
A Survey on Hardware-aware and

Heterogeneous Computing on Multicore

Processors and Accelerators

Rainer Buchty

Vincent Heuveline

Wolfgang Karl

Jan-Philipp Weiß

No. 2009-02

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2009-02

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu

A Survey on Hardware-aware and

Heterogeneous Computing on Multicore

Processors and Accelerators

Rainer Buchty1, Vincent Heuveline2, Wolfgang Karl1 and Jan-Philipp Weiss2,3

1 Chair for Computer Architecture, Institute of Computer Science and Engineering
2 Engineering Mathematics Computing Lab

3 Shared Research Group New Frontiers in High Performance Computing
Karlsruhe Institute of Technology, Kaiserstr. 12, 76128 Karlsruhe, Germany

Abstract. The paradigm shift towards multicore technologies is offer-
ing a great potential of computational power for scientific and industrial
applications. It is, however, posing considerable challenges to software de-
velopment. This problem is impaired by increasing heterogeneity of hard-
ware platforms on both, processor level, and by adding dedicated accel-
erators. Performance gains for data- and compute-intensive applications
can currently only be achieved by exploiting coarse- and fine-grained
parallelism on all system levels, and improved scalability with respect to
constantly increasing core counts. A key methodology is hardware-aware
computing where in all production steps explicit knowledge of processor,
memory, and network details is profitably utilized.
In this work we provide a survey on current multicore and accelerator
technologies. We outline architectural features and show, how these fea-
tures are exposed to the programmer and how they can be beneficially
utilized in the application-mapping process. In particular, we charac-
terize the discrepancy to conventional parallel platforms with respect
to hierarchical memory sub-systems, fine-grained parallelism on several
system levels, and chip- and system-level heterogeneity. We motivate the
necessity of hardware-aware computing and summarize the challenges
arising from high-performance heterogeneous computing. Furthermore,
we investigate the interaction of hardware and application characteristics
for selected applications in numerical simulation.

Keywords: Multicore processors; accelerators; heterogeneity; hardware-aware
computing; performance optimization; parallel programming; numerical simu-
lation

1 Introduction and motivation

During the 1990s and early 2000s, processors faced an enormous performance
gain mainly due to the steady increase of clock rates; the associated speed-up for
applications did not require any dedicated programming effort. This free lunch,
however, did come to a grinding halt due to several technological issues such

as heat dissipation, leakage currents, and signal run-times. Even if these issues
were solved, we still face the memory gap and synchronization constraints. With
Moore’s law still being valid, this observation led to a new paradigm: thread and
data level parallelism based on replicated cores. For at least some more years, we
will see exponentially increasing performance, where Moore’s law on transistor
density is no longer leading to more and more powerful unicore processors, but
is rather translated into a corollary called Moore’s cores: core count is doubling
with every new generation. The multicore idea brings a duplication of processor
cores running at lower clock with improved power efficiency. But now, further
performance increase is based on extended parallelism with all applications and
programmers affected.

Already today, multicore processors and accelerators offer a great potential of
theoretically available computing power. And the future is about to promise fur-
ther progression. Parallelism is spreading across several system levels, and data
is held disjointly or redundantly in several stages of the memory sub-system
ranging from small, therefore near and fast, to large, i.e. remote and slow mem-
ories. But while the cores are getting faster and faster, it becomes more and
more difficult to “feed the beast” by quickly moving data in and out. Several
concepts have been developed to mitigate the memory wall. On multicore CPUs,
data is kept in a nested hierarchy of caches for maximizing data reuse by means
of automatized and optimized protocols. Steadily increasing cache size has the
implication that chip real estate is reserved for cache and less space is available
for computing operations. Hence, more power is required for fewer flops. With
the multicore concept and upcoming tiled manycore architectures, the problem
of memory access becomes even more pressing. Solutions as pursued today are
adding further hierarchy levels, e.g. by sharing memory resources between a
number of cores. On Graphics Processing Units (GPUs), one uses fast context-
switching of light-weight threads in order to hide latencies. According to Little’s
law, the latency-bandwidth product is giving an upper bound for concurrency
[1]. A further issue with respect to reliability of hardware results from further
miniaturization and a correspondingly increasing susceptibility to transient er-
rors.

Current products include multicore CPUs (like IA32, x86-64, PowerPC,
SPARC, or IA64), massively parallel GPUs, heterogeneous multicore platforms
like the STI Cell processor, user-configurable Field Programmable Gate Arrays
(FPGAs), coprocessor boards like ClearSpeed’s line of products, and hybrid
platforms like the Convey HC1 hybrid core. In the near future, other con-
cepts like Intel’s Larrabee or AMD’s Fusion are expected to further diver-
sify available products. Manycore devices like Intel’s Single-chip Cloud Com-
puter (SCC) [2] are subject to contemporary industrial research. Current ap-
proaches and technological solutions comprise a down-scaling of homogeneous
computing clusters (e.g. Larrabee, SCC), heterogeneous and hierarchical archi-
tectures (Cell, Fusion), SIMD-array processors (GPUs, ClearSpeed), peer-to-
peer connected processors (HyperTransport, QPI), hybrid platforms with ac-
celerators/GPUs attached via PCIe, dedicated architecture integration (Convey

HC1, socket-replacement FPGAs), and hardware support for the programming
model (e.g. transactional memory). In all areas, the hardware vendors are pushed
towards novel techniques that promise further performance increase. Permanent
innovation is the only sales pitch.

As a consequence of different ideas, we are facing diverging approaches in
technology with different processing models and accordingly different program-
ming approaches and environments. Each offered device comes up with its own
characteristics and specific features. For the user, this translates to different
effort, extra learning curves, isolated benefits, and unexpected drawbacks. The
devices mainly differ in the configuration and arrangement of functional and con-
trol units, and the data flow from main memory to the compute cores is organized
differently. As a consequence instruction sets and the generic or vendor-specific
programming concepts differ. In some programming approaches, only parts of
the hardware structure are exposed to the user and are accessible by the pro-
grammer. For some platforms parts of the internal processes are automatized by
means of the runtime system and protocols, for other devices many things are
left to the programmer – giving more flexibility but also more responsibility.

The great challenge is to exploit the available parallel potential for speed-
ing up or even for enabling large-scale numerical simulation, image processing,
real-time applications, or business-critical processes. Numerical simulation on
high-performance computers has evolved to be the third pillar for gaining sci-
entific cognition – besides theory and experiment. But for attaining maximal
benefit from technology, mature parallel concepts need to be developed and uti-
lized. We still have to explore suitable software frameworks and learn how to
use current technology. Resulting from wide variety and fast advancements, first
standards are about to evolve just recently such as e.g. OpenCL [3]. The ex-
perience over four decades in parallel programming is proving that there is a
hard job to be done, and the general breakthrough is still to come. Due to the
absence and impracticality of parallelizing compilers and the need for manual
performance-tuning, all software-development processes need to be adapted to
the new prerequisites: all kinds of multi-level parallelism, finer granularities, and
a nested hierarchical memory system combined with software- or user-managed
data transfers need to be exploited and expressed by the algorithms. Keeping
the future perspective in mind, applications need to be designed with respect to
scalability across several processor generations and concepts. Whether a paral-
lel application can be mapped most profitably to a particular parallel platform
while still keeping scalability potential depends on the characteristics and com-
munication pattern of the underlying parallel algorithms. Best performance can
be achieved for uniformly structured applications with high arithmetic intensity
(ratio of performed flop per transferred byte), optimal locality, uniformity of
operations, low bandwidth requirements, and the possibility to agglomerate or
divide sub-blocks of data and computation over a large variety of granularities.
Since these prerequisites are unrealistic for real application scenarios, the actual
structure and properties of the algorithms need to be exploited at its best by
organizing all data and computations in a platform-specific manner. However,

it is still an open question regarding the right platform to use and the right
paradigm: as long as these questions are unresolved no one will invest the nec-
essary amount of money, time and resources. Isolated approaches and specific
solutions are likewise to be dead ends. On the other hand, these business risks
do also come along with chances.

The multicore dilemma can only be overcome by holistic approaches in an
interdisciplinary environment. For all steps of the full simulation cycle compre-
hensive hardware knowledge is required in order to achieve optimal throughput.
A considerable trade-off exists between performance, productivity, portability,
and maximal flexibility of an implementation, and its goal needs to be set in-
dividually as the design and parameter spaces are high-dimensional. Hardware-
aware computing is a multi-disciplinary approach to identify the best combina-
tion of application, physical models, numerical schemes, parallel algorithms, and
platform-specific implementations. Design goals are maximal flexibility with re-
spect to software capabilities, mathematical quality, efficient resource utilization,
performance, and portability of concepts.

The goal and the contribution of this work is to provide an overview of
current technologies, their basic features, and their potential for deployment in
high-performance computing and numerical simulation. We want to point out
how corresponding parallel programming environments can expose or hide im-
portant hardware details and how applications and algorithms can be mapped
to a considered device. Furthermore, we show basic application characteristics
and the linkage between mathematical modeling, parallel implementation, and
quality of the results. In addition, drawbacks and impact of algorithms and im-
plementations are worked out specifically. Last but not least, we would like to
give some advice to the users for their difficult decisions regarding appropri-
ate choice of hardware platforms and programming environments that give the
best fit for their application requirements and the amount of necessary work for
achieving desired performance.

In recent years, an unmanageable amount of research work around specific
multicore and accelerator technologies has evolved. While some papers describe
architectural concepts [4], parallel programming methodologies and environ-
ments [5], most work focuses on selected applications and their dedicated imple-
mentation on specific architectures. Some impressive work is done by comparing
basic application kernels on a multitude of multicore platforms [6–8]. In [9],
an irregular and data-intensive application is evaluated on different multicore
platforms. [10] details the design constraints for multicore and manycore archi-
tectures; furthermore, the author outlines the drawbacks of OpenMP, MPI, and
hybrid MPI/OpenMP approaches for chip-level multiprocessing. The future of
parallel processing landscape has been researched by an interdisciplinary team
at Berkeley [11]. However, no general survey exists that combines aspects of
applications, algorithms, programming approaches and platforms in a unified
manner. In our presented work we try to tackle this task while concentrating on
aspects of high-performance computing and numerical simulation.

This paper is organized as follows: Section 2 summarizes basic features and
concepts of current multicore technologies. In Section 3 we provide an overview
of contemporary multicore implementations. Section 4 gives a concise insight
to parallel programming environments. In Section 5 we detail the necessity of
hardware-aware computing and outline basic characteristics of selected applica-
tions. We conclude in Section 6.

2 Hardware features

Technological innovations across several decades have brought up ever more pow-
erful processors; multicore processors are setting new milestones in these devel-
opments: performance is now based on thread-level and data-level parallelism.
Per-thread performance will remain essentially static for the next processor gen-
erations, hence, software developers are challenged by increasing the number of
threads in their code. In the following, we give an overview of the technological
principles employed in multicore CPUs, how they influence program generation,
and what challenges are to be expected.

Continuity of Moore’s law is still giving reduced chip size for the same amount
of functionality, or increased functionality at the same chip size. The rising num-
ber of available transistors can be used to build more components and more com-
plex components on a single die. Either the control logic or the size of caches
can be enhanced, or, as described, the number of complete cores on a chip can
be further increased. Replication of cores can be done in two basic ways, ei-
ther building multicores from few, quite complex cores, or less complex ones but
many of them. As of now, we see both approaches in the field, e.g. in case of
IA32-derived multicore processors currently offering two to eight cores, or mas-
sive multicore processors consisting of rather lightweight processing elements as
in the case of GPUs, which currently comprise somewhere between 240 and 1600
individual processor cores.

Multicore architectures add another level of complexity to the design of
memory hierarchies. Unlike popular belief, multicores are not just scaled-
down clusters, but have dedicated requirements to be considered when design-
ing an appropriate memory subsystem. Hence, we currently see a multitude of
different approaches ranging from individual caches and hierarchies shared be-
tween two or more cores to mixed approaches where some cores feature scratch-
pad memories, others caches, or combinations of both concepts. Larger on-chip
caches organized in several hierarchy levels are the basic concept to hide mem-
ory access latencies, therefore most modern desktop and server CPUs typically
have at least three independent caches: a data cache to speed up data fetch
and store, an instruction cache to speed up executable instruction fetch, and a
translation lookaside buffer to speed up virtual-to-physical address translation
for both, executable instructions and data. For uniprocessor cores, typically the
cache infrastructure is heuristically tuned towards a general optimum with regard
to the processor microarchitecture based on given benchmarks. While the use of
cache memory is implicitly transparent and therefore usually does not require

dedicated consideration by the programmer, for high-performance applications
the source code should be tuned individually to given cache configurations: doing
so improves data locality by more efficiently using the present cache resources.
An even more efficient resource use can be achieved by abandoning the concept
of transparent caches but instead use so-called scratchpad memory (SPM).
It can be shown that for same memory sizes the SPM concept achieves better
utilization and energy efficiency [12] compared to using caches. However, SPM
breaks with the concept of transparency and requires dedicated consideration
by the programmer who needs to take care of data transfers between fast but
small SPMs and main memory. In the relaxed stream-processing model on
the CUDA architecture, we also find local memory shared by the stream pro-
cessors of a multiprocessor: data can be loaded to and stored from the shared
memory at any time of processing and is handled like a user-managed cache.
Automated caches are also available for reading and writing data [13]. Addi-
tionally, texture and constant caches are good for read-only caching. In addition
to memory hierarchy, also memory attachment needs to be considered: since
main memory is attached to multicore processors locally, we have non-uniform
memory access (NUMA) for processors where the memory controller is included
on-chip (Intel Nehalem, AMD K10, SPARC); in previous generations of Intel
processors (Core microarchitecture: Xeon, Core 2) the memory controller was
located on the NorthBridge and memory access was uniform. Hence, memory-
aware programming is strongly advised to achieve maximum performance.
The actual memory architecture employed in individual nodes and the used pro-
gramming model might lead to hybrid approaches such as e.g. required when
targeting a cluster comprising of individual Cell BE nodes. Memory alignment
and proper coalescing of data transfers is highly relevant for bandwidth-bound
applications. Software and hardware prefetching should be enabled by appropri-
ate structuring of code.

In recent multicore-based systems parallelism is spreading across several sys-
tems levels. Some of them need to be carefully addressed by the programmer by
decomposition of data and tasks, others can only be influenced implicitly. Dy-
namic ILP exploitation (instruction level parallelism) – as the lowest-level
and important form of parallelism – is a common feature of microprocessors for
over a decade. The second source of parallelism is based on parallel execution
on short vectors. This concept is known as SIMD Within A Register (SWAR).
Instructions are executed on a group of registers – typically of size 128 bit – at
the same time. SWAR parallelism can be found on general purpose multicore-
CPUs (SSE), Cell’s SPEs and in ClearSpeed’s accelerators. On Intel’s planned
Larrabee processor SWAR width will be extended to 512 bit. The third level of
parallelism is hardware-supported multithreading – e.g. HyperThreading (HT),
Symmetric Multi-Threading (SMT) – where single cores may appear as multiple
cores by replicating control flow logic and sharing execution units in time-slicing
mode. On another level, SIMD processing exploits further data parallelism
by applying an instruction to all elements of a collection of data in parallel. The
main advantage is that only the data-path needs to be replicated but not the

control unit. However, SIMD processing typically has poor support for control
flow. SIMD functionality is the basis of modern GPUs (with control flow ex-
tensions) and the ClearSpeed accelerators (with additional SWAR parallelism).
The fifth level of parallelism is core-level parallelism. In multicore CPUs, the
same kind of core is arranged in groups of two, four, six, or eight and builds a
homogeneous multicore processor with strong coupling. The next level of paral-
lelism is socket-level parallelism: on a single node of a large computer cluster
several sockets may contain various multicore CPUs or FPGAs as socket replace-
ment chips. Further devices like Cell, GPUs, or ClearSpeed accelerators can be
attached via PCIe connections. Different instruction sets and different interfaces
put particular emphasis on the socket-level heterogeneity. The highest level of
parallelism is provided on the node level. Up to hundreds of nodes might be
connected by specific topologies, e.g. via Infiniband or Gigabit Ethernet, into a
huge cluster.

In order to achieve maximum benefit, exploiting these levels of parallelism
adds significant complexity to the overall architecture. On lowest level, ILP col-
lects a bunch of techniques that empower parallel processing of control-flow
instructions at run-time; it was added by extending the already existing prin-
ciples, i.e. from scalar to superscalar pipeline to out-of-order execution. Now,
the per-cycle performance has reached saturation, as it is increasingly difficult
to extract ILP from instruction streams. Moreover, ILP is inefficient for many
applications, e.g. in case of superscalar pipelining where it is difficult to predict
code behavior in branches. Techniques like out-of-order execution lead to more
complex logic contradicting energy efficiency. Hence, ILP is resource-intensive
and accounts for considerable heat generation. For keeping the pipelines busy
and fully-loaded, the prediction of branches is critical in the case of dependent
jumps (e.g. loops and if-branches). Branch predictors can be static or dynamic,
and need to be accounted for by program development. On modern GPUs, di-
vergent threads are reordered into convergent blocks; other simplified cores like
the Cell’s SPEs do not support branch prediction: in this case loops need to
be unrolled or branches need to be detailed with branch-hint instructions and
directives. One interesting observation was that despite ILP exploitation unicore
processors still could not be fully exploited. This led to the introduction of the so-
called HyperThreading (HT) technology being the first widely deployed thread
level parallelism (TLP) support in general purpose processors. For HT, basically
only support for two thread states was introduced into the architecture by adding
required registers and control logic. That way, memory access latencies can be
hidden by fast context switching. Even more acceleration can be achieved with
dedicated multithreading support, where also the remaining microarchitecture
is multiplied to fully support a number of threads (Alpha, Sun Niagara) [14].
With increasing numbers of threads thread management also becomes increas-
ingly costly, hence architectures for massively multithreading therefore employ
hardware thread managers, like e.g. the NVIDIA CUDA architecture.

Considering memory interconnection of individual cores, multicore architec-
tures can be categorized by a distinction into hierarchical designs, pipeline de-

signs, network-based designs and array designs. In a hierarchical design, sev-
eral cores share tree-organized caches where the number of caches rises from root
to the leaves: we typically find 3-level or 2-level hierarchies where the root rep-
resents the connection to the main memory. For further increasing core counts,
cache coherency is posing considerable limitations on scalability since data may
be kept in different vertical and horizontal levels at the same time. In pipeline
designs, data is processed step-wise and data is routed from core to core se-
quentially where each core may accomplish different work. This was the for-
mer principle of graphics processors when dealing with the graphics pipeline.
In network-based designs, cores and main memory are connected via a fast
communication network. Network-based designs, like e.g. the Cell processor, do
have benefits over hierarchical designs in case of a large number of cores. In
array designs, several processing elements are connected in a specific topology
where groups of cores typically obey a unified control flow. These groups read
and write data from main memory in a coordinated fashion and can communi-
cate directly with neighbors in their groups. Network-based and array designs
are guiding the way towards manycore processors. In hybrid designs different ap-
proaches are merged into new ones. The CUDA architecture of NVIDIA GPUs,
for instance, allows communication of thread groups via shared memory whereas
in the ClearSpeed accelerator board data can be communicated across the lin-
ear so-called swazzle path. A different approach based on dynamic heterogeneity
is provided by FPGAs where different logic cells, look-up tables, flip-flops, and
built-in fixed-function and memory blocks are combined to build application-
specific configurations.

With increasingly smaller integration, not only dynamic aspects from pro-
gram behavior and memory interaction need to be considered, but also tran-
sient hardware errors resulting from high-energy particles and fabrication
flaws. While certain applications, e.g. playback of streaming media, are not ham-
pered by such errors, others are highly sensitive. Error Correction Code (ECC) is
an error-detection and -correction protocol capable of detecting and correcting
single-bit errors on the fly. Error-tolerance in electronic circuits can be intro-
duced by adding redundancy to the system. So-called dual modular redundancy
(DMR) can detect errors by comparison, but cannot correct them. By adding a
further instance of the component (triple modular redundancy, TMR), a decision
unit can correct errors. While complex cores offer error correction capabilities,
similar mechanism on GPUs are under development. Reproducibility of re-
sults in floating-point-dominated numerical codes across diverse platforms is
a major design goal. To that end, standards like the IEEE-754 norm define
floating-point data formats, rounding modes, denormal treatment, and overflow
behavior. However, not all available hardware implementations are fully compli-
ant with this standard. The impact of different hardware behavior on numerical
codes in a heterogeneous environment is described in [15]. A further technique
of multicore processors is partial shut-down of unused cores which gives rise to
further improved energy efficiency. For example, Intel’s new research chip SCC
enables fine-granular energy management. Another concept is to speed up some

cores by overclocking in case of imbalanced workloads due to non-multithreaded
code (cf. TurboMode on Intel Nehalem).

3 Modern multicore systems

Already today we see a multitude of approaches towards multicore architectures
– combining different approaches and technologies. They all integrate several
computing cores onto the same die but still exemplify conceptual differences.
Neither there is no hard definition of multi- vs. manycore, nor does homogeneity
vs. heterogeneity lead to a proper differentiation of architectures and their spe-
cific fields of use. Current implementations of multicore processors mainly differ
in the setup of the cores, their interaction, their level of coupling, their commu-
nication infrastructure and topology, their memory sub-system providing data,
and their associated processing model. On top of this, different programming
models can be implemented with a considerable impact on the actual appear-
ance and the level of hardware abstraction. In the end, only the programming
model is the user view to the hardware – helping to simplify hardware handling
or hampering detailed management of hardware behavior. In the following we
like to give an overview of selected architectures, their genealogy and field of
use, and specific properties such as used interconnection technologies.

The general multicore idea is to replace cores with complex internal organi-
zation by replicated cores with simpler organization. But the notion of a core
is imprecise. Some say, it is a core if instruction flow can be executed indepen-
dently. Others define a core as a single unit producing results by means of integer
or floating-point computations on its own registers where data is accessible from
peripheral devices like main memory. While some cores are able to run their own
OS, other cores are orchestrated in a SIMD-like fashion. The cores typically in-
teract via shared memory, message passing, DMA transfers, or via SIMD access
to a global memory. Keeping these differences in mind, we currently find two to
eight powerful cores in general purpose IA32, x86-64, or related CPUs. The Intel
Larrabee processor will probably have 32 cores (based on a simpler core design),
while the Intel Rock Creek research chip has 48 cores in a cluster-like network
on a single die. The ClearSpeed accelerator board has 192 cores, while current
GPUs from NVIDIA have 240 cores (Fermi will have 512 cores) and AMD/ATI
GPUs have up to 1600 cores (with different meaning and capabilities).

What we see in the field of general-purpose multicores is typically a homoge-
neous approach, i.e. the replication of individual and identical general-purpose
uniprocessors. Heterogeneous architectures, in term, combine cores of different
ability, e.g. dedicated network or cryptographic processors, or a balanced set
of cores of different computational power. Dedicated accelerator architectures
provide powerful computing engines that are used for complementing existing
systems and enlarging their capabilities. They are targeting specific functional-
ities e.g. “supercomputer on a chip” (NVIDIA Tesla, Cell BE), floating-point
accelerators (ClearSpeed), or configurable logic cells (FPGAs). Currently, there
are two opponent possibilities for multicore configurations: you can either build

larger and more complex cores with a lot of control logic, where the core count
is kept comparably low – this circumvents the complexity wall by exploiting
coarse-grained parallelism –, or you can build a lot of simpler cores with a high
core count and possibly less reliable features. Retaining core complexity is owed
to the fact that many applications are dominated by sequential parts and con-
strained by bandwidth bottlenecks. Huge on-chip caches and complex prefetch
and control logic shall alleviate possible deficiencies. The configuration and size
of the cores in size and capability has a direct impact on possible speedups [16].
A possible approach to reduce complexity is to retreat from out-of-order su-
perscalar architecture and build simpler and faster, 1-wide in-order processors
with high degree of speculation. As a future direction one has to explore system
integration and SoC systems in order to pave the road to exaflop computing
and overcome the power constraints. We will possibly see supercomputers on a
chip: future graphics chips like the NVIDIA GT300 (Fermi) or Intel’s SCC [2]
are upcoming examples.

