
A Survey on Hierarchical Planning –
One Abstract Idea, Many Concrete Realizations

Pascal Bercher1 , Ron Alford2 and Daniel Höller1

1Institute of Artificial Intelligence, Ulm University, Germany
2MITRE, McLean, Virginia, USA

pascal.bercher@uni-ulm.de, ralford@mitre.org, daniel.hoeller@uni-ulm.de

Abstract

Hierarchical planning has attracted renewed inter-
est in the last couple of years, which led to numer-
ous novel formalisms, problem classes, and theo-
retical investigations. Yet it is important to differ-
entiate between the various formalisms and prob-
lem classes, since they show – sometimes funda-
mental – differences with regard to their expressiv-
ity and computational complexity: Some of them
can be regarded equivalent to non-hierarchical for-
malisms while others are clearly more expressive.
We survey the most important hierarchical prob-
lem classes and explain their differences and sim-
ilarities. We furthermore give pointers to some of
the best-known planning systems capable of solv-
ing the respective problem classes.

1 Introduction

AI Planning is concerned with generating a course of action
that achieves the goals of an agent. In its most basic form –
classical planning – the world is fully known and described
in terms of a predicate or propositional logic, stating all prop-
erties that are currently true. Actions describe in which world
states they are executable and how they change the respec-
tive state in terms of deterministic effects. Hierarchical plan-
ning extends classical planning in terms of a task hierarchy
supporting two kinds of tasks: primitive and compound (or
abstract) ones. Primitive tasks are the before-mentioned ac-
tions. Compound tasks on the other hand are abstractions of
sets of other primitive and compound tasks and can therefore
demand further restrictions that cannot (easily) be captured
by the preconditions and effects of actions. They can be re-
garded control rules: The goals of the agent are not given in
terms of a desired state description, but in terms of compound
tasks, which should be performed. That is, adhering the pre-
defined mappings from compound tasks to sets of other prim-
itive and compound tasks, an executable sequence of actions
should be obtained. Due to the underlying task hierarchy and
its rule-based nature, the approach allows to naturally express
problems with procedural knowledge.

Hierarchical planning approaches are applied in many
practical contexts such as robotics [Beetz et al., 2012;
Stock et al., 2015; González et al., 2017], e.g., for the

Mars Exploration Rovers [Bresina et al., 2005]; web ser-
vice composition [Sirin et al., 2004; Sohrabi et al., 2009;
Georgievski and Aiello, 2015]; generating narratives [Winer
and Young, 2016]; or for personal assistants that are based on
a step-wise presentation of instructions [Bercher et al., 2014a;
Behnke et al., 2019b]. Hierarchical structures further oc-
cur naturally in workflows, where approaches related to
hierarchical planning can be applied [Barták and Dvorák,
2016]. Similarly, hierarchical task models are also applied
in scheduling [Barták and Vlk, 2016]. For earlier overviews
of practical applications see the work by Ghallab et al. [2004,
Chapter 11.9] and Nau et al. [2005].

The motivation for introducing a hierarchy is manifold: It
ranges from introducing expert knowledge to speed-up search
[Nau, 2007]; having multiple abstraction levels to communi-
cate with human users, e.g., for the automated generation of
explanations exploiting abstraction [Seegebarth et al., 2012;
Bercher et al., 2014a] or for conveying the steps them-
selves on higher levels of abstraction [de Silva et al., 2019;
Behnke et al., 2019b]; the direct user integration into the
plan generation process [Behnke et al., 2016]; exploiting
similarities between hierarchical models and human plan-
ning behavior [Fox, 1997; Marthi et al., 2008], e.g., by mod-
eling assumed human planning behavior in terms of a (hi-
erarchical) plan library for plan recognition [Geib, 2004;
Höller et al., 2018a]; to exploiting control rules to describe
desired solutions [Höller et al., 2014; Höller et al., 2016].

As of yet there is no established standard for the specifica-
tion of hierarchical planning problems [Höller et al., 2019a]

– despite early attempts [McDermott, 2000]. In fact, there is
a large set of different hierarchical formalisms. To the best of
our knowledge, only one work provided a general overview
[Fox, 1997], but it is quite dated by now and many theoreti-
cal results for hierarchical planning were published more re-
cently. A comprehensive survey was published more recently
[Georgievski and Aiello, 2015], but it focuses on Hierarchi-
cal Task Network (HTN) planning – i.e., one specific hier-
archical planning framework – in particular and some of its
most influential (and thus older) HTN planning systems. In
contrast to both, we provide a survey on different hierarchical
planning problem classes and discuss their similarities and
differences. We further give pointers to some of the best-
known and more recent planning systems capable of solving
the respective classes.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6267



2 HTN Planning – The Most Basic

Hierarchical Planning Formalism

Before we introduce hierarchical planning, we start with in-
troducing classical planning, as most – if not all – hierarchical
planning formalisms can be considered extensions thereof.

2.1 Introduction to Classical Problems

Classical planning problems are usually defined in the
STRIPS formalism, given as 4-tuples (F,A, sI , g), where F
is a finite set of facts (also called propositional state vari-
ables), A is a finite set of actions defined over F , sI ∈ 2F

is the initial state and g ⊆ F is the goal description. The
facts F are propositional encodings of world properties. Any
subset of F is considered a state. Given a state s ∈ 2F , facts
f ∈ s are considered true in s and all others are not (this
is called the closed world assumption). Actions are 3-tuples
〈pre, add , del〉 ∈ 2F × 2F × 2F consisting of a precondi-
tion pre and its add and delete effects add and del . An ac-
tion a is executable in a state s if its precondition holds in s,
pre ⊆ s. If executable in s, its result is the successor state
s′ = (s \ del) ∪ add , i.e., delete effects get removed and add
effects get added. Solutions are action sequences executable
in the initial state sI that lead to a state s′′ that satisfies all
goals, i.e., s′′ ⊇ g. Any such state s′′ is called a goal state.

Classical planning problems essentially compactly de-
scribe deterministic state transition systems (or: deterministic
finite automata, DFAs) in terms of its initial state, goal de-
scription, and actions – without listing all intermediate states
and transitions. Instead, we only specify that implicitly given
DFA in terms of the planning problem (F,A, sI , g) and a
planning system automatically computes relevant parts of the
state transition system to find a goal-leading sequence of ac-
tions from the initial state to a goal state.

In practice, problems are modeled relying on a first-order
predicate logic. Here, actions’ preconditions and effects are
conjunctions of literals. Let’s consider a classical domain
that models the assembly of a home entertainment system
[Bercher et al., 2014a]. In this scenario various hifi devices
can be connected by a range of cables. This can be modeled
by a single plugIn action. It uses four parameter variables.
They represent the current cable ?c, its port ?cp to be used
(each cable has two: one for each end), the current device ?d,
and its port to be used ?dp. That action’s precondition is a
conjunction of the (positive) literals free(?cp), free(?dp), and
compatible(?cp, ?dp) meaning that it is applicable in a state
in which the involved ports are not occupied and compatible
to each other. The action’s add effect is connected(?cp, ?dp)
and its delete effects are free(?cp) and free(?dp) describing
that the used ports are not free anymore and instead con-
nected with each other. Every such action using variables
can be transformed into a propositional one via grounding,
i.e., by replacing every variable by a suitable constant (which
are given in the problem description). For the sake of sim-
plicity we present all formalisms in a ground/propositional
fashion (i.e., in the above-introduced STRIPS formalism)
as mostly done in the literature. The goal of the classical
problem is given as a partial state description, for instance
g = {hasSignal(TV)}, encoding that the TV has a video sig-

nal. The plugIn actions need to propagate these hasSignal
facts, which can be quite complicated to model [Bercher et
al., 2014a]. We ignored this part in the example for the sake
of simplicity and because we will model the signal flow by
means of a task hierarchy instead.

2.2 Introduction to Hierarchical Problems

When modeling a system as a planning domain, there will
certainly be more than one possible model that is sufficient
to generate plans that work in the real system. An interesting
decision is the amount of advice that is introduced. A com-
mon philosophy when modeling classical planning problems
is to model physics, not advice [McDermott, 2000, p. 37],
not because no advice shall be used at all, but to make it as
explicit as possible. In the beginning, hierarchical structures
have been seen as a means of re-introducing advice for the
planners [McDermott, 2000, p. 37]. The hierarchy can be
used to restrict the search space severely, resulting in quite
efficient planning systems. However, the systems rely on the
additional advice; they are configured for the domain and are
therefore sometimes called domain-configurable (in contrast
to domain-independent) systems [Nau, 2007]. Even though a
hierarchy among the tasks can be used as advice for a plan-
ner, it also adds a new means of modeling that makes the re-
sulting formalism more powerful than non-hierarchical plan-
ning. This can be seen from various studies about the compu-
tational complexity of the formalism [Erol et al., 1996; Geier
and Bercher, 2011; Alford et al., 2015a; Alford et al., 2015b;
Bercher et al., 2016; Alford et al., 2016b] and from the
studies of their theoretical expressivity [Höller et al., 2014;
Höller et al., 2016].

As a running example let us revisit the previous prob-
lem and extend it to a task hierarchy [Bercher et al., 2014a;
Höller et al., 2018b]. In a classical model, the states (i.e.,
preconditions and effects) describe all relevant information.
This includes established connections as well as which cable
and device possesses which signal. Also, the goal is given in
a state-based form as our example showed. When extending
the classical model by a task hierarchy, the information about
the signal flow can be modeled into the hierarchy rather than
into the state: When a source device ?dso shall be connected
with a sink device ?dsi, this can be done (1) directly or (2)
via an intermediate device ?din as illustrated in Fig. 1. We
can now define the goal in terms of an initial compound task
connect(Blu-ray, TV), as we know that based on these two

connect(?dso, ?dsi)

plugIn(?c, ?cp1, ?dso, ?dpso)

plugIn(?c, ?cp2, ?dsi, ?dpsi)

connect(?dso, ?din)

connect(?din, ?dsi)

Figure 1: Depiction of the compound connect task and two of its de-
composition methods (which do not use ordering constraints). Com-
pound tasks and methods are depicted with rounded corners, primi-
tive tasks (i.e., actions) are depicted angled.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6268



rules (called decomposition methods), the latter being recur-
sive, one does not have to model the parts of the states repre-
senting signal flow since we know that the signals are propa-
gated as required if the devices are connected as demanded by
the hierarchy. In such a model, the hierarchy models physics,
not advice – so the hierarchy adds a new means of modeling.
It can, just like states, be used to model physics or advice.
Resulting plans must satisfy the constraints introduced by the
hierarchy as well as the ones introduced by the state.

Usually, the goal in hierarchical planning is to find a prim-
itive refinement of the initially given compound tasks. What
exactly is allowed in order to find solutions differs signifi-
cantly among the variety of present formalisms, which also
influences the respective formalism’s expressivity and com-
putational complexity. We start with explaining the most
commonly known representative of hierarchical planning:
Hierarchical Task Network (HTN) planning [Ghallab et al.,
2004, Chapter 11] and then extend or alter it to capture and
discuss the related hierarchical planning formalisms.

2.3 HTN Planning

There are many formalizations for hierarchical planning in
the literature. One of the most influential formalizations,
called HTN planning, is the one by Erol et al. [1994; 1996]

since they were the first to prove many foundational proper-
ties of HTN planning and to describe a provably sound and
complete HTN planning system: UMCP [Erol et al., 1994].

The formalization we choose in this survey to illustrate
core elements of the formalism bases upon the one by Geier
and Bercher [2011]. It is a minimalistic formalism that still
captures the core ideas behind HTN planning. It shows many
similarities to the one introduced by Ghallab et al. [2004,
Chapter 11.2] that they refer to as Simple Task Network (STN)
planning. For practical purposes, other formalizations, like
the one by Erol et al., might be more appropriate due to
richer language features that allow for defining more con-
straints such as prevail conditions, demanding that a certain
state feature holds directly before or after some task or for the
complete sequence of states between two tasks. In contrast to
Erol et al.’s formalism, which is based upon a first-order pred-
icate logic, the one presented here is fully propositional. For
most formalisms, including the ones we present here, lifted
variants exist as well.

We start with the definition of task networks, which are
generalizations of totally ordered action sequences.

Definition 1. A task network tn is a tuple (T,≺, α), where
• T is a finite set of task id symbols,
• ≺ ⊆ T × T is a strict partial order on T ,
• α : T → N maps every task id to a task name in N .

Because tasks can occur several times within the same task
network, the partial order ≺ is not defined on them directly,
but instead on task identifier symbols T , which are mapped
to the tasks by α.

For consistency reasons, α does not map to primitive or
compound tasks directly, but instead to their names (called
task name). Some names (like plugIn(?c, ?cp1, