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Abstract—Efficient usage of energy in wireless networks rep-
resents a major concern in academia and industry, mainly
because of environmental, financial, and quality-of-experience
considerations. Various solutions have been proposed to enable
efficient energy usage in wireless networks, and these approaches
are referred to as green wireless communications and networking.
In this survey, we mainly focus on energy efficient techniques
in base stations and mobile terminals as they constitute the
major sources of energy consumption in wireless access networks,
from the operator and user perspectives, respectively. Unlike
the existing articles and surveys, we aim to present a unified
treatment of green solutions and analytical models for both
network operators and mobile users. Such a unified treatment
will help in the future to develop green solutions that enable an
improved and balanced efficient usage of energy by operators
and end users.

Index Terms—Energy efficiency, green communications, power
consumption modeling, resource on-off switching, scheduling
techniques, traffic modeling.

I. INTRODUCTION

During the past decade, there has been an increasing

demand for wireless communication services, which have

extended beyond telephony services to include video streaming

and data applications [1]. This trend has been accompanied by

a wide deployment of wireless access networks. In general,

a wireless access network is defined as a wireless system

that uses radio base stations (BSs) or access points (APs)

to interface mobile terminals (MTs) with the core network

or the Internet [2]. Hence, a wireless access network is

mainly composed of BSs/APs, core network, and MTs [3].

The BSs/APs are responsible for radio resource management

and user mobility management, and provide access to the

Internet. The core network serves as a backbone network with

Internet connectivity and provides data services [3]. Currently,

MTs are equipped with processing and display capabilities

that enable them to provide not just voice services but also

video streaming and data applications. In addition, MTs have
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multiple radio interfaces and mobile users can enjoy single-

network and/or multi-homing services [4] - [6].

A. The Need for Green Communications

The BS is the main source of energy consumption in the

wireless access network, from the operator side [2]. It has

been estimated that more than 57% of the operator total energy

consumption is in the BS [2], [7], [8]. In total, there are about

3 million BSs worldwide that consume 4.5 GW of power [9].

From the user side, it has been estimated that there are around

3 billion MTs in the world with power consumption of 0.2−
0.4 GW [10]. The high energy consumption of wireless access

networks has promoted increased environmental and financial

concerns for both service operators and users, and quality-of-

experience (QoE) considerations for the mobile users.

From an environmental perspective, the telecommunications

industry contributes 2% of the total CO2 emissions worldwide,

and this percentage is expected to increase to 4% by 2020 [11].

In addition, the expected lifetime of rechargeable batteries is

around 2 − 3 years and manifests in 25000 tons of disposed

batteries per year, which triggers environmental concerns (and

financial considerations for mobile users as well) [12]. More-

over, the high energy consumption of BSs and MTs results

in high heat dissipation and electronic pollution [13]. From a

financial perspective, a significant portion of annual operating

expenses of a service provider are energy costs [14], [15].

It has been estimated that the cost of energy bills of service

providers range from 18% (in mature markets in Europe) to

32% (in India) of their operational expenditure (OPEX) [16],

[17]. For cellular networks outside the power grid, the energy

expenses reach up to 50% of the OPEX [18], [19]. Finally,

from a user QoE perspective, it has been shown that more

than 60% of mobile users complain about their limited battery

capacity [20]. The gap between the demand for energy and the

MT offered battery capacity is increasing exponentially with

time [21]. Hence, the MT operational time between battery

charging has become a significant factor in the user perceived

quality-of-service (QoS) [22].

Due to the aforementioned concerns, there has been an

increasing demand for energy efficient solutions in wireless

access networks. The research works carried out in this

direction are referred to as green solutions. The term green

emphasizes the environmental dimension of the proposed

solutions. Therefore, it is not sufficient to present a cost
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effective solution if it is not friendly to the environment.

For instance, it is not acceptable within the green paradigm

to have a cost effective electricity demand schedule for a

network operator that relies on different electricity retailers,

in a liberated electricity market, without ensuring that the

proposed solution is also environmental friendly in terms of

the resulting CO2 emissions [23]. The green wireless com-

munications and networking paradigm aims to reduce energy

consumption of communication devices while taking into

account the environmental impacts of the proposed solutions.

B. Technical Contributions

In the current literature, there exist several surveys that

present different approaches for energy efficient communi-

cations and networking solutions for wired networks [24],

optical networks [25], wireless networks [17], [26] - [28],

and mobile users [29] - [31]. The existing surveys investigate

energy efficiency either from a network operator perspective

[24] - [28] or a mobile user perspective [29] - [31]. However,

green solutions should balance energy efficiency between

network operators and mobile users. There exists a trade-

off in energy saving between service providers and mobile

users, yet the existing research does not account for it. For

instance, consider the BS on-off switching approach that is

proposed in literature to save energy for network operators

in a low call traffic load condition. This approach can lead

to higher energy consumption for MTs in the uplink due to

a larger transmission distance. In this case, such a solution

only shifts the energy consumption burden from the network

operator to the mobile users, leading to battery drain for MTs

at a faster rate. Therfore, it is necessary to develop a better

understanding of green solutions for both network operators

and mobile users, in order to develop energy efficient solutions

that account for and balance the trade-off in energy saving

between network operators and mobile users. In addition,

call traffic dynamics and power consumption modeling play

a significant role in developing effective green solutions,

but have not been carefully studied in literature. Moreover,

other performance metrics conflicting with achieving energy

efficiency should also be considered. The contributions of this

survey are next briefly summarized1:

• A presentation of various power consumption models

for BSs and MTs to capture transmission power, circuit

power, and reception power consumption.

• A detailed description of different energy efficiency def-

initions proposed in literature, under different call traffic

load conditions for network operators and under different

networking settings for mobile users (e.g., single-user or

multi-user with or without fairness considerations).

• A review of different models proposed for call traffic

load dynamics that take into account the spatial and

temporal fluctuations at different scales (long-term, short-

term, flow-level, and packet-level).

• An overview of the performance metrics conflicting with

achieving energy efficiency in wireless communications

1In this survey, we mainly focus on direct communications (i.e., no multi-
hop or relaying techniques) for licensed networks and users.

and networking.

• A unified treatment of energy efficient solutions for

network operators and mobile users. Specifically, we

classify the energy efficient solutions based on the call

traffic load condition into low and high call traffic load

solutions. Using such a classification, we discuss the

similar approaches adopted by network operators and

mobile users to save energy for BSs and MTs.

• Identifying future research directions that help to develop

effective green solutions, which can balance energy sav-

ing among network operators and mobile users.

C. Organization

Throughout this study, we aim to present a complete picture

of energy efficient (green) models and solutions for BSs and

MTs that enable new approaches to balance the energy saving

for both network operators and mobile users. In order to

develop/analyze a green communication solution, an appro-

priate definition of energy efficiency for network operators

and mobile users should be introduced. Such a definition

relies on power consumption, throughput, and traffic load

models for network operators and mobile users. Moreover, the

green communication solution should satisfy some conflicting

performance metrics. Hence, the first part of the paper is

dedicated to energy efficiency definitions and power consump-

tion, throughput, and traffic load models for network operators

and mobile users, along with conflicting performance metrics.

After introducing the background concepts, the second part

of the paper focuses on state-of-the-art green communication

solutions and analytical models for network operators and

mobile users at different traffic load conditions. Finally, we

discuss the impact of green communication solutions from

the perspectives of network operators and mobile users, re-

spectively, aiming to balance the existing trade-offs.

The rest of this paper is organized as follows. In Section II,

different definitions are presented to describe energy efficiency

in wireless networks at different traffic load conditions, along

with throughput and power consumption models, from the

network operator and mobile user perspectives. Section III

discusses different models to capture the temporal and spatial

fluctuations in traffic load, along with some performance

metrics that conflict with the general objective of achieving

energy efficiency in wireless networks. Green solutions and

analytical models are reviewed for network operators and

mobile users at low and high traffic load conditions in Sections

IV and V, respectively. Finally, future research directions and

conclusions are given in Sections VI and VII, respectively.

II. MODELING OF ENERGY EFFICIENCY IN WIRELESS

NETWORKS

In this section, we present different definitions that have

been proposed in the literature to assess the energy efficiency

of wireless networks from the network operator and mobile

user perspective, respectively. As an important component of

energy efciency denitions, we rst present different throughput

and power consumption models for BSs and MTs.
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A. Throughput Models

In what follows, we first introduce the concepts of aggregate

network capacity Cn, area spectral efficiency Tn, and the user

achieved data rate Rm. These concepts are necessary in the

energy efficiency definitions that we will later present.

To measure the network aggregate capacity Cn, Shannon

formula is used [23]

Cn = Bn log2 det(I + PHH†), (1)

where Bn represents network n total bandwidth, I denotes

the identity matrix, P stands for the transmission power

matrix of every BS of network n to every MT m in service,

H is the channel matrix between each BS of network n
and MT m, and † denotes the transposition operation. The

channel matrix H might account for fast fading, noise, and

interference affecting the radio transmission. Cn in (1) has

the unit of bits per second. On the other hand, in a low call

traffic load condition, the area spectral efficiency Tn is used

in the energy efficiency definition rather than the aggregate

capacity given in (1) [15], as will be shown. The area spectral

efficiency measures the network throughput while considering

the coverage probability. Let P(γx→u > ζ) denote the success

probability of the signal-to-noise ratio (SNR) γ of a BS at

location x received by an MT at location u, satisfying a certain

QoS threshold ζ. The coverage probability Pn(ζ) is obtained

by averaging the success probability over the propagation

range to location u. Hence, for network n with BS density

λn, the area spectral efficiency Tn is given by

Tn = λnPn(ζ) log2(1 + ζ) (2)

where Tn is measured over a unit area.

In literature, two key definitions have been proposed to

assess the data rate Rm achieved by MT m. The first definition

is based on the knowledge of the instantaneous channel state

information (CSI) [13], [32] - [34], and takes the form

Rm = Bm log2(1 +
γm
Γ

), (3)

where Bm denotes the allocated bandwidth on the uplink to

MT m, γm is the SNR of MT m received at the destination,

and Γ is the SNR gap between the channel capacity and

a practical coding and modulation scheme. For Shannon

formula, Γ = 1. However, the instantaneous CSI requires a

feedback from each MT to the serving BS, which results in a

large overhead. Hence, statistical CSI can be used to reduce

the amount of overhead. In this case, Rm is described in a

statistical average sense [35], i.e.,

Rm = EH [Bm log2(1 +
γm
Γ

)], (4)

where EH denotes the expectation over channel state H , which

affects the SNR γm. Rm in (3) and (4) is measured in bits per

second.

B. Power Consumption Models

Different models have been proposed in literature to repre-

sent power consumption for the network, Pn, and MTs, Pm,

as shown in Table I.