General-purpose multicore architectures typically evolved from general-
purpose uniprocessors, therefore employing a low number of rather heavyweight,
highly complex unicores and big nested caches organized in a two- or three-level
hierarchy with full cache coherence across all cores in a node. Focus of these
is typically multitasking environments where the use of several identical cores
not only increases responsiveness of the overall system, but also simplifies task
and thread management. Intel multicore CPUs have been built upon various
microarchitectures (MAs) altering between short pipelines – with high IPC rates
and moderate clock rates – and long pipelines – with a simple architecture, low
IPC rates but high clock rates. The latest Nehalem MA is characterized by an
integrated memory controller, return to HyperThreading, and the QPI inter-
connect to CPUs in the same node. It supports a three-level cache hierarchy
with private L1 and L2 caches, and a shared inclusive L3 cache. Intel Itanium
architecture (formerly called IA64) is basically different from common x86. It is
based on explicit and static ILP where the main responsibility is left to the com-
piler. AMD processors based on the AMD64 ISA (x86-64) are basically 32-bit
processor with 64-bit register extensions. The AMD Opteron processors possess
an integrated memory controller supporting DDR, DDR2, or DDR3 SDRAM.
This concept reduces the latency penalty for accessing the main RAM and elim-
inates the need for a separate NorthBridge chip. Each CPU can access the main
memory of another processor – transparent to the programmer – via its Hy-
perTransport links. The recent approach to multi-processing is not the same as
standard symmetric multiprocessing; instead of having one bank of memory for
all CPUs, each CPU has its own memory, resulting in a NUMA architecture.
IBM’s Power architecture makes use of an approach called reduced instruction
set computer (RISC) to process instructions. Power processors typically run at a
higher clock rate than their counterparts from other vendors. The 64-bit Power6
in-order dual-core processor has two superscalar 2-way SMT cores served by an
8 Mbyte shared L2-cache. There is a two-stage pipeline supporting two inde-
pendent 32-bit reads or one 64-bit write per cycle. There is also support for

up to 32 Mbyte of extern L3 cache providing data at 80 Gbyte/s. The Power7
with up to eight cores will be released in 2010. There are 12 execution units
and 4-way SMT per core and VMX vector capabilities. Data is cached in private
256 kbyte L2 caches per core with lower latencies and 32 Mbyte L3 embedded
DRAM (eDRAM) on chip. There will be maximal performance of 258.6 Gflop/s
per chip. As an example of Sun’s SPARC architecture, the UltraSparcT2 Plus
(Victoria Falls) is a highly multithreaded processor with 8 cores running up to
64 hardware-supported threads per core with up to 1.6 GHz. Each core has two
integer ALUs and a fully pipelined floating-point unit. It has two integrated
dual-channel FBDIMM memory controllers aiming at superior bandwidth.

Contrasting the main-stream multicore processors, alternative designs rely on
simpler cores (mostly RISC) with less complicated and smaller caches or local
stores, and more floating-point units. MIPS processors have their fundament
in the embedded area, but there were ambitious projects to make a stand in the
HPC domain. SiCortex has created a radical example of a tightly integrated
Linux cluster supercomputer based on the MIPS64 architecture and a high-
performance interconnect based on the Kautz digraph topology. Its multicore
processing node integrates six power efficient MIPS64 cores, a crossbar memory
controller, an interconnect DMA engine, and controllers on a single chip. Up to
972 6-core units result in 8.2 Tflop/s of peak performance. The Cell Broad-
band Engine (BE) is a processor architecture relying on innovative concepts for
heterogeneous processing and memory management. Specialized cores are added
to a main unit motivated by increasing both, computational power and memory
bandwidth. The main unit of the Cell BE is the Power Processing Element (PPE)
running at 3.2 GHz. The PPE mainly acts as controller for the eight Synergistic
Processing Elements (SPEs) which usually handle the computational workload.
The SPEs are 128-bit SIMD processors with 128 entry register files and 256
kbytes local, software-controlled memory called Local Store (LS). Data is trans-
ferred by means of user- or software-controlled Direct Memory Access (DMA).
Each SPE has seven execution units and reaches 25.6 Gflop/s performance for
single precision (SP) instructions and 12.8 Gflop/s double precision (DP) per-
formance in the PowerXCell 8i. The eight SPEs are connected via the Element
Interconnect Bus delivering aggregate peak bandwidth of 204 Gbyte/s and an
aggregate performance of 204.9 (102.4) Gflop/s. Theoretical peak bandwidth to
the local main memory is 25.6 Gbyte/s. ClearSpeed offered accelerator boards
attached by PCIe with fast SIMD processors particularly designed for double-
precision applications. The control unit of the CSX700 dispatches instructions to
192 processing elements (PEs). The Single-chip Cloud Computer (SCC) Rock
Creek is an experimental manycore CPU from Intel that mimics cloud com-
puting at the chip-level by a network of 2-core nodes. It is a cluster-on-a-chip
system where each of its 48 Pentium55C-like cores can boot their own operating
system. Its 48 IA32-compatible cores are organized into 24 tiles with their own
router and message-buffer. The tiles are organized in a 6-by-4 mesh network
with 256 Gbyte/s bisection bandwidth. It will be fed by four DDR3 memory
controllers. Hardware-cache coherency is replaced by software-managed cache

handling. Further feature is a fine-grained power management scaling from 25
to 125 Watt.

The importance of Graphics Processing Units (GPUs) in HPC is growing
fast mainly due to the associated computing power and bandwidth that outpace
values known from general purpose CPUs by at least an order of magnitude.
The main reason for this development is that more transistors are devoted to
data processing rather than data caching, flow control, and error correction. Fur-
thermore, GPUs are comparatively cheap due to their high volume. The basic
functional block of modern GPUs consists of several stream processors with pow-
erful SIMD elements coupled to texture units and several types of caches. The
pool of available floating-point engines can be allocated to particular types of
processing tasks as needed. Drawbacks arise if the SIMD approach is violated by
heavy branching or non-uniform data access patterns, but with every new gen-
eration these obstacles seem to be more and more resolved. It has to be stressed
that the huge computing power of GPU comes up with increased demand for
power, although the overhead of complex logic design of CPUs can be avoided.
NVIDIA GPUs are abstracted by means of the Compute Unified Device Ar-
chitecture (CUDA) and associated programming model. The basic difference to
previous GPU generations is that it supports scattered reads from arbitrary
addresses in memory, it provides shared memory for communication amongst
threads, and supports integer and bitwise operations. NVIDIA’s GT200b graph-
ics chip (10 series) is built of 10 Thread Processing Clusters (TPC) with an L1
texture memory cache, texture units, and three processor units called a streaming
multiprocessor (SM). Each SM has eight stream-processing units (SP) sharing a
small piece of 16 kbyte RAM which is the basic difference to the GeForce 8 and
9 series. Altogether, each TPC has 24 SPs and eight texture-filtering units or
texture-mapping units (80 in total). An SP is a fully pipelined, single-issue, in-
order microprocessor equipped with two ALUs and a SP FPU working on 2048
local registers of 8 kbyte size. Besides, the ALUs basic functionality is executing
one FMAD per cycle. A super-function unit executes more sophisticated opera-
tions like root extraction or supports the calculation with up to four FP MULs.
This results in an average SP performance of 3 flop/cycle in single precision.
With 1296 MHz clock rate overall SP performance equals 933 Gflop/s. Each SM
has a 64-bit floating point unit (30 units per chip) that can perform one FMAD
per cycle in accordance with IEEE 754R. Here, the overall performance sums
up to 77.76 Gflop/s. The new GeForce 300 series is to be released in 2010: it
will feature a cGPU design that is much closer to traditional CPUs and will be
radically different from previous generations. The GT300 chipset will possibly
use MIMD instead of SIMD. AMD/ATI has introduced the RV870 graphics
processor built of 20 SIMD cores with 16 stream processors per core. Apart from
NVIDIA, AMD/ATI’s stream processors have a superscalar design where each
processor incorporates five ALUs that are served by automatic HW-managed
sharing of scalar instruction streams. Four of these ALUs are general-purpose
ALUs, the fifth ALU is a special-purpose ALU capable of executing complex
instructions. Besides the ALUs, each shader processor also contains a branch-

control unit and an array of general-purpose registers. Each core is serviced by
dedicated logic and has four texture processors and an L1 cache at its disposal.

