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Abstract— Gaussian Process (GP) has experienced tremendous
success in bio-geophysical parameter retrieval in the last years. It
goes without saying that GPs constitute a solid Bayesian frame-
work to formulate many function approximation problems consis-
tently. This paper reviews the main theoretical GP developments
in the field. We review new algorithms that respect the signal
and noise characteristics, that extract knowledge via automatic
relevance kernels to yield feature rankings automatically, that
allow applicability of associated uncertainty intervals to transport
GP models in space and time, that can be used to uncover causal
relations between variables, and that can encode physically-
meaningful prior knowledge via radiative transfer model emula-
tion. We will treat the important issue of computational efficiency
as well. All these developments are illustrated in the field of
geosciences and remote sensing at a local and global scales
through a set of illustrative examples. In particular, we treat
important problems for land, ocean and atmosphere monitoring:
from accurate estimation of oceanic chlorophyll content and
pigments, to vegetation properties retrieval from multi- and
hyperspectral sensors, as well as the estimation of atmospheric
parameters (such as temperature, moisture and ozone) from
infrared sounders. We conclude the survey with a discussion
on the upcoming challenges and research directions.

Index Terms— Kernel methods, Gaussian Process Regression
(GPR), Bio-geophysical parameter estimation.

I. INTRODUCTION

Spatio-temporally explicit, quantitative retrieval methods for

Earth surface and atmosphere characteristics are a requirement

in a variety of Earth system applications. Optical Earth ob-

serving satellites, endowed with a high temporal resolution,

enable the retrieval and hence monitoring of climate and bio-

geophysical variables [1], [2]. With forthcoming super-spectral

Copernicus Sentinel-2 (S2) [3] and Sentinel-3 missions [4], as

well as the planned EnMAP [5], HyspIRI [6], PRISMA [7]

and ESA’s candidate FLEX [8], an unprecedented data stream

for land, ocean and atmosphere monitoring will soon become

available to a diverse user community. This vast data streams

require enhanced processing techniques that are accurate,

robust and fast. But, in addition, statistical models should

capture plausible physical relations and explain the problem

at hand.
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Over the last few decades a wide diversity of bio-

geophysical retrieval methods have been developed, but only

a few of them made it into operational processing chains, and

many of them are still in its infancy [9]. Essentially, we may

find two main approaches to the inverse problem of estimating

biophysical parameters from spectra. On the one hand, para-

metric physically-based models constitute a common choice to

model the biological processes and climate variables involved

in Earth monitoring. These models rely on established physical

relations and implement complex combinations of scientific

hypotheses. Unfortunately they do not exploit empirical data

to constrain the simulation outcomes and thus, despite their

solid physical foundation, they are becoming more obscure as

more complex processes, parametrizations and priors need to

be included. These issues give rise to too rigid solutions and

large model discrepancies (see [10] and references therein).

Alternatively, the framework of non-parametric statistical

models is typically only concerned about developing data-

driven models, paying little attention to the physical rules

governing the system. The field has proven successful in

many disciplines of Science and Engineering [11] and, in

general, nonlinear and nonparametric model instantiations

typically lead to more flexible and improved performance over

physically-based approximations [12].

“Non-parametric machine

learning algorithms are mature

enough to undertake the

complex problems of biophysical

parameter estimation, and

Gaussian processes provide a

powerful framework to this end.”

In the last decade,

machine learning has at-

tained outstanding re-

sults in the estimation

of climate variables and

related bio-geophysical

parameters at local and

global scales [13]. For

example, current opera-

tional vegetation prod-

ucts, like leaf area index (LAI), are typically produced with

neural networks [14], [15], Gross Primary Production (GPP)

as the largest global CO2 flux driving several ecosystem

functions is estimated using ensembles of random forests and

neural networks [16], [17], biomass has been estimated with

stepwise multiple regression [18], PCA and piecewise linear

regression for sun-induced fluorescence (SIF) estimation [19],

support vector regression showed high efficiency in modelling

LAI, fractional vegetation cover (fCOVER), evapotranspira-

tion [20], [21], relevance vector machines were successful

in ocean chlorophyll estimation [22], and recently, Gaussian

Processes (GPs) [23] provided excellent results in vegetation

properties estimation [24]–[27].
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The family of Bayesian non-parametrics1, and of Gaussian

processes in particular [23], have been payed wide attention

in the last years in remote sensing data analysis, because they

are endorsed with some important properties, which are of

relevance to common problems in our field. First, GPs can

not only provide good accuracy estimations but also error

bars (i.e. uncertainties) for the predictions. Also, and very

importantly, they can accommodate very easily different data

sources (multimodal data, multiple sensors, multitemporal ac-

quisitions, etc.), and they can be designed to deal with different

noise sources. The use of GPs in problems involving large

data has been a traditional problem, but recently advanced

sparse, variational and distributed computing techniques allow

training models in almost linear cost. We will study modern

approaches to tackle all these issues in the present work.

Beyond these interesting features of GPs, we should stress

that statistical inference methods should not only be able to fit

data well, i.e. focus only on data exploitation, but also learn

something about the physical rules governing the problem, i.e.

data exploration. Therefore, these (too) flexible models should

be constrained to provide with physically plausible predictions.

This is why, in recent years, the combination of machine learn-

ing and physical models seem to be a very promising direction

to take, either via data assimilation, hybrid approaches or

emulation of radiative transfer models. We will review some

of these approaches in this paper too. In this respect, GPs

can be used to learn about the relevance of the features in the

problem, as (1) they can adapt to anisotropic data distributions,

(2) the derivatives of the predictive mean and variance can be

computed in closed-form, and (3) they are ideal to be used in

empirical (not interventional) causal inference. On top of that,

a remarkable fact is that GPs have been the first choice in the

process of emulating radiative transfer models to endorse these

statistical models with physically-meaningful constraints [28].

This survey reviews all these very exciting issues as well.

“If you want better Physics, take

machine learning out; if you

want to approximate reality bet-

ter, put physics in machine learn-

ing models.”

The remainder of the

paper is organized in

two main parts: the first

three sections present

the state of the art in

GP under quantitative

terms, while the latter sections are more focused on the

use of GP regression models to learn about the problem

in quantitative terms. Section II reviews the main notation

and theory of GP. Section III presents some of the most

recent advances of GP models applied to remote sensing data

processing. Section IV is concerned on some recent advances

in the field of GPs to cope with large scale datasets so

that GP models can be effectively used in geosciences. This

closes the first part of the paper. Section V pays attention

to the techniques to analyze the relative relevance of input

features, and Section VI focuses on the use of GP models as

efficient emulators of radiative transfer models. We conclude

in Section VII the survey with a discussion about the upcoming

challenges and research directions.

1Excellent online lectures are available at:
http://videolectures.net/mlss09uk_teh_nbm/

http://videolectures.net/mlss09uk_orbanz_fnbm/

II. GAUSSIAN PROCESS REGRESSION

Regression, function approximation and function emulation

are old, largely studied problems in statistics and machine

learning. The problem boils down to optimize a loss (cost,

energy) function over a class of functions. A large class

of regression problems in particular are defined as the joint

minimization of a loss function accounting for errors of the

function f ∈ H to be learned, and a regularization term,

Ω(‖f‖2
H
), that controls its capacity (excess of flexibility).

A. Gaussian processes: a gentle introduction

Gaussian processes (GPs) are Bayesian state-of-the-art

tools for discriminative machine learning, i.e., regression

[29], classification [30] and dimensionality reduction [31].

GPs were first proposed in statistics by Tony O’Hagan

[32] and they are well-known to the geostatistics com-

munity as kriging. However, due to their high compu-

tational complexity they did not become widely applied

tools in machine learning until the early XXI century [23].

“Gaussian processes provide a

solid Bayesian framework to

deal with uncertainties, noise

sources, high dimensional data,

and knowledge discovery.”

GPs can be interpreted

as a family of ker-

nel methods with the

additional advantage of

providing a full condi-

tional statistical descrip-

tion for the predicted

variable, which can be

primarily used to establish confidence intervals and to set

hyper-parameters. In a nutshell, Gaussian processes assume

that a Gaussian process prior governs the set of possible latent

functions (which are unobserved), and the likelihood (of the

latent function) and observations shape this prior to produce

posterior probabilistic estimates. Consequently, the joint distri-

bution of training and test data is a multidimensional Gaussian

and the predicted distribution is estimated by conditioning on

the training data.