PowerÊamplifierÊandÊ

feeder

65%

PowerÊsupply

7%

SignalÊprocessingÊ

(digitalÊandÊanalog)

10%

AirÊconditioning

18%

Fig. 1. Percentage of power consumption at different components of a large-
cell BS [9].

The network power consumption Pn can be modeled as the

aggregate power consumption of the network BSs. Practical

measurements of power consumption at BSs are reported in

[7], [9], [19], [36]. Figure 1 shows the percentage of power

consumption at different components of a large-cell BS. On

the other hand, Table II shows the power consumption profile

for a femto-cell BS. By comparing the values in Figure 1

and Table II, we observe that a femto-cell BS consumes

most of the power in the signal processing part as opposed

to a large-cell BS (65.6% and 10% for femto and large-cell

BSs, respectively). In addition, the RF transmission/reception

energy consumption part in a femto-cell BS is almost half

of that of a large-cell BS, with only 19.6% of the power

consumed in the femto-cell BS power amplifier as opposed

to 65% in a large-cell BS.

Let Pb denote the power consumption for BS b. In literature,

different models are used to represent Pb. The first one is an

ideal load dependent power model [37]. This model assumes

that the BS consists only of energy proportional devices and

hence, it assumes no power consumption in an idle state, i.e.,

Pb = ρPtb, (5)

where ρ stands for the system traffic load density and Ptb

denotes the BS transmitted power. However, such a model is

not realistic as the power consumption of some components

shown in Figure 1 does not scale with the call traffic load. A

more sophisticated model captures the power consumption of

different BS components, and assumes the expression [38]

Pb =

Ptb

ξ(1−σfeed)
+ PRF + PBB

(1− σDC)(1− σMS)(1− σcool)
, (6)

where PRF is the radio frequency (RF) power consumption,

PBB represents the baseband unit power consumption, ξ de-

notes the power amplifier efficiency, and σfeed, σDC, σMS,

and σcool stand for the losses incurred by the antenna feeder,

DC - DC power supply, main supply, and active cooling,

respectively. For simplicity, the model (6) can be further

approximated by a linear model [11], [15], [18], [23], [37],

[38]. In such a linear model, two components are introduced

to represent Pb. The first component is a fixed power term

that captures the power consumption at the power supply,

cooling, backhaul, and other circuits, and is denoted by Pf .

The second component is proportional to the traffic load. The

linear (affine) model is described by

Pb = ∆pPtb + Pf , (7)
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TABLE I
A SUMMARY OF DIFFERENT POWER MODELS IN LITERATURE.

 

 

 

 

 

 

 

 

 

BS 

Model Comments References 

 

 

 

 

 

 

Operation only 

 

 

 

Large-cell 

 

Ideal 

The BS consumes no power 

when idle, i.e., the BS consists 

only of energy proportional 

devices. 

 

[37] 

 

Realistic 

The model captures the BS 

traffic load independent power 

consumption.  

 [11], [15], 

[18], [23], 

[37], [38] 

 

 

Femto-cell 

Load 

independent 

The BS power consumption 

does not depend on the offered 

traffic load.  

 

[39] 

Load 

dependent 

The BS power consumption 

relies on traffic load, packet 

size, and has an idle part. 

 

[40] 

 

Operation and Embodied 

Besides the operation power, it 

accounts for the consumed 

energy in BS manufacturing 

and maintenance. 

 

[16] 

 

 

 

 

 

 

 

MT 

 

 

Transmission power 

only 

Without power 

amplifier efficiency 

The models does not account 

for the transmitter power 

amplifier efficiency.  

 

[34], [42], 

[43] 

With power 

amplifier efficiency 

The model accounts for the 

transmitter power amplifier 

efficiency.  

[13], [32], 

[44], [45] 

 

 

 

 

Including circuit 

power 

 

Constant 

The circuit power consumption 

is given by a constant term 

independent of the bandwidth 

and data rate.  

[13], [20], 

[32], [33], 

[35], [46] 

 

Bandwidth scale  

The circuit power consumption 

scales with the MT assigned 

bandwidth.    

 

[47] 

 

Data rate scale 

The circuit power consumption 

scales with the MT achieved 

data rate.  

 

[45] 

 

Including reception power 

Besides the transmitter and 

circuit power consumption, the 

model also accounts for the 

receiver power consumption.  

 

[13], [47] 

Ê

TABLE II
POWER CONSUMPTION PROFILE FOR A FEMTO-CELL BS [36].

Ê

Hardware component Power Consumption (W) Percentage (%) 
Microprocessor 

Associated memory 

Backhaul circuitry 

1.7 

0.5 

0.5 

 

26.4 

FPGA 

Associated memory 

Other hardware functions 

2 

0.5 

1.5 

 

39.2 

RF transmitter 

RF receiver 

RF power amplifier 

1 

0.5 

2 

 

34.3 
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where ∆p is the slope of the load dependent power consump-

tion.

For a femto-cell BS, the power consumption model [39] is

expressed as

Pb = Pmp + PFPGA + Ptx + Pamp, (8)

where Pmp, PFPGA, Ptx, and Pamp denote the power con-

sumption of the microprocessor, FPGA, transmitter, and power

amplifier. While the power consumption model in (8) accounts

for most of the components in Table II, it does not exhibit

any dependence on the call traffic load. Experimental results

in [40] have illustrated the dependence of the femto-cell BS

power consumption on the offered load and the data packet

size. Hence, the power consumption model for a femto-cell

BS is given by [40]

Pb = Pb(q, s) + Pf , (9)

where Pb(q, s) and Pf denote the BS power consumption that

relies on the traffic load q (expressed in Mbps) and packet

size s (expressed in bytes) and the idle power consumption

component, respectively.

The models (5) - (9) focus mainly on the BS operation

power, which is expressed in watts. In a more general model,

the power consumption is described in terms of the BS oper-

ating energy, Eo, and embodied energy, Ee, which represents

30−40% of the BS total energy consumption [16]. The embod-

ied energy accounts for the energy consumed by all processes

associated with the manufacturing and maintenance of the BS,

and is calculated as 75 GJ over the BS lifetime [16]. It consists

of two components, the first refers to the initial embodied

energy Eei and comprises the energy used to acquire and

process raw materials, manufacture components, and assemble

and install all BS components, and it is accounted for only

once in the initial BS manufacturing. The second component

stands for the maintenance embodied energy Eem and includes

the energy associated with maintaining, repairing, and replac-

ing the materials and components of the BS throughout its

lifetime. Hence, the BS total energy consumption, in joules,

throughout its lifetime is expressed as

Eb = Ee + Eo = (Eei + Eem) + Eo, (10)

where Eem = PemTlifetime and Pem and Tlifetime denote

the BS maintenance power and lifetime, respectively, and

Eo = PoTlifetime, where Po is defined in terms of the BS

operating power given in (5) - (9). The model in (10) is useful

for measuring the BS total power consumption in the network

design stage, for instance, while designing a multi-tier wireless

network, as will be discussed.

Practical measurements of power consumption at MTs are

summarized based on different experiments in [29]. Besides

the results reported in [29], we present experimental results

from [41] and [31], in Tables III and IV, respectively, to

discuss the models to be presented later. Different models have

been proposed in literature for the MT power consumption Pm.

In the simplest model, Pm represents the MT transmission

power Ptm [34], [42], [43]. When the effect of the power

amplifier efficiency is considered, the MT power consumption,

in watts, is expressed as [13], [32], [44], [45]

Pm =
Ptm

ζm
, (11)

where ζm denotes the power amplifier efficiency for MT m,

ζm ∈ (0, 1]. With such a power consumption model, for a data

call, the minimum energy consumption is attained by using

the modulation of the lowest order while satisfying the QoS

constraints (e.g., time delay) [33]. However, in practice, the

MT circuit power should be captured in the power consump-

tion model Pm. Three different models have been proposed

to capture the MT circuit power Pcm. In the first model,

the circuit power consumption is modeled as a constant,

independent of the achieved data rate Rm [13], [20], [32],

[33], [35], [46]. With constant circuit power consumption,

transmitting with the lowest modulation order is no longer the

best strategy as the energy consumption is proportional to the

transmission duration [33]. The constant power consumption

model, however, does not reflect the effect of transmission

bandwidth and data rate on the MT circuit power consumption.

From Table III, it is evident that different radio interfaces

consume different circuit power, which for one reason is due

to the different operating bandwidth. To account for the effect

of the allocated bandwidth, the circuit power consumption is

modeled via two components [47]. The first component refers

to the digital circuit power consumption, which is modeled as

a linear function of the transmission bandwidth (as bandwidth

increases, more computations and baseband processing are

required), i.e.,

Pbm = P ref
b + α

Bm

Bref
, (12)

where P ref
b denotes the reference digital circuit power con-

sumption, in watt, for a reference bandwidth Bref and α is

a proportionality constant. The second component captures

the power consumption of the radio frequency (RF) chain,

represented by a constant to account for power consumption

in the digital-to-analog converter, RF filter, local oscillator, and

mixer. However, the model in (12) does not account for the

effect of transmission data rate on the power consumption,

as indicated in Table IV. To account for the transmission

data rate, the circuit power consumption is modeled as a

linear function of the achieved data rate, under the assumption

that the clock frequency of the MT digital chips scales with

the achieved data rate [45]. Therefore, the circuit power

consumption is expressed as

Pcm = µ+ βRm, (13)

where µ and β are two appropriately chosen constants, mea-

sured in watt and watt per bit per second, respectively. Besides

the transmission and circuit power modeling in Pm, a constant

term is considered to represent the MT receiver circuit power

consumption [13], [47].

It is worth mentioning that Rm and Pm can be defined as the

sum of corresponding terms over multiple subcarriers assigned

to MT m for orthogonal frequency division multiple access

(OFDMA) networks [13], [32] - [34], [42], [43] or the sum
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TABLE III
MT POWER CONSUMPTION FOR DIFFERENT TECHNOLOGIES [41].

Ê

Technology Action Power (mw) 
 

WiFi 

IEEE 802.11 

(Infrastructure mode) 

In connection 868 

In disconnection 135 

Idle 58 

Idle in power save mode 26 

Downloading at 4.5 Mbps 1450 

WiFi 

IEEE 802.11 

(ad hoc mode) 

Sending at 700 kbps 1629 

Receiving  1375 

Idle 979 

2G Downloading at 44 kbps 500 

Handover to 3G 1389 

3G Downloading at 1 Mbps 1400 

Handover to 2G 591 

TABLE IV
MT POWER CONSUMPTION FOR DIFFERENT DATA RATES OF AUDIO STREAMING AND DOWNLOADING A 200 MB FILE USING WIFI [31].

Ê

Ê

Bit Rate 

 (kbps) 
Nokia E-71 

(mW) 
Nexus S 

(mW) 
Samsung Galaxy S3 

(mW) 

128 

192 

256 

File download 

990 

1004 

1007 

1092 

350 

390 

390 

998 

419 

440 

452 

1012 

over multiple radio interfaces for MT m with multi-homing

capability [20], [46].

C. Energy Efficiency Models

Based on the throughput and power consumption models

discussed before, we next present different energy efficiency

definitions for networks and MTs in this subsection. A list de-

scribing the energy efficiency definitions proposed in literature

is presented in Table V.

A generic definition that can be used as a measure of energy

efficiency is referred to as energy consumption gain, and it is

defined as the ratio of the energy consumed by a base system

(BS or MT) to the energy consumed by the system under

test, assuming the same conditions [7], [48]. Formally, this is

expressed by

η =
Ebase − Etest

Ebase
(14)

where Ebase and Etest are measured in joules. The definition

in (14) is a relative definition that can be used in any call

traffic load condition. Next, we present the absolute energy

efficiency definitions.

In a low call traffic load, the mobile user demands do not

require that the network operates at its full power. Therefore,

one way to measure energy efficiency for network operators

at a low call traffic load condition is by means of the ratio

between the network output power (energy) and the total input

power (energy) [2], [19], i.e., the energy efficiency ηn for

network n is expressed as

ηn =
Pt

Pn

, (15)

where Pt and Pn denote the network output power (i.e., the

power of the RF transmitted signal) and input (consumed)

power, respectively. Hence, ηn is unitless. In addition, due

to the low service demands, it is not necessary to guarantee

that the network achieves a full coverage. It is sufficient to

satisfy an acceptable coverage probability. As the definition in

(15) does not reflect the achieved network coverage, another

definition of energy efficiency measures the power consumed

to cover a certain area [15], [19]. Hence, energy efficiency can

be defined as [15]

ηn =
Tn
Pn

. (16)

In (16), ηn has unit of watt−1.

From an operator perspective, in a high call traffic load

condition, energy efficiency is defined as the ratio of the

aggregate network capacity to the total power consumed by

the entire network [2], [9]. Therefore, in a high call traffic

load condition, energy efficiency of network n isexpressed as

ηn =
Cn

Pn

, (17)

in bit per second per watt.

For mobile users, energy efficiency is expressed as a mea-

sure of the maximum amount of bits that can be delivered per
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TABLE V
A SUMMARY OF DIFFERENT ENERGY EFFICIENCY DEFINITIONS IN LITERATURE.

 

 

 

BS/MT 

Model Comments References 

 

 

Energy consumption gain 

 A ratio of the energy consumed 

by a base system to the energy 

consumed by the system under 

test. It is a relative measure that 

can be used at any traffic load. 

 

 

[7], [48] 

 

 

 

 

 

 

BS 

 

 

 

Low traffic load 

Output Ð input 

power 

A ratio of network output to input 

power.  

[2], [19] 

Area spectral 

efficiency Ð input 

power 

The definition measures the 

power consumed for certain area 

coverage. It is used at low traffic 

load. 

 

[15], [19] 

High traffic load 

Network capacity Ð input power  

A ratio of the aggregate network 

capacity to the total power 

consumed by the network.  

 

[2], [9] 

 

 

 

 

MT 

 

Single-user 

system 

Without error 

consideration 

A ratio of throughput to power 

consumption.  

[13], [20], 

[32], [42], 

[46] 

With error 

consideration 

A ratio of goodput to power 

consumption.  

[42], [43] 

 

Multi-user 

system  

 

Without fairness 

consideration 

It can be sum rate of all MTs to 

total power consumption or sum 

of energy efficiency for 

individual MTs. 

 

[33] Ð [35], 

[43], [44] 

With fairness 

consideration 

It is a geometric mean of energy 

efficiencies of all MTs.  

[33] 

Ê

joule of energy consumed [13], [20], [32], [42], [46]. This can

be described, for mobile user m, as

ηm =
Rm∆T

∆Em

=
Rm

∆Em/∆T
=
Rm

Pm

, (18)

where ∆Em stands for the consumed energy during time

interval ∆T by MT m. However, the definition in (18) does not

account for the energy consumed for correct reception of data.

Another definition measures the net number of information bits

that are transmitted without error per joule [42], [43], and it

is expressed as

ηm =
Rmf(γm)

Pm

, (19)

where f(γm) stands for the packet transmission success rate

for a given SNR γm for MT m. The definition in (19)

assumes a ratio of the goodput to power consumption, as

compared to the definition in (18) which assumes the ratio

of throughput to power consumption. In general, the packet

transmission success rate follows an S-shaped (sigmoidal)

function, exhibiting an increasing trend with respect to γm.

In addition, f(γm) approaches zero as γm approaches zero

and f(γm) approaches unity as γm approaches infinity [42],

[43]. The unit of ηm in (18) and (19) is bit per second per

watt.

The definitions in (18) and (19) have been proposed for a

single-user scenario [13], [20], [32], [42], [46]. A multi-user

system is considered in various scenarios due to the shared

bandwidth [33] or interference [34] caused by simultaneous

transmissions. In a multi-user scenario, energy efficiency is

defined as the ratio between the sum rate of all MTs to the

total power consumption [44]

ηtotal =

∑
mRm∑
m Pm

. (20)

The definition in (20) treats all mobile users as a single unit,

and takes into account only the total achieved throughput and

power consumption. In order to model the system as a set

of distinct mobile users, another definition is used, which

represents the total energy efficiency expressed as the sum

of energy efficiency for individual MTs [33] - [35], [43]

ηtotal =
∑

m

ηm. (21)

The unit of ηtotal in (20) and (21) is bit per second per watt.

However, the definitions in (20) and (21) provide no fairness

guarantee for energy efficiency among different MTs. Con-

sequently, some MTs might present high energy efficiencies

while others might exhibit low energy efficiencies very close

to zero. The geometric mean of energy efficiencies of all MTs

promotes fairness among users [33], and is expressed as

ηtotal =
∑

m

log(ηm). (22)

Unlike (20) and (21), ηtotal in (22) is unitless.

An energy efficiency definition and an associate green

solution must be chosen in accordance with an appropriate

traffic load model. Hence, in the next section, we discuss the

different traffic models proposed in literature.
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III. TRAFFIC MODELING AND PERFORMANCE METRICS

Different green solutions can be employed at different

call traffic load conditions. In addition, some green solutions

exploit the temporal and spatial fluctuations in the call traffic

load to save energy. For instance, in order to determine the

switch off duration of a BS or MT, as will be discussed

later, traffic models are used to probabilistically determine

the idle period duration. Furthermore, performance evaluation

of the proposed green solutions should be carried out using

an appropriate traffic model. Hence, it is necessary to gain a

better understanding of different traffic load models proposed

in literature. After specifying an appropriate energy efficiency

definition and a traffic load model, the next step is to define

the performance metrics that may conflict with the objective

of enhancing the system energy efficiency. Therefore, before

we discuss various green networking solutions, in this section,

we present traffic models for BSs and MTs. Then, we discuss

performance metrics that are considered for developing green

networking solutions.

Traffic modeling can be classified in two categories, as

shown in Table VI. The static model assumes a fixed set of

MTs, M, that communicate with a fixed set of BSs, B [20],

[33], [34], [43], [44], [46], [49] - [51]. The static model does

not capture the mobility of MTs in terms of their arrivals and

departures. Also, the static model does not consider the call-

level or packet-level dynamics in terms of call duration, packet

arrival, etc. On the other side, the dynamic model captures

the spatial and temporal fluctuations of the traffic load, and is

discussed in more details next.

A. Traffic Spatial Fluctuation Models

It has been shown that traffic is quite diverse even among

closely located BSs [52]. Therefore, different models have

been proposed to capture the spatial fluctuations in call traffic

load [15], [37], [53].

One approach to model traffic spatial fluctuations is by

defining a location-based traffic load density [37]. In this

case, a geographic region is served by a set B of BSs. The

geographic region is partitioned into a set of locations. In

a location x, the file transfer requests arrive following an

inhomogeneous Poisson point process (PPP) with an arrival

rate per unit area λ(x). The file sizes are independently

distributed with mean 1/µ(x) at the location. Hence, the traffic

load density is expressed as ϱ(x) = λ(x)/µ(x) < ∞, and it

is used as a measure to capture the spatial traffic variability.

While the above approach uses a predefined set of BSs,

B, with specific locations, an alternative approach defines the

locations of available BSs using stochastic geometry theory

[15]. In this case, the BSs of network n are located according

to a homogeneous PPP, Θn, with intensity λn in the Euclidean

plane. MTs are distributed according to a different independent

stationary point process with intensity λm. With a stationary

PPP Θn, the distribution of the distance between an MT and

its serving BS, Dm, is the same regardless of the MT exact

location. The probability density function (pdf) of Dm is given

by [15]

fDm
(d) = 2πλnd exp

−λnπd
2

, d > 0. (23)

The above two models capture the traffic spatial variability

among different cells. To model the spatial distribution of MTs

within a given cell i, a finite-state Markov chain (FSMC)

model is used [53]. This model categorizes the MTs into

S classes according to the radius of cell i. Assuming there

are M MTs in cell i, an SM spatial location distribution

is considered within the cell. Hence, the FSMC presents

L = {L1, . . . , LSM } states. The state transition probability

Pr{Li(t + 1) = vi|Li(t) = ui} is the probability of spatial

distribution of the MTs within cell i at time slot t+1 being vi
given that it was ui at time slot t, where ui = {ui,1, . . . , ui,M}
and vi = {vi,1, . . . , vi,M}. Using such a model, the dynamic

fluctuations in the number of MTs in different regions within

the cell can be captured.

B. Traffic Temporal Fluctuation Models

Traffic temporal fluctuations can be observed over two

different time scales [11], [38]. The first scale is a long-term

traffic fluctuation model that captures the traffic variations over

days of the week. This model is very useful in investigating

energy efficient solutions for network operators as it captures

both high and low call traffic load conditions. The second

scale is a short-term traffic fluctuation that models the call

(packet) arrivals and departures of the MTs. This model plays

an important role in investigating energy efficient resource

allocation schemes for MTs and BSs. Next, we will describe

the two scales in more details.

1) Long-term Traffic Fluctuations: Real traffic traces show

a sinusoidal traffic profile in each cell [14], [54]. Traffic during

day time (11 am - 9 pm) is much higher than that during

night time (10 pm - 9 am) [52], [14]. Moreover, the traffic

profile during weekends and holidays, even during the peak

hours, is much lower than that of a normal week day [14].

During a weekday, the traffic profile is 10% less than its

peak value 30% of the time, increasing to 43% of the time

during weekends [14]. Such a behavior can be modeled using

an activity parameter ψ(t) to specify the percentage of active

subscribers over time t [38]. Hence, if the population density

is p users per km2, the number of operators is N , each being

able to carry 1/N of the total traffic volume, and the fraction

of subscribers is sk with an average data rate rk for terminal

type k (e.g., smart phone and tablet), then the traffic demand,

in bit per second per km2, is given by

A(t) =
p

N
ψ(t)

∑

k

skrk. (24)

It has been shown that the traffic load difference between

two consecutive days for 70% of the BSs is less than 20%
[52]. Therefore, the long-term fluctuations in call traffic load

are estimated from the historical mobile traffic statistics (i.e.,

the activity parameter ψ(t) and the average data rate rk can

be inferred from historical data).

2) Short-term Traffic Fluctuations: The short-term traf-

fic fluctuation models can be classified into two categories,

namely call (flow)-level and packet-level models. The call

(flow)-level models are useful in investigating green resource

scheduling algorithms at the BSs and MTs in a high call traffic
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TABLE VI
A SUMMARY OF DIFFERENT TRAFFIC MODELS.

Model Comments References 

 

Static 

It does not capture the MT 

mobility and the traffic 

dynamics.  

[20], [33], 

[34], [43], 

[44], [46],  

[49] Ð [51] 

 

 

 

 

 

 

 

 

 

 

 

Dynamic 

 

 

 

Spatial 

Regional traffic load density It defines a location-based 

traffic load density.  

[37] 

 

Stochastic geometry 

BSs and MTs are located 

according to homogeneous 

Poisson point process.  

 

[15] 

 

FSMC 

It models the spatial 

distribution of MTs within a 

cell.  

 

[53] 

 

 

 

 

 

 

 

 

Temporal 

 

Long-scale 

The model captures traffic 

fluctuations over the days of 

the week.  

[14], [38], 

[52], [54] 

 

 

 

 

 

 

Short 

scale 

 

 

 

Flow-

level 

 

Poisson-

exponential 

It models call arrivals as 

Poisson process and call 

departures as exponential 

distribution.  

 

[11],  

[55] Ð [57] 

 

FSMC 

The number of calls within a 

cell is represented by a state 

in a Markov chain.  

 

[53] 

 

 

 

Packet-

level 

 

Infinite 

buffer 

It models the number of 

backlogged packets in an 

MT buffer with infinite 

capacity.  

 

[58] 

 

Finite buffer 

It models the number of 

backlogged packets in an 

MT buffer with finite 

capacity. 

 

[59] 

Ê

load. One approach that can be used for myopic resource

allocation solutions models the call arrivals using a Poisson

process with rate λa and call durations with an exponential

distribution [11], [55] - [57]. For dynamic resource allocation

solutions, traffic dynamics in terms of call arrivals and depar-

tures are modeled using an FSMC [53]. The number of calls

in a given cell i is represented by an M -state Markov chain,

with state set M = {0, 1, . . . ,M − 1}. The state transition

probability Pr{Mi(t+ 1) = hi|Mi(t) = gi} is the probability

of having hi MTs within cell i at time slot t + 1 given that

there were gi MTs at time slot t, where hi , gi ∈ M.

Packet-level traffic models are useful in investigating green

resource solutions (on-off switching) at the BSs and MTs, in

a low call traffic load condition, through modeling the BS/MT

buffer dynamics in terms of packet arrival and transmission

[58], [59]. For instance, for an infinite buffer size, the MT

buffer dynamics are represented by

om(t+1) = max{om(t)+am(t+1)−zm(t), am(t+1)}, (25)

where om(t), am(t), and zm(t) denote the numbers of back-

logged packets in the buffer, arriving packets, and transmitted

packets, for MT m in time slot t, respectively. For a buffer

with finite size O, the MT buffer dynamics can be expressed

as

om(t+ 1) = min{om(t) + am(t+ 1)− zm(t), O}. (26)

The models (25) and (26) are used to design and evaluate

optimal on-off switching schemes for radio interfaces of MTs

to achieve energy efficient communications in low call traffic

load conditions, a topic which will be addressed later herein

survey.

C. Performance Metrics

Improving energy efficiency in wireless networks may con-

flict with other performance metrics. Therefore, there is a trend

on improving energy efficiency while not violating the target

performance metric. Such performance metrics can be divided

into two main categories. The first category deals with the

quality of the ongoing application and hence is referred to

as application quality requirements. The second deals with

connection establishment and hence is referred to as admission

quality requirements. These are summarized as follows.

1) Application Quality Requirements:

• SNR [52], [53]: Improving energy efficiency reduces the

transmission power which reduces the overall received

SNR. The receiver may not be able to decode the trans-

mitted signal. Hence, a minimum SNR should be satisfied

while improving energy efficiency.

• Data rate [20], [46], [50], [51], [53], [56]: With a re-

duced transmission power level, transmission data rate

is reduced. For some applications, a minimum required

data rate should be achieved [46], [52], [53] or a constant

required data rate should be satisfied [20], [50].

• Delay time [59]: A reduced data rate can lead to a

violation of the required delay deadline for delay sensitive



10

applications. An equivalent representation to ensure a

minimum required data rate is not to violate a maximum

delay bound for data transmission.

• Video quality [60], [61]: For video streaming applica-

tions, using a lower transmission rate for improved energy

efficiency can result in video packets missing their delay

deadlines. Hence, the resulting video quality is degraded.

It is required to maintain the achieved video quality

higher than a target value.

2) Admission Quality Requirements:

• Call blocking probability [11], [23]: Improving energy

efficiency for wireless networks can be achieved by

switching-off some BSs with a low call traffic load,

as explained in the next section. This can lead to an

increased call blocking probability. Hence, it is required

to maintain the call blocking probability below a certain

threshold.

• Coverage probability [15]: BSs can improve their energy

efficiency by reducing their transmission power. However,

this may result in failure in service coverage. It is

required to maintain a target performance level in terms of

coverage probability Pn(ζ), as explained in the previous

section.

Given the background provided in the previous sections,

in the next section we will present state-of-the-art green

communication solutions and analytical models for network

operators and mobile users at different traffic load conditions.

In green wireless networks, the proposed solutions/models to

enhance/analyze energy efficiency can be divided into two cat-

egories based on the call traffic load condition. At a low and/or

bursty call traffic load, resource on-off switching techniques

are adopted, while scheduling techniques are employed at a

high and/or continuous call traffic load. These are discussed

in detail in the next two sections.

IV. GREEN SOLUTIONS AND ANALYTICAL MODELS AT

LOW AND/OR BURSTY CALL TRAFFIC LOAD

In this case, on-off switching of radio resources is adopted

to enhance energy efficiency, as shown in Table VII. Network

operators can employ on-off switching mechanisms for their

BSs at a low call traffic load. Similarly, MTs can switch on-off

their radio interfaces in a bursty traffic condition. The related

research issues and modeling techniques are discussed in the

following.

A. BS On-Off Switching

In network planning, the cell size and capacity are in general

designed based on the peak call traffic load. As discussed in

Section III, the call traffic load exhibits significant spatial and

temporal fluctuations. At a low call traffic load, the network

is over-provisioned which results in energy waste. It has been

argued that switching off some of the available radio resources

(e.g., radio transceivers of BSs) at a low call traffic load

can save energy and maintain acceptable performance metrics.

However, studies have shown that, when a BS is active, the

energy consumption of processing circuits and air conditioner

amounts to 60% of the BS total power consumption (which

is represented by the fixed power component in (7)) [51].

Hence, an effective approach for energy saving at a low

call traffic load is to switch off some of the network BSs

while satisfying the required performance metrics. Switching

BSs on and off according to call traffic load conditions is

referred to as dynamic planning [11]. Two important issues

must be addressed while designing an effective BS switching

mechanism, namely, user association and BS operation.

Switching BSs on and off is coupled with the user asso-

ciation problem. In order to switch off some BSs, the call

traffic load should be first concentrated in a few BSs, which is

achieved through user association. Newly incoming MTs have

to be associated with a subset of active BSs, and MTs already

in service should perform handover when the serving BSs are

switching off. One can identify two research directions related

to the MT association problem. The first direction deals with

developing new user association mechanisms [37], [51], [62]

- [64], while the second one focuses on deriving analytical

models to assess the performance of different association

mechanisms [55]. In developing a MT association mechanism,

two approaches can be adopted to meet the MT required

QoS while concentrating traffic load in a few BSs. The

first approach adopts an objective function that minimizes

the networks’ energy consumption while satisfying the user

required QoS constraints, while the second approach aims

to balance the trade-off between flow level performance for

MTs (e.g., data rate or delay) and energy consumption of the

network [37]. In the later case, the problem is a multi-objective

one with a weighting factor. When the weighting factor equals

zero, the MT association is determined based on the flow

level performance and, as the weighting factor increases, the

MT association decision focuses more on the network power

consumption performance. As the weighting factor goes to

infinity, the MT connects to the BS that maximizes the network

energy efficiency performance in bits per joule. The MT

association mechanism can be implemented in a centralized

or a decentralized architecture [51]. Both architectures aim

to concentrate MTs in a few BSs while satisfying the data

rate requirements of MTs and bandwidth limitations of BSs.

In the centralized mechanism, a central controller performs

MT association based on global network information that is

related to channel conditions and user requirements. On the

other hand, an MT locally selects the BS with the highest call

traffic load that can serve its required data rate in the iterative

decentralized mechanism. One challenge with designing such

a mechanism is related to computational complexity, due to

the binary nature of the decision variables related to the

BS on-off switching, and hence the mixed-integer nature of

the optimization problem. Therefore, greedy algorithms are

mainly adopted to reach a good switching decision [37], [51].

In designing such algorithms, a decision criterion should be

defined. For instance, in a user-BS distance decision criterion,

the greedy algorithm tends to switch off the BSs with the

longest user-BS distance to improve energy efficiency of the

network [62]. The rationale behind such a decision criterion is

that the longer the user-BS distance, the greater the transmis-

sion power required to meet the target service quality of the



11

TABLE VII
A SUMMARY OF GREEN SOLUTIONS AND ANALYTICAL MODELS AT LOW AND/OR BURSTY CALL TRAFFIC LOAD.

Solution/Analytical Model Comments References 
 

 

BS on-off 

switching 

 

User association 

This phase concentrates the 

MTs in a few BSs to enable 

switching off other BSs.  

[37], [51], 

[55], [62], 

[63], [64],  

 

BS operation 

This phase specifies which 

BSs should be turned off and 

how.  

[11], [51],  

[65] - [69] 

 

 

 

 

 

 

MT radio 

interface 

on-off 

switching 

 

 

With 

downlink 

traffic 

Without 

traffic 

shaping 

An MT switches its radio 

interface if no data packets 

are available for the MT at the 

BS.  

 

[48], [70], 

[71] 

 

With traffic 

shaping 

Traffic shaping at the MT or 

BS is introduced to enable 

longer idle duration for the 

MT.  

