approach. When models based on the same technology have similar or even the same results,
we should also take the local situation and needs into account. For example, the F-score of
Li et al. [56] is lower than the F-score of Zhang et al. [98] by 0.2% on SemEval-2010 Task
8. However, it is able to avoid the error propagation that is characteristic of the tree pruning
strategy and may have better portability.
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Fig. 5 The process to choose the appropriate technique for causality extraction

The remaining 17 approaches use their own collected datasets or other kinds of publicly
available datasets to evaluate their models’ performances. We summarize these approaches
in Table 6.

7 Open problems and future directions

From the representative systems in Sect. 5, we can know that causal relation extraction has
received increasing attention over the past decade. However, it is a non-trivial problem and
many challenges remain unsolved, such as the following three problems:

– Multiple causalitiesMost previous CE only focused on one causal pair from an instance,
but causality in the real-world literature is more complex. Causal Patterns in Sciences
from Harvard Graduate School of Education introduce three common causal patterns2

as below:

– (9a) Domino Causality that one cause produces multiple effects.
– (9b) Relational Causality that two causes work together to produce an effect.
– (9c) Mutual Causality that cause and effect impact each other simultaneously, or

sequentially.

Like the study of [21], traditional ways to deal the above kinds of multiple causalities is
dividing sentence into several sub-sentences that extracted causal pairs separately. This

2 https://www.cfa.harvard.edu/smg/Website/UCP/causal/causal_types.html.

123

https://www.cfa.harvard.edu/smg/Website/UCP/causal/causal_types.html


A survey on extraction of causal relations... 1177

Table 5 Approaches on benchmark datasets

Dataset System Year Technique F-score (%)

SemEval-2007 Beamer et al. [5] 2008 Knowledge-based 65.8

Task 4 Girju et al. [28] 2009 Knowledge-based 70.6

SemEval-2010 Sorgente et al. [83] 2013 Statistical ML-based 73.9

Task 8 Xu et al. [91] 2015 Deep learning-based 83.7

Li et al. [56] 2021 Deep learning-based 84.6

Zhang et al. [98] 2018 Deep learning-based 84.8

Zhao et al. [99] 2016 Statistical ML-based 85.6

Pakray and Gelbukh [69] 2014 Statistical ML-based 85.8

Wang et al. [89] 2016 Deep learning-based 88.0

Kyriakakis et al. [51] 2019 Deep learning-based 90.6

PDTB 2.0 Lin et al. [57] 2009 Statistical ML-based 51.0

Rutherford and Xue [81] 2014 Statistical ML-based 54.4

Ponti and Korhonen [73] 2017 Deep learning-based 54.5

Chen et al. [15] 2016 Deep learning-based 54.8

Lan et al. [52] 2017 Deep learning-based 58.9

PDTB 2.0 Hidey and McKeown [35] 2016 Statistical ML-based 75.3

AltLex Martínez-Cámara et al. [61] 2017 Deep learning-based 81.9

TACRED Zhang et al. [97] 2017 Deep learning-based 65.4

Zhang et al. [98] 2018 Deep learning-based 68.2

BioInfer Chen et al. [14] 2020 Deep learning-based 49.8

Airola et al. [1] 2008 Statistical ML-based 61.3

ADE Kang et al. [42] 2014 Knowledge-based 54.3

Gurulingappa et al. [33] 2012 Statistical ML-based 70.0

Li et al. [55] 2017 Deep learning-based 71.4

Bekoulis et al. [7] 2018 Deep learning-based 74.6

Bekoulis et al. [6] 2018 Deep learning-based 75.5

Wang and Lu [88] 2020 Deep learning-based 80.1

Zhao et al. [100] 2020 Deep learning-based 81.1

Bold values indicates the highest F-score in each dataset

method is computationally expensive and cannot take into consideration the dependencies
among causality pairs.
The Tag2Triplet algorithm from [56] can extract multiple causal triplets simultaneously.
It counts the number and the distribution of each causal tag to judge the tag as simple
causality or complexity causality. Afterward, it applies a Cartisian Product of the causal
entities to generate possible causal triplets. In addition, [17,87] utilize deep learning with
relational reasoning to identify multiple relations in one instance simultaneously.

– DatadeficiencyTypically, formany classification tasks,more than 10million samples are
required to train a deep learningmodel, so that it canmatch or exceed human performance
[29]. However, just as the size of the four benchmark datasets introduced in Sect. 3 is far
from the size of a satisfactory deep learning model, the annotated data in the real world
is very specific and small.
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Based on the assumption that any sentence that contains a pair of entities that participate
in a known Freebase relation is likely to express that relation, Mintz et al. [65] introduce
the first distant supervision (DS) system for relation extraction, which creates and labels
training instances by Freebase as a relation labels resource. However, this method suffers
from a large amount of noise labeled data. The survey of [82] introduces methods of
addressing the problemof incomplete andwrong labels fromDS, like at-least-onemodels,
topic-based models, and pattern correlations models. The very recent research from
Huang and Wong [37] proposes a novel way for relation extraction from insufficient
labeled data. They first utilize a BiLSTMwith attention mechanism to encodes sentences
in an unsupervised learning way, the word sequence of entity pairs act as the relation
embeddings. Afterward, a random forest classifier is used to learn the relation types
from these relation embeddings. This approach of combine unsupervised learning with
supervised learning provides us another new idea of solving data deficiency problem in
CE task.

– Document-level causality Both intra- and inter-sentential causality are at the sentence-
level, in real-world scenarios; however, large amounts of causality span multiple
sentences, and even in different paragraphs. Unlike being extracted through linguistic
cues or features directly, a satisfactory document-level CE requires that the model has
strong pattern recognition, logical and common-sense reasoning [18]. All of these aspects
need long-term research and exploration.
Zeng et al. [95] introduce a system of combine GCN with relational reasoning to extract
relations within a document. They first construct a mention-level GCN to model complex
interaction among entities, and then utilize a path reasoning mechanism to infer relations
between two entities. This method outperforms the state of the art on the public dataset,
DocRED from Yao et al. [94]. Similar approaches can be found in [64,86].

8 Conclusion

Causal relations in natural language text play a key role in clinical decision-making, biomed-
ical knowledge discovery, emergency management, news topic references, etc. Therefore,
successful causality extraction from fast-growing unstructured text data is a fundamental
task toward constructing a causality knowledge base. In this paper, we conducted a com-
prehensive review of CE in which we introduced six kinds of benchmark datasets and the
evaluation metrics for this task. Afterward, we reviewed existing approaches that use tradi-
tional or modern techniques to extract different causality forms. From Sects. 5 and 6, we
know that the critical step to extract explicit and implicit causality is to prepare linguistic
keywords, patterns, and features, while intra-sentential and inter-sentential causality depend
on theway of preparing input instances. Also, we introduced three challenges, which aremul-
tiple causalities, data deficiency, and document-level causality extraction, with their potential
solutions.

Deep learning provides promising directions for CE tasks. Specifically, domain-related
PTMs with graph-based model hold great potential for the two reasons: 1) As the word
distributions of general-purpose corpora are quite different with the word distributions of
specific domain corpora, the standard PTMs has been shown not to perform well in special-
ized domains [22]. In contrast, pre-training from scratch on domain-specific corpora, like
SciBERT [8], BioBERT [40], and BlueBERT [71], can alleviate this limitation. 2) The study
of [32,98] demonstrates the advantage of GCN in complex texts. Thus, we can solve the CE
problem by combining domain-specific PTMs with graph models.
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