This paper focuses on the recent success of GPs to deal

with regression problems in biophysical parameter retrieval

and generic model inversion in geosciences. Standard regres-

sion approximates observations (often referred to as outputs)

{yn}
N
n=1 as the sum of some unknown latent function f(x) of

the inputs {xn ∈ R
D}Nn=1 plus constant power (homoscedas-

tic) Gaussian noise, i.e.

yn = f(xn) + εn, εn ∼ N (0, σ2). (1)

Instead of proposing a parametric form for f(x) and learn-

ing its parameters in order to fit observed data well, GP

regression proceeds in a Bayesian, non-parametric way. A

zero mean2 GP prior is placed on the latent function f(x)
and a Gaussian prior is used for each latent noise term εn,

f(x) ∼ GP(0, kθ(x,x
′)), where kθ(x,x

′) is a covariance

function parametrized by θ and σ2 is a hyperparameter that

specifies the noise power. Essentially, a GP is a stochastic

process whose marginals are distributed as a multivariate

2It is customary to subtract the sample mean to data {yn}Nn=1
, and then

to assume a zero mean model.

http://videolectures.net/mlss09uk_teh_nbm/
http://videolectures.net/mlss09uk_orbanz_fnbm/
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Gaussian. In particular, given the priors GP , samples drawn

from f(x) at the set of locations {xn}
N
n=1 follow a joint

multivariate Gaussian with zero mean and covariance matrix

Kff with [Kff ]ij = kθ(xi,xj).
If we consider a test location x∗ with corresponding output

y∗, priors GP induce a prior distribution between the obser-

vations y ≡ {yn}
N
n=1 and y∗. Collecting available data in

D ≡ {xn, yn|n = 1, . . . N}, it is possible to analytically

compute the posterior distribution over the unknown output

y∗ given the test input x∗ and the available training set D,

p(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗), (2)

which is a Gaussian with the following mean and variance:

µGP∗ = k⊤

f∗(Kff + σ2In)
−1y (3)

σ2
GP∗ = σ2 + k∗∗ − k⊤

f∗(Kff + σ2In)
−1kf∗, (4)

where kf∗ ∈ R
N×1 contains the kernel similarities of the test

point x∗ to all training points in D, Kff is a N × N kernel

(covariance) matrix whose entries contain the similarities

between all training points, y = [y1, . . . , yN ]⊤ ∈ R
N×1, σ2 is

a hyperparameter accounting for the variance of the noise, k∗∗
is a scalar with the self-similarity of x∗, and In is the identity

matrix of size n. Note that both the predictive mean and the

variance can be computed in closed-form, that the predictive

variance σ2
GP∗ do not depend on the outputs/target variable.

which is computable in O(n3) time (this cost arises from

the inversion of the n × n matrix (Kff + σ2I), see [23]. In

addition to the computational cost, GPs require large memory

since in naive implementations one has to store the training

kernel matrix, which amounts to O(n2). Recent improvements

on efficiency will be reviewed in §4.

B. On the model selection

The corresponding hyperparameters {θ, σn} are typically

selected by Type-II Maximum Likelihood, using the marginal

likelihood (also called evidence) of the observations, which is

also analytical (explicitly conditioning on θ and σn):

log p(y|θ, σn) = logN (y|0,Kff + σ2
nI). (5)

When the derivatives of (5) are also analytical, which is often

the case, conjugated gradient ascend is typically used for

optimization. Therefore, the whole procedure for learning a GP

model only depends on a very small set of hyper-parameters

that combats overfitting efficiently. Finally, inference of the

hyper-parameters and the weights for doing predictions, α,

can be performed using this continuous optimization of the

evidence.

C. On the covariance function

The core of any kernel method in general, and of GPs in

particular, is the appropriate definition of the covariance (or

kernel) function. A standard, widely used covariance function

is the squared exponential,

k(xi,xj) = exp(−‖xi − xj‖
2/(2σ2)),

which captures sample similarity well in most of the (unstruc-

tured) problems, and only one hyperparameter σ needs to be

TABLE I

SOME KERNEL FUNCTIONS USED IN THE LITERATURE.

Kernel function Expression

Linear k(x,x′) = x⊤x′ + c
Polynomial k(x,x′) = (αx⊤x′ + c)d

Gaussian k(x,x′) = exp(−‖x− x′‖2/(2σ2))
Exponential k(x,x′) = exp(−‖x− x′‖/(2σ2))
Rational Quadratic k(x,x′) = 1− (‖x− x′‖2)/(‖x− x′‖2 + c)

Multiquadric k(x,x′) =
√

‖x− x′‖2 + c2

Inv. Multiquad. k(x,x′) = 1/(
√

‖x− x′‖2 + θ2)
Power k(x,x′) = −‖x− x′‖d

Log k(x,x′) = − log(‖x− x′‖d + 1)

tuned. Table I summarizes the most common kernel functions

in standard applications with kernel methods.

In the context of GPs, kernels with more hyperparameters

can be efficiently inferred as we have seen before. This is

an opportunity to exploit assymetries in the feature space by

including a parameter per feature, as in the very common

anisotropic squared exponential (SE) kernel function:

k(xi,xj) = ν exp

(

−
F
∑

f=1

(xf
i − xf

j )
2

2σ2
f

)

+ σ2
nδij ,

where xf
i represents the feature f of the input vector xi, ν is a

scaling factor, σn is the standard deviation of the (estimated)

noise, and a σf is the length-scale per input features, f =
1, . . . , F . This is a very flexible covariance function that

typically suffices to tackle most of the problems. However,

note that a SE typically can approximate smoothly-varying

functions, which may not be the case in particular problems.

Also, note that when the data is structured, i.e. data reveals

a particular (e.g. time, spatial) structure, the design of the

covariance is of paramount relevance, and many approaches

have exploited standard properties of functional analysis to do

so [33]. We will advance in this discussion in the next section.

D. Gaussian processes exemplified

Let us illustrate the solution of GPR in a toy example.

In Fig. 1 we include an illustrative example with 6 training

points in the range between −2 and +2. We firstly depict

several random functions drawn from the GP prior and then

we include functions drawn from the posterior. We have

chosen an isotropic Gaussian kernel and σν = 0.1. We have

plotted the mean function plus/minus two standard deviations

(corresponding to a 95% confidence interval). Typically, the

hyperparameters are unknown, as well as the mean, covariance

and likelihood functions. We assumed a Squared Exponential

(SE) covariance funtion and learned the optimal hyperpa-

rameters by minimizing the negative log marginal likelihood

(NLML) w.r.t. the hyperparameters. We observe three different

regions in the figure. Below x = −1.5, we do not have samples

and the GPR provides the solution given by the prior (zero

mean and ±2). At the center, where most of the data points

lie, we have a very accurate view of the latent function with

small error bars (close to ±2σν). For x > 0, we do not

have training samples neither so we have same behaviour. GPs
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Fig. 1. Example of a Gaussian process. Left: some functions drawn at random
from the GP prior. Right: some random functions drawn from the posterior,
i.e. the prior conditioned on 6 noise-free observations indicated in red dots.
The shaded area represents the pointwise mean plus and minus two times the
standard deviation for each input value (corresponding to the 95% confidence
region). It can be noted that the confidence intervals become large for regions
far from the observations.

typically provide an accurate solution where the data lies and

high error bars where we do not have available information

and, consequently, we presume that the prediction in that area

is not accurate. This is why in regions of the input space

without points the confindence intervals are wide resembling

the prior distribution.

E. Source code and toolboxes

The most widely known sites to obtain free source code on

GP modeling are GPML3 and GPstuff4. The former website

centralizes the main activities in GP modeling and provides

up-to-date resources concerned with probabilistic modeling,

inference and learning based on GPs, while the latter is a

versatile collection of GP models and computational tools

required for inference, sparse approximations and model as-

sessment methods. Both sites are highly useful for the reader

interested in learning the main aspects of GP modeling, as they

provide free code, demos, and pointers to relevant tutorials and

books.

We also recommend to the interested reader in regression in

general, our MATLAB SimpleR5 toolbox that contains many

regression tools organized in families: tree-based, bagging

and boosting, neural nets, kernel regression methods, and

several Bayesian nonparametric models like GPs. The toolbox

is intended for practitioners with little expertise in machine

learning, and that may want to assess advanced methods in

their problems easily.

III. ADVANCES IN GAUSSIAN PROCESS REGRESSION

In this section, we review some recent advances in GPR

especially suited for remote sensing data analysis. We will

review the main aspects to design covariance functions that

capture non-stationarities and multiscale time relations, GPs

that can learn arbitrary transformations of the observed vari-

able and noise models, as well as to tackle the problem of

multitask and multioutput problems, very common in our field.