 

[72], [73], 

[74] 

 

With uplink traffic 

Besides radio interface on-off 

switching, an MT controls the 

transmission power and 

modulation and coding.   

 

[58], [75] 

 

With bi-directional traffic 

This case deal with presence 

of both uplink and downlink 

traffic while switching on and 

off the MT radio interface.  

 

[76] 

Ê

users. The network-impact notion is introduced in [63] as a key

decision criterion, which quantifies the effect of switching off a

given BS on the network performance. Specifically, switching

off a given BS results in additional load increments into the

neighboring BSs. Besides, switching off a BS can result in

a positive impact on the neighboring BSs due to a reduced

inter-cell interference. By quantifying the two aforementioned

effects, the network-impact criterion modifies the switching off

decision as a BS selection problem, aiming at finding the BSs

that when switched off leads to the highest network-impact

[63]. In addition, an important problem associated with BS

on-off switching is related to coverage holes. Hence, another

decision metric is related to avoiding coverage holes. In [64],

it is shown that finding the optimal set of BSs that minimizes

the network power consumption while avoiding coverage holes

is closely related to the minimum-weight disk cover problem,

which is known to be an NP-hard problem and hence a greedy

algorithm is proposed to switch off BSs while maintaining

network coverage in polynomial time complexity. To assess the

performance of different MT association mechanisms, queue-

ing models are used [55]. Specifically, the MT association

process in the overlapped coverage of different BSs is modeled

as a customer joining a queue with V = |B||M| servers,

where |B| and |M| denote the number of BSs with overlapped

coverage and the maximum number of MTs accommodated in

each BS, respectively. Consider a two-BS scenario with three

service areas. In service areas 1 and 2, an MT is served by the

BS covering that area. In service area 3, an MT can be served

by either of BSs with overlapped coverage. A BS is switched

off and hence its corresponding |M| servers are shut down, if

no MT is assigned to it. Using the queueing model, analytical

expressions are derived for call blocking probability, average

number of MTs assigned to each BS, and average power and

energy consumed by the network operator to serve one MT

[55]. The model can be approximated to account for the case

with multiple-BS overlapped coverage.

Based on the MT association phase, the BS operation

decision is specified. Hence, BSs with a concentrated call

traffic load become active, while light loaded BSs are switched

off. The BS operation problem deals with three concerns,

namely accommodating future traffic demands, determining

BS wake-up instants for switched off BSs, and finally how

to implement the BS on-off switching decisions. For the first

concern, it should be noted that the BS operation decision lasts

for a long duration (i.e., several hours), as frequent BS on

and off switching is not desirable due to the increased energy

consumption in the BS start-up phase [11] and the unavailable

service for the off cells during the decision computation phase

[51]. As a result, the BS operation decision should address the

future call traffic load either by reserving some resources to

account for the future demands [51] or by exploiting the histor-

ical call traffic load pattern [11]. In [65], an online stochastic

game theoretic algorithm is proposed, where neighboring BSs

communicate with each other to predict their traffic profiles,

which eventually will lead to optimal switching decisions and

result in minimum network energy consumption. As for the

second concern dealt with in the BS operation problem, it

should be noted that switching off some cells is executed given

that active BSs extend their coverage areas to provide service

for the cells with inactive BSs. As the call traffic load of the

inactive cells increases beyond the capacity limitation of the

active BSs, some of the inactive BSs are switched on. Hence,
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(a) M -based scheme (b) V -based scheme: single vacation

Ê

(c) V -based scheme: multiple vacation

Fig. 2. BS wake-up schemes [66]. In the M -based scheme, the BS is switched off in an idle condition and it wakes up when M users arrive at the system.
On the other hand, for the V -based scheme, the BS remains sleep for a period of vacation time before waking up. In a single vacation case, the BS remains
awake after the vacation period even if there is no call request to serve, while in a multiple vacation case, the BS goes back to sleep if it wakes up and finds
no call request to serve.

in addition to specifying which BSs to be switched off, another

equally important research direction aims to determine the

wake up instants for switched off BSs. For instance, two wake

up schemes are presented in [66], namely number M -based

and vacation time V -based schemes, as shown in Figure 2. One

limitation with the M -based scheme is the requirement that

the BS needs to continuously monitor the user request arrivals,

which translates into an advantage for the V -based scheme.

For femto-cell BSs with overlapped coverage with macro-cell

BSs, three wake up modes are presented in literature, namely

BS controlled, MT controlled, and network controlled modes

[67]. In the BS controlled mode, the femto-cell BS performs

continuous sensing for user activity for wake up, while in

the MT controlled mode, the MT sends wake up messages

for a sleeping femto BS. Finally, in the network controlled

mode, the core network controls the femto BS operation

through wake up messages over the backhaul link. The three

different modes of operation yield different performance in

terms of BS and MT energy consumption and signaling

overhead. Specifically, the BS controlled mode results in less

energy saving for the BS, the MT controlled mode increases

energy consumption for the MT, and the network controlled

mode results in additional signalling overhead [67]. MDP-

based optimal wake up schemes are proposed in [68] for

network operated femto BSs overlapping with a macro BS.

To wake up the right femto BSs, which serve the extra traffic

demand and still result in efficient energy usage, information

regarding call traffic load and user localization within the

macro cell is required. In absence of the traffic localization

information, the femto BS wake up problem can be formulated

as a partially observable MDP [68]. The last issue dealt with

in the BS operation problem deals with switching off mode

entrance and exit, which are two important design stages in

implementing the BS operation decision [69]. The switching

off mode entrance stage should specify how the transition

from the on state to the off state is implemented. If a BS

is switched off very fast, the corresponding MTs may not be

able to execute successfully their handover procedures and

their calls will be dropped. One reason is a strong received

signal from the BS that the MT is associated with, which

prevents the MT from hearing signals from nearby BSs. Hence,

if the BS that an MT is connected to is suddenly switched

off, the MT will not be able to synchronize and associate with

another active BS. Another reason is the maximum number of

handovers that can occur simultaneously towards a new BS,

due to the limited signaling channel capacity. As a result, a

progressive switching off operation can be used, an operation

that is referred to as BS wilting [69], as shown in Figure 3a.

During this process, the MTs associated with the wilting BS

initiate a handover process to the neighboring BSs and the BS

switching off operation is suspended if the handover process

of MTs is unsuccessful. On the other hand, the switching off

mode exit specifies how the transition from the off state to

the on state is implemented. A BS that is switched on too fast

can generate a strong interference to MTs in service. Hence,

a progressive switch on process can be used, and such an

approach is referred to as BS blossoming [69], as shown in

Figure 3b.

B. MT Radio Interface On-Off Switching

Similar to BS on-off switching, an MT with a low or bursty

traffic load can switch off from time to time its radio interface

to save energy. Designing an appropriate on-off switching

schedule for the MT radio interface varies according to

whether the MT establishes communications on the downlink

[48], [70] - [74], uplink [58], [75], or both links [76].
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Ê

Fig. 4. Modeling of MT on-off switching as a server with repeated vacations [48]. The model is similar to the BS V -based scheme with multiple vacations.
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(b) BS blossoming

Fig. 3. BS switching off mode entrance and exit [69]. In BS wilting, the BS
transmit power is progressively halved until the BS is off. In BS blossoming,
the BS transmit power is progressively doubled until the BS is on.

For downlink communications, the MT radio interface on-

off switching mechanism can be classified into two categories

based on whether it implements a traffic shaping technique

or not [48], [70] - [74]. In the absence of traffic shaping

techniques, an MT (with a low or bursty traffic load) switches

off its radio interface if no data packets are available for the

MT at the serving BS. Hence, the MT establishes a switching

on-off schedule that specifies the switching off intervals and

switching on instants. At a switching on instant, the MT listens

to its serving BS to check if there are any packets available

for it. If no packets are available, the MT assumes a switching

off interval; otherwise, the MT keeps its radio interface active

to receive the available packets. During the MT switch off

interval, the incoming packets are buffered at the BS until the

MT next switch on instant. While a long switch off interval

can enhance the energy savings for the MT, it increases the

buffering delay of the packet at the BS until it is received by

the MT. In addition, incoming data packets for the MT may be

discarded in case of a buffer overflow at the BS. Furthermore,

unnecessarily switching on the MT to check packet availability

at the BS buffer results in MT energy losses. Hence, the main

research challenge in this case is how to design a switching

schedule for the MT radio interface that maximizes its energy

saving while reducing the buffering delay of packets available

at the BS. One approach is to model the MT radio interface as

a server that assumes repeated vacations [48], [70], as shown

in Figure 4. Hence, analytical expressions can be derived

for the expected number of switching off intervals until a

packet is available for the MT at the BS. Using the analytical

expressions, myopic optimization problems can be formulated

to minimize the MT energy consumption rate while achieving

acceptable performance in terms of the message response

time, which is defined as the time interval from arrival time

of an arbitrary message at the BS to the time it leaves the

system (BS) after service completion [48]. Besides myopic

optimization techniques, dynamic programming can be used to

design a switching off schedule that minimizes a cost function

consisting of a weighted sum of the energy consumed for radio

interface on-off switching and a target performance metric

(e.g., the buffering delay at the BS for the MT when switched

off) [70]. In addition to queueing models coupled with myopic

and dynamic optimization techniques, a Llyod-max algorithm

can be used to design a schedule that specifies the switching on

instants for the MT radio interface [71]. One limitation with

the aforementioned works is that, if the packet inter-arrival

time of the application is too small, the MT cannot switch off

its radio interface to provide acceptable QoS performance. In

addition, the MT consumes a significant amount of energy to

switch on its radio interface. Further, every time the MT finds a

single packet available at the BS buffer, an interruption signal

is triggered by the MT radio interface to activate the MT data

bus and central processing unit (CPU). If the MT experiences

frequent interrupts, it will not be able to enter a deep sleep state

and only a small amount of energy will be saved. Therefore,

traffic shaping techniques are introduced to enable a longer
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idle duration for an MT2. Such a traffic shaping technique can

be implemented by the MT itself, where the MT buffers the

incoming data packets for a short period at its radio interface,

without activating its data bus and CPU, and then releases the

data packets as a burst so as to reduce the interruption trigger

events and to save more energy [72]. For transmission control

protocol (TCP) applications, an alternative approach can be

triggered by the MT, where the MT forces the BS to send

data packets in bursts and can enjoy a longer idle duration by

announcing a zero congestion window size. Hence, the data

packets are buffered at the BS for a longer period, until the

MT announces an appropriate window size to allow the BS

to release data packets in bursts [73]. While the above traffic

shaping research deals with a single-user scenario, the main

objective in a multi-user environment is to schedule the on-off

switching of radio interfaces for different MTs so as to satisfy

their target QoS and save energy by switching off the MT radio

interfaces for a long enough time [74]. An MT stores sufficient

data at its buffer to satisfy its QoS and switches off its radio

interface to save energy while the BS serves another MT. The

MT switches on its radio interface only when no sufficient

data is available at its buffer to satisfy the QoS requirement.

