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A SURVEY ON FIXED DIVISORS

DEVENDRA PRASAD, KRISHNAN RAJKUMAR, AND A. SATYANARAYANA REDDY

Abstract. In this article, we compile the work done by various mathematicians on the
topic of the fixed divisor of a polynomial. This article explains most of the results concisely
and is intended to be an exhaustive survey. We present the results on fixed divisors in
various algebraic settings as well as the applications of fixed divisors to various algebraic
and number theoretic problems. The work is presented in an orderly fashion so as to start
from the simplest case of Z, progressively leading up to the case of Dedekind domains.
We also ask a few open questions according to their context, which may give impetus to
the reader to work further in this direction. We describe various bounds for fixed divisors
as well as the connection of fixed divisors with different notions in the ring of integer-
valued polynomials. Finally, we suggest how the generalization of the ring of integer-valued
polynomials in the case of the ring of n × n matrices over Z (or a Dedekind domain) could
lead to the generalization of fixed divisors in that setting.

Notations

We fix the notations for the whole paper.

R = Integral Domain
K = Field of fractions of R

N(I) = Cardinality of R/I (Norm of an ideal I ⊆ R)
W = {0, 1, 2, 3, . . .}

A[x] = Ring of polynomials in n variables (= A[x1, . . . , xn]) with
coefficients in the ring A

S = Arbitrary (or given) subset of Rn such that no non-zero
polynomial in K[x] maps it to zero

S = S in case when n = 1
Int(S, R) = Polynomials in K[x] mapping S back to R

νk(S) = Bhargava’s (generalized) factorial of index k
k!S = kth generalized factorial in several variables

Mm(S) = Set of all m × m matrices with entries in S
p = positive prime number

Zp = p-adic integers
ordp(n) = p-adic ordinal (valuation) of n ∈ Z.

1. Introduction

The term ‘Fixed Divisor’ is the English translation of the German word ‘Fester
Teiler’ which seems to have been used for the first time by Nagell [79]. We start
this section with the following definition

Math. classification: 11Sxx,11S05,13F20.
Keywords: Fixed divisors, Generalized factorials, Generalized factorials in several variables,
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Definition 1.1. — Let A be a ring and f(x) ∈ A[x] be a polynomial in n
variables. Given S ⊆ An, the fixed divisor of f over S, denoted by d(S, f), is
defined as the ideal of A generated by the values taken by f on S.

In the case of a Unique Factorization domain (UFD) we can manipulate the
Definition 1.1 as follows and we will observe that this definition is more useful than
the above definition.

Definition 1.2. — Let R be a UFD and f(x) ∈ R[x]. Given S ⊆ Rn, then
d(S, f) is defined as

d(S, f) = g.c.d.{f(a) : a ∈ S}.

Early scholars studied d(Z, f) (or d(Zn, f)) for a polynomial f with integer coef-
ficients and so the term ‘fixed divisor of a polynomial’ was complete. But it can
be seen that d(S, f), where S ⊆ Z (or Dedekind domain) not only depends on f
but also on the subset S (and the domain R). Thus, the term ‘fixed divisor of a
polynomial over the set S in the ring R’ (or d(S, f) in R) seems more appropriate.
However, for the sake of convenience, we will use the term ‘fixed divisor’, wherever
the domain R and the subset S will be clear from the context.

In section 2, we present formulae, methods of computation and various results
related to fixed divisors. We first focus on the relation of the fixed divisor with
generalized factorials in one and several variables depending on different notions of
degrees of a multivariate polynomial. For instance, in one variable, we will see that
the kth generalized factorial serves as the bound for fixed divisors of all primitive
polynomials of degree k. We also present various methods of computation of fixed
divisors in terms of generalized factorials.

In section 3, we define the notion of Fixed Divisor sequence and its relation with
various sequences which have been studied recently in connection with the theory
of integer-valued polynomials. Next, in section 4, we will see that, in the case of
forms the bounds can be reduced further. We then present bounds for the fixed
divisor of a polynomial involving its coefficients. At the end of this section we will
see how rare it is for a polynomial f ∈ Z[x] to have d(Z, f) = 1 along with the ideal
of polynomials in Z[x] whose fixed divisor over Z is a multiple of a given number d.

The study of fixed divisors is very closely related to the ring of integer-valued
polynomials (see [25]) and has applications to the irreducibility of polynomials in
this ring. In Section 5, we will present several approaches to test irreducibility of
polynomials in Int(S, R). In section 6, several concepts related to number fields
and their connection with fixed divisors are given. At the end of this section,
applications of the bound for the fixed divisor of a polynomial in terms of its
coefficients to solve Selfridge’s question and its various generalizations is given. In
Section 7, we define the notion of the fixed divisor of a polynomial in Mm(R)[x].
We will see that this definition is compatible with the recent generalization of
Int(Mm(R)) and how different studies on this ring can be interpreted in terms of
our definition.

2. Formulae and bounds for fixed divisors in various settings

The study of fixed divisors seems to have begun in 1896 with Hensel [64] (also
see [41], p. 334), who gave a computational formula for d(S, f) in the case when
S = Zn.
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Theorem 2.1 (Hensel [64]). — Let f ∈ Z[x] be a polynomial with degree
mi in xi for i = 1, 2, . . . , n. Then d(Zn, f) is equal to the g.c.d. of the values
f(r1, r2, . . . , rn), where each ri ranges over mi + 1 consecutive integers.

Thus, if f(x) ∈ Z[x] is a polynomial of degree k then

d(Z, f) = (f(0), f(1), . . . , f(k)).

This is probably the simplest method to compute d(Z, f).
Pólya [90] (see also [81], Chapter III) in 1919 figured out a bound for d(R, f)

for a primitive polynomial f ∈ R[x] of degree k, when R is the ring of integers
of a number field. In this setting, he found a complete solution to the problem of
determining the possible values of d(R, f) for any primitive polynomial of degree
k. For each pair of positive integers l and m, define

A(l, m) =
∑

j>1

⌊ l

mj

⌋

,

where ⌊.⌋ denotes the integer part. Pólya proved that for each nonzero prime ideal
P ⊂ R, P e divides d(R, f) implies e 6 A(k, N(P )). On the other hand, for each
e ∈ N with e 6 A(k, N(P )), he also constructed a primitive polynomial whose fixed
divisor is exactly divisible by P e. To be more precise, define

Ak =
∏

P

P A(k,N(P )),

where the product is taken over all prime ideals of R for which A(k, N(P )) 6= 0
(which will be finitely many). Then, the results of Pólya remain true if we replace
the ring of integers by any Dedekind domain with finite norm property. Hence, we
can restate the above results as the following

Theorem 2.2 (Pólya [90]). — Let R be a Dedekind domain with finite norm
property and I ⊆ R be an ideal. Then I is the fixed divisor over R of some primitive
polynomial of degree k in R[x] iff I divides Ak.

Observe that in the case S = R = Z, Ak = k!. Thus, Pólya was the first one who
gave a bound for the fixed divisor of a polynomial depending on its degree and he
also studied the possible values taken by it in the case when R may not be Z. Later
Cahen [21] relaxed the condition of finite norm property in the above theorem.

Nagell [79] in 1919 studied fixed divisors in the multivariate case when R = Z.
He proved that for a primitive polynomial f ∈ Z[x] with partial degree mi in
each variable xi, d(Zn, f) divides m1! · · · mn! (this result is also a consequence of
Theorem 2.1). He also gave a criteria for a number to be the fixed divisor of
some polynomial generalizing Theorem 2.2 in this setting. This result was further
generalized by Gunji & McQuillan (see Theorem 2.3). Gunji & McQuillan [56]
studied d(S, f) in the case when S is a product of arithmetical progressions in Z.

Theorem 2.3 (Gunji, McQuillan [56]). — Let Ai = {sai+bi}s∈Z, ai and bi ∈ Z,
be an arithmetic progression for i = 1, 2, . . . , n and A = A1 × A2 × · · · × An. If f
is a primitive polynomial in n variables with partial degree mi in each variable xi

then d(A, f) divides
∏n

i=1 mi!a
mi

i . Conversely, if d is any divisor of
∏n

i=1 mi!a
mi

i ,
then there exists a primitive polynomial f ∈ Z[x] with partial degree mi in each
variable xi such that d(A, f) = d.
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They also proved that if f ∈ Z[x] is primitive and (a1a2 · · · an, f(b1, · · · , bn)) = 1,
then d(A, f) = d(Zn, f). At the end of [56] they gave a relation connecting the fixed
divisor of the product of polynomials to the product of their fixed divisors.

Gunji & McQuillan [57] also studied d(S, f), where S is a coset of some ideal I
in the ring of integers of a number field. They gave a formula for d(S, f) in this
setting and also proved that Theorem 2.2 remains true in this case, if Ak is replaced
by IkAk. More precisely

Theorem 2.4 (Gunji, McQuillan [57]). — Let f be a primitive polynomial of
degree k with coefficients in a number ring R and J be any coset of the ideal I ⊆ R.
Then there exist b0, b1, . . . , bk ∈ R such that

d(J, f) = (b0I0A0, b1I1A1, . . . , bkIkAk).

The elements b0, b1, . . . , bk depend only on J and are explicitly constructed (see
Theorem 2.6 for the general construction). The last section of [57] was devoted to
a different type of study which we will in discuss in Section 6.

The general case was addressed by Bhargava [13] in 1998, where he found a
formula for d(S, f) for any polynomial f , in the case when R is any Dedekind
domain, by introducing the famous notion of ‘Generalized Factorials’ νk(S) (see [12,
14]). For various definitions and a comprehensive introduction to these factorials,
we highly recommend Chabert and Cahen [32] (also see [12, 14, 124]). For the sake
of completeness we give the definition.

Definition 2.5. — Let S be an arbitrary subset of a Dedekind domain R and
P ⊂ R be a fixed prime ideal. A P -ordering of S is a sequence a0, a1, a2, . . . in S,
such that for all k > 1, ak is an element minimizing the highest power of P dividing
∏k−1

i=0 (ak − ai) .

Thus, a P -ordering gives rise to a sequence of ideals which are the minimized
powers of P at each step. For an element a ∈ R, denote by wP (a) the highest

power of P dividing a. The sequence wP (
∏k−1

i=0 (ak −ai)) = P e(k,P ) is said to be the
P -sequence of S associated to the P -ordering a0, a1, a2, . . .. Though a P -ordering
is never unique, yet surprisingly, the associated P -sequence is independent of the
choice of any P -ordering of S. The generalized factorial of index k > 1 is defined
as

νk(S) =
∏

P

P e(k,P ),

with the convention that ν0(S) = R. This sequence is a generalization to subsets S
of R of the sequence Ak defined earlier for the whole ring R. Recall that Int(S, R) is
the ring of all polynomials of K[x] which maps S back to R, where K is the field of
fractions of R. These generalized factorials can also be defined by using the notion
of Int(S, R) as follows

νk(S) = {a ∈ R : aIntk(S, R) ⊆ R[x]},

where Intk(S, R) is the set of polynomials in Int(S, R) of degree at most k and R
is a Dedekind domain.

With all these definitions the work of Bhargava can be summarized as follows
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Theorem 2.6 (Bhargava [13]). — Let S be an arbitrary subset of a Dedekind
domain R. Then there exists a unimodular matrix Wk(S) over R, such that if

f(x) =
∑k

i=0 cix
i is a primitive polynomial in R[x], and











b0

b1

...
bk











= Wk(S)











c0

c1

...
ck











.

Then d(S, f) is given by

d(S, f) = (b0ν0(S), b1ν1(S), · · · , bkνk(S)).

Hence, d(S, f) divides νk(S). Conversely, if I is any ideal which divides νk(S),
then there exists a primitive polynomial f(x) ∈ R[x] such that d(S, f) = I.

In 2000, Bhargava [14] suggested a further generalization of factorials to the
multivariate case and claimed that for a primitive multivariate polynomial of total
degree k, this factorial gives bounds for fixed divisors as in previous theorems. In
2012, Evrard [44] pointed out that this factorial is not in increasing order and so
cannot be a correct bound. She also proposed a new factorial which compensates
the above drawback. For each k ∈ N and S ⊆ Rn, this factorial ideal of index k is
defined as

k!S = {a ∈ R : aIntk(S, R) ⊆ R[x]},

where Intk(S, R) is the set of polynomials in Int(S, R) of total degree at most k.
This factorial can also be obtained by the analogue of P -ordering in several variables
(see [44]). Using this factorial Evrard proved

Theorem 2.7 (Evrard [44]). — Let f be a primitive polynomial of total degree
k in n variables and S ⊆ Rn, then d(S, f) divides k!S and this is sharp.

The sharpness of the statement denotes (and will denote in the future) the
existence of a polynomial f satisfying the conditions of the theorem such that
d(S, f) = k!S . Observe that in the case of multivariate polynomials, Theorem 2.3
and Theorem 2.7 take into account different notions of degree and derive differ-
ent bounds for fixed divisors. We can combine both of these notions of degrees to
construct a new bound which is sharper than both of these bounds.

Define the degree of a polynomial f ∈ K[x] as a vector m ∈ Wn in which ith

component denotes the partial degree of f in xi. We will say that f is of type (m, k)
if degree of f is m and total degree is k. Further we define m 6 n for m, n ∈ Wn,
if each component of m is less than or equal to the corresponding component of n.

For m ∈ Wn, k ∈ W, and S ⊆ Rn, where R is a Dedekind domain, define

Intm,k(S, R) = {f ∈ Int(S, R) : degree of f 6 m and total degree of f 6 k}.

Rajkumar, Reddy and Semwal [91] defined the generalized factorial of index k
with respect to m as follows

Γm,k(S) = {a ∈ R : aIntm,k(S, R) ⊆ R[x]}.

The function defined above satisfies all the important properties of factorials (see
Chabert [31]) and hence generalizes Bhargava’s factorials in several variables. For
a polynomial of type (m, k), the authors proved the following analogue of Theorem
2.2.
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Theorem 2.8 (Rajkumar, Reddy and Semwal [91]). — Let R be a Dedekind
domain and f ∈ R[x] be a primitive polynomial of type (m, k), then d(S, f) divides
Γm,k(S) and this is sharp. Conversely, for any divisor I of Γm,k(S), there exists a
primitive polynomial f ∈ R[x] of type (m, k) such that d(S, f) = I.

Let S = S1 × S2 × · · · × Sn be a subset of Rn, where each Si is a subset of
the Dedekind domain R. For a given n-tuple (i1, i2, . . . , in) = i, denote its sum of
components by |i|. For such S, the authors proved that

Γm,k(S) = lcm
06i6m,|i|6k

i!S ,

where i!S denotes i1!S1
. . . in!Sn

for a given tuple i. In this setting, the authors
proved the following analogue of Theorem 2.6.

Theorem 2.9 (Rajkumar, Reddy and Semwal [91]). — Let f ∈ R[x] be a prim-
itive polynomial of type (m, k) and S be the Cartesian product of sets as above.
Then there exist elements b(0), . . . , b(i), . . . , b(j) in R which generate the unit ideal
and depend on S, such that

d(S, f) = (b(0)Γ0,0(S), . . . , b(i)Γi,|i|(S), . . . , b(j)Γj,|j|(S)).

Here the indices i ∈ Wn run over all i 6 m, |i| 6 k and j is one of the indices
satisfying |j| = k. If we relax the condition of total degree in the above theorem,
we get (a generalization of) Bhargava’s work in the multivariate Cartesian product
case as follows.

Corollary 2.10 (Bhargava [13]). — Let f ∈ R[x] be a primitive polynomial
of degree m. Then there exist elements b(0), . . . , b(i), . . . , b(m) in R which generate
the unit ideal and depends on S such that

d(S, f) = (b(0)0!S , . . . , b(i)i!S , . . . , b(m)m!S).

Hence, d(S, f) divides m!S and this is sharp. Conversely, for each I dividing m!S ,
there exists a primitive polynomial f of degree m with d(S, f) = I.

Corollary 2.10 and Theorem 2.7 give different bounds for fixed divisors and these
bounds are not comparable in general. However, the factorial introduced in [91]
always gives a stronger result and may not be equal to the g.c.d. of k!S and m!S ,
as the following example suggests.

Example 2.11. — If f ∈ Z[x] is a primitive polynomial of type ((2, 2), 3), then
we have the following bounds for d(Z × 2Z, f) :

(1) Theorem 2.7 gives 3!Z×2Z = 233!
(2) Theorem 2.6 (or Theorem 2.3) gives 2!Z2!2Z = 2!222!
(3) Theorem 2.9 gives Γ(2,2),3(Z × 2Z) = 222!.

Hence, the polynomial f
24 cannot be integer-valued since 24 exceeds Γ(2,2),3(Z×2Z).

In [91], it was also shown that for every a ∈ S there exists an element b ∈ Rn,
such that f(a) and f(b) completely determine d(S, f).
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3. Fixed divisor sequences and related notions

In the case when S ⊆ R contains a sequence which is a P -ordering for all prime
ideals P of the domain (called a Simultaneous P -ordering), then d(S, f) is deter-
mined by the f -images of the first k + 1 consecutive terms of this sequence, where
k is the degree of f .

The notion of simultaneous P -ordering was given by Mulay [75] before Bhargava.
He denoted this sequence by the term ‘special sequence’. He also constructed a
sequence of ideals which are very closely connected to Bhargava’s factorials. He
subsequently generalized this sequence of ideals to the case of several variables and
these ideals are closely connected to Evrard’s factorials (see [76]). The beauty of
this sequence of ideals is that it does not require R to be a Dedekind domain.
These can be defined in any domain (which is not a field). Though the question
of finding this type of ordering remains open, some interesting results can be seen
in [1, 5, 65, 124]. Mulay [77] also found special types of polynomials which map
special sequences back to special sequences.

We now introduce the notion of the fixed divisor sequence which is also related
to that of simultaneous P -ordering. We denote by Pk, the set of all polynomials of
R[x] of total degree k. For a given subset S ⊆ Rn, a fixed divisor sequence (FD
sequence) is defined as follows.

Definition 3.1. — For a given subset S ⊆ Rn, a sequence a0, a1, . . . of distinct
elements of S is said to be a fixed divisor sequence (FD sequence) if for every
k > 1, ∃ l ∈ N, such that for every polynomial f ∈ Pk, we have

d(S, f) = (f(a0), f(a1), . . . , f(al)),

and no proper subset of {a0, a1, . . . , al} determines d(S, f) of all f ∈ Pk.

Such a sequence may not always exist and sometimes may contain only finitely
many elements. The smallest such number l, which gives fixed divisors of degree k
polynomials is denoted by lk. This number depends on S and the sequence chosen,
which will be clear from the context. In the case when S = R = Z, we have
lk = k by Theorem 2.1. Thus, a FD sequence gives rise to a sequence of numbers
(l1, l2, . . . , ) called the sequence of lengths corresponding to the given FD sequence.
Volkov and Petrov [115] conjectured that in the case of S = R = Z[i], lk grows
as π

2 k + o(k) and asymptotically sharp example is realized on the set of integer

points inside the circle of radius
√

n/2 + o(
√

n). Recently, Byszewski, Fraczyk and
Szumowicz [20] found the growth of lk in the general case. They proved that in
the case when S = R, where R is any Dedekind domain, we have lk 6 k + 1,
contradicting the conjecture.

With the above definitions, the following question is interesting.

Question. — What are the subsets S ⊆ Rn, for which a FD sequence exist?

Note that whenever a subset of a Dedekind domain admits a simultaneous P -
ordering, then that sequence is itself a FD sequence, but not conversely. A FD
sequence is a simultaneous P -ordering iff lk = k.

In the last few decades two more interesting sequences emerged in the study
of integer valued polynomials, which are known as Newton sequence and Schinzel
sequence and are defined as follows.
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Definition 3.2. — Let {un}n>0 in R be a sequence.

(i) If for each n > 0 and each polynomial f ∈ K[x] of degree m 6 n, we have

f ∈ Int(R) ⇐⇒ f(ur) ∈ R ∀ r 6 n,

then {un}n>0 is said to be a Newton sequence.
(ii) If for each ideal I, the first N(I) terms of the sequence {un}n>0 represent

all residue classes modulo I, then it is said to be a Schinzel sequence.

For some interesting results on these sequences we refer to [2, 20, 23, 66, 117, 118].
A Newton sequence can be a Schinzel sequence (see for instance [4, 3]) and vice-
versa. In the case of a Dedekind domain, a Newton sequence is nothing but a
simultaneous P -ordering and hence a FD sequence.

Another notion which is related to FD sequences is that of n-universal sets
(see [27, 115]). A finite subset S ⊂ R is said to be a n-universal set if for every
polynomial f ∈ K[x] of degree at most n, f ∈ Int(R) if and only if f(S) ⊂ R. The
first ln terms of all FD sequences are n-universal sets for all n > 1.

An R-module basis of Int(S, R) is said to be regular basis if it contains one
and only one polynomial of each degree. Its study was begun with Pólya [90]
and Ostrowski [83] in 1919. After their seminal work, the next major step in
this direction was taken by Zantema [125]. He introduced the name Pólya fields for
those number fields K, such that Int(R) admits a regular basis where R is the ring of
integers of K. He proved that cyclotomic fields are Pólya fields. The study of Pólya
fields has now become very important in the theory of integer valued polynomials.
Some interesting results can be seen in [63, 67, 68, 70, 69, 107, 108, 126]. A sufficient
condition for a number field to be a Pólya field can be obtained from FD sequences
and fixed divisors as follows.

Let R be a number ring in which a FD sequence a0, a1, . . . exists. Define a
sequence of polynomials {Fj}j>0 corresponding to this sequence by

Fj(x) = (x − a0)(x − a1) . . . (x − aj−1)

with F0 = 1. It can be seen that Int(R) admits a regular basis if d(R, Fi) = (Fi(ai))
for all i > 1. This result can be extended to the case of any subset S ⊆ Rn, for
which an FD sequence exists.

Take the unitary monomial basis of K[x] and place a total order on it which is
compatible with the total degree. Thus, the monomials are arranged in a sequence
(pj)j>0 with p0 = 1 and total degree of pi is less than or equal to that of pj if i < j.

For any sequence of elements b0, b1, . . . , br in Rn, define

∆(b0, b1, b2, . . . , br) = det(pj(bi))06i,j6r.

With all these notations we have the following theorem.

Theorem 3.3. — Let S ⊆ Rn be a subset and {ai}i>0 be a FD sequence of
S. If for all i > 1, d(R, Fi) = (Fi(ai)), where Fr(x) = ∆(a0, . . . , ar−1, x) with
F0(x) = 1, then, an R-module basis for Int(S, R) is given by

Fr(x)

Fr(ar)
, r = 0, 1, . . . .
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4. Results on fixed divisors in some special cases

The study of fixed divisors of forms (homogeneous polynomials with integer
coefficients) was initiated by Nagell in 1919. Nagell proved the following theorem
for forms in two variables.

Theorem 4.1 (Nagell [79]). — For the polynomial

f(x, y) = ym−1x(x + y)(x + 2y) · · · (x + y(m − 1)),

d(Z2, f) is multiple of m!.

Schinzel [100] continued the legacy of Nagell on the fixed divisor of forms. He
started this work by giving bounds for fixed divisors in various cases. We recall
that for a polynomial f(x) ∈ Z[x], d(Zn, f) is the greatest positive integer dividing
f(a) for all a ∈ Zn. For the work of Schinzel we fix the following notations.

Sk,n = {f ∈ Z[x] : f is a homogeneous primitive polynomial of total degree k},

S1
k,n = {f ∈ Sk,n : f splitting over Z},

S0
k,n = {f ∈ Sk,n : f splitting over C},

Dk,n = maxf∈Sk,n
d(Zn, f), and D1

k,n = maxf∈S1
k,n

d(Zn, f).

With these notations Schinzel gave the following bound.

Theorem 4.2 (Schinzel [100]). — For all f ∈ S0
k,n and for all primes p

ordpd(Zn, f) 6 ordp

((

p
⌊ (pn−1 − 1)k

pn − 1

⌋)

!
)

,

ordpD1
k,2 > ordp

((

p
⌊ k

p + 1

⌋)

!
)

and

ordpD1
k,n > (pn−1 − 1)qn−1ordp((pq)!) + ordp

((

p
⌊k − (pn − 1)qn

p + 1

⌋)

!
)

for n > 2,

where q =
⌊

n

√

k
pn−1

⌋

.

This theorem also answered a question asked by Nagell [79] in 1919. Since
S1

k,2 ⊆ S0
k,2, the results of the above theorem can be combined to get Dk,2 = D1

k,2.

He also proved that Dk,n divides (k−1)! and becomes equal to Dk,nk
for all integers

k > 4 and n > nk, where nk = k − ord2

((

2
⌊

k
3

⌋)

!
)

. If k 6 6 and n > 2, then Dk,n is

equal to Dk,2, though we always have D1
9,3 = D1

9,2. The growth of Dk,n is similar
to that of the factorial, i.e., log Dk,n = k log k + O(k). With these results in hand,
Schinzel conjectured

Conjecture 4.3 (Schinzel [100]). — For all positive integers k and n, we al-
ways have Dk,n = D1

k,n.

Schinzel proved this conjecture for k 6 9 and for all n, but the general case
remains open. One more interesting result in the same article is

Theorem 4.4 (Schinzel [100]). — Let kn(m) be the least integer k such that

m! | Dk,n. Then, for all n, the limit ln = limm→∞
kn(m)

m exists and satisfies

ln 6
2n − 1

2n − 2
,
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where equality holds if Conjecture 4.3 is true.

Subsequently, in his next article Schinzel [99] established upper and lower bounds
on D1

k,n.

Theorem 4.5 (Schinzel [100]). — For all integers n > 2 and k > 2n, we have

log D1
k,n = log(k − 1)! + ζ′(n)

ζ(n) k + e(k, n),

where e(k, n) is the error term.

So far we have seen bounds for fixed divisors depending only on degree. We can
also get bounds for fixed divisors depending on the coefficients of the polynomial.
Vajaitu [111] (also see [110]) in 1997 studied the relation between bounds for the
fixed divisor of a polynomial and its coefficients. For every primitive polynomial f =
∑k

i=0 aix
i ∈ R[x], when R is a Dedekind domain with finite norm property, Vajaitu

proved that the cardinality of the ring R/d(R, f) cannot exceed the cardinality of

R/(k!a0)k2k+1

. In the case when R = Z, he gave the following sharp bound for the
fixed divisor.

Theorem 4.6 (Vajaitu [111]). — Let f ∈ Z[x] be a primitive polynomial, p be
a prime number dividing d(Z, f) and |f | denote number of non-zero coefficients of
f . Then p > 1

2 +
√

n implies ordp(d(Z, f)) 6 |f | − 1. Hence, we have

d(Z, f) 6 a
∏

p<
1
2 +

√
n

p=prime

pordp(k!)
∏

1
2 +

√
n<p6n

p=prime

p
min

(

|f |−1,
⌊

n
p

⌋)

,

where a is the leading coefficient of f .

The bound for d(Z, f) in the above theorem remains true for non-primitive poly-
nomials too. This theorem was further studied by Evrard and Chabert [34], which
we present here in the local case. They extended this result to the global case and
also to the case of Z.

Theorem 4.7 (Evrard and Chabert [34]). — Let V be a Discrete Valuation
Domain with valuation ν, maximal ideal M and finite residue field of characteristic
p. Let S ⊆ V contain at least r > 2 distinct classes modulo M and f = Σk

i=0aix
i ∈

K[x] be a polynomial of degree k. If k 6 p(r − 1) + 1 then

ν(d(S, f)) < ν(f) + νM (f),

where ν(f) = inf06i6kν(ai) and νM (f) = |{i : ν(ai) = ν(f)}|. Moreover, the in-
equality also holds as soon as

(1) k < pr when M * S,
(2) k 6 pr when ∅ 6= S ∩ M 6= M .

Turk [109] in 1986 studied probabilistic results on fixed divisors in the case when

R = Z. For f =
∑k

i=0 aix
i ∈ Z[x], define its height by h(f) = max06j6n|aj |. For

any subset T of Z[x] define the probability that an f ∈ Z[x] of degree 6 k belongs
to T as

Prob(f ∈ T : deg(f) 6 k) = limh→∞
|{f ∈ T : deg(f) 6 k, h(f) 6 h}|

|{f ∈ Z[x] : deg(f) 6 k, h(f) 6 h}| ,
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provided the limit exist. Here, |A| for a set A denotes its cardinality. Turk’s result
can be stated as

Theorem 4.8 (Turk [109]). — Let f ∈ Z[x] be a polynomial of degree at most
k and µ be the Möbius function. Then the probability of d(Z, f) to be equal to d,
denoted by P (d, k), is given by

P (d, k) =

∞
∑

n=1

µ(n)

k
∏

i=0

(i!, nd)

nd
·

From this result, it follows that P (1, k) =
∏

p(1 − p−min(k+1,p)). Letting k tend
to infinity, we get the following corollary.

Corollary 4.9. — The probability for a polynomial f ∈ Z[x] to have d(Z, f) =
1 is

∏

p(1 − p−p), which is approximately 0.722.

Hence, we can conclude that 28 percent of the polynomials in Z[x] have fixed
divisors greater than 1. Turk also extended this result to several variables and
proved that this probability is equal to

∏

p(1−p−pn

), where n is number of variables.

Peruginelli [86] worked on the ideal of the polynomials in Z[x] whose fixed divisor
over Z is a multiple of a given number. He completely determined this ideal. Recall
that the prime ideals of Int(Z) which lie over a prime p ∈ Z, are of the form

Mp,α = {f ∈ Int(Z) : f(α) ∈ pZp},

where α ∈ Zp. It can be shown that for f ∈ Z[x] we have d(Z, f) =
⋂

p d(Zp, f) and

if pe is the highest power of p dividing d(Z, f) then d(Zp, f) = peZp (see [86, 57]).

Theorem 4.10 (Peruginelli [86]). — Let p ∈ Z be a prime and n ∈ W such that

p > n, and f(x) =
∏p−1

i=0 (x − i). Let Ipe be the ideal of polynomials in Z[x] whose
fixed divisor is a multiple of pe for some e ∈ W that is Ipe =

⋂

α∈Zp
(Me

p,α

⋂

Z[x]).

Then we have
Ipn = (p, f)n.

The other case, i.e., when p < n, was handled by the construction of certain types
of polynomials. While the problem of determining the ideal Ipn was completely
solved by Peruginelli, we would like to point out that he was not the first to study
this ideal. Various scholars have worked with this ideal in different contexts (see
[12, 38, 54, 92, 102, 101, 122]). Note that, if we have determined the ideal of
polynomials in (Z/pnZ)[x] which maps each element of Z/pnZ to zero, then we can
easily determine Ipn . Bandini [10] studied Ipn as a kernel of the natural map from
Z[x] to the set of all functions of Z/pnZ to itself.

5. Applications of fixed divisors in irreducibility

It is well known that when R is a Unique Factorization Domain (UFD) then
a primitive polynomial f ∈ K[x] is irreducible in K[x] iff f is irreducible in R[x].
This result is not true in general if K[x] is replaced by Int(R), i.e., a primitive
irreducible polynomial in R[x] may be reducible in Int(R). For instance, consider
the irreducible primitive polynomial f = x2 + x + 4 ∈ Z[x] which can be factorized

as x2+x+4
2 × 2 in the ring Int(Z) (note that x2+x+4

2 maps Z back to Z). Since the
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only units in Int(Z) are ±1 (see [24]), the factorization is proper. Thus, it is natural
to ask the following question: for an irreducible polynomial f ∈ R[x], where R is a

UFD, what are the elements d ∈ R such that f
d ∈ Int(R) (or Int(S, R))?

The role of the fixed divisor in answering this question was brought to the fore
by Chapman and McClain [35] in 2005.

Theorem 5.1 (Chapman and McClain [35]). — Let R be a unique factorization
domain and f(x) ∈ R[x] be a primitive polynomial. Then f(x) is irreducible in
Int(S,R) if and only if f(x) is irreducible in R[x] and d(S, f) = 1.

Their next result addressed the case when the fixed divisor may not be one.

Theorem 5.2 (Chapman and McClain [35]). — Let R be a unique factorization
domain and f(x) ∈ R[x] be a primitive polynomial. Then the following statements
are equivalent.

(1) f(x)
d(S,f) is irreducible in Int(S, R).

(2) Either f(x) is irreducible in R[x] or for every pair of non-constant polyno-
mials f1(x), f2(x) in R[x] with f(x) = f1(x)f2(x), d(S, f) ∤ d(S, f1)d(S, f2).

Theorem 5.2 becomes more practical in the study of irreducibility in Int(S, R), if
we classify those polynomials whose fixed divisor of product is equal to the product
of their fixed divisors. We ask this as an open question.

Question. — What are the subsets S of a Dedekind domain R and the sets of
polynomials f1, f2, . . . , fr ∈ R[x] such that

d(S, f1f2 . . . fr) = d(S, f1)d(S, f2) . . . d(S, fr) ?

A polynomial in Int(R) which is irreducible in K[x], may be reducible in Int(R).
Cahen and Chabert [24] proved that a polynomial f ∈ Int(R), which is irreducible
in K[x], is irreducible in Int(R) iff d(R, f) = R.

There exist domains in which some elements can be written as product of irre-
ducibles in various ways and the number of irreducibles may not be the same in
each factorization. More precisely, if a ∈ R, then it may have two factorizations
into irreducibles a = a1a2 . . . ar = b1b2 . . . bs, such that r > s. The supremum of r

s
over all factorizations of a, when a varies in R is said to be the elasticity of R [114].
The study of elasticity is very broad and we refer to [6] for a survey. Though the
elasticity of Z is 1, but that of Int(Z) is infinite (see [24, 26]). So if we take any
f ∈ Z[x], it may not factor uniquely in Int(Z). For a given polynomial f ∈ Z[x],
one may ask whether its factorization is unique in Int(Z) or not? For example, if
f(x) ∈ Z[x] is an irreducible polynomial with d(Z, f) = 1, then from Theorem 5.1,
f is irreducible in Int(Z). More generally we have

Theorem 5.3 (Chapman and McClain [35]). — Let R be a unique factorization
domain and f(x) ∈ R[x] be a polynomial with d(S, f) = 1, then f factors uniquely
as a product of irreducibles in Int(S, R).

Chapman and McClain proved another interesting result: for every m and n ∈ N,
there are infinitely many irreducible polynomials f(x) ∈ Z[x] with leading coeffi-
cient n for which d(Z, f) = m.

We have seen that a given polynomial f ∈ Int(Z) may not have the same number
of irreducibles in its factorizations in Int(Z). One question is very pertinent here:
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suppose we have two numbers m and n, does there exist a polynomial in Int(Z)
which factors only in two ways and has the number of irreducibles m and n in these
factorizations? Frisch [50] answered this question in the general setting by using
the fixed divisor.

Theorem 5.4 (Frisch [50]). — Let m1, m2, . . . , mn be natural numbers greater
than 1, then we can construct a polynomial f(x) ∈ Int(Z) having exactly n different
factorizations into irreducibles in Int(Z), with the length of these factorizations
equal to m1, m2, . . . , mn, respectively.

Fixed divisors also enable us to understand the behavior of irreducibility in
special type of rings (pullback rings) studied by Boynton [19] (see also [17, 18]).
Boynton [19] extended the notion of fixed divisors to these types of rings and found
their applications in understanding the behavior of irreducibility.

Another approach in testing irreducibility of a polynomial from Int(Z) by using
its fixed divisor was given by Peruginelli [87]. We will first recall a few definitions.
Let f ∈ Int(Z) be any polynomial. We will call f image primitive, p-image primitive
and p-primitive, whenever d(Z, f) = 1, p does not divide d(Z, f) and p does not
divide content of f , respectively. Since Peruginelli’s work is confined to the case
when S = R = Z, we state a few classical ways of computing d(Z, f).

Theorem 5.5 (See [7, 26]). — For

f = b0 + b1x + b2x(x − 1) + · · · + bkx(x − 1) . . . (x − k + 1) ∈ Z[x],

all of the following are equal to d(Z, f):

(1) g.c.d.{f(0), f(1), . . . , f(k)},

(2) sup{n ∈ Z : f(x)
n ∈ Int(Z)},

(3) (b00!, b11!, . . . , bnn!),
(4) (△0f(0), △1f(0), . . . , △nf(0)).

Here △ is the forward difference operator and is defined as △f(x) = f(x+1)−f(x).

Using the fact that Z is a UFD, every polynomial f of Q[x] can be written as

f(x) =
g(x)

d
, where g ∈ Z[x] and d ∈ Z. Peruginelli considered two cases, i.e.,

when d is a prime number and square free number, respectively.
We start with the case when d is a prime number. We have

f(x) =
g(x)

p
=

∏

i∈I gi(x)

p
,

where gi(x) are irreducibles in Z[x]. To give the irreducibility criteria in this case,
we will need a few definitions.

Definition 5.6. — Let g ∈ Z[x] and p ∈ Z be a prime. Define

Cp,g = {j ∈ {0, 1, . . . , p − 1} : p | g(j)}.

Definition 5.7. — Let G = {gi(x)}i∈I be a set of polynomials in Z[x] and
p ∈ Z be a prime. For each i ∈ I, we set Ci = Cp,gi

. A p-covering for G is a subset
J of I such that

⋃

i∈J

Ci = {0, 1, . . . , p − 1}.

We say that J is minimal if no proper subset J ′ of J has the same property.
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Now, the irreducibility criteria is given by the following lemma.

Lemma 5.8 (Peruginelli [87]). — Let f(x) =
g(x)

p
=

∏

i∈I gi(x)

p
, where gi(x)

are irreducible in Z[x], then the following are equivalent :

(1) f is irreducible in Int(Z),
(2) d(Z, g) = p,
(3) I is a minimal p-covering.

Next, Peruginelli generalized the notion of p-covering to the case when we have
more than one prime. He considered the case when d is a square free number.

We end this section with the following question.

Question. — What is the analogue of Lemma 5.8 in the case when d is not
square free?

6. Applications of fixed divisors in number fields

The first application of this section is from Gunji & McQuillan [57], where a new
concept was introduced, which encapsulated the relationship between the arithmetic
properties of an extension of a number field and the fixed divisors of certain minimal
polynomial.

Let K be an algebraic number field of finite degree and L be a finite algebraic
extension of K of degree m. Let OK and OL be the ring of integers of K and L
respectively. Let S(L|K) be the set of elements a ∈ OL such that L = K(a) and
fa(x) denote the minimal monic polynomial of a with coefficients in OK[x].

Definition 6.1. — For a pair of number fields K and L, define J(L|K) to be
the lcm of d(OK, fa), where a varies over S(L|K).

With these terms, Gunji & McQuillan proved several interesting results like

(i) there exists a ∈ OL such that d(OK, fa) = J(L|K), and
(ii) J(K|Q)m | J(L|Q).

Building on these results, Ayad and Kihel [9] asked the following questions.

Question (Ayad and Kihel [9]). — Let ω1, . . . , ωn be an integral basis of OK .
Consider all the elements of the form b = Σn

i=1xiωi, where xi ∈ {0, 1, . . . , pe − 1}
for e 6 ordp(J(K|Q)), such that pe divides d(Z, fb). Is any element among these
elements primitive over Q?

Question (Ayad and Kihel [9]). — Is the following statement correct?
The relation m ordp(J(K|Q)) = ordp(J(L|Q)) holds iff for any b ∈ L such that
ordp(d(Z, fb)) = ordp(J(L|Q)), there exists a ∈ K such that b ≡ a (mod p).

Ayad and Kihel gave examples in support of these questions, but a rigorous proof
is still required. In this setting, one question is pertinent: when is J(L|Q) a proper
ideal of OK? McCluer [72] answered this question completely in 1971.

Theorem 6.2 (McCluer [72]). — Let L be number field such that [L : Q] = m,
then J(L|Q) > 1 if and only if some prime p 6 m possesses at least p distinct
factors in L. The set of such primes p is exactly the set of the prime divisors of
J(L|Q).
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Combining the notion of J(L|K), the above theorem and a classical result of
Hensel (see [59, 9]), Ayad and Kihel [9] gave one more interesting application of
fixed divisors. Before proceeding we recall a few definitions.

For a number field K define ÔK = {a ∈ OK : Q(a) = K}, the set of all primitive
elements of OK. For a given a ∈ OK, its index i(a) is defined as [OK : Z[a]]
(cardinality of OK/Z[a]). Define i(K) = g.c.d.a∈ÔK

i(a). A prime number p is called

a common factor of indices (cfi) in OK if p divides i(K). Existence of at least one
cfi was shown by Dedekind [60]. For examples and criteria for a prime number to
be a cfi in various extensions of Q, we refer to [8, 11, 28, 29, 42, 43, 80, 82, 103, 104]
[105, 116]. The following theorem characterizes the prime numbers which can be
cfi in OK.

Theorem 6.3 (Ayad and Kihel [9]). — Let p be a prime number and let K be
a number field. If p is a cfi in OK, then p | J(K|Q).

The converse of the above theorem may not be true in general, however we have
the following

Theorem 6.4 (Ayad and Kihel [9]). — Suppose that K is a Galois extension of
Q. Let 1 6 d < n be the greatest proper divisor of n. Let n > p > d be a prime
number, then p | J(K|Q) if and only if p is a cfi in OK.

Let K be an abelian extension of Q of degree n and let p < n be a prime number
such that (p, n) = 1. If p | J(K|Q), then they showed that p is not ramified in its
inertia field and p is a cfi in the decomposition field (see Marcus [73], for e.g., for
the definitions). Moreover, if K0 is any subfield of the decomposition field , then p
is a cfi in K0. Studying various authors’ work on the above topic, Ayad and Kihel
arrived at the following question.

Question (Ayad and Kihel [9]). — Suppose K is a number field and p is a
prime number such that pOK = P e1

1 . . . P er
r with r > p, and fi is the inertial degree

of Pi, for i = 1, . . . , r. Can we compute ordp(J(K|Q)) in terms of r, ei and fi?

With all assumptions as in Theorem 6.4 and the above Question, let ρ(p) denote
the number of a ∈ OK/pOK such that p | d(Z, fa). Then Ayad and Kihel computed

ρ(p) = pλ

p
∑

j=0

(

p

j

) r
∏

i=1

(pfi − j),

where λ = n − ∑r
i=1 fi. Connecting ρ(p) to the splitting of p, they conjectured

Conjecture 6.5 (Ayad and Kihel [9]). — If K is a Galois extension of degree
n over Q and p | J(K|Q), then ρ(p) determines the splitting of p in K.

Wood [124] also connected splitting of primes to fixed divisors. Let R = OK for
a number field K and S be the integral closure of R in a finite extension of K. She
observed that all of the following are equivalent.

(i) All primes of R split completely in S.
(ii) νk(R) = νk(S) in the ring S for all k.
(iii) For any f(x) ∈ S[x], d(R, f) = d(S, f).
(iv) Int(R, S) =Int(S, S).
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For a more general version of these statements, we refer to the discussion in Sec-
tion 7.

Now we shed light on a beautiful number theoretic problem and its solution
using a bound for the fixed divisor in terms of the coefficients of that polynomial.
Selfridge (see [58], problem B47) asked the question: for what pairs of natural
numbers m and n do we have (2m − 2n) | (xm − xn) for all integers x? In 1974,
Ruderman posed a similar problem.

Problem (Ruderman [93]). — Suppose that m > n > 0 are integers such that
2m − 2n divides 3m − 3n. Show that 2m − 2n divides xm − xn for all natural
numbers x.

This problem still remains open but a positive solution to it will completely
answer Selfridge’s question. In 2011, Ram Murty and Kumar Murty [78] proved
that there are only finitely many m and n for which the hypothesis in the problem
holds. Rundle [96] also examined two types of generalizations of the problem.
Selfridge’s problem was answered by Pomerance [94] in 1977 by combining results
of Schinzel [97] and Velez [95]. Q. Sun and M. Zhang [106] also answered Selfridge’s
question.

Once Selfridge’s question is answered a natural question arises: what happens
if we replace ‘2’ by ‘3’ or more generally by some other integer (other than ± 1).
The arguments used to answer Selfridge’s question were elementary and may not
suffice to answer this question. Instead, the following argument will be helpful.

Observe that am − an | xm − xn for all x ∈ Z iff am − an | d(Z, fm,n), where
fm,n(x) = xm − xn. Let a1, a2, . . . , ak be non-zero elements of Z and C be the
set of all polynomials with the sequence of non-zero coefficients a1, a2, . . . , ak, then
{d(Z, g) : g ∈ C} is bounded (for a proof see Vajaitu [113]). In this case, the
non-zero coefficients are 1, −1 and hence it follows that d(Z, fm,n) 6 M for some
real constant M and hence only finitely many pairs (m, n) are possible such that
am − an | xm − xn for all x ∈ Z.

The above argument is the particular case of the argument given by Vajaitu [113]
in 1999. He generalized Selfridge’s question to a number ring and proved

Theorem 6.6 (Vajaitu and Zaharescu [113]). — Let R be a number ring of an
algebraic number field, a1, a2, . . . , ak, b be non-zero elements of R and b be a non
unit, then there are only finitely many k tuples (n1, n2, . . . , nk) ∈ Nk satisfying the
following simultaneously

(i)
k

∑

i=1

aib
ni |

k
∑

i=1

aix
ni

i for all x ∈ R,

(ii)
∑

i∈S

aib
ni 6= 0 for all ∅ 6= S ⊆ {1, 2, . . . , k}.

If the group of units of R is of finite order then the theorem can be further
strengthened. Here the bound for the fixed divisor involving the coefficients plays

a role through the observation : if
k

∑

i=1

aib
ni |

k
∑

i=1

aix
ni for all x ∈ R, then

k
∑

i=1

aib
ni

divides the fixed divisor of f(x) =
k

∑

i=1

aix
ni

i over R and hence N(
k

∑

i=1

aib
ni) divides

N(d(R, f)) and we have N(
k

∑

i=1

aib
ni) 6 N(d(R, f)). Here (and further) norm of an
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element is same as the norm of the ideal generated by the element. They proved

that N(d(R, f)) is bounded above by c1|N(a1)|c2exp
(

c3a
c4

log log a
)

and N(
k

∑

i=1

aib
ni)

is bounded below by c|N(b)|a, where c, c1, c2, c3, c4 are constants independent of the
choice of (n1, n2, . . . , nk) and a = max{n1, . . . , nk}. Putting these bounds together,
we have

c|N(b)|a 6 N(
k

∑

i=1

aib
ni) 6 N(d(R, f)) 6 c1|N(a1)|c2exp

(

c3a
c4

log log a
)

.

In this way they got upper and lower bounds of N(d(R, f)). Comparing these
bounds they concluded that a must be bounded and hence only finitely many
solutions exist.

Recently Bose [15] also generalized Selfridge’s question. In 2004, Choi and Za-
harescu [39] generalized Theorem 6.6 to the case of n variables as follows.

Theorem 6.7 (Choi and Zaharescu [39]). — Let R be the ring of integers in
an algebraic number field and let b1, b2, . . . , bn be non-zero non-unit elements of R.
Let ai1,...,in

∈ R for all 1 6 i1 6 k1, . . . , 1 6 in 6 kn. Then there are only finitely
many n tuples (m1, m2, . . . , mn) ∈ Nk1 × Nk2 × · · · × Nkn satisfying the following
simultaneously, where mj = (mj1, . . . , mjkj

):

(i) For all x ∈ Rn,

k1
∑

i1=1

· · ·
kn
∑

in=1

ai1,...,in
b

m1i1

1 · · · b
mnin
n

∣

∣

∣

k1
∑

i1=1

· · ·
kn
∑

in=1

ai1,...,in
x

m1i1

1 · · · x
mnin
n .

(ii) For all non-empty S ⊆ {1, 2, . . . , k1} × · · · × {1, 2, . . . , kn},
∑

(i1,...,in)∈S

ai1,...,in
b

m1i1

1 · · · b
mnin
n 6= 0.

Choi and Zaharescu also strengthened this result for Z and Z[i].
To conclude this section, we will describe an application of fixed divisors in

Algebraic Geometry by Vajaitu [112]. Let S ⊆ Pn be an algebraic subset of a
projective space P over some algebraically closed field K (see [61] for a general
reference). We denote the degree of S by deg(S) and the number of non-zero
coefficients in fS by |S|, where fS is the Hilbert polynomial associated with S.

This polynomial has rational coefficients and so can be written as f
d for f in Z[x]

and d ∈ Z. Vajaitu proved that dim(S) 6 max{deg(S)2, 4|S|2} by using Theorem
4.6 for the polynomial f .

7. Fixed divisors for the ring of matrices

It can be seen that if R is a domain then Mm(R) is a ring with usual addition
and matrix multiplication. In recent years, several prominent mathematicians have
studied the ring of polynomials in Mm(K)[x] which maps Mm(R) back to this
ring, generally denoted by Int(Mm(R)). For various interesting results about this
ring, we refer to [46, 45, 48, 52, 51, 62, 71, 84, 85, 88, 89, 120]. For a survey
on Int(Mm(R)), the reader may consult [49, 123]. We have seen in the previous
sections, the close relationship between d(S, f) and Int(S, R). We believe that the
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systematic study of fixed divisors in this setting will be helpful in studying the
properties of Int(Mm(R)).

We know that each ideal of Mm(R) is of the form Mm(I) for some ideal I ⊆ R,
and the map I 7→ Mm(I) is a bijection between the set of ideals of R and the set
of ideals of Mm(R). Hence, we suggest the following definition for fixed divisors in
this setting.

Definition 7.1. — For a given subset S ⊆ Mm(R) and a given polynomial
f ∈ Mm(R)[x], we define d(S, f) to be the ideal of R generated by the entries of all
matrices of the form f(A), where A ∈ S.

This definition can be extended to the multivariate case as usual. For each
positive integer l, define Gl as follows

Gl = {f ∈ Mm(Z)[x] : f(Mm(Z)) ⊆ l · Mm(Z)}.

In other words, Gl is the set of polynomials of Mm(Z)[x] whose fixed divisor is
divisible by l. It can be seen that Gl is an ideal and this ideal was studied by
Werner [120]. Werner also studied the classification of ideals of Int(Mm(R)) and
found the ideal of polynomials in Mm(R)[x] whose fixed divisor over a special set
S (see section 2 of [120]) is a multiple of a given ideal I ⊆ R.

Define φl to be a monic polynomial of minimal degree in Gl ∩ Z[x], where Z is
embedded in Mm(Z) as scalar matrices and φ1 = 1. Werner proved the following
theorem

Theorem 7.2 (Werner [120]). — (1) Gp = 〈φp, p〉.
(2) Let l > 1 and p1, p2, . . . , pr be all the primes dividing l, then

Gl = (φl, l) + p1Gl/p1
+ p2Gl/p2

+ . . . + prGl/pr
.

(3) Let l > 1, then Gl is generated by {rφl/r : r divides l}.

Werner [119] also proved similar results in the case of ring of quaternions. The
study of fixed divisors is also helpful in the study of lcm of polynomials done
by Werner [121]. For a ring R and a subset X of R[x], define a least common
multiple for X, a monic polynomial L ∈ R[x] of least degree such that f |L for all
f ∈ X. For any n, D ∈ W with n > 1 and D > 0, let P (n, D) be the set of all
monic polynomials in Zn[x] of degree D. It can be seen that an lcm for P (n, D)
always exists, but may not be unique when n is not a prime number. However,
its degree is always unique. The unique lcm for P (p, D), where p is a prime, is

f = (xpD − x)(xpD−1 − x) · · · (xp − x), which is the smallest degree polynomial with
integer coefficients such that d(MD(Z), f) is a multiple of p. We can also interpret
P (n, D) similarly. If we have determined the ideal of polynomials in Z[x], whose
fixed divisor over MD(Z) is a multiple of a given number n, then the smallest degree
polynomial in that ideal will give us the degree of lcm of all D degree polynomials
in Zn[x], giving more sharper results than [121]. Systematic study of fixed divisors
will also answer the problems posed in the same article. Hence, these two studies
are closely connected.

At this stage, we are familiar with various ways of computation of fixed divisors,
various bounds for fixed divisors and various applications of fixed divisors. We ask
the following question:
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Question. — For a Dedekind domain R, what are the pairs S and T of subsets
of (Mm(R))n, such that d(S, f) = d(T , f) for all f ∈ Mm(R)[x]?

Crabbe [40] studied subsets S and T of Z which have the same Bhargava’s facto-
rials, i.e., νk(S) = νk(T ) for all k ∈ W. The above question is a vast generalization
of his study.

One more interesting problem is the classification of the subsets S and T of R,
such that Int(S, R) = Int(T, R). Such a subsets are called polynomially equivalent
subsets. For some results on this topic we refer [22, 30, 33, 36, 37, 47, 53, 55, 74].
It can be seen that for a Dedekind domain R and for a pair of subsets S and
T of Rn, Int(S, R) = Int(T , R) iff d(S, f) = d(T , f) for all f ∈ R[x]. Hence, the
above question can be seen as another perspective of this problem, in the case when
m = 1. In this case, Mulay [76] gave a necessary and sufficient condition to answer
the above question, when R is a Dedekind domain or UFD. He also analyzed the
same question in other cases.

Finally, we would like to ask the following question:

Question. — What is the analogue of Theorem 2.2 in this setting?

This question could naturally be modified by replacing Theorem 2.2 with many
of the results in the previous sections. The answer to the above question will com-
pletely determine generalized factorials for the ring of matrices (and their subsets).
As we know, in the case of one variable, generalized factorials helped a lot in the
study of integer-valued polynomials and other diverse applications. The generalized
factorial, in the case of ring of matrices, may also give same kind of results.

In conclusion, we would like to remark that this article was an initiative to
familiarize the reader with the notion of fixed divisors and how it can be helpful in
the study of integer-valued polynomials and other number theoretic problems. We
would especially wish to point out that there are several conjectures on polynomials,
which need the fixed divisor to be equal to 1. For example, one very interesting
conjecture is the Buniakowski conjecture [16], which states that any irreducible
polynomial f ∈ Z[x] with d(Z, f) = 1 takes infinitely many prime values. Schinzel’s
hypothesis H is a vast generalization of this conjecture. For a detailed exposition
and excellent commentary on conjectures of this type, we refer to Schinzel [98]. We
believe that the tools introduced so far may be helpful in studying these conjectures.

We also wish to highlight the various kinds of sequences and their interplay,
which were outlined in Section 2. The study of these sequences seems to be a fertile
area of research, which has not been explored in detail so far. We also introduced
several questions and conjectures according to their context. Working on these
seems to be a promising area of research.
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