3http://www.gaussianprocess.org/
4http://becs.aalto.fi/en/research/bayes/gpstuff/
5http://www.uv.es/gcamps/code/simpleR.html

A. Structured, non-stationary and multiscale GPR

Commonly used kernels families include the squared expo-

nential (SE), periodic (Per), linear (Lin), and rational quadratic

(RQ), cf. Table I. Illustration of the base kernel and drawings

from the GP prior is shown in Fig. 2. These base kernels can

be actually combined following simple operations: summa-

tion, multiplication or convolution. This way one may build

sophisticated covariances from simpler ones. Note that the

same essential property of kernel methods apply here: a valid

covariance function must be positive semidefinite. In general,

the design of the kernel should rely on the information that

we have for each estimation problem and should be designed

to get the most accurate solution with the least amount of

samples.

Fig. 2. Left and third columns: base kernels k(·, 0). Second and fourth
columns: draws from a GP with each repective kernel. The x-axis has the
same range on all plots.

“Advanced GP models are now

able to cope with structured do-

mains in time and space, a wide

diversity of noise sources, multi-

output problems, and skewed dis-

tributions of the observed vari-

ables.”

In Fig. 2, all the

base kernels are one-

dimensional. Neverthe-

less, kernels over mul-

tidimensional inputs can

be actually constructed

by adding and multiply-

ing kernels over indi-

vidual dimensions. By

summing kernels, we

can model the data as a superposition of independent func-

tions, possibly representing different structures in the data.

For example, in multitemporal image analysis, one could for

instance dedicate a kernel for the time domain (perharps trying

to capture trends and seasonal effects) and another kernel

function for the spatial domain (equivalently capturing spatial

patterns and auto-correlations). In time series models, sums

of kernels can express superposition of different processes,

possibly operating at different scales: very often changes in

geophysical variables through time occur at different temporal

resolutions (hours, days, etc.), and this can be incorporated in

the prior covariance with those simple operations. In multiple

dimensions, summing kernels gives additive structure over dif-

ferent dimensions, similar to generalized additive models [11].

Alternatively, multiplying kernels allows us to account for

interactions between different input dimensions or different

http://www.gaussianprocess.org/
http://becs.aalto.fi/en/research/bayes/gpstuff/
http://www.uv.es/gcamps/code/simpleR.html
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notions of similarity. In the following section, we show how

to design kernels that incorporate particular time resolutions,

trends and periodicities.

B. Time-based covariance for GPR

As already stated before, time is an additional and very

important variable to be considered in many remote sensing

applications. Signals to be processed typically show particular

characteristic, with time-dependent cycles and trends. One

could of course include time ti as an additional feature in the

definition of the input samples. This stacked approach [34]

essentially relies on a covariance function k(zi, zj), where

zi = [ti,xi]
⊤. This is very convenient as it does not include

additional hyper-parameters to learn, but has an important

shortcoming: the time relations are naively left to the nonlinear

regression algorithm, and hence no explicit time structure

model is assumed. In order to cope with such temporal behav-

ior of the observed signal in a more consistent way, one can

use a linear combination (or composite) of different kernels:

one dedicated to capture the different temporal characteristics,

and the other to the feature-based relations. A simple strategy,

quite common in statistics and signal processing is to rely on

a tensor kernel

k(zi, zj) = k(xi,xj)× k(ti, tj),

but more sophisticated structures can be adopted. The issue

here is how to design kernels capable to deal with non-

stationary processes.

A possible approach is to use a stationary covariance

operating on the variable of interest after being mapped with

a nonlinear function engineered to discount such undesired

variations. This approach was used in [35] to model spatial

patterns of solar radiation with GPR. It is also possible to

adopt a squared exponential (SE) as stationary covariance

acting on the time variable mapped to a two-dimensional

periodic space z(t) = [cos(t), sin(t))]⊤, as explained in [23],

k(ti, tj) = exp

(

−
‖z(ti)− z(tj)‖

2

2σ2
t

)

, (6)

which gives rise to the following periodic covariance function

k(ti, tj) = exp

(

−
2 sin2[(ti − tj)/2]

σ2
t

)

, (7)

where σt is a hyper-parameter characterizing the periodic scale

and needs to be inferred. It is not clear, though, that the

seasonal trend is exactly periodic, so we modify this equation

by taking the product with a squared exponential component,

to allow a decay away from exact periodicity:

k2(ti, tj) = γ exp

(

−
2 sin2[π(ti − tj)]

σ2
t

−
(ti − tj)

2

2σ2
d

)

, (8)

where the time variable t is measured in years, γ gives

the magnitude of the kernel function, σt the smoothness of

the periodic component, σd represents the decay-time for the

periodic component, and the period has been fixed to one year.

Therefore, our final covariance is expressed as

k([xi, ti], [xj , tj ]) = k1(xi,xj) + k2(ti, tj), (9)

TABLE II

VARIABLES AND THEIR SOURCE CONSIDERED IN THIS PROBLEM OF

GLOBAL SOLAR IRRADIATION PREDICTION.

Source Data Units min-max

Cimel Aerosol - 0.01-1.38
sunphotometer Optical Depth

Brewer Total Ozone Dobson 242.50-443.50
spectrophotometer

Atmospheric Total Precip. mm 1.33-41.53
sounding Water

GFS Cloud amount % 2-79.2

Pyranometer Measured global kJ/m2 4.38-31.15
solar irradiation

where k1(xi,xj) and k2(ti, tj) are two kernel functions work-

ing with the input and the time variable, respectively. The

kernel k is then parameterized by only three more hyperpa-

rameters collected in θ = {ν, σ1, . . . , σF , σn, σt, σd, γ}.

We show the advantage of encoding such prior knowledge

and structure in the relevant problem of solar irradiation

prediction, which has direct applications in renewable energy.

Solar irradiation prediction is a very important and challenging

problem with direct applications in renewable energy. Solar

is one of the most important green sources of energy, that

is currently under expansion in many countries of the world,

especially in those with more solar potential, such as mid-

east and southern Europe countries [36], [37]. An accurate

estimation of the energy production in solar energy systems

involves the accurate prediction of solar irradiation, depending

on different atmospheric variables [38]–[40].

Recently, a high number of machine learning techniques

have been introduced to tackle this problem, mostly based

on neural networks and support vector machines. We evaluate

GPR for the estimation of solar irradiation. Noting the nonsta-

tionary temporal behavior of the signal, we develop a particular

time-based composite covariance to account for the relevant

seasonal signal variations. We use a unique meteorological

dataset acquired at a radiometric station, that include both

measurements, radiosondes, and numerical weather prediction

models. The target variable is the real global solar irradiation

that reaches the ground. Data from the AEMET radiometric

observatory of Murcia (Southern Spain, 38.0◦ N, 1.2◦ W)

were used. Specifically, global daily mean values from the

measurements of a pyranometer have been considered6. These

data range from January 1st, 2010, to December 31st, 2011.

We removed data with missing values: the dataset finally

contains 512 examples, and 10 input features (cf. Table II).

Table III reports the obtained results with GPR models

and several statistical regression methods: regularized linear

regression (RLR), support vector regression (SVR), relevance

vector macine (RVM) and GPR. All methods were run with

and without using two additional dummy time features con-

taining the year and day-of-year (DOY). We will indicate the

former case with a subscript, like e.g. SVRt. First, including

time information improves all baseline models. Second, the

6Brewer and Cimel networks as well as the pyranometer used are managed
under a Quality Management System certified to ISO 9001:2008.
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TABLE III

RESULTS FOR THE ESTIMATION OF THE DAILY SOLAR IRRADIATION OF

LINEAR AND NONLINEAR REGRESSION MODELS. SUBSCRIPT METHODt

INDICATES THAT THE METHOD INCLUDES TIME AS INPUT VARIABLE.

BEST RESULTS ARE HIGHLIGHTED IN BOLD, THE SECOND BEST IN

ITALICS.

Method ME RMSE MAE R

RLR 0.27 4.42 3.51 0.76
RLRt 0.25 4.33 3.42 0.78

SVR [41] 0.54 4.40 3.35 0.77
SVRt 0.42 4.23 3.12 0.79

RVM [42] 0.19 4.06 3.25 0.80
RVMt 0.14 3.71 3.11 0.81

GPR [23] 0.14 3.22 2.47 0.88
GPRt 0.13 3.15 2.27 0.88
TGPR 0.11 3.14 2.19 0.90

best overall results are obtained by the GPR models, when

including time information or not. Third, in particular, the

proposed TGPR outperforms the rest in accuracy (RMSE,

MAE) and goodness-of-fit (R), and closely follows the elastic

net in bias (ME). TGPR performs better than GPR and GPRt

in all quality measures.