For uplink communications, besides adapting the physical

layer parameters such as controlling the transmission power

and modulation/coding schemes, an MT can switch on and

off its radio interface to further save energy. In [75], it is

shown that different parameters such as the packet arrival rate

and packet delay constraint affect the practicality of adopting

such a switching approach. Specifically, it is practical to

employ an on-off switching mechanism for energy saving at

MTs for small packet arrival rate and/or large packet delay

constraint. In such scenarios, the research challenge is how

to jointly adapt the power control, modulation and coding

schemes, and switching on and off the MT radio interface

to save energy in presence of stochastic traffic and channel

conditions (i.e., no a-priori knowledge of traffic arrivals and

channel conditions). In this case, an MT can choose to switch

off its radio interface and hold data packets in its buffer to

transmit them as a burst in better channel conditions. Besides

saving energy, the transmission mechanism should satisfy the

target QoS in terms of data packet delay and should avoid an

overflow event at the MT buffer. A Markov decision process

(MDP) problem can be formulated to control the data packet

transmission throughput (and hence the amount of buffered

data packets), the achieved bit error probability, and the MT

radio interface state (switch on or off) so as to balance energy

saving with QoS guarantee (i.e., minimizing data packet delay

and avoiding buffer overflow) [58].

A general model for MT radio interface on-off switching

is captured in the context of bi-directional communications

[76]. In such a scenario, no BS buffering delay is experienced

by incoming downlink traffic during uplink transmission, as

the MT radio interface is already switched on. Hence, a

finite general Markovian background process can be used

to model the uplink activity and downlink traffic so as to

2The idle duration in this context represents the interval during which an
MT is not receiving any data packets.

derive analytical expressions for the buffer occupancy and

downlink packet delay statistics [76]. Such expressions can be

useful in developing an efficient on-off switching mechanism

for the MT radio interface for both uplink and downlink

communications.

C. Discussion

Based on the above review, BS on-off switching aims to

exploit spatial and temporal fluctuations in call traffic load to

achieve energy saving. As a result, using static call traffic mod-

els for switching schedule design (i.e., to determine decisions

on switch-off and wake-up instants) and/or performance evalu-

ation, as in [64], is not realistic. Instead, the call traffic models

should reflect a joint spatial and long-term temporal fluctuation

behavior, as in [11] and [62]. Traffic models that capture joint

spatial and short-term temporal call-level fluctuations, such as

[37] and [51], are not capable of assessing the daily switching

schedule performance due to a time varying traffic demand.

Furthermore, traffic models that capture only long-term (as

in [62] and [65]) or short-term (as in [55]) temporal call-level

fluctuations fail to exploit the spatial dimension of the problem

and stand unrealistic for performance evaluation in large-scale

networks with multiple BS sites. For BS power consumption

models, both static and dynamic components, as in (7) and (9),

should be accounted for, which is the case for the algorithms

developed in [11], [37], and [64]. Power consumption models

under the assumption of constant transmission power, as in

[51], [55], [63], and [65], neglect the scaling of transmission

power with the call traffic load, which is unrealistic. Overall,

the reported solutions in Section IV.A. aim to minimize the

network energy consumption, which is somehow similar in

concept to maximizing the energy consumption gain given

in (14). However, such an expression does not assess the

network gain (in terms of transmitted power as in (15) or

network coverage as in (16)) versus the incurred cost (in

terms of the network consumed power). The reported solutions

minimize the network energy consumption while satisfying a

target performance metric. For BS on-off switching solutions,

the target performance metrics are based on admission quality

requirements, as in [11], [51], [55], [64]. Few works account

for application quality requirements, as in [37]. In practice, a

solution should satisfy both admission and application quality

requirements, as in [62] and [63], to better serve the users

required QoS.

On the other hand, MTs can save energy by switching

off their radio interfaces during idle periods of bursty traffic.

Hence, static traffic models for a fixed number of backlogged

data packets ready for transmission, as in [75], are not re-

alistic to determine the MT idle period and hence will not

help in developing practical sleep schedules for the MTs.

Instead, practical traffic models should capture the packet-

level short-term temporal fluctuations, as in [48], [58], [70],

[71], [73], [74], and [76]. While some solutions account for

both active and idle power consumption values, as in [48],

[70], [71], and [73], and reception power consumption, as

in [74] and [76], these solutions do not include the circuit

power consumption component of the MTs. Both transmission
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and circuit power consumptions should be accounted for as

in [58] and [75]. However, such models assume fixed circuit

power consumption and neglect the dynamic circuit power

component as given in (12) and (13). The reported solutions

in Section IV.B. minimize the MT energy consumption while

satisfying application quality performance metrics. However,

such a modeling approach overlooks the network capacity

limitations, e.g., in terms of available bandwidth, which may

lead to call blocking. Hence, the proposed solutions should aim

to satisfy both application and admission quality requirements.

V. GREEN SOLUTIONS AND ANALYTICAL MODELS AT

HIGH AND/OR CONTINUOUS CALL TRAFFIC LOAD

Energy efficient scheduling techniques are adopted to sat-

isfy the required QoS at reduced energy consumption when

switching on-off techniques are infeasible due to a high and/or

continuous call traffic load. Various scheduling techniques are

proposed in literature for network operators and mobile users,

and can be divided into four categories, as shown in Table VIII.

The categories include scheduling for single-network access,

multi-homing access, small size cells, and scheduling with

different energy supplies, which are discussed next in more

details.

A. Scheduling for Single-network Access

In this case, a mobile user connects to a single wireless

access network at a time. Two system models are adopted in

literature for single-network access. The first model assumes

that a single network covers a given geographical region,

which can be referred to as a homogenous wireless medium.

The second model deals with the availability of multiple

networks with overlapped coverage in the geographical region,

which is referred to as a heterogeneous wireless medium.

For the homogeneous wireless medium, the network operator

aims to assign its resources to MTs so as to reduce the

total power consumption of its BSs. Such an objective can

be achieved by minimizing the transmission power while

providing acceptable QoS performance, a technique that is

referred to as margin adaptive strategy [9]. An approach

to implement the margin adaptive strategy is via a score-

based scheduler. For instance, in an OFDMA system, the BS

calculates a score for every resource block q to be assigned

to MT m [77]. The calculated score ensures that the BS

would consume the least transmission power by assigning

resource block q to MT m. Moreover, the score promotes fair

resource allocation among MTs, as a penalty function can be

included based on the number of already allocated resource

blocks for MT m. A low score indicates a more desirable

resource block. Fairness consideration is also investigated in

[78] following a proportional rate constraint, which ensures

that each user eventually obtains a specific proportion of the

system throughput. Admission control policies can also be

employed to implement a margin adaptive strategy, where

a new session is admitted into the system as long as the

sub-frame energy in an OFDMA-based BS is kept below a

certain threshold [79]. Moreover, a margin adaptive strategy

can be implemented through a discrete rate adaptation policy

that controls the transmission rate and power according to

channel conditions, so as to maximize the achieved energy

efficiency while satisfying a bit-error-rate constraint [80].

Similarly, a channel driven rate and power adaptation strategy

can be achieved by jointly adapting modulation and coding

schemes (MCS) and transmission power to optimize the trade-

off between goodput and energy efficiency [81]. In addition,

a margin adaptive strategy can be implemented by scheduling

resources among MTs based on their traffic delay tolerance

[54]. Specifically, delay tolerant traffic (e.g., video and data)

can be served in an opportunistic way during periods of good

channel conditions (i.e., soft real time service). One limitation

with the margin adaptive strategy is the requirement of CSI to

allocate the transmitted power, which requires using pilot sym-

bols. These pilot symbols will incur some energy consumption.

Two approaches can be used for pilot energy assignment [9],

namely constant single pilot energy and constant total pilot

energy. In the former approach, each pilot keeps the same

energy level independent of the number of pilot symbols.

Hence, the larger the number of pilot symbols is, the more

accurate CSI is available, yet the higher energy consumption

is. The later approach assigns a constant energy to all pilots,

resulting in reduced energy per pilot for a larger number of

pilots, which can lead to inaccurate CSI. On the other hand,

in a heterogeneous wireless medium, energy can be saved by

assigning MTs to the BSs that reduce energy consumption for

a set of operators with BSs of overlapped coverage [49]. In

addition, each BS in such a heterogeneous environment may

choose between two modes of operation, i.e., point-to-point or

point-to-multi-point. Hence, the problem can be decomposed

into two sub-problems, one for BS selection and the other for

BS mode choice. While the work in [49] controls transmission

power only through BS operation mode selection, a joint BS

selection and power control mechanism is proposed in [82],

which aims to associate MTs to BSs with overlapped coverage

while minimizing the BS transmission powers to reduce the

interference among different links. Furthermore, offloading

techniques can be adopted to enhance energy efficiency in a

heterogeneous wireless medium. Specifically, through mobility

prediction and using the pre-fetching feature, data traffic can

be offloaded from cellular networks to WiFi hotspots or femto-

cells [83]. Hence, delay tolerant traffic can be downloaded

when mobile users are close to the WiFi access point or femto-

cell instead of using the macro-cell [84]. Overall, offloading

can be either network or user driven [85]. Various factors affect

the energy efficiency performance in terms of user mobility,

backhaul throughput, data size, and WiFi and/or femto-cell

densities [83].

Similarly, MTs can save energy by appropriate resource

scheduling on the uplink, based on the network multiple

access scheme. Various energy efficient mechanisms are pro-

posed for OFDMA-based networks [33], [34], [43], [57].

The mechanisms mainly enhance energy efficiency through

subcarrier allocation, power control, and joint subcarrier al-

location and power control [43]. Both centralized and de-

centralized architectures can be adopted to implement the

mechanisms [33], [34]. In a centralized architecture, the BS

in each cell jointly performs subcarrier allocation, modulation
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TABLE VIII
A SUMMARY OF GREEN SOLUTIONS AND ANALYTICAL MODELS AT HIGH AND/OR CONTINUOUS CALL TRAFFIC LOAD.

Solution/Analytical Model Comments References 
 

 

 

 

 

 

 

Single-

network  

 

 

 

BS 

 

Margin adaptive strategy  

It minimizes the 

transmission power while 

providing an acceptable 

QoS.  

[9], [54],  

[77] - [81]   

User association in 

Heterogeneous wireless 

medium 

It assigns the MTs to the 

BSs, with coverage overlap, 

that reduce energy 

consumption for a set of 

operators.  

 

[49],  

[82] Ð [85] 

 

 

 

 

MT 

 

 

OFDMA 

network 

Sub-carrier 

allocation 

It enhances energy 

efficiency through joint sub-

carrier allocation and power 

control. 

 

[33], [34], [43] 

Carrier 

aggregation 

It employs both PCC and 

SCC carrier components for 

energy saving.  

 

[57] 

 

TDMA network 

The MT energy efficiency is 

maximized in TDMA 

through opportunistic 

transmission.  

 

[59] 

 

 

 

 

Multi-

homing 

 

 

BS 

 

 

Network Cooperation 

The MT receives required 

data rate from multiple BSs 

simultaneously. The BSs 

coordinate their transmitted 

power for energy saving.  

 

 

[50], [53] 

 

 

MT 

 

 

BS selection and power 

allocation 

The MT specifies a set of 

BSs for uplink transmission 

and determines the allocated 

transmission power for each 

radio interface.  

 

 

[20], [46] 

 

Small Cells 

It divides the cell into 

several tiers of smaller cells 

to reduce transmission range 

for BSs and MTs.  

 

[36], [56], [86], 

[87] 

 

 

 

 

Multiple 

Energy 

Sources 

 

 

BS 

 

Multiple retailers 

The network operator 

decides how much 

electricity to procure from 

each retailer. 

 

[23], [88] 

 

On-grid and green 

energy sources 

The objective is to 

maximize the utilization of 

green energy and saves the 

on-grid energy.  

 

[52] 

Complementary 

renewable sources 

The BSs are powered using 

only renewable sources.  

[89], [90],  

[92] Ð [97] 

MT Multiple batteries It employs the recovery 

effect of batteries. 

[98] 

Ê
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order adaptation, and power control for MTs. In a distributed

mechanism, given a subcarrier assignment, an MT adjusts

its modulation order and transmission power to optimize its

own energy efficiency. In a multi-cell environment, multi-cell

interference should be taken into account via energy efficient

uplink resource allocation scheduling [34], [43]. In addition

to subcarrier allocation and power control, energy efficiency

is maximized for OFDMA-based networks through dynamic

carrier aggregation [57]. In general, while an MT served by

all carrier components will enjoy an enhanced throughput,

its energy consumption also increases. Following a dynamic

carrier aggregation technique, an MT is assigned to the queue

of a given carrier component, which is referred to as primary

carrier component (PCC). Whenever the queue of a carrier

component is empty, it helps other carrier components through

aggregation and therefore, it is referred to as supplementary

carrier component (SCC). Two mechanisms can be adopted

for SCC assignment [57]. The first mechanism aggregates all

SCCs to support the PCC with the longest queue. The second

mechanism orders PCCs according to queue length and SCCs

are circularly allocated to the ordered PCCs in a round-robin

fashion. For time division multiple access (TDMA)-based

networks, energy efficiency is maximized for a set of MTs

by opportunistic transmission [59]. Specifically, a scheduler

is designed at the BS to select an MT for transmission and

to determine its transmission rate. The problem complexity

is reduced by decomposing it into two sub-problems. The

first is a user scheduling sub-problem which selects an MT

opportunistically for transmission, based on channel conditions

and backlog information. The second sub-problem determines

the transmission rate for the selected MT to minimize the

transmission power by transmitting packets in queue such that

the average delay constraint is satisfied with equality.

B. Scheduling for Multi-homing Access

Recently, the wireless communication medium has become

a heterogeneous environment with overlapped coverage due to

different networks. In such a networking environment, MTs

are equipped with multiple radio interfaces. Through multi-

homing capability, an MT can maintain multiple simultaneous

associations with different networks. Besides enhancing the

achieved data rate through bandwidth aggregation, multi-

homing service can enhance energy efficiency for network

operators and mobile users. This is because an MT experiences

different channel conditions and bandwidth capabilities over

its different radio interfaces.

Different network operators can reduce the transmission

power of their BSs by supporting multi-homing services. The

motivation behind employing multi-homing to enhance energy

efficiency can be explained using the power-rate curve, which

can be divided into two regions [50]. In the first region,

power consumption increases slowly with the growth of data

rate, while in the second region power consumption increases

dramatically with data rate. Hence, a multi-homing threshold,

Rb, of data rate can be determined to start multi-homing trans-

mission if the required data rate is larger than Rb [50]. The

multi-homing threshold is based on the ratio of channel gain

between the MT and BSs of different networks. In addition, the

optimal transmission data rate from each BS can be specified

to maximize the energy efficiency of the networks. Moreover,

cooperating BSs can control their transmission power using a

semi-Markov decision process (SMDP) to minimize the total

BS power consumption under a target QoS constraint at the

MTs [53].

Similarly, MTs can enhance their energy efficiency through

multi-homing service. In this case, an MT determines which

and how many BSs will be selected for multi-homing, based on

the required data rate and the channel parameters of available

BSs [20]. To reduce the complexity, the problem can be

decomposed into two sub-problems. The first sub-problem

specifies which BSs will be selected for multi-homing and

the second sub-problem determines the optimal transmission

rate from each selected BS. For a constant data rate service,

energy efficiency maximization is equivalent to MT total

power consumption minimization. Different from [20], the

work in [46] deals with energy efficiency maximization for a

variable data rate using multi-homing service through power

allocation.

C. Scheduling With Small Size Cells

A small cell has a radio coverage of tens to a few hundreds

of meters (e.g., pico and femto cells) [36]. As a result,

the division of a macro-cell into several tiers of smaller

cells replaces a long range transmission with a short range

transmission due to the close proximity between small cell BSs

and MTs [86]. It is expected that the power consumption of a

small cell will be approximately 5 watts by 2020 [87]. Hence,

an improved energy efficiency can be achieved. In [86], an

expression of the possible power gain G(J) resulting from cell

splitting into J smaller cells is provided. It is shown that, for

an ideal free space propagation channel model, the achieved

gain satisfies G(J) < 1, and hence cell splitting should not be

implemented. On the other hand, in a non-ideal propagation

environment, G(J) > 1 and it increases with the number

J of small cells3. Different configurations are presented in

literature for small cell deployment, as shown in Figure 5.

It is shown in [87] that the cell-on-edge deployment results

in a significant reduction in network energy consumption, as

compared to the uniformly distributed configuration, due to

lower transmit power for cell edge users.

The main challenge of cell splitting is the associated inter-

tier interference. This is mainly due to the limited radio

resources. Hence, the radio resources of the macro-BS are

shared among the small cells. Multi-cell processing can be

employed to mitigate interference [86]. Hence, multiple BSs

within a cluster exchange CSI and users’ data to support MTs

and eliminate interference. Based on the gathered information,

beam-forming techniques are used to minimize the total trans-

mit power while satisfying a certain signal-to-interference plus

3The BS power consumption model in [86] does not capture the BS
embodied energy as in [16]. When BS embodied energy is considered, there
is a limit on the number of small cells that can be included to enhance energy
efficiency.
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Ê Cell-on-edge 

(a) Cell-on-edge deployment

Ê

Small cell 

(b) Uniformly distributed deployment

Fig. 5. Configurations for small cell deployment [87]. Cell-on-edge deploy-
ment distributes the small cells around the edge of a macro cell. On the other
hand, in uniform distribution, small cells are uniformly distributed across the
macro cell.

noise ratio (SINR) for different MTs. In addition to multi-

cell processing (and in presence of both co-tier and cross-

tier interference), admission control with QoS guarantee can

play a vital role in mitigating interference, where a joint

resource allocation mechanism can be employed among multi-

tier networks [56] .

D. Scheduling With Multiple Energy Sources

Various scheduling techniques have been proposed to deal

with the presence of multiple energy sources [23], [52], [88]

- [98]. The main objective in these works is to jointly control

transmission power and select the energy source that mini-

mizes the total energy consumption. For network operators,

multiple energy sources deal with the availability of different

electricity retailers [23], [88], on-grid and green (renewable)

energy [52], and different (complementary) renewable sources

[89] - [97]. For MTs, multiple energy sources deal with the

availability of multiple batteries [98].

In an electricity market liberalization model, electricity re-

tailers compete with each other and aim to achieve the highest

individual profits by adjusting the electricity price offered to

users in different regions [23]. Electricity prices offered by

different retailers change frequently to reflect variations in the

cost of energy supply, which is referred to as real time pricing.

Given a set of electricity retailers, a Stackelberg game can be

formulated, where each retailer provides its real time price,

to maximize its profit, to the network operator which decides

how much electricity to procure from each retailer to power

on its BSs and achieve the lowest call blocking with the least

cost [23]. In [88], the optimal amount of energy to be procured

from each retailer is determined using evolutionary algorithms

(Genetic Algorithm and Particle Swarm Optimization), which

due to the random nature of the evolution process is shown

to outperform the deterministic algorithm developed in [23].

In addition to the presence of multiple electricity retailers,

it is argued that the BSs of future cellular networks will be

powered by both on-grid and green (renewable) energy (e.g.,

solar energy) [52]. With such a hybrid energy system, the

objective is to optimize energy utilization in such networks

by maximizing the utilization of green energy and saving on-

grid energy. Network designers are faced with two central

issues [52]: 1) how to optimize the green energy usage at

different time slots to accommodate the temporal dynamics

of the green (solar) energy generation and the mobile traffic,

and 2) how to accommodate the spatial dynamics of the mobile

traffic with the objective of maximizing the utilization of green

energy by balancing the green energy consumption among

BSs through cell size adjustment. While the aforementioned

works deal with the presence of on-grid energy, the long

term objective is to power BSs in appropriate locations using

only a combination of complementary renewable sources (e.g.,

wind in winter and solar in summer) [89]. Furthermore, power

cooperation enables different BSs (networks) to share (trade)

their green power with each other whenever possible for a

sustainable and energy efficient network operation [90]. In uti-

lizing renewable energy sources, renewable energy generation

and storage should be investigated. Since renewable energy

sources are intermittent, energy storage is used to address this

limitation. Hence, the harvested energy is stored in a battery

with finite capacity before it is used for transmission [91],

[92]. In this context, the energy replenishment process and

the storage constraints of the rechargeable batteries need to

be taken into account while designing efficient transmission

strategies [93]. Two constraints should be accounted for at the

energy harvesting battery [94]. The first ensures that the energy

drawn from the battery is at most equal to the energy stored

at the battery, which is referred to as the causality constraint.

The second constraint ensures that the energy level at the

battery does not exceed a maximum level to avoid battery

energy overflow. Hence, storage sizing is very important to

guarantee a sustainable energy at a reduced cost. In addition,

BSs have to adapt their data transmission to the availability

of energy at a particular instant [95], [96]. Therefore, more

studies are needed to minimize the overall power consumption

of BSs, through on-off switching at a low call traffic load or

scheduling and node cooperation [97] at a high call traffic

load, to reduce the required generation potential and storage

capacity. A very important aspect of green communications

is to consider the environmental dimension of the proposed

solution. Hence, while selecting an appropriate energy source

(i.e., electricity retailer and/or renewable energy source), it is

necessary to guarantee that the CO2 emission cost is below a

target level. The CO2 emission cost, in kg/hr, related to the
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Fig. 6. A green hybrid solution. The hybrid solution uses a combination of renewable and grid energy sources. Complementary renewable energy sources
can be used. If the power grid is absent, i.e., the BS is not connected to the power grid and hence controller 2 does not exist, the BS is powered only through
renewable sources. An energy harvesting battery is used to overcome the intermittent nature of renewable energy sources.