Field Programmable Gate Arrays (FPGAs) are somewhat in between
Application Specific Integrated Circuits (ASICs) and processors. From ASICs
they have borrowed fine-granular use of logic resources and the integration of
complex logic functions. For the major part, FPGAs are designed for domain-
specific purposes. On the other hand, FPGAs are programmable (i.e. config-
urable) by the user and they are incorporating standardized and tested products.
In today’s platform FPGAs, a lot of dedicated functional units are integrated:
MACs and DSPs are speeding up and simplifying specific functionalities whereas
block-RAMs (in size of a typical L2-cache) enable local storage of larger por-
tions of data. But compared to typical microprocessors, FPGAs run at a much
slower clock rate, typically only a few hundred MHz. Convey offers a hybrid Intel
Xeon / FPGA system based on a coherent memory space where the alien FPGA
programming approach based on hardware-description languages is replaced by
application-specific instruction sets. In an industry-standard programming ap-
proach it is left to the compiler to schedule operations either to the FPGA or
the CPU.

4 Parallel programming models and environments

An interesting observation with current approaches towards multicore systems
and especially heterogeneous parallel systems is the fact that established pro-
gramming models do not suit the specific needs of such systems: while high-level
parallel programming models deliver an abstract view as required by today’s
complex applications, they do not feature fine-grained control over hardware
mapping, resulting in poor hardware resource use. Strict hardware-aware ap-
proaches, in term, enable such fine-grained control but will put the focus of
application programming to hardware mapping. As a result, certain hybrid sys-
tems emerged during the last couple of years, aiming at a beneficial combination
of both aspects.

Conventional parallel programming models can be split into the follow-
ing three fields which are shared-memory, message-passing, and data-parallel ap-
proaches with according standardized programming environments like (in order
of fields mentioned) OpenMP [17], MPI [18], or High-performance Fortran [19].
These programming models focus on exploitation of certain levels of parallelism,
support only marginal flexibility, and typically do not enable fine-grained ar-
chitecture mapping. Of the mentioned programming models, message-passing
enables the highest level of controlling the architecture mapping of an applica-
tion. However, it is also the model which forces the programmer into detailed
partitioning and orchestration with respect to a given system infrastructure.
Heterogeneity of the hardware is typically not expressed within MPI. Certain
flexibility is supported by shared-memory programming model OpenMP,
which allows dynamically changing the number of threads to be created. PGAS
(Partitioned Global Address Space) [20] is a programming model that defines a

global address space on a possibly distributed system. It focuses on reference-
locality exploitation: with PGAS portions of the shared memory space may have
an affinity for a particular thread. Examples of the PGAS model are Unified
Parallel C (UPC) and Co-array Fortran, but also recent and industry-driven
approaches like Chapel (Cray) and X10 (IBM).

Especially heterogeneous platforms require fine-grained ways of matching ap-
plication code to the given platform on lowest hardware level: a most prominent
example of such is the Cell BE [21], which forces the programmer to explicitly
partition the program into individual chunks to be executed on the single vec-
tor units called SPEs. Here, communication must be explicitly formulated using
so-called DMA streams, i.e. enabling the individual SPEs to fetch required
data and write back result data. This careful matching of computation and com-
munication may lead to speedups of orders of magnitude compared to a näıve
implementation. It is however a quite tedious, error-prone, and time-consuming
task. Hardware-aware programming techniques are also required on con-
ventional homogeneous multicore platforms in order to minimize communication
overhead, e.g. by optimizing data locality and appropriate prefetching. With cur-
rent and upcoming multicore architectures this becomes even more prevalent as
such architectures feature distinct schemes of cache sharing and interconnection
technologies.

Focusing on programming scenarios where a control thread forks poten-
tially accelerable computation threads, certain industrial support exists for
host/accelerator platforms. One well-known example is NVIDIA’s CUDA ap-
proach [22]. Programming-wise, CUDA features an extension to the C program-
ming language enabling programmers to easily write data-parallel programs to be
either executed on conventional general-purpose processors or in a data-parallel
manner on GPU hardware. This approach is picked up and extended by OpenCL
[3], which offers a similar C extension and an according run-time system, but is
not limited to a single vendor’s hardware: with OpenCL, a first standard and
unified interface for kernel invocation on a multitude of hardware devices is now
available in its initial release. In theory, it offers portability of implementations
over a multitude of hybrid computing systems. But efficient utilization is tightly
connected to platform-specific optimizations – contradicting performance porta-
bility. A related approach is the RapidMind programming environment [23]
that is now being merged with Intel’s Ct (C for throughput computing) [24],
combining basic features of both. RapidMind specifically targets program devel-
opment for and execution on dynamically changing heterogeneous systems. Intel
Ct, in its pre-merged version, takes a similar approach for covering dynamic par-
allelism, but is more explicitly vectorized: C++ templates are used to describe
so-called throughput vectors (TVEC) for vectorized operations. Compiler and
runtime system divide the work into units and distribute the work units across
the available processing elements, enabling dynamic changes to parallelism gran-
ularity by splitting or merging individual threads on demand.

A number of academic projects exist which specifically focus on dynamic
aspects in heterogeneous systems. The EXOCHI project [25], for instance, de-

livers a system abstraction layer similar to that found in superscalar processors
so that arbitrary programs may be distributed onto the various execution units.
This is e.g. exploited by the MERGE project [26], which uses the EXOCHI
back-end for executing parallel programs on heterogeneous parallel systems. A
likewise ambitious project is IBM’s LIME [27] targeting not only program execu-
tion on a given heterogeneous hardware platform but even on-demand synthesis
of functional units when employing reconfigurable hardware.

One problem of all mentioned approaches is the necessity of additional run-
time layers and often language-centric extensions. In addition, none of the men-
tioned approaches focus on application requirements, i.e. perform dynamic ex-
ecution on heterogeneous parallel hardware with regard to required quality of
service. Such could e.g. be time frames to be met, required minimum resolution of
computations, or a minimum throughput to be achieved. It is, however, possible
to carefully extend already present system layers to support not only dynamic ex-
ecution but also employ required self-management in order to follow application
requirements [28]. It can be shown that such an approach is inherently language-
and OS-agnostic and not only compatible but even complementary to existing
parallel programming models [29]. Exploiting existing features of compiler tech-
nology and binary formats leads to an easy and compatible way of describing
application requirements to be evaluated and followed by the run-time system
[30].

5 Hardware-aware computing and application cases

The transition from unicore to multicore and manycore comes along with a dis-
rupture in well-established concepts and methodologies. In numerical simulation,
the momentousness becomes prominently apparent: all parts of the application
code need to be compliant with multi-level parallel units, a nested and hierar-
chical memory subsystem, and heterogeneous components of the compute units.
All aspects need to be expressed explicitly in the algorithms and implementa-
tions since there are only little software support and a few mechanisms available
that may assist automatic and optimized utilization of resources, as well as hide
away hardware details without affecting performance. A basic observation in the
landscape of parallel computing is the trend towards heterogeneous platforms
consisting of hybrid techniques on the node level and heterogeneous approaches
on the chip level. But the concept of heterogeneity still lacks expression within
the algorithms and applications. This does not only mean offloading of compute-
intensive parts to dedicated accelerator units, but rather a cooperative concept
for a joint interaction of different entities within a hybrid system. Current pro-
gramming techniques mainly rely on minimal-invasive approaches where local
parts of the application are identified for acceleration and offloaded to particu-
lar compute engines like GPUs or Cell processors in a master-slave oriented way.
For the overall benefit additional communication via narrow bottlenecks have
to be considered. The difficulty lies in defining clear interfaces between different
parts of the hardware that do not inherit any kind of performance bottleneck.

The major profit from experimental programming approaches by platform-
specific solutions comes from learning for unified approaches in the future. Some
issues are resolved within particular projects, but the corresponding solutions
are isolated and application-specific. In the long run, there is a strong need for
flexible, generic, and modular solutions. Portability is mainly excluded due to
hardware-specific optimization strategies. Since the parameter space becomes
more and more intractable, there is no way around autotuners. For selected ker-
nels autotuning is giving impressive results and ensures portability across diverse
platforms. Promising examples are ATLAS (BLAS) [31], FFTW (FFT), Spiral
(DSP), OSKI (Sparse BLAS), and PhiPAC (BLAS). For a profitable deployment
of modern concepts and technologies there needs to be a deep insight into the
hardware and into the application characteristics. In general, this comprehen-
sive task is no longer manageable by domain specialists, who usually stick to
problem-adapted but hardware-agnostic coding. In order to overcome the de-
scribed challenges and difficulties, there needs to be an holistic approach taking
into account all aspects of physical problem description, mathematical model-
ing, numerical methods, parallel programming, efficient implementation, hard-
ware design, tool support, performance analysis, code tuning, and assessment of
the results with an interactive feedback on the full simulation and development
cycle. In this section the corresponding aspects shall be detailed more precisely.

On all kinds of computer systems best performance can only be achieved by
optimal utilization of the designated cores and functional units with only lim-
ited amount of data movement. The roofline model in [32] describes performance
degradation for several processor types by conflicting or not obeying SIMD oper-
ations, ILP, and balanced FP operations. It further shows, that many application
kernels with low arithmetic intensity are constrained by the DRAM bandwidth
and by not utilizing prefetching techniques, memory affinity, NUMA effects, and
unit stride memory access. The utilization of concepts for optimizing the arrange-
ment of computation (like vectorization, loop unrolling, re-ordering, branch elim-
ination), optimizing the data structures (array access patterns, memory align-
ment, coalescing of data) and the optimization of data transfers (blocking for
spatial and temporal locality, caching and cache-bypassing, in-place algorithms)
is of paramount importance for good performance of a particular application. But
before optimizing existing code, problem modeling has to be reconsidered. Even
more important for an optimal run time – and often neglected in actual practice
– is the choice of the adequate mathematical and algorithmic models and the
best available numerical solving scheme with respect to arithmetic complexity
and parallel time complexity. The choice of the mathematical solution method
is also fundamental with respect to robustness of the method and quality of the
final simulation result. Current hardware trends highlight the necessity for inten-
sive research on novel numerical techniques focusing on parallel preconditioning,
parallel smoothers, domain decomposition approaches, and bandwidth-optimal
numerical schemes in general.

For typical applications in numerical simulation, basic kernels have a compu-
tational intensity of only order one with respect to the problem size. Accordingly,

only a low fraction of peak performance can be achieved on most bandwidth-
constrained systems. Hence, sole focus on compute complexity is inadequate
since flops turn out to be for free but bytes are really expensive. Due to the un-
surmountable memory wall the structure of the algorithms needs to be shifted to-
wards reduced communication at the cost of additional and probably redundant
computation. Since these issues become even more pronounced within the con-
cept of multicore processors, there is an urgent demand for sophisticated methods
for reduction of data transfers and increasing locality of computations. Memory
transfer reduction strategies mainly comprise algorithmic re-arrangements, but
also modified implementation mechanisms. They include restriction to single
precision with a basic performance gain of a factor of two. Matrix operations on
regular grids may be reduced to application of fixed stencil routines preventing
matrices to be transferred. Temporal blocking techniques like loop skewing and
circular queue [7], [33], [34] give significant benefits for stencil applications but
are intrinsically based on explicit solution schemes – with all well-known draw-
backs. In the spirit of overcoming communication bottlenecks, [35] proposes to
exchange communication-bound kernels in sparse iterative Krylov-space solvers
by matrix power kernels and block-operated orthogonalization with an associ-
ated reformulation of the algorithm. This method successfully shows how cost-
efficiency of additionally performed computations can give considerable benefits
by means of reduced bandwidth. In [36] a pipelined CG version is proposed that
reduces the number of synchronization points by adding an additional scalar
product. In this setting, several vector updates can be performed in parallel.
Computational intensity of kernels in finite element methods (FEM) may be in-
creased by using higher order elements and restriction to local dense matrices.
Another approach to circumvent memory traffic on the implementation level is
to avoid cache-write misses by utilizing SIMD intrinsics for cache-bypassing or
to work with in-place implementations with a single in- and output array instead
of out-of-place implementations [37].

Memory and data organization is of crucial importance for efficient perfor-
mance. Data has to be transferred in huge contiguous chunks that are aligned to
appropriate boundaries. Applications based on structured grids and regular data
without indirect addressing are an essential part for predictable data access pat-
terns. This is especially true for the Cell processor or other upcoming software-
cache based architectures where each data transfer has to be user-controlled and
-initiated. The multi-facetted exigencies for highly capable numerical simulation
codes give a somewhat different picture of the organization of data structures.
The simulation of turbulent flows in complex geometries or large-range effects in
climate simulation or electrodynamics give rise to a discrete problem description
based on unstructured grids in a finite element context. Only unstructured and
problem-adapted locally refined grids based on deformable geometric primitives
are able to resolve curvilinear boundaries, aggregated errors, and singularities in
the solution. In this approach, careful application of goal-oriented adaptive re-
finement can increase simulation accuracy while keeping the amount of degrees
of freedom at a moderate level. As a consequence data structures need to be

arranged in a flexible manner giving rise to linked lists, indirect addressing, non-
contiguous memory access, pointer chasing and short messages in a distributed
memory environment. In [38] the execution time of a typical application on un-
structured grids is reported to be dominated by mesh-related operations at a
fraction of more than 70 %. However, it is of general agreement that flexibility,
generality and problem-adaptation in the FEM codes outweigh the associated
disadvantages.

Hardware-aware computing not only comprises highly-optimized
platform-specific implementations, design of communication-optimized data
structures, and maximizing data reuse by temporal and spatial blocking tech-
niques. It also relies on the choice and development of adequate mathematical
models that express multilevel-parallelism and scalability up to a huge num-
ber of cores. The models need to be adapted to a wide range of platforms and
programming environments. Data and problem decomposition on heterogeneous
platforms is a further objective. Memory transfer reduction strategies are an
important concept for facing the constraints of current platforms. Since hard-
ware reality and mathematical cognition give rise to different implementation
concepts, hardware-aware computing means also to find a balance between the
associated opponent guiding lines while keeping the best mathematical quality.
All solutions need to be designed in a reliable, robust and future-proof context.
The goal is not to design isolated solutions for particular configurations but
to develop methodologies and concepts that apply to a wide range of problem
classes and architectures or that can be easily extended or adapted.

5.1 Application cases

Physical processes are typically described by systems of partial differential equa-
tions (PDEs) that can either be discretized by finite difference, finite volume or
finite element methods. The discretization process results in sets of large and
sparse discrete equations that express the local and global coupling of physical
effects on a discrete level. A possible parallelization method relies on domain
decomposition and domain sub-structuring methods where the computational
domain (and hence the problem complexity) is divided into several subdomains.
The associated local solutions are typically much simpler but need to undergo
some interleaved global or neighbor-local coupling procedure. The second ap-
proach relies on parallelization of the basic building blocks from linear algebra
that form the global solving scheme [39].

A typical model problem in numerical simulation is the solution of a Pois-
son problem. The resulting discrete linear system of equations can be solved
by a wide variety of numerical solution methods differing in work complexity,
general applicability, and degree of parallelism. These methods include Gauss-
like methods of non-optimal complexity, direct solvers like FFT or multi-frontal
methods, and a large class of iterative solvers like the Conjugate Gradient (CG)
method. For improving work complexity in terms of necessary iterations, CG-like
methods need to be accompanied with preconditioning techniques. Since precon-
ditioning based on ILU and SOR-methods are highly recursive and sequential,

other approaches with less preconditioning efficiency but higher degree of par-
allelism need to be developed. Domain decomposition techniques are known not
be scalable in an algorithmic sense, unless some coupling on a global coarse grid
level is used. Asymptotically optimal multigrid methods rely on a combination
of a hierarchy of nested grids. In both cases, operations on coarse grids yield
poor parallel efficiency due to relative communication overhead, short loops and
vectors, short messages, and kernel call overheads. The Hybrid Hierarchical Grid
(HHG) approach described in [40] aims to close the gap between finite element
flexibility on unstructured grids and the capabilities of multigrid methods on
structured grids. A similar approach with distinction of structured and unstruc-
tured data and a generalized multigrid and domain decomposition concept is
taken in the FEAST project [41]. Coprocessors like GPUs are integrated on the
level of local subproblems for accelerating local multigrid problems. The limi-
tations of this approach due to Amdahl’s law are reported in [42]. While the
subproblems of a vector-valued non-linear Navier-Stokes solver are accelerated
by a factor of twelve, the global solver reaches a speedup of only two. A similar
observation is done for a solid mechanics code [43].

Dense linear algebra (DLA) kernels have been subject of thorough investiga-
tion over a long period of time. Their basic implementation is provided by the
Basic Linear Algebra Subprograms (BLAS) collection, a highly optimized and
platform-specific API, and its parallel PBLAS version. Machine peak flop rates
can be attained up to 60% to 90% with dense matrix kernels like the BLAS 3
based LINPACK benchmark. In order to face the changed situation in hardware
technologies, the PLASMA project [44] aims at redesigning the DLA packages
LAPACK and ScaLAPACK for shared memory computers based on multicore
processors. Relying on tile algorithms based on fine-grained parallelism and di-
rected acyclic graphs, performance benefits arise due to asynchronous out-of-
order scheduling of operations. Data reuse is optimized by a pruned parameter
search. The MAGMA project [44] pursues a similar approach for heterogeneous
and hybrid architectures departing from mixed multicore and GPU systems.
Within this approach new techniques for trading speed against accuracy are in-
vestigated. It shows that increased communication costs have to be reflected by
software development.

Sparse matrix operation on dense vectors are of outstanding importance in
numerical simulation. In iterative solvers, sparse matrix vector multiplication
(SpMV) is the basic kernel that is repeated a hundred to thousands of times.
The sparsity pattern is typically condensed into compressed formats. On un-
structured grids, assembly of these matrices takes a remarkable amount of time.
For unstructured sparse matrices the imbalance of line lengths is conflicting vec-
torization approaches. Due to limited data reuse, low locality and computational
intensity only a low fraction of peak can be observed. On modern multicore plat-
forms, performance numbers between 0.5 and 12 Gflop/s are observed on 4-core
to 16-core systems utilizing automatically tuned implementations [7]. On recent
NVIDIA GPUs, on-device performance for unstructured SpMV goes up to 17
Gflop/s in double precision [45]. Utilizing regular structure and symmetries in

fixed stencil operations, performance of highly-tuned implementations on mod-
ern multicore systems reaches between 2.5 and 16 Gflop/s on 8-core and 16-core
systems [6, 37]. On NVIDIA GPUs on-device performance reaches 35 Gflop/s in
double precision for 7-pt stencils [7] and 18 Gflop/s in diagonal SpMV format
[45].

An involved model problem is the solution of the incompressible Navier-
Stokes equations, a non-linear and vector-valued saddle-point problem. Typical
Navier-Stokes solvers are based on Chorin-type projection methods with similar
solution characteristics like Krylov-subspace methods. The major concerns are
the nonlinear Newton-like procedure in the advection step and the solution of a
Poisson equation for the pressure in each time step. Solutions by means of op-
erator splitting give rise to explicit or implicit solution schemes. While explicit
schemes can make use of temporal blocking methods reducing the bandwidth
requirement, they are often impaired by time step limitations. Implicit methods
are proven to be more robust and reliable and do not have time step constraints
in most cases. As an alternative to Navier-Stokes-like problems on the model-
ing level, Lattice-Boltzmann methods (LBMs) can be utilized instead. LBMs
are based on a mesoscopic particle description and hide the non-linearity in the
right hand side of an explicit solution scheme based on equidistant cartesian
grids, where all interactions are strictly local. Due to the structure of the data
impressive results are obtained on accelerators like GPUs or Cell. Scalability
to a huge number of cores is proven as well. N-Body problems and molecular

dynamics describe the interaction of an agglomerate of particles or molecules
by means of particle collisions, mutual reaction and external forces. Due to the
large number of particles long-range-effects and fine resolution of the particles
are usually canceled. N-body problems can be solved by numerically integrating
up the differential equations of motion. But for a large number of particles these
approaches become intractable and simplifications are required. Typical arith-
metic complexity is of order O(N2) while the amount of data is only of order
O(N). Tree structured algorithms (e.g. Barnes-Hut) can reduce complexity to
O(N log(N)).

Genome sequenzing is a typical application in bioinformatics. Well-known
algorithms for local sequence alignment and determination of similar regions in
nucleotide or protein sequences are BLAST and Smith-Waterman. In financial
mathematics rapid computation of exponentials and logarithms based on fixed
and floating point binary coded decimal arithmetic is required – stressing advan-
tages of FPGAs. The Black Scholes model for option pricing can be combined
with Monte Carlo methods for numerical integration of prices for call and put
options in a highly parallel manner. Digital signal processing (DSP) applica-
tions require high bandwidth but only limited accuracy handled in fixed-point
arithmetics. Due to their specific capabilities FPGAS can give considerable ben-
efits for applications like ray tracing, discrete cosine transform, rice coding, and
convolution. Random number generation (Mersenne Twister) is another typical
application field for FPGAs.

6 Conclusion

Driven by Moore’s law and technological side-effects, we see a constant increase
in parallelism and heterogeneity delivering ever rising performance rates. How-
ever, programmability of hardware devices and scalability of software solutions
need to be further improved for a beneficial utilization of theoretically avail-
able performance. This collision of architecture complexity and complexity of
harnessing its power is actively hampering development and acceptance of such
systems: so far, certain promising processor technologies have been canceled
(e.g. Sun Rock), delayed (e.g. Larrabee), or the manufacturer does not exist in
its original form anymore (e.g. ClearSpeed, SiCortex).

As of now, there seems to be convergence towards a number of mainstream-
acceptable concepts such as GPU-accelerated clusters. However, as long as there
is no true convergence towards unified programming approaches that are ap-
plicable to a variety of different technologies and platforms, investments into
particular solutions by means of money and manpower are still risky. Until then,
much of the responsibility is put on the programmer. “Magic” compilers and
auto-parallelization concepts are still out of reach. But the joint effort of partic-
ipating disciplines can result in multicore-aware algorithms, multicore-enabled
libraries, and multicore-capable tool chains. Some of the complexities can possi-
bly be hidden in libraries; however, manual implementations are slow and expen-
sive, and a new library is required for each architecture. This disadvantage might
be overcome by autotuners searching parameter space for optimal performance
configurations.

A lot of potential can be found within the algorithms. Strong research efforts
are necessary for exploring new algorithms that are well-adapted to the prereq-
uisites of emerging hardware. The main focus has to be set to communication-
avoiding strategies based on data-locality and possibly replicated computations.
Scalability towards upcoming architectures with ever-increasing core counts is
a vital ingredient for all concepts. The approach of hardware-aware comput-
ing is trying to find a balance between structurally opponent cognition from
best-performing implementations and the side conditions of maximally flexible
software packages and mathematical quality. In the end, there is no way around
changes in the modeling process, better algorithms, and platform-specific tuning.
Restructuring of algorithms is strongly required for minimization of communi-
cation, couplings and load imbalance, and optimization of data locality. Efficient
data management is the key to good performance in bandwidth-bound applica-
tions. Data operations need to be grouped and merged for minimizing memory
traffic, and traffic needs to be re-structured and optimized by tiling, aligning,
SIMDizing, and compressing.

Hence, many investments need to be made by all contributors: programming
languages and environments need to be further developed for more support of
the developers and hardware-reluctant domain experts. The full development
and tool chain must be complemented by compilers, tools, operating systems,
and runtime environments that give full support for platform-specific implemen-
tations without conflicting the deployment of portable concepts. Performance

bottlenecks need to highlighted and addressed. The algorithms have to be re-
engineered with respect to multi-level parallelism, nested memory sub-systems,
and heterogeneous platforms. Communication has to be minimized while keep-
ing scalability over the next generations of hardware. Unified concepts and the
convergence towards widely acceptable parallel frameworks are of critical im-
portance. On the academia side, parallelism has to be taught in undergraduate
courses across all disciplines in order to build a broad base for the next genera-
tion of programmers. A general view to the multi-facetted appearance of paral-
lel thinking, high-performance computing, numerical simulation, multi-threaded
algorithms, hardware characteristics, and the tool set has to be conveyed. Com-
prehensive software packages for the years 2015-2020 need to be designed now.

Acknowledgements

The Shared Research Group 16-1 received financial support by the Concept for
the Future of Karlsruhe Institute of Technology in the framework of the German
Excellence Initiative and the industrial collaboration partner Hewlett-Packard.

References

1. Bailey DH. Little’s law and high performance computing. RNR Technical Report,
1997.

2. Intel RockCreek Single-chip Cloud Computer. http://download.intel.com/

pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.pdf [December
20 2009]

3. Khronos OpenCL Working Group. OpenCL 1.0 Standard.
http://www.khronos.org/opencl/ [December 20 2009].

4. Ungerer T, Robič B, Šilc, J. A survey of processors with explicit multithreading.
ACM Comput. Surv. 2003; 35(1):29–63.

5. McCool, MD. Scalable programming models for massively multicore processors. In
Proc. IEEE 2008; 816–831.

6. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms In SC’07: Proc. 2007
ACM/IEEE Conf. on Supercomputing, ACM: New York, 2007; 1–12.

7. Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D,
Shalf J, Yelick K. Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In SC ’08: Proc. 2008 ACM/IEEE Conf. on
Supercomputing, ACM: New York, 2008; 1–12.

8. Williams S, Carter J, Oliker L, Shalf J, Yelick K. Lattice Boltzmann simulation
optimization on leading multicore platforms. In Proc. Int. Parallel and Distributed
Processing Symposium, 2008.

9. Van Amesfoort A, Varbanescu A, Sips H, Van Nieuwpoort R. Evaluating multi-
core platforms for HPC data-intensive kernels. In CF’09: Proc. 6th ACM Conf. on
Computing Frontiers, ACM: New York, 2009; 207–216.

10. Shalf J. The new landscape of parallel computer architecture. Journal of Physics:
Conf. Series 2007; 78.

11. Asanovic K et al. The Landscape of Parallel Computing Research: A View from
Berkeley. EECS technical report 2006. http://www.eecs.berkeley.edu/Pubs/

TechRpts/2006/EECS-2006-183.html [Dec 20 2009]
12. Baskaran MM, Bondhugula U, and Krishnamoorthy S, Ramanujam J, Rountev

A, Sadayappan P. Automatic data movement and computation mapping for multi-
level parallel architectures with explicitly managed memories. In PPoPP ’08: Proc.
13th ACM SIGPLAN Symposium on Principles and practice of parallel program-
ming 2008, 1–10.

13. Volkov V, Demmel J. LU, QR and Cholesky factorizations us-
ing vector capabilities of GPUs. EECS technical report 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html [De-
cember 20 2009]

14. Kang D, Liu C, Gaudiot JL. The impact of speculative execution on SMT proces-
sors. Int. J. Parallel Program. 2008; 36(4):361–385.

15. Cleary AJ, Demmel J, Dhillon IS, Dongarra J, Hammarling S, Petitet A, Ren
H, Stanley K, Whaley RC. Practical experience in the dangers of heterogeneous
computing. In PARA, 1996; 57–64.

16. Hill MD, Marty MR. Amdahls law in the multicore era. IEEE COMPUTER 2008.
17. Dagum L, Menon R. OpenMP: an industry-standard API for shared-memory pro-

gramming. IEEE Computational Science and Engineering 1998; 05(1):46–55.
18. MPI: A Message-Passing Interface Standard (Version 2.2). http://www.

mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf [December 20 2009]
19. Richardson, H. High Performance Fortran – history, overview and current devel-

opments. TMC-261 1996. http://citeseer.ist.psu.edu/rd/0,174206,1,0.25,
[December 20 2009]

20. Carlson B, El-Ghazawi T, Numrich R, Yelick K. Programming in the Parti-
tioned Global Address Space Model. Supercomputing 2003. http://upc.gwu.edu/
tutorials/tutorials_sc2003.pdf

21. Gschwind M, Hofstee HP, Flachs B, Hopkins M, Watanabe Y, Yamazaki T. Syner-
gistic processing in Cell’s multicore architecture. IEEE Micro 2006; 26(2):10–24.

22. Halfhill T. Parallel processing with CUDA. Microprocessor Report 01/28/08-01,
2008.

23. RapidMind Multi-Core Development Platform. http://www.rapidmind.net/ [De-
cember 20, 2009]

24. Ghuloum A, Sprangle E, Fang J, Wu G, Zhou X. Ct: a flexible parallel programming
model for tera-scale architectures. http://techresearch.intel.com/UserFiles/
en-us/File/terascale/Whitepaper-Ct.pdf [December 20 2009]

25. Wang P, Collins J, Chinya G, Jiang H, Tian X, Girkar M, Yang N, Lue GY,
Wang H. EXOCHI: architecture and programming environment for a heterogeneous
multi-core multithreaded system. SIGPLAN Not. 2007; 42(6):156–166.

26. Linderman M, Collins J, Wang H, Meng T. Merge: a programming model for
heterogeneous multi-core systems. ASPLOS XIII 2008; 287–296.

27. Huang S, Hormati A, Bacon D, Rabbah R. Liquid Metal: object-oriented program-
ming across the hardware/software boundary. ECOOP 2008.

28. Buchty R, Kramer D, Kicherer M, Karl W. A light-weight approach to dynamical
run-time linking supporting heterogenous, parallel, and reconfigurable architec-
tures. ARCS 2009. LNCS 5467: 60–71.

29. Buchty R, Kicherer M, Kramer D, Karl W. An embrace-and-extend approach to
managing the complexity of future heterogeneous systems. SAMOS IX 2009; LNCS
5657:226–235.

30. Nowak F, Kicherer M, Buchty R, Karl W. Delivering guidance information in
heterogeneous systems. PASA 2010, to appear.

31. Automatically Tuned Linear Algebra Software (ATLAS). http://math-atlas.

sourceforge.net/ [December 20 2009]
32. Williams S, Waterman A, Patterson D. Roofline: an insightful visual perfor-

mance model for multicore architectures. Commun. ACM, ACM: New York, 2009;
52(4):65–76.

33. Williams S, Shalf J, Oliker L, Kamil S, Husbands P, Yelick K. Scientific computing
kernels on the Cell processor. Int. J. Parallel Program. 2007; 35(3):263–198.

34. Kamil S, Datta K, Williams S, Oliker L, Shalf J, Yelick K. Implicit and explicit
optimizations for stencil computations. In Proc. 2006 workshop on Memory System
Performance and Correctness, ACM: New York, 2006; 51–60.

35. Mohiyuddin M, Hoemmen M, Demmel J, Yelick K. Minimizing communication
in sparse matrix solvers. In Proc. Supercomputing Conf.. ACM: New York, 2009;
1–11.

36. Strzodka R, Göddeke D. Pipelined mixed precision algorithms on FPGAs for fast
and accurate PDE solvers from low precision components. In Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines 2006; 259–270.

37. Augustin W, Heuveline V, Weiss JP. Optimized stencil computation using in-place
calculation on modern multicore systems. In Proc. 15th Int. EuroPar Conf. 2009;
772–784.

38. White BS, McKee SA, de Supinski BR, Miller B, Quinlan D, Schulz M. Improving
the computational intensity of unstructured mesh applications. In ICS ’05: Proc.
19th annual int. conference on Supercomputing. ACM: New York, 2005; 341–350.

39. Balay S, Gropp WD, McInnes LC, Smith BF. Efficient management of parallelism
in object-oriented numerical software libraries. In Modern software tools for scien-
tific computing, Birkhauser: Boston, 1997; 163–202.

40. Bergen B, Gradl T, Hülsemann F, Rüde U. A massively parallel multigrid method
for finite elements. Computing in Science and Eng. 2006; 8(6):56–62.

41. Becker C, Buijssen SHM, Turek S. FEAST: Development of HPC technologies for
FEM applications. High Performance Computing in Science and Engineering 2007.
Transact. HLRS: Berlin, 2007; 503–516.

42. Göddeke D, Buijssen SHM, Wobker H, Turek Sa. GPU acceleration of an unmod-
ified parallel finite element Navier-Stokes solver. In High Performance Computing
& Simulation 2009. Logos: Berlin, 2009; 12–21.

43. Göddeke D, Wobker H, Strzodka R, Mohd-Yusof J, McCormick P, Turek S. Co-
processor acceleration of an unmodified parallel solid mechanics code with FEAST-
GPU. International Journal of Computational Science and Engineering. 2009; 4(4):
254–269.

44. Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek
P, Tomov S. Numerical linear algebra on emerging architectures: the PLASMA and
MAGMA projects. Journal of Physics: Conference Series 2009; 180.

45. Bell N, Garland M. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ACM: New York, 2009;
1–11.

Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2009-01 Vincent Heuveline, Björn Rocker, Staffan Ronnas: Numerical Simulation on the

SiCortex Supercomputer Platform: a Preliminary Evaluation

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