C. Heteroscedastic GPR: Learning the noise model

The standard GPR is essentially homoscedastic, i.e., as-

sumes constant noise power σ2 for all observations. This

assumption can be too restrictive for some problems. Het-

eroscedastic GPs, on the other hand, let noise power vary

smoothly throughout input space, by changing the prior over

εn to

εn ∼ N (0, eg(xn))

and placing a GP prior over g(x) ∼ GP(µ01, kθg
(x,x′)).

Note that the exponential is needed7 in order to describe the

non-negative variance.The hyperparameters of the covariance

functions of both GPs are collected in θf and θg , accounting

for the signal and the noise relations, respectively.

Relaxing the homoscedasticity assumption into het-

eroscedasticity yields a richer, more flexible model that con-

tains the standard GP as a particular case corresponding to

a constant g(x). Unfortunately, this also hampers analytical

tractability, so approximate methods must be used to obtain

posterior distributions for f(x) and g(x), which are in turn

required to compute the predictive distribution over y∗. Next

we summarize previous approaches to deal with the problem

and the proposed variational alternative.

The heteroscedastic GP model was first described in [43],

where an expensive Markov chain Monte Carlo (MCMC)

procedure was used in order to implement full Bayesian

inference. A faster but more limited method is presented

in [44] in order to perform maximum a posteriori (MAP)

estimation. These approaches have certain limitations: MCMC

is hundreds of times slower, whereas MAP estimation does not

integrate out all latent variables and is prone to overfitting. As

an alternative to these costly previous approaches, variational

7Of course, other transformations are possible, just not as convenient.

techniques allow to approximate intractable integrals arising in

Bayesian inference and machine learning in general. They are

typically used to 1) provide analytical approximations to the

posterior probability of the unobserved variables and hence

do statistical inference over these variables; and 2) derive a

lower bound for the marginal likelihood (or “evidence”) of the

observed data, which allows model selection because higher

marginal likelihoods relate to greater probabilities of a model

generating the data.

In order to overcome the aforementioned problems, a

sophisticated variational approximation called Marginalized

Variational (MV) approximation was introduced in [45]. The

MV approximation renders (approximate) Bayesian inference

in the heteroscedastic GP model both fast and accurate. In

[45], an analytical expression for the Kullback-Leibler diver-

gence between a proposal distribution and the true posterior

distribution of f(x) and g(x) (up to a constant) was provided.

Minimizing this quantity with regard both the proposal distri-

bution and the hyper-parameters yields an accurate estimation

of the true posterior while simultaneously performing model

selection. Furthermore, the expression of the approximate

mean and variance of the posterior of y∗ (i.e., predictions) can

be computed in closed form. We will refer to this variational

approximation for heteroscedastic GP regression as VHGPR.

A simple comparison between the homoscedastic canonical

GP and the VHGPR model is shown in Fig. 3.
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Fig. 3. Predictive mean and variance of the standard GP (left) and the
heteroscedastic GP (right). It is noticeable that in the low noise regime the
VHGP produces tighter confidence intervals as expected, while high noise
variance associated to high signal variance (middle of the observed signal)
the predictive variance is more reasonable too.

D. Warped GPR: Learning the output transformation

Very often, in practical applications, one transforms the

observed variable to better pose the problem. Actually, it is a

standard practice to linearize/uniformize the distribution of the

observations (which is commonly skewed due to the sampling

strategies in in-situ data collection) by applying non-linear link

functions like the logarithmic, the exponential or the logistic

functions.

Let us now review a GP model that automatically learns

the optimal transformation by warping the observation space.

The method is called warped GPR [46], and essentially warps

observations y through a nonlinear parametric function g to a

latent space:

zi = g(yi) = g(f(xi) + εi),
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where f is a possibly noisy latent function with d inputs,

and g is a function with scalar inputs parametrized by ψ.

The function g must be monotonic, otherwise the probability

measure will not be conserved in the transformation, and the

distribution over the targets may not be valid [46]. It can be

shown that replacing yi by zi into the standard GP model

leads to an extended problem that can be solved by taking

derivatives of the negative log likelihood function in (5), but

now with respect to both θ and ψ parameter vectors.

For both the GPR and WGPR models we need to define

the covariance (kernel, or Gram) function k(·, ), which should

capture the similarity between samples. We used the standard

Automatic Relevance Determination (ARD) covariance [23].

Model hyperparameters are collectively grouped in θ =
{ν, σn, σ1, . . . , σd}. In addition, for the WGPR we need to

define a parametric smooth and monotonic form for g, which

can be defined as:

g(yi;ψ) =
L
∑

ℓ=1

aℓ tanh(bℓ yi + cℓ), aℓ, bℓ ≥ 0,

where ψ = {a,b, c}. Even though any other sensible

parametrization could be used, this one is quite convenient

since it yields a set of smooth steps whose size, steepness

and position ara controlled by aℓ, bℓ and cℓ parameters,

respectively. Recently, flexible non-parametric functions have

replaced such parametric forms [47], thus placing another prior

for g(x) ∼ GP(f, c(f, f ′)), whose model is learned via

variational inference.

For illustration purposes, we focus on the estimation of

imagesic chlorophyll-a concentrations from remote sensing

upwelling radiance just above the images surface. A vari-

ety of bio-optical algorithms have been developed to relate

measurements of images radiance to in situ concentrations of

phytoplankton pigments, and ultimately most of these algo-

rithms demonstrate the potential of quantifying chlorophyll-a

concentrations accurately from multispectral satellite images

color data. In this context, robust and stable non-linear regres-

sion methods that provide inverse models are desirable. In

addition, we should note that most of the bio-optical models

(such as Morel, CalCOFI and OC2/OC4 models) often rely on

empirically adjusted nonlinear transformation of the observed

variable (which is traditionally a ratio between bands).

Here we used the SeaBAM dataset [48], [49], which gathers

919 in situ pigment measurements around the United States

and Europe. The dataset contains coincident in situ chlorophyll

concentration and remote sensing reflectance measurements

(Rrs(λ), [sr−1]) at some wavelengths (412, 443, 490, 510

and 555 nm) that are present in the SeaWiFS images color

satellite sensor. The chlorophyll concentration values range

from 0.019 to 32.79 mg/m3 (revealing a clear exponential

distribution). Actually, even though SeaBAM data originate

from various researchers, the variability in the radiometric data

is limited. In fact, at high Chl-a concentrations, Ca [mg/m3],

the dispersion of radiance ratios Rrs(490)/Rrs(555) increases,

mostly because of the presence of Case II waters. The shape

of the scatterplots is approximately sigmoidal in log-log space.

At lowest concentrations the highest Rrs(490)/Rrs(555) ratios

TABLE IV

RESULTS USING BOTH RAW AND EMPIRICALLY-TRANSFORMED

OBSERVATION VARIABLES.

ME RMSE MAE R

Raw

GPR 0.02 1.74 0.33 0.82
VHGPR 0.29 2.51 0.46 0.65
WGPR 0.08 1.71 0.30 0.83

Empirically-based

GPR 0.15 1.69 0.29 0.86
VHGPR 0.15 1.70 0.29 0.85
WGPR 0.17 1.75 0.30 0.86

are slightly lower than the theoretical limit for clear natural

waters. See analysis in [22].

Table IV shows different scores –bias (mean error, ME),

accuracy (root-mean-square error RMSE and mean absolute

error MAE) and goodness-of-fit (Pearson’s correlation R)–

between the observed and predicted variable when using the

raw data (no ad hoc transform at all) and the empirically

adjusted transform. Results are shown for three flavours of

GPs: the standard GP regression (GPR) [23], the variational

heteroscedastic GP (VHGPR) [50], and the proposed warped

GP regression (WGPR) [46], [47] for different rates of train-

ing samples. Empirically-based warping slightly improves the

results over working with raw data for the same number of

training samples, but this requires prior knowledge about the

problem, time and efforts to fit an appropriate function. On the

other hand, WGPR outperforms the rest of GPs in all compar-

isons over standard GPR and VHGPR (∼ +1−10%). Finally,

WGPR nicely compensates the lack of prior knowledge about

the (possibly skewed) distribution of the observation variable.

E. Multitask and Multioutput GP models

Very often we deal with problems involving several vari-

ables to be estimated. Individual models are typically trained

separately. This approach ignores the (potentially) cross-

relations among output variables, e.g. between LAI, chloro-

phyll content and fractional cover. To account for this impor-

tant relations in the output, some multitask and multioutput

GP models are available. A simple form of multi-output GP

models the response vector as a linear combination of a set of

M latent GPs, thus giving rise to a block-diagonal covariance

matrix [Km
ij ] = km(xi,xj), where m = 1, . . . ,M . More

sophisticated models are now available to account for fixed

correlations between output variables8. An effective model

based on GPs for multitask problem is called the Gaussian

process regression networks (GPRN) [51]. The model com-

bines the properties of Bayesian neural networks with the non-

parametric flexibility of GPs.

All these approaches, however, suffer when the output

dimensionality is very high. In what follows, we show a much

simpler approach to deal with this problem. In particular we

focus on the estimation of water vapor profiles, which is an

8http://gaussianprocess.com/publications/multiple_

output.php

http://gaussianprocess.com/publications/multiple_output.php
http://gaussianprocess.com/publications/multiple_output.php
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important parameter for weather forecasting and atmospheric

chemistry studies [52]. Observations from spaceborne high

spectral resolution infrared sounding instruments can be used

to calculate the profiles of such atmospheric parameters with

unprecedented accuracy and vertical resolution [53]. We focus

on the data coming from the Infrared Atmospheric Sounding

Interferometer (IASI), that provides radiances in 8461 spectral

channels, between 3.62 and 15.5 µm with a spectral resolution

of 0.5 cm−1 after apodization [54]. This huge input data along

the high output dimensionality (the variable is sampled at 137

points in the atmospheric column) makes the direct application

of the previous methods unbearable. Alternatively, and noting

the high vertical correlation of the profiles, we opted for

a simpler strategy: develop a unique GP model predicting

simultaneously all the PCA-projected state vector onto the top

p principal components, and solve

Λ = (Kff + σ2In)
−1Y,

where Y contains in the columns the p scores (projected

variables). This approach will be again exploited for RTM

emulation in §6.

Results are given in Fig. 4. We trained a linear regression

(LR) and a GP model using the first 100 principal components

of an IASI orbit (2008-07-17), both using 5000 samples, and

tested in several unseen data. Essentially we observe that GPs

largely improve the linear regression models with an average

gain of +1.5K, which are also statistically significant in all

regions.

IV. EFFICIENCY IN GAUSSIAN PROCESS REGRESSION

“With current advances

in sparse, variational and

structured learning, GPs have

become extremely competitive in

time and memory requirements.”

The naive implemen-

tation of GPs in equa-

tions (3) and (4) grows

as O(N3), where N
is the number of train-

ing samples. This make

them unfeasible when a

large number of training

samples are available. In order to reduce the computation com-

plexity of GPs, the general approach is to compute them using

approximations9. The approximation methods can be broadly

classified as in (1) sparse methods, (2) localized regression

methods, and (3) matrix multiplication methods. Finally, we

highlight some recent developments on GPs efficiency that

exploit random features and particular kernel structures.

A. Sparse methods

These methods are also known as low-rank covariance

matrix approximation methods, and are based on approximat-

ing the full posterior by expressions using matrices of lower

rank M ≪ N , where the M samples are typically selected

to represent the dataset well, e.g. via clustering or smart

sampling. Because the selected M samples represent al others,

this methods are considered to be global, as opposed to the

9We intentionally omit other forms of efficiency that involve parallelization
and hardware-specific approaches, and focus on pure GP algorithms.

local methods described in next section. These global methods

are well suited for modeling smooth-varying functions with

high correlations (i.e., long length-scales). They use all the

data for predictions like the full GPs. Methods in this family

are based on substituting the joint prior with a reduced one

using a set of m latent variables u = [u1, . . . , uM ]⊤ called in-

ducing variables [55]. These latent variables are values of the

Gaussian process corresponding to a set of input locations Xu,

called inducing inputs. By adopting a ‘subsets of data’ (SoD)

approach, the computational complexity drastically reduces to

O(M3), being M ≪ N .

Examples of these approximation methods are the Sub-

sets of Regressors (SoR), Deterministic Training Conditional

(DTC), Fully Independent Training Conditional (FICT), Par-

tially Independent Training Conditional (PICT) [55], and Par-

tially Independent Conditional (PIC) [56]. All these methods,

with some exceptions on PIC, are based on replacing the joint

prior of training and test samples by an approximation fol-

lowing the assumption that they are conditionally independent

given the set of M latent inducing variables. The exact prior

are substituted by approximations based on the latent variables,

which effectively lower the ranks of the covariance matrices.

On the other hand, they use the exact likelihood. Table V

summarizes the predictive distributions for the aforementioned

methods, together with their computational complexities for

training and test.

Regarding the performance of these methods, SoR obtains

approximate predictive means, but unrealistic predictive vari-

ances. This is because its approximate prior is so restrictive

that, given enough training data, the family of plausible func-

tions under the posterior is very limited, leading to overcon-

fident predictive variances. DTC solves this issue by relaxing

the SoR prior and using the exact test conditional. It obtains

the same predictive mean, and reliable predictive variances, but

on the other hand it cannot be considered a true GP because

the training and test covariances are computed in a different

way. To partially solve and improve DTC, FITC approximates

the training conditional using the exact values of the diagonal

training covariance matrix. A further step on this direction

comes from PITC [55], which instead of using an diagonal

matrix uses a block diagonal matrix, thus preserving more

exact values. Finally, PIC [56] improves PITC by relaxing

the conditional independence condition between training and

test samples, treating them equally according only to their

location, which allows to exploit global and local information

efficiently.

B. Localized regression methods

All methods described above are based on defining a set of

inducing variables of size M ≪ N that represent all N points.

This is the reason why these methods are classified as global

methods. They are well suited for modeling smoothly-varying

function with high correlations. But if M is too small, then the

representation of the whole set is poor and the performance

of the associated GP is low. On the other hand, the so called

local methods are best suited for modeling highly-varying

functions with low correlations, but they only use local data
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Fig. 4. Mean error (thin dashed lines) and RMSE (solid) throughout the atmospheric column for a linear regression and a GP model. Results are averaged
for the whole globe and considered orbits, and for different regions (north/south poles, north/south hemispheres, tropics).

TABLE V

PREDICTIVE DISTRIBUTION FOR THE LOW-RANK APPROXIMATION METHODS DESCRIBED IN SECTION IV. THE LAST COLUMNS REFER TO THE

COMPUTATIONAL COMPLEXITY FOR TRAINING, PREDICTIVE MEAN AND PREDICTIVE VARIANCE. N IS THE NUMBER OF SAMPLES, M IS THE NUMBER OF

LATENT INDUCING VARIABLES (SEE MAIN TEXT), AND B = M/N IS THE NUMBER OF BLOCKS FOR METHODS THAT USE THEM.

Qa,b ≡ Ka,uK
−1
u,uKu,b .

Method Predictive mean, µ
∗

Predictive variance, σ∗ Training Test mean Test variance

SoR Q∗,f (Qf ,f + σ2I)−1y Q∗,∗ −Q∗,f (Qf ,f + σ2I)−1Qf ,∗ O(NM2) O(M) O(M2)
DTC Q∗,f (Qf ,f + σ2I)−1y K∗,∗ −Q∗,f (Qf ,f + σ2I)−1Qf ,∗ O(NM2) O(M) O(M2)
FITC Q∗,f (Qf ,f +Λ)−1y K∗,∗ −Q∗,f (Qf ,f +Λ)−1Qf ,∗ O(NM2) O(M) O(M2)
PITC As FITC, but Λ ≡ blkdiag[Kf ,f −Qf ,f + σ2I]. O(NM2) O(M) O(M2)

PIC KPIC
∗,f (Qf ,f +Λ)−1y K∗,∗ −KPIC

∗,f (Qf ,f +Λ)−1Qf ,∗ O(NM2) O(M +B) O((M +B)2)

for predictions. Local GPs are obtained by just dividing the

region of interest and training a GP in each division. This

strategy has two main advantages: i) each local GP performs

well on the (small) region it has been trained, and ii) each

local GP is trained with a (relatively) small number of training

points, thus reducing the computational cost. If dividing in

B blocks such as B = N/M , the computational complexity

goes from O(N3) to O(NM2). As main disadvantages, they

show discontinuities at the limits between local GPs, and

they perform poorly when predicting in regions far from their

locality. This poses a problem when training data is only

available in parts of the input region.

Recently new approximate methods have been presented

that take the best from both approaches. One of such methods

is PIC [56]. As we stated before, it successfully combines

both global and local information by treating the input samples

with regard to their location instead of if they are training or

test samples. Moreover, the PIC prior covariance is a general

case covering full GPs, FITC and local GPs. Actually, using

M = N inducing variables and setting them as training

samples, then the exact covariance is obtained. On the other

hand, if the blocks size is set to one then FITC is obtained,

while if the number of inducing variables M is set to zero,

then a pure local GP predictor is obtained. See [56] for details.

C. Matrix vector multiplication approximation methods

These methods are based on speeding up the solving of the

linear system (K + σ2I)α = y using an iterative method,

such as the conjugate gradient (CG). Each iteration of the CG

method requires a matrix vector multiplication (MVM) which

takes O(N2). The CG method obtains the exact solution if

iterated N times, but one can obtain an approximate solution

if the method is stopped earlier, so the total cost would be

O(BN2), being B < N the number of CG iterations. To

further speed up the computation (O(BN2) is still too slow

for large problems), the MVM multiplication needs to be

accelerated. In CG, step one has to compute an MVM of the
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form kiv for different i and v, which is a sum of N products.

This sum can be distributed and computed efficiently using

hardware with a large number of cores, as in GPUs.

D. Recent advances

In recent years, we have witnessed a huge improvement in

GP runtime and memory demands. Inducing methods became

popular but may lack expressive power of the kernel. A

very useful approach is the sparse spectrum Gaussian Pro-

cesses [57], which is somewhat related to random kitchen sinks

in [58] that allows to approximate a kernel matrix with a set

of random bases sampled from the Fourier domain. On the

other hand, there are methods that try to exploit structure in

the kernel, either based on Kronecker or Toeplitz methods.

The limitations of these methods to deal with data in a grid

have been remedied recently with the KISS GP [59], which

generalizes inducing point methods for scalable GPs, and

scales O(N) in time and storage for GP inference.

V. ANALYSIS OF GAUSSIAN PROCESS MODELS

An interesting possibility in GP models is to extract knowl-

edge from the trained model. We will show in what follows

three different approaches: 1) feature ranking exploiting the

automatic relevance determination (ARD) covariance; 2) un-

certainty estimation looking at the predictive variance esti-

mates; and 3) the exploitation of the GP models to infer

causal relations between biophysical variables under a fully

empirical, non-interventional setting. We intentionally relegate

to the next section the use of GP models to mimic radiative

transfer models, as a way to encode physical knowledge in the

statistical models.

A. Ranking features through the ARD covariance

One of the advantages of GPs is that during the development

of the GP model the predictive power of each single band is

evaluated for the parameter of interest through calculation of

the ARD. Specifically, band ranking through σb may reveal

the bands that contribute most to the development of a GP

model. An example of the σb’s for one GP model trained with

field leaf chlorophyll content (Chl) data and with 62 CHRIS

bands is shown in Fig. 5 (left). The band with highest σb

is the least contributing to the model. It can be noted that a

relatively few bands (about 8) were evaluated as crucial for

Chl estimation, while the majority of bands were evaluated

as less contributing.

“GP allows us clean inspection

of the knowledge encoded in the

model: from the relative rele-

vance of drivers to the uncer-

tainty of the estimates.”

This is in agreement

with earlier works [24],

[25] and does not

necessarily mean

that other bands are

obstructing optimized

accuracies. For

instance, in [25] it

was demonstrated using the same CHRIS dataset that

accuracies remained constant when removing iteratively the

least contributing band. Only when less than 4 bands were

left accuracies started to degrade rapidly Fig. 5 (right).
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Fig. 5. Estimated σb values for one GP model using 62 CHRIS bands
(left). The lower the σb the more important the band is for regression. Chl
r and standard deviation (SD) of training and validation for GP fittings using
backward elimination of worst σb. (right)

Hence, all CHRIS bands can be used without running the

risk of losing accuracy. Of more interest here is identifying

where most relevant bands are located. Essentially, the figure

suggests that the most relevant spectral region is to be found

between 550 and 1000 nm. This means that starting from

the green spectral region the full CHRIS spectrum proved

to be a valuable Chl detector. Most contributing bands were

positioned around the red edge, at 680 and 730 nm respec-

tively, but not all bands within the red edge were evaluated

as relevant. This is due to when having a large number

of bands available then neighbouring bands do not provide

much additional information and can thus be considered as

redundant. Remarkably, a few relevant bands fell within the

950-1000 nm region, which is outside the Chl absorption

region. A reason for why these bands were evaluated as

important is that at canopy scale the measured reflectance

is not only related to biochemistry but also governed by

variation in structural descriptors and abiotic factors such as

variations in soil cover (e.g., due to soil composition and

soil moisture). Effectively, the near-infrared (NIR) part of

the reflectance is particularly affected by vegetation structure

and water content [60]. Consequently, the Chl sensitivity in

the NIR may be driven by secondary relationships, as also

observed by [61], [62].

Consequently the σb proved to be a valuable tool to detect

most sensitive bands of a sensor towards a biophysical pa-

rameter. A more systematic analysis was applied by sorting

the bands on their relevance and counting the band rankings

over 50 repetitions. In [24] the four most relevant bands were

tracked for Chl, LAI and fCOVER and for different Sentinel-

2 settings. It demonstrated the potential of Sentinel-2, with its

new band in the red-edge, for vegetation properties estimation.

Also in [12] σb were used to analyze band sensitivity of

Sentinel-2 towards LAI. A similar approach was pursued

on analyzing leaf Chl based on tracking the most sensitive

spectral regions of sun-induced fluorescence data [63], as

displayed in Fig. 6.

B. Uncertainty intervals

In this section, we use GP models for retrieval and portabil-

ity in space and time. For this, we will exploit the associated

predictive variance (i.e. uncertainty interval) provided by GP

models. Consequently, retrievals with high uncertainties refer
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Fig. 6. Frequency plots of the top eight ranked bands with lowest σb values
in 20 runs of GPR prediction of Chl based on upward fluorescence (Fup)
emission. An emission curve is given as illustration.

to pixel spectral information that deviates from what has been

represented during the training phase. In turn, low uncertainties

refer to pixels that were well represented in the training phase.

The quantification of variable-associated uncertainties is a

strong requirement when remote sensing products are ingested

in higher level processing, e.g. to estimate ecosystem respira-

tion, photosynthetic activity, or carbon sequestration [64].

The application of GPs for the estimation of biophysical

parameters was initially demonstrated in [25]. A locally col-

lected field dataset called SPARC-2003 at Barrax (Spain) was

used for training and validation of GPs for the vegetation

parameters of LAI, Chl and fCOVER. Sufficiently high val-

idation accuracies were obtained (R2 > 0.86) for processing

a CHRIS image into these parameters, as shown in Fig. 7.

While generated maps provide spatially-explicit information

about the vegetation status, the associated uncertainty maps

can be certainly more revealing. Within these maps, areas with

reliable retrievals are clearly distinguished from areas with

unreliable retrievals. Low uncertainties were found on irrigated

areas and harvested fields. High uncertainties were found on

areas with remarkably different spectra, such as bright, whitish

calcareous soils, or harvested fields. This does not necessarily

mean that the estimates were wrong. Rather, it informs that

the input spectrum deviates from what has been presented

during the training stage, thereby imposing uncertainties to

the retrieval. Hence, a practical implication of the uncertainty

maps is that they detect those areas that may benefit from a

denser sampling regime.

Nevertheless one has to be careful with its interpretation.

Given that ±σ represents the uncertainty interval around the

mean predictions, requires that they need to be interpreted

in relation to the estimates. For instance, an Chl uncertainty

interval of about 5 would be more problematic for a mean

estimate of 5 µg/cm2 than of 50 µg/cm2. Therefore, calculat-

ing the relative uncertainties, i.e. the coefficient of variation,

CV [%] = 100 × σ/µ, may be more meaningful. Relative

uncertainties maps can then be evaluated against an uncertainty

threshold. For instance Global Climate Observing System

(GCOS) proposed a threshold of 20% [65]. Consequently,

relative uncertainty intervals can be used as a quality mask,

thereby discarding retrievals that are considered of unaccept-

able quality.

GP models were subsequently applied to the SPARC dataset

that was resampled to different Sentinel-2 band settings (4,

8 and 10 bands) and then uncertainties were inspected [24].

On the whole, adding spectral information led to reduction of

uncertainties and thus more meaningful biophysical parameter

maps. It remains nevertheless to be questioned how robust

the locally-trained GP models function when applied to other

sites and conditions. In this respect, the delivery of uncer-

tainty estimates may enable to evaluate the portability of the

regression model. Specifically, when uncertainty intervals as

produced by a locally trained GP model over an arbitrary site

are on the same order as those produced over the successfully

validated reference site, then it can be reasonably assumed

that the retrievals are of the same quality as the retrievals of

the reference site. Thus, when successfully validated over a

reference imagery then the uncertainty estimates can work as a

quality indicator. Note, however, that the previous conclusions

should be taken with caution, given that the predictive variance

provided by the GP is just an estimate of the actual uncertainty.

Accordingly, the locally-trained GP models were applied to

simulated Sentinel-2 images in a follow-up study [66]. Time

series over the local Barrax site as well images across the

world were processed. Also the role of an extended training

dataset (TrEx; adding spectra of non-vegetated surfaces) were

evaluated. Subsequently the uncertainty values were analyzed.

By using TrEx not only further improved performances

but also allowed a decrease in theoretical uncertainties. This

underlines the importance of a broad and diverse training

dataset. More importantly, the GP models were successfully

applied to simulated Sentinel-2 images covering various sites;

associated relative uncertainties were on the same order as

those generated by the reference image, i.e., vegetated surfaces

were below the 20% requirements. However, typically large

uncertainty variation within an image was observed due to

surface heterogeneity. Contrary to the common belief that

statistical methods are poorly transportable, larger ranges of

uncertainties within an image than between images were

observed.

As a final example, uncertainty estimates were exploited to

assess the robustness of the retrievals at multiple spatial scales.

In [26], retrievals from hyperspectral airborne and spaceborne

data over the Barrax area were compared. Based on the

spareborne SPARC-2003 dataset, GP developed a model that

was excellently validated (R2: 0.96). The SPARC-trained GP

model was subsequently applied to airborne CASI flightlines

(Barrax, 2009) to generate Chl maps. The accompanying

uncertainty maps provided insight in the robustness of the

retrievals. In general similar uncertainties were achieved by

both sensors, which is encouraging for upscaling estimates

from field to landscape scale.

The high spatial resolution of CASI in combination with

the uncertainties allows us to observe the spatial patterns

of retrievals in more detail. However, uncertainties worsened

somewhat when inspecting the CASI airborne maps. Partic-

ularly poorer uncertainties were found on recently irrigated

agricultural areas, probably due to the spectral mixture be-

tween elongated vegetation and wet soil cover. The reason for

this decrease is that at the airborne scale a much more detailed
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Chl LAI fCOVER

Fig. 7. Prediction maps (top) and associated uncertainty intervals (bottom), generated with GP and four bands of the CHRIS 12-07-2003 nadir image.

variation in land cover types are being observed than at the

spaceborne scale of CHRIS. Some examples of mean estimates

and associated uncertainties are shown in Fig. 8.

Fig. 8. Three examples [top, middle, bottom] of CASI RGB snapshots [left],
Chl estimates [middle], and related uncertainty intervals [right].

C. From correlation to causation

Establishing causal relations between random variables from

empirical data is perhaps the most important challenge in

today’s Science. In this section, we use GP models for causal

discovery. To this end, we follow the approach in [67] to

discover causal relations between observed variables x and y.

The methodology performs nonlinear regression from x → y

(and vice versa, y → x) and assesses the independence

of the forward, rf = y − f(x), and backward residuals,

rb = x−g(y), with the input variable y (or x). The statistical

significance of the independence test tells the right direction of

causation. Essentially, the framework exploits nonlinear, non-

parametric regression to assess the plausibility of the causal

link between two random variables in both directions: statis-

tically significant residuals in just one direction indicate the

true data-generating mechanism. The framework was extended

in [68] to get rid of the possibly strong assumption about

the noise distribution, and proposed maximizing a dependency

measure between residuals and regressors.

“GPs permit inferring causal re-

lations from observational data,

an important leap towards un-

derstanding physics through ma-

chine learning.”

Note that the esti-

mation of causal rela-

tions with this model

suffers when the noise

is not Gaussian and we

use linear models. Both

scenarios pose serious

identifiability problems,

which have led to an increasing interest in nonlinear regression

models that consider eventually non-Gaussian noise [69], [70].

The interest here is to assess causality by discounting elusive

masking effects due to the noise Gaussianity assumption,

as well as possibly skewed distributions of the observation

variable. This is why we use for comparison standard GPR,

VHGPR and WGPR.

We exemplify the approach in a relevant geoscience prob-

lem. The last few hundred years, human activities have pre-

cipitated an environmental crisis on Earth, commonly de-

scribed as ‘global climate change.’ Since the discovery of

fossil carbon as a convenient form of energy, the residues of
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past photosynthetic carbon assimilation have been combusted

to CO2 and returned to the Earth’s atmosphere. Terrestrial

ecosystems absorb approximately 120 Gt of carbon annually

from the atmosphere, about half is returned as plant respiration

and the remaining 60 Gt yr−1 represent the Net Primary

Production (NPP). Out of this, about 50 Gt yr−1 are returned

to the atmosphere as soil/litter respiration or decomposition

processes, while about 10 Gt yr−1 results in the Net Ecosystem

Production (NEP). The problem here deals with estimating

the causal relation between the photosynthetic photon flux

density (PPFD), which is a measure of light intensity10, and

the NEP, which results from the potential of ecosystems to

sequestrate atmospheric carbon. Discovering such relations

may be helpful to better understand the carbon fluxes and

to establish sinks and sources of carbon through the globe.

We use here three data sets taken at a flux tower at site

DE-Hai involving PPFD(total), PPFD(diffuse), PPFD(direct)

drivers and the NEP consequence variable [71]. Results for all

three scenarios are shown in Table VI, which generally confirm

the good capabilities of the presented methods, leading to

lower p-values for the forward direction, pf (though similar p-

values of the backward direction, pb) for the GPR methods. We

should stress that, as more flexible GP models are deployed,

the sharpness in the causal detection becomes more evident.

Interestingly, the heteroscedastic GP ‘discounts’ the noise

effects so the dependency estimate becomes slightly more

reliable.

TABLE VI

RESULTS IN THE ‘PPFD CAUSES NEP’ CAUSAL PROBLEM.

Method pf pb Conclusion

GPR 3.86× 10−61 1.57× 10−119 PPFD(tot)→ NEP

WGPR 2.12× 10−50 3.33× 10−115 PPFD(tot)→ NEP

VHGPR 6.11× 10−60 2.50× 10−109 PPFD(tot)→ NEP

GPR 1.59× 10−11 1.24× 10−79 PPFD(diff)→ NEP

WGPR 1.17× 10−11 9.40× 10−77 PPFD(diff)→ NEP

VHGPR 2.44× 10−12 9.16× 10−75 PPFD(diff)→ NEP

GPR 2.05× 10−8 1.56× 10−112 PPFD(dir)→ NEP

WGPR 1.20× 10−15 3.67× 10−110 PPFD(dir)→ NEP

VHGPR 3.44× 10−17 1.01× 10−115 PPFD(dir)→ NEP

VI. EMULATING RADIATIVE TRANSFER MODELS THROUGH

GAUSSIAN PROCESSES

A slightly different approach to the use GPs in RS is to

use them as fast approximations to complex physical models,

an approach with a long story in statistics [28], [32], [72].

These surrogate models or metamodels are generally orders of

magnitude faster than the original model, and can then be used

in lieu of it, opening the door to more advanced biophysical

parameter estimation methods, using e.g. data assimilation

(DA) concepts [73], [74].

10The total PPFD was measured here as the number of photons falling on a
one square meter area per second, while NEP was calculated by photosynthetic
uptake minus the release by respiration, which is known to be driven by either
the total, diffuse or direct PPFD.

A. Function approximation, regularization and emulation

A function is a mapping from an input parameter space to

an output space. Now consider that for a particular application,

we wish to use a particular function, but we are only able to

run this function for a limited number of times (this might be

because the function is so complicated that it would take too

long, for example). For our interest, in what follows, the reader

may think of such function as being a radiative transfer model

(RTM). One way to get around this limitation is to carry out an

inference on the function itself. To do this, we need to place a

prior that encodes our belief in the properties of the function

(such as smoothness, continuity, finite values), and use the

limited pairings of inputs and outputs of the function as our

likelihood (e.g. the probability of the outputs given the inputs).

A generic prior with the desirable properties mentioned above

is a GP (with an associated covariance function, as explained

above), and assuming the likelihood is also Gaussian and

independent additive noise, we end up with a reparametrisation

of the prior GP as the posterior. This means that we can now

predict the output of our function for an arbitrary input x∗,

conditional on the limited sampling of input/output pairings of

the original model. The prediction will provide an estimate of

the function value µGP∗, but importantly, also an estimate of

the predictive uncertainty, σ2
GP∗. If the GP is able to correctly

reproduce the function where only a limited number of runs

were available (which in this context is called the simulator),

we can start using the GP in its stead. We term this use of

GPs emulation, and it is an exploitation of the versatility of

GPs to effectively cope with varied mappings (or simulators).

Although emulators might appear like a trivial diversion,

they have a number of important advantages. First of all,

if the simulator is computationally expensive, an emulator

typically provides a very fast approximation to the simulator.

Given the ability of the GPs to cope well with fairly non-

linear problems, the method can be effective for a large

number of complex physical models, and here we focus on

radiative transfer (RT) models that describe in some detail

the scattering and absorption of photons by the atmosphere,

vegetation, etc. The emulator can thus be seen as a drop-in

replacement for a complicated physical model. The fact that

there is an associated uncertainty with the emulator prediction

is of importance: the user can decide whether the emulation is

accurate enough for the application at hand, or can propagate

this emulation model error through the application. Having

fast physical models opens new avenues to the use we can

make of them. We will review some of these next.

B. From forward and backward models to statistical emulation

A particular problem often found in remote sensing is

the inverse problem, where a physical RT model is used to

interpret observations of e.g. surface directional reflectance or

microwave backscatter in terms of biophysical parameters such

as leaf area index (LAI), soil roughness, etc. The computa-

tional complexity of the models at hand usually makes analytic

inversions intractable, and thus the inversion method typically

results in a least squares problem, where the input parameters

of the model are varied until a minimum difference with
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the observations is found. EO data are however corrupted by

uncertainty (additive noise, imaging artifacts, etc.) that degrade

the information content in the data, and observations are

typically only available over small spectral or angular regions,

giving a partial overview of e.g. the land surface. Additionally,

the processes that describe the fate of photons interacting with

the scene are non linear. These effects conjure a situation

where many possible combinations of input parameters result

in an adequate description of the observations, and therefore a

large uncertainty in the retrieved parameters. To help circum-

vent the ill-posed nature of the inverse problem, we would

need to either add more prior information or more evidence

(observations). The flexibility of the RT models makes the

latter strategy possible, as RT models can usually account for

different sensor configurations (geometry, spectral sampling,

etc.) while keeping a consistent description of the scene.

New observations are typically hard to come by, and new

observations will again be limited by uncertainty and partial

observation of the whole system. Adding prior information is

thus a necessary way to better constrain the inverse problem.

Prior estimates include parameter distributions (derived e.g.

from expert knowledge, or from historical data), expectations

of smoothness in time and space, or physiological models of

vegetation growth. Ultimately, the calculation of the posterior

is a complicated problem that can typically be solved by

e.g. Markov Chain Monte Carlo (MCMC) methods, requiring

many iterations (and therefore many executions of the RT

model), or (under some assumptions) by a non-linear cost

function minimisation problem. The latter is typically an iter-

ative procedure, and for efficiency, gradient descent methods

are required. Remember that the aim here is to infer the land

surface parameters conditioned on the EO data and any other

prior knowledge, with an estimate of the uncertainty of the

parameters.

C. GP models as efficient emulators

GP emulators can be used in complex inverse problems

settings to a great advantage. If MCMC methods are used,

the physical model can be emulated directly, resulting in

much faster exploration of parameter space. In cost function

minimisation, the emulator can be used instead of the full

model, but additionally, we can use the GP to approximate

the gradient of the emulated model as:

∂µGP∗

∂x∗

=

(

∂kf∗

∂x∗

)⊤
(

Kff + σ2In
)−1

y. (10)

From Eq. 10, we see that higher order partial derivatives

(e.g. the Hessian matrix of second order derivatives) are

straightforward. The Hessian is important because in many

cost function minimisation approaches, the inverse of this

matrix as the maximum a posteriori point is the posterior

covariance matrix, and thus an statement on the uncertainty

of the retrieved parameters. A further benefit of numerically

cheap approximations to the gradient is that local linearisations

of the model are now available, allowing the use of efficient

linear solvers to invert problems (either directly, or as part

of an internal linear loop in the solution to the non linear

problem). Ultimately, the ability of having fast surrogate

models of the most computationally demanding part of the

inversion problem allows us to practically implement inversion

strategies that were practically impossible with these models,

and to extend them to practical problem sizes.

“Emulators are statistical con-

structs that are able to ap-

proximate the RTM, although at

a fraction of the computational

cost, providing an estimation of

uncertainty and function gradi-

ents.”

A particular require-

ment in many RT mod-

els is the prediction of

e.g. spectral reflectance

over the solar reflective

domain (broadly from

400 to 2500 nm), so that

instrument band pass

functions can be applied

to the data. In order to

emulate full spectra, we can extend the idea of principal

component analysis (PCA) of hyperspectral data, where there

are large degrees of spectral redundancy. Let our output data

set y be given a stacking of Nt spectra. Each of these spectra

can be approximately reconstructed from

yi ≈
L
∑

j=1

σj ·wj , (11)

where we only consider the first L principal components,

and σj is the j-th score associated with the wj principal

component. In PCA, the principal components are orthogonal

over the input set, so a strategy is to emulate the scores

σ1, . . . , σL with independent emulators, and then use these

emulators to reconstruct a full spectrum (uncertainties and

gradients can also follow through quite easily due to the

linearity of Eq. 11).

D. An illustrative example

As an example, consider a coupled soil-leaf-canopy model

over the solar reflective domain, PROSAIL [75]. We will use

a simple linear spectral mixture model for the soil (hence

assuming the soil properties are isotropic), the PROSPECT

leaf optical properties model and the SAIL canopy RT model.

Our aim is to map from a state made up of soil, leaf, canopy

and parameters such as leaf area index (LAI), chlorophyll

concentration, etc to top-of-canopy reflectance. This is an

important example, as the coupled model can be used within

a DA system to infer the properties of the land surface

(vegetation structure and biochemistry) from atmospherically

corrected directional surface reflectance. We show a validation

of the emulation approach in Fig. 9, where the emulator

has been trained with 250 input parameter-reflectance pairs

(these have been chosen using a latin hypercube sampling

design). Using the approach outlined in the previous Section

for multivariate output, L in Eq. 11 was chosen to be 11, so

as to encompass 99% of the variance in the training set. We

see immediately that the emulator is virtually indistinguishable

from the original model, with negligible bias in the validation,

and a very small root mean squared error. Although PROSAIL

is a fast model, this emulator is some 5000 times faster than

the original in a contemporary PC, and in the evaluation of

the GP, the gradient of PROSAIL is also calculated.
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Fig. 9. Example of RT model emulation with GPs. The PROSAIL soil-
leaf-canopy model is emulated spectrally. The top panel shows the complete
model (full lines) and the emulated reflectance (dashed lines) for ten random
input parameter sets. The bottom panel shows the mean, median, 5-95% and
25-75% interquantile ranges for the residuals of the full model minus the
emulator. This example assumes a sun zenith angle of 30◦, a view zenith
angle of 0◦ and a relative azimuth of 0◦, and the validation is done with a
set of 1000 uniformly independent samples.

VII. CONCLUSIONS AND FURTHER WORK

This paper provided a comprehensive survey to the field of

Gaussian Processes (GPs) in the context of remote sensing data

analysis, and in particular for statistical biophysical parameter

estimation. We summarized the main properties of GPs and the

advantages over other methods for estimation: essentially GPs

can provide competitive predictive power, gives error-bars for

the estimations, allows to design and optimize sensible kernel

functions, and also to analyze the encoded knowledge in the

model via automatic relevance determination kernels.

GP models offer as well a solid Bayesian framework to

formulate new algorithms well-suited to the signal character-

istics. We have seen for example that by incorporating proper

priors, we can encompass signal-dependent noise, and infer

parametric forms of warping the observations as an alternative

to either ad hoc filtering or linearization, respectively. On the

downside of GPs we need to mention the scalability issue:

essentially, the optimization of GP models require computing

determinants and invert matrices of size n × n, which runs

cubically in computational time and quadratically in memory

storage. In the last years, however, great advances have ap-

peared in machine learning and now it is possible to train

GPs with millions of points in (almost) linear time.

All the developments were illustrated at a local and global

planetary scales through a full set of illustrative examples in

the field of geosciences and remote sensing. In particular, we

treated important problems of ocean, land and atmospheric

sciences: from accurate estimation of oceanic chlorophyll

content and pigments, to vegetation properties (such as LAI or

fluorescence) from multi- and hyperspectral sensors, as well as

the estimation of atmospheric parameters (such as temperature,

moisture and ozone) from infrared sounders.

The step forward we have made in this paper is to introduce

and illustrate two relevant usages of the GP technology: first

we studied the important issue of passing from regression to

causation from empirical data, and also reviewed the field

of approximating radiative transfer models with GPs. Both

approaches, yet in its infancy, are promising to fully aboard

the problem developing flexible statistical models that discover

and incorporate physical knowledge about the problem. We

envision more exciting developments in the intersection of

physics and machine intelligence.
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