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Abstract Fault attacks described in cryptographic papers mostly apply to crypto-
graphic algorithms‚ yet such attacks may have an impact on the whole
system in a smart card. In this paper‚ we describe what can be achieved
nowadays by using fault attacks in a smart card environment. After
studying several ways of inducing faults‚ we describe attacks on the
most popular cryptosystems and we discuss the problem of induced
perturbations in the smart card environment. Finally we discuss how
to find appropriate software countermeasures.
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1. Introduction
In the smart card industry‚ fault attacks have been increasingly stud-

ied since the publication of Boneh‚ DeMillo and Lipton’s paper [10] in
1996. At that time‚ the attack described in the Bellcore paper was merely
theoretical‚ but since then improvements in technology have allowed at-
tackers to put fault attacks into practice. In 2001‚ Skorobogatov and
Anderson presented a practical attack [27] requiring very cheap equip-
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ment: by using a photoflash lamp‚ they succeeded in flipping a bit in
a memory cell. Despite the fact that the component was an old unpro-
tected chip‚ their paper introduced a means of putting into practice the-
oretical fault attacks on cryptographic algorithms and they also showed
that every software application dealing with security can be threatened
by fault attacks. Nowadays‚ faults attacks are very powerful and may
allow an attacker to break an unprotected system faster than any other
kind of side-channel attacks‚ such as SPA‚ DPA or EMA.

In this paper‚ we discuss what is now possible concerning fault attacks
from both a theoretical and a practical point of view. We deal with fault
attacks applied to cryptographic algorithms but also with fault attacks
applied to the whole system used in a smart card environment.

Firstly‚ we describe different ways to set up a fault attack. After
studying the different kinds of induced faults and their implications dur-
ing the execution of a software‚ we describe how to use these faults to
break the most well-known cryptographic algorithms such as DES‚ AES‚
RSA‚ DSA and ECDSA. Finally‚ we discuss the security of software ap-
plications including cryptographic algorithms.

2. How to perform a fault attack ?

There are many ways of performing a fault attack. We briefly describe
the three which are most often published in cryptographic papers. These
techniques are all moderately difficult to carry out and require relatively
simple equipment. Moreover‚ they are all non-invasive or semi-invasive‚
which means that they do not require any physical tampering with the
chip‚ although the packaging may be destroyed in some cases. Finally‚
we discuss the importance of synchronization and localization to suc-
cessfully perform such attacks.

2.1 Glitch attacks

Historically the first way to induce a faulty behaviour in a smart card
was to induce a glitch of power on one of the contacts. Good results
were obtained with a power glitch applied to Vcc (power supply)‚ GND
(ground) or to the clock. A very powerful and brief addition of power
can perturb the component‚ and hence generates a fault. However‚ the
additional signal has to be short enough to avoid its detection or the
destruction of the card. In order to achieve a successful attack‚ one can
only set the timing of the glitch‚ its amplitude and its duration.

The obvious advantage is that the attack is very easy to set up‚ be-
cause it is truly non invasive and the equipment needed is easily available
and cheap. The main drawback is that it is impossible to perturb a spe-
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cific part of the chip‚ since the perturbation has an impact on the whole
smart card.

Moreover‚ nowadays smart cards resist this kind of attack : thanks
to filters‚ DC converters or power sensors‚ the card can either detect or
cancel an out of specifications peak of power that might induce faulty
behaviour. The hardware reacts accordingly by‚ for example‚ forcing a
reset.

2.2 Light attacks

Light attacks were introduced in 2000 by Skorobogatov and Ander-
son [27].

Nowadays this is the most common way to induce faults on smart
cards. The idea behind this attack is to use the energy of a light emission
to perturb the silicon of a chip. For this kind of attack the preparation
of the chip is more difficult than for a glitch attack because it is semi-
invasive : the plastic layer on the component has to be removed in order
to reach the silicon with the light beam. Such a preparation is described
in [1] and [5].

Physical Effects. Why is the component perturbed ? With a pene-
tration depth dependant on the light wavelength‚ the energy carried by
the light beam is absorbed by the silicon’s electrons‚ which allows them
to jump from the valence band to the conductance band. Each new elec-
tron in the conductance band creates an electron-hole pair and the set of
all of these pairs forms a local photoelectric current. The logical gates or
the memory cells of the component‚ depending on their technology‚ are
sensitive to such a current and behave accordingly. This can therefore
be exploited for an attack

Parameters. To succeed in generating a fault‚ we have to take into
account the following parameters : the energy of the light‚ its wave-
length‚ the duration of the emission‚ the location and the extent of the
impact zone. Let us detail each of them :

The energy of the light beam must be considered as an energy per
surface on the chip. The amount of energy per square inch must
be enough to allow the electrons to jump to the conductance band‚
but low enough not to destroy the chip.

The penetration depth of the energy depends on the wavelength of
the light. For CMOS technology‚ if we succeed in creating electron-
hole pairs close to the N-channel or the P-channel‚ the memory
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cells become very sensitive ; the wavelength has to be chosen ac-
cordingly.

The longer the light emission‚ the larger the electron-hole pairs
that are created. If the duration of the emission can be adjusted‚
the duration of the local current generated can be controlled.

One of the advantages of light attacks compared to glitch attacks
is that one can choose the location of the attack on the chip. The
thinner the source of light‚ the better the precision of the impact
on the chip.

Material. In view of the previous parameters‚ the source of light has
to be well chosen. The characteristics of the two most common sources
for such an application are described here.

From [27]‚ a simple camera flash installed on a microscope allows the
execution of a light attack. The spectrum of a flash is composed of all
visible wavelengths (white light) and a great part of infra red. The main
advantage of this equipment is that it is very cheap and easy to install.
Many attacks can be performed‚ but the attacks remain very limited.
For example‚ with current smart cards‚ it is very difficult to change the
value of a memory cell or to perturb the execution of the code. With a
camera flash the different parameters described above (duration‚ power
and localization of the emission) are difficult to control.

By using laser equipment one can significantly enhance the accuracy of
the attack. The main characteristics of a laser are a discrete wavelength
emission‚ a very thin beam and an emission which is easy to control
in terms of duration and power. As previously explained‚ the depth
penetration of the energy is in direct relation with the light wavelength‚
so the spectrum of the laser has to be chosen accordingly. The maximal
power emission also has to be taken into account. The single drawback
of using a laser is the price of the material‚ clearly much more expensive
than a camera flash.

Chips have been equipped for some time with hardware countermea-
sures that render simple flash attacks quite inoperative. However‚ an
attacker‚ with experience in the field and more enhanced equipment‚
can still find ways to perform light attacks.

2.3 Magnetic attacks

Introduced in [26]‚ another way to induce transient faults is to emit
a powerful magnetic pulse near the silicon. The magnetic field creates
local currents on the surface of the component‚ which can generate a
fault. From a practical point of view‚ the attack is performed with very
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cheap material: a wire is wound around a very sharp needle‚ a current
flowing through the wire creates an oriented magnetic field. For better
results‚ the attack has to be semi-invasive : the needle must be as close
as possible to the silicon‚ so the plastic layer has to be removed.

Depending on the equipment used and its characteristics (size of the
needle‚ number of loops around the needle) the following parameters
have to be taken into account : the power of the magnetic field‚ its
duration and localization on the chip. This technique seems difficult
to set up practically‚ because the generation of a high magnetic field
requires a high current‚ which would destroy the wire. Moreover‚ even
if the needle concentrates the magnetic field‚ the laser still focuses the
perturbation on a very small part of the chip much more accurately than
the needle.

2.4 Synchronization issues
In order to set up a successful attack‚ the attacker must understand

which errors have to be introduced from a theoretical point of view. He
must then try to put these errors into practice. According to the the-
oretical analysis‚ induced faults can be more or less coarse (change any
or several bits versus changing one given bit)‚ which explains why the
synchronization has to be more or less precise. For example‚ a DFA
attack on RSA only needs a faulty computation on one of the CRT com-
ponents; as the computations are quite long‚ a precise synchronization is
not necessary. On the other hand‚ a DFA attack on a hardware DES (cf.
section 4.1) requires the uttermost precision in synchronization due to
the very fast execution of the computation we want to perturb. As the
attack needs to be accurate in time‚ a good synchronization is critical.

There are many ways of synchronizing an attack. It is possible to
use side channel information‚ such as monitoring the power consump-
tion or the magnetic radiations resulting from the activity of the chip.
Events such as writing in EEPROM can thus be recognized allowing us
to determine when the attack must be performed. Signal processing can
enhance the quality of the signal and its interpretation. All these tech-
niques can be combined to obtain complementary information to help
target the attack more accurately.

2.5 Localization issues

As we have already pointed out‚ a glitch attack perturbs every part
of the chip. On the other hand‚ light or magnetic attacks allow a more
accurate localization. It is easy to understand that to perturb only a
specific part of the chip‚ for example a DES module‚ a light or magnetic
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emission has to be focused on this specific part. Sometimes‚ in order
to induce desired faults‚ the targeted area has to be accurately circum-
scribed and exposed. An optical circuit is thus necessary in order to
perform a light attack with the required precision.

3. Kind of faults and consequences
As soon as the attacker is able to perform a perturbation on the chip‚

many errors are observed. Two kinds of faults‚ permanent or transient‚
can be generated.

Permanent faults. Permanent faults occur when the value of a
cell is definitively changed. It can concern either data (contained in
EEPROM or in RAM) or code (contained in EEPROM). Modifying data
definitively could be very powerful‚ particularly when the data is related
to sensitive objects of the smart card‚ like a PIN or a key. Nevertheless‚
perturbing many successive logical cells or choosing the value of the
perturbed cell is very difficult when the data is ciphered or the memory
is scrambled.

Transient faults. Transient faults are the most common ; they
occur when a code execution or a computation is perturbed. An error in
a code execution can be caused when the logical parts‚ including CPU
and registers (data and control) are affected‚ or when reading code or
data is perturbed. On the other hand‚ a computation error occurs when
CPU or peripherals (such as cryptographic modules) are affected.

Consequences on the execution.  A single modified byte can
severely perturb the execution flow of a code. At the lowest level of the
micro-controller‚ each operation is encoded over several bytes : some for
the instruction and others for the parameters. So assuming the attacker
modifies one byte of code during its execution‚ the fault thus generated
can affect either an instruction or a parameter.

The following cases can then occur:

An instruction byte is modified : a different operation is executed.
First consequence‚ the expected instruction is not executed : a call
to a subroutine can be skipped‚ a test can be avoided‚ etc. Sec-
ond consequence‚ one or several different instructions are executed‚
which can result in strange behaviour.

A parameter byte is modified : a different address or value is
considered. In the former case the target address is not modified
but another is‚ or a wrong value is fetched from the memory‚ or
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the program counter is indirectly modified in a case of a JUMP
instruction. In the latter case the operation is performed with a
different operand‚ with the consequence that the result is wrong.

Given dedicated tools‚ techniques and some knowledge of the topology
of the chip‚ most parts of a micro-controller can be attacked to cause
transient faults.

4. Algorithms attacks
Fault attacks on cryptographic algorithms have been studied since

1996 and since then‚ nearly all the cryptographic algorithms have been
broken by using such attacks. In this section we describe fault attacks
on the best-known cryptosystems. We begin with symmetric algorithms
such as DES and AES and then we focus on asymmetric algorithms such
as RSA and DSA.

4.1 Symmetric algorithms
In this section we focus on the two best-known block-ciphers: the

DES and the AES. Firstly we describe DFA attacks on these two block-
ciphers and then we describe an efficient countermeasure against these
attacks.

DES. The main paper about DFA on DES was written in 1996 by
Biham and Shamir [7]. In this paper‚ they explain how to obtain the se-
cret key by using between 50 and 200 faulty ciphertexts. Let us describe
how it works.

We suppose that a single-bit fault is induced on the right part of
the temporary result at the beginning of the last round. We denote
respectively by C and C* the correct and the faulty ciphertexts of a
message M. We also denote respectively by and the left
and the right parts of a 64-bit value T.

If we compare the left parts of the correct and the faulty temporary
results at the end of the round (i.e. and
there is only one bit which differs. This bit corresponds to the in-
duced fault so we obtain the position of the faulty bit and we deduce
which S-boxes have been affected. By computing

where EP is the DES expansive permutation‚ we ob-
tain the difference between the correct and faulty inputs of the
S-Box in the last round.

Then we look at the difference between the correct and faulty
outputs of the S-Box in the last round‚ which is equal to
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where P is the permutation used at the end of each
round.

(respectively contains non-zero bits only in input
bits (respectively outputs bits) of the one (or two) S-box(es) which has
been affected by the fault.

In the following part‚ we suppose that the faulty bit affected only one
S-box‚ let us say In order to find the 6-bit input of this S-box‚
we sort the possible values out by using the following procedure:

List all the 6-byte couples such as

For each couple in this list‚ if
then eliminate the couple

1

2

By using several faulty ciphertexts‚ we recover the 6-bit input of the
S-box.

By iterating this attack we know the whole 48-bit input
of the S-Box in the last round. Then we can compute the subkey
which is equal to From this subkey we
find the whole DES key by a very fast exhaustive search on the last
unknown 8 bits.

We can extend this attack with a fault induced at the beginning of
the or round. But in these cases we use a
counting method: instead of eliminating the couple which does
not verify the relation we increase
the counter by one of any pair which verifies the previous relation‚ the
right value is expected to be counted more frequently than any wrong
value.

This attack can also be extended if we induce a fault on a whole (or
even several) byte(s) or if we disturb the key scheduling.

Such an attack has been successfully achieved on an unprotected soft-
ware DES. By using a camera flash‚ as described in section 2.2‚ we
succeeded in recovering the secret key by using only 2 ciphertexts. This
could be achieved thanks to the fact that in practice we disturb one
or several bytes compared to the single-bit fault model used by Biham
and Shamir. Thus one faulty cipher text provides information on several
bytes of the subkey.

AES. On the October 2000‚ the AES was chosen to be the suc-
cessor of the DES. Since then‚ many papers have been published about
DFA attacks on the AES [9‚ 12‚ 16‚ 17‚ 25]. Here we focus on the most
powerful attack which was published recently [25].
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For the sake of simplicity‚ we suppose the attack is done on an AES-
128. This attack is based on the following observation: the MixColumns
function operates on its input 4 bytes by 4 bytes‚ so if we induce a fault on
one byte of one of this 4-byte block‚ the number of possible differences
at the input of the MixColumns transformation is 255*4. Due to the
linearity of the MixColumns function‚ we have 255*4 possible differences
at its output.

If we suppose that a fault on one byte has been induced on the input
of the last MixColumns and if we denote by M the plaintext‚ C and
C* the corresponding correct and faulty ciphertexts‚ the attack can be
mounted as described hereafter:

Compute the 255*4 possible differences at the output of the Mix-
Columns function and store them in a list

C and C* differ only on 4 bytes‚ let us say bytes 0‚ 13‚ 10 and 7
(it corresponds to a fault on one of the first four bytes of the input
of the last MixColumns). Take a guess on the 4 bytes in the same
position of the last round key (i.e.

Compute
and check if this value is in If so‚ add

the round key to the list of possible candidates.

Go back to step 2 by using another correct/faulty ciphertexts pair
(D‚ D*) (which could be obtained from another plaintext) which
differs on the same bytes as C and C*‚ and by choosing .
from the list Repeat until there remains only one candidate in

1

2

3

4

After this attack‚ 4 bytes of the last round key are known and we
re-iterate three times this attack with pairs (C‚ C*) which differ respec-
tively on bytes (1‚ 14‚ 11‚ 4)‚ (2‚ 15‚ 8‚ 5) and (3‚ 12‚ 9‚ 6).

This attack implies a guess on 4 bytes which is not very practical.
In [25]‚ an ingenious implementation of this attack is described by guess-
ing only 2 bytes of the last round key at each iteration.

Moreover Piret and Quisquater remark that if we induce a fault on
one byte between the two calls to the MixColumns function of the
and the round‚ we obtain a fault on one byte for each 4-byte block
of the input of the MixColumns function of the round. So we obtain
information on 16 bytes of the last round key instead of information on
only 4 bytes. By using this attack the key could be retrieved by using
only 2 faulty ciphertexts.
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Countermeasures. If we suppose that an attacker cannot induce
the same fault twice‚ one of the best countermeasures to protect the
DES and the AES is to compute the last rounds twice (including the
key scheduling). For the DES‚ doubling the last 8 rounds is efficient
and for the AES‚ doubling the last 4 rounds prevents nearly all known
DFA attacks1. Of course this kind of countermeasure must be adapted
for each symmetric cryptosystem‚ but doubling the whole or a part of
symmetric algorithms is generally an effective countermeasure against
fault attacks.

4.2 Public Key Algorithms
In this section we firstly describe fault attacks applied to the RSA‚ be-

fore looking at fault attacks on some signature schemes such as DSA and
EC-DSA. Finally‚ we present fault attacks on the scalar multiplication
used in Elliptic Curve Cryptography (ECC).

RSA. The first published fault attack was applied to the RSA [10]
and was improved shortly after by Lenstra [22]. This attack on the
RSA-CRT is very simple and efficient in practice.

Firstly‚ we describe how to sign a message by using the RSA-CRT and
how to find the secret key by using the DFA attack described in [10].
We then describe how Lenstra improved this attack.

Let be a product of two large prime integers‚ chosen such
as and is
the secret key and is the public key.

To sign a message the signer computes To
improve the time calculation‚ this signature is performed by using the
Chinese Reminder Theorem:

Compute and

Compute and

Compute

1

2

3

We can find two integers and such as where:

because and
If the signer signs the same message twice, a fault attack can then

be performed: during the second signature, a fault is induced during
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the computation of (this attack works in the same way if a fault is
induced during the computation of So we obtain a faulty signature

We remark that:

Moreover so if  does not divide then:

Then we can easily find the other part of the secret key by dividing
the modulus N with

An improvement on this attack was found by Lenstra [22]: by using
the same fault as above (i.e. fault induced during the computation of

we have and so:

where e is the public exponent used to verify the signature. By using
this attack‚ we only need one faulty signature of a known message to
find the secret key.

An efficient countermeasure against this attack is to verify the sig-
nature by using the public key. As the public key is often very short

for example)‚ the verification by using the RSA-SFM is very
fast. A faster countermeasure was described by Blömer et al. in [8]:
instead of verifying the signature‚ they rewrote the CRT recombination
in such a way that if a fault is induced on a CRT component or
the error also affects the other CRT component (respectively or

DSA. Let us briefly describe the signature of the DSA: firstly the
signer chooses a 160-bit prime number and a 1024-bit prime such as

divides Then he chooses a positive integer less than of
order modulo Finally he chooses a positive integer less than
and computes His public key is and his
secret key is
To sign a message the signer chooses a non-null random less than

and computes

where is the hash of  obtained by using the SHA-1 algorithm.
The signature of the message is the couple
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The only existing DFA attack on the DSA was published in [4].
Thanks to this attack we can find a bit of the secret key each time
we succeed in flipping a bit of the secret key during the computation of
the second part of the signature.

Let us describe this attack: if an attacker succeeds in inducing a fault
on only one bit of the secret key he obtains a faulty signature
where The attacker can compute

where Let

then he obtains from (7) and (8):

and

So he obtains

By iterating from 0 to 159 and by comparing with and
the attacker can discover the value of a bit of the secret key. The com-
plete secret key can be recovered by performing 161 signatures of the
same (unknown) message: one correct and 160 faulty.

ECDSA. With the same approach described previously‚ we can at-
tack the ECDSA. This attack was firstly described in [14].

We denote by the signer’s public key and by his
private key where is a 160-bit prime‚ and the coefficients
defining the elliptic curve‚ G a curve point generating the subgroup of
order and
To sign a message the signer generates a random and computes
the point He then converts into an integer
Finally he computes the two parts of the signature:
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where
If an attacker succeeds in inducing a fault on only one bit of the secret

key during the computation of he obtains a faulty signature
where The attacker can compute

He then computes the point

He then converts into an integer
Now‚ we have two cases:

If the fault has flipped the bit of from 1 to 0‚ then
so from (14) By iterating the value of   from 0 to 159
and by testing if the attacker can discover the
value of a bit of the secret key.

1

But if the fault has flipped the bit of from 0 to 1 then
The attacker can also discover the value of this bit by applying the
same method as described above with instead of where

and

2

So by using several faulty signatures (at least 160)‚ an attacker can
recover the whole value of the secret key

Remark. The fault attacks on the DSA and the ECDSA described
in this paper use the fact that the value of the secret key is disturbed
during the computation of the second part of the signature. To protect
such signature schemes against this kind of attack‚ we can implement
one of the following countermeasures:

we can check the integrity of the secret key at the end of the
signature computation‚ for example by adding a CRC to the secret
key: we check if the CRC of the secret value used during the
signature computation is the same as the CRC of the secret key
stored in non-volatile memory‚

we can also verify the signature by using the public key before
sending the signature out. But this countermeasure is very costly
in terms of execution time because the verification takes nearly
twice as long as the signature computation.
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Summary table.

DES

AES

RSA-CRT

DSA
ECDSA

Fault model

Byte
(could be more)

Byte

Size of the
modulus

Bit
Bit

Fault location

Anywhere among
the last 6 rounds

Anywhere between
the MixColumns of
the and round
Anywhere during

the computation of
one of the CRT components
Anywhere among 20 bytes
Anywhere among 20 bytes

Minimum number
of required

faulty results
2

2

1

160
160

ECC. Only two papers dealing with elliptic curve scalar multiplica-
tion in the presence of faults have been published. The first fault attacks
on scalar multiplication were published at Crypto 2000 by Biehl‚ Meyer
and Müller [6]. In 2003‚ Ciet and Joye relaxed assumptions on these
attacks [13].

In the sequel‚ we suppose that a scalar multiplication is performed
with a scalar and a point P which lays on the elliptic curve

where the belong to a finite field

Let us describe the fault attacks of Biehl et al. [6]: by observing
that the elliptic curve parameter is not used in the addition and
the doubling formulas on elliptic curves‚ they remark that addition and

are the same as addition and doubling
operations with a point P lying on the elliptic curve E. By supposing the
Elliptic Curve Discrete Logarithm Problem (ECDLP) could be solved on

if the smart card executes the scalar multiplication with and sends
out the result we could then obtain the secret scalar

As a result of this observation‚ they developed two attacks. For the
first one‚ they induce a bit-fault on one of the coordinates of the point

They obtain a point which lies on an elliptic curve of
the form After the scalar

as From they can compute and so define the elliptic curve
By trying all the different candidates which only differ from the

known point P by one bit‚ they check if this candidate is a point on
and if so‚ they try to solve the ECDLP on

For the second attack‚ a fault on one bit is induced on a temporary
point during the scalar multiplication. We make a supposition on

doubling operations with a random point lying on a curve

multiplication‚ they obtain a point which lies on the same curve
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been guessed. Otherwise they continue the attack by changing another
bit of If the attack is not successful after trying each possibility
they make another supposition about which was perturbed.