BS power consumption Pb can be expressed as [23]

I(Pb) = αP 2
b + βPb, (27)

where α and β are constants that depend on the pollutant level

of the electricity retailer.

For MTs, under a pulsed discharge profile, the battery is able

to recover some charges during the interruptions of the drained

current (i.e., no transmission periods). Hence, an improved

battery performance can be achieved. This phenomena is

referred to as the recovery effect. To promote the recovery

effect and enhance the battery performance, a package of

multiple batteries can be used and a scheduling policy can

be developed to efficiently distribute the discharge demand

among the multiple batteries connected in parallel [98].

E. Discussion

The majority of research works that investigate green com-

munication solutions at a high traffic load employ static traffic

models for resource scheduling and performance evaluation,

as in [9], [23], [33], [34], [43], [49], [50], [77], [78], [82],

[86], and [88]. Very few works use traffic models that reflect

long-term (as in [79] and [87]) or short-term (as in [54],

[56], and [57] for call-level and [59] for packet-level) tem-

poral fluctuations. Also, few works use traffic models that

capture spatial fluctuations in traffic load, as in [52] and [53].

Spatial and temporal traffic models should be employed for

performance evaluation of green resource scheduling solutions.

Spatial traffic models are useful in evaluating the algorithm

performance in large-scale networks, while temporal models

are important to investigate the associated signaling overhead,

which may jeopardize the energy saving benefits, if high

overhead is expected. In addition, many works account only

for transmission power consumption as in [9], [43], [49], [50],

[54], [56], [57], [79], [82], [86], and [87]. Both transmission

and circuit power consumption should be accounted for, as in

[23], [33], [34], [52], [53], [59], [77], [78], and [88]. However,

the aforementioned models do not account for dynamic circuit

power consumption, as in (12) and (13). Also, BS transmission

power consumption should scale with the traffic load as

expressed in (7) and (9). Furthermore, for small-cell and multi-

tier deployment, both operation and embodied energy should

be accounted for as in (10). Accounting only for operation

power consumption in such scenarios can be misleading.

While some works aim to minimize the energy consumption,

the work in [77] is to maximize an energy consumption gain

expression similar to (14). Moreover, the works in [33], [34],

[43], [50], [57], and [78] aim to maximize an energy efficiency

expression similar to (17), (18), or (19). Such an expression

provides a better indication of the performance in terms of

the achieved gain (in terms of resulting data rate) versus the

incurred cost (in terms of the energy consumed). Almost all

reported solutions aim to minimize energy consumption or

maximize energy efficiency, while maintaining a satisfactory

performance in terms of application quality requirements. The

works in [23] and [88] target admission quality requirements.

In practice, an effective solution should satisfy both admission

and application quality requirements, as in [56].

VI. FUTURE RESEARCH

The existing research works mainly focus on enhancing

energy efficiency either of network operators or mobile users.

However, a green solution implemented at the network opera-

tor side can lead to high energy consumption at the mobile user

side, and vice-versa. Hence, green solutions should capture the

trade-off in energy efficiency among network operators and

mobile users and should be jointly designed to balance such

a trade-off.

For instance, the BS on-off switching mechanism involves

two phases, namely user association and BS operation. Fo-

cusing only on energy efficiency of the network operator,

a BS on-off mechanism can lead to an energy inefficient

user association from the mobile user perspective. Specifically,

it can lead to MTs being associated in the uplink with a

far away BS in order to switch off a nearby BS. This will

result in energy depletion for the MTs and hence dropped

services. Thus, a BS on-off switching mechanism should

capture the trade-off in the achieved energy efficiency for

the network operator and mobile users, and should aim at
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balancing them. MTs should be associated with BSs that can

balance energy saving for both network operators and mobile

users. The existing research, however, focuses on balancing

energy consumption performance of a BS with the flow-level

performance at the MT, e.g., [37]. Instead, the multi-objective

function in [37] should aim to balance energy saving for BSs

and MTs while satisfying the MT required QoS. As a result,

BS switching off decision criteria in literature, such as user-

BS distance [62], call traffic load [51], network impact [63],

and network coverage holes [64], should be revised. Specif-

ically, the switching off criterion should include, besides the

aforementioned metrics, an MT energy consumption metric.

Similarly, the existing mechanisms present only the call traffic

load as a wake up criterion [68]. The switching mechanisms

should capture the degradation in energy consumption for MTs

and include it as a BS wake up decision metric. Furthermore,

MTs suffer from inter-cell interference. An uplink scheduling

scheme at MTs performs power allocation while dealing with

the inter-cell interference negative effect. However, inter-cell

interference can be affected by the BS on-off switching deci-

sion. Such a dependence can be modeled in the user received

SINR using a BS activity parameter, which equals to one if

the BS is on, and zero otherwise. In addition, the BS on-off

switching decision should promote energy saving at MTs by

switching off cells that result in the highest interference during

a low call traffic load condition. Moreover, the analytical

models used in literature, e.g., the queuing model in [55],

mainly assess the network energy saving performance for a

given mechanism. Such models should be extended to assess

the energy saving performance for both network operators and

mobile users.

Similarly, the existing MT radio interface on-off switching

mechanisms focus mainly on the energy saving performance

at the MT without capturing the impact of the energy saving

mechanisms implemented at the BSs. Specifically, the down-

link mechanisms allow an MT to switch off its radio interface

for a given interval while dealing with only the buffer delay

and/or overflow at the BS, e.g., [48], [70] - [74]. However,

the impact of BS on-off switching is not considered. If the

serving BS is switched off during the MT sleep interval, the

MT connection will be dropped and the buffered data will

be lost. Hence, the MT radio interface switching schedule

design needs to be revised. For instance, in [48], the MT

switching on is triggered upon a packet arrival at the BS.

Such a model should be extended to account for the BS

switching off decision as an additional switching on trigger

for the MT radio interface. Moreover, the existing switching

off design metrics focus on balancing energy consumption at

the MT with the buffer delay at the BS [70]. An extension

is required to account for the BS energy consumption due

to a delayed switching off decision for the BS while waiting

for the MT to wake up. Furthermore, network operators can

save energy at BSs by scheduling delay tolerant applications

(e.g., data and video) opportunistically in the presence of

good channel conditions. MT radio interface on-off scheduling

should take account of the delay at the BS due to both MT

inactivity and BS opportunistic scheduling of traffic. The radio

interface on-off scheduling at an MT and the opportunistic

traffic scheduling at the BS should balance energy efficiency

for both network operators and mobile users, while satisfying

the target performance metrics. Opportunistic scheduling can

also be used for energy saving at MTs. However, such an

approach does not always work in practical scenarios (e.g., a

stationary user suffering from a slow fading channel), which

is not the case for BSs due to spatial user diversity. For the

MT energy saving mechanisms at the uplink, power control

and radio interface on-off switching mechanisms account in

their design only for the channel and traffic dynamics [58]. In

addition, the BS on-off switching dynamics should be captured

while designing an energy saving mechanism.

Furthermore, the energy efficient resource scheduling mech-

anisms at a heterogeneous wireless medium assign MTs to the

BSs which reduce energy consumption for network operators

[49], [82]. Such mechanisms mainly deal with downlink re-

source scheduling. However, no investigation is performed for

MTs with bidirectional traffic, e.g., for video call applications.

In this case, two approaches can be implemented for energy

saving at both network operators and mobile users. The first

relies on single-network access, where the MT is associated

with the BS that balances energy saving for the network

operators and the mobile users. On the other hand, the second

approach employs multi-homing where the MT connects on

the uplink to the BS that promotes energy saving for the mo-

bile user while the MT connects on the downlink to the BS that

promotes energy saving for the network operators. Moreover,

the potentials of the heterogeneous wireless medium should

be better exploited to enhance energy saving. In addition, for

multi-homing service, as MTs connect to multiple networks

simultaneously, radio resources at different radio interfaces

can be properly scheduled to enhance energy efficiency. How-

ever, existing research works focus only on power allocation

schemes at the MT different radio interfaces to save energy in

different channel conditions. Given the bandwidth capabilities

of different networks, cross-layer designs that incorporate joint

bandwidth and power allocation can lead to an improved

energy efficiency.

In addition, the existing opportunistic scheduling mech-

anisms focus on energy saving for network operators [54]

or MTs [59]. However, for MTs with bidirectional traffic,

opportunistic scheduling should be implemented such that the

time slot for uplink and downlink transmission can balance

energy saving for both network operators and mobile users.

Finally, for radio resource scheduling in BSs powered by

renewable energy sources, the existing research focuses mainly

on downlink delay tolerant applications [52], [88]. Hence,

BSs aim to schedule data transmissions at time slots when

energy is available. However, when MT radio interface on-off

scheduling is implemented, the BSs need to account for the

MT sleep interval, which may conflict with the BS energy

limitation due to the finite size of the energy harvesting

buffer at the BS and might lead to buffer overflow. Hence,

the resource scheduling mechanism should balance energy

availability at the BS with energy saving at the MT.
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VII. CONCLUSION

Due to environmental, financial, and QoE considerations,

there has been a great emphasis on the need to develop

energy efficient solutions for wireless communications and

networking. Such solutions are referred to as green solutions.

In this survey, we have reviewed the existing research activities

dedicated to green wireless communications and network-

ing solutions, from the network operator and mobile user

perspectives. The first step towards developing an effective

green solution is to identify the call traffic load condition,

based on which an appropriate definition of energy efficiency

can be proposed, as discussed in Section II. The second

step is to use proper models for power consumption and for

call traffic loads that account for both spatial and temporal

fluctuations, as discussed in Sections II and III, respectively.

Besides improving energy efficiency, certain performance met-

rics should be satisfied, as discussed in Section III, which

are determined based on the target application, e.g., voice,

data, or video services. Given the call traffic load condition,

different green solutions and analytical models can be adopted,

as presented in Sections IV and V. At a low call traffic load

condition, on-off switching of radio devices (e.g., BSs for

network operators and MT radio interfaces for mobile users)

can improve the performance of energy consumption. Radio

resource scheduling techniques have been proposed for a high

call traffic load condition. Despite the various efforts proposed

to analyze and design effective green solutions, many open

issues remain to be further investigated. As future research,

green solutions should capture the tradeoff in energy efficiency

among network operators and mobile users and should be

designed to balance such a trade-off.
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