By exploiting random faults induced in either coordinates of P‚ in
the elliptic curve parameters or in the field representation‚ Ciet and
Joye showed in [13] that it is possible to recover a part of the secret
scalar.

All of these attacks can be avoided by checking that
satisfies the relation

which the fault is induced and we guess the latest bits of
the scalar. By using these bits‚ we compute from By
flipping one bit of

the right value for the latest
we obtain and we then compute If

bits of the secret scalar has

5. About security

5.1 The importance of securing hardware and
software

As attacks are developed and improved‚ hardware evolves and gets
more secure. However‚ protecting all the silicon surface against each
and every type of attack is a difficult and very costly process. On the
other hand‚ securing an unprotected micro-controller by only adding
software countermeasures is also extremely costly in terms of execution
time and memory space.

It appears that following a careful analysis of the attacks described
above‚ a combination of hardware and software countermeasures yields
a very good security/cost ratio.

Moreover‚ it is extremely important to consider the security of an
embedded platform as a whole‚ no level being excluded from the analysis‚
whether it is the cryptographic functionalities‚ the low level operating
system functions or the virtual machine and the high level applications.

For example‚ having a very secure PIN check is pointless if it is easy
to bypass the high level call to this function and continue as if it had
been satisfactorily executed.

5.2 How can we determine appropriate
countermeasures?

Firstly one has to fix what an attacker is able to do : for example is
he able to induce the same fault twice in the same code execution ? Is
he able to choose a modified value ? ...
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All these assumptions allow a developer to have a framework‚ which
helps him to choose the most efficient countermeasures.

Next one must decide what has to be secured : which objects and
what kind of processing are sensitive. From there on‚ one can go up
in the software architecture and decide up to which layers the security
level has to be enforced. Finally one must add the security features
which are needed : redundancy on the objects‚ ensuring that operations
have been well executed (for example by doubling them)‚ securing the
cryptographic algorithms‚ ...

One very helpful way to make it difficult to perform a fault attack
efficiently is to desynchronize as much as possible the execution of the
sensitive parts‚ by using for example random waits‚ dummy instructions‚
jitter on clocks‚ etc.

As it appears clearly in this paper‚ making an embedded platform
secure demands a thorough understanding of the attacks‚ which comes
only through practical experiments‚ through a good knowledge of making
codes secure and through fully exploiting all the hardware features.

6. Conclusion
Although the equipment to set up fault attacks appears to be quite

common‚ we have seen that putting such attacks into practice requires
technical experience. Moreover‚ it is increasingly difficult to perturb
the latest micro-controllers‚ which are designed to resist fault attacks.
Nonetheless‚ the danger exists and the risk has to be seriously consid-
ered. As we have seen‚ protecting algorithms and software implemented
on smart cards or any tamper-proof device is best achieved by combining
both software and hardware countermeasures. Efficient countermeasures
are well-known‚ but they have to be implemented with care and spar-
ingly in view of the cost of security in terms of time and memory space‚
especially in the restrictive smart card environment.

Notes

1. Blömer and Seifert presented in [9] a bit-fault attack on the AES with a very restrictive
fault model: they suppose it is possible to set to zero one chosen bit. With such an attack‚
doubling the last 4 rounds is pointless‚ but in any case their fault model is too restrictive to
be put into practice. Indeed‚ a lot of improvements in perturbation techniques would have
to made for their attack to be effective from a practical point of view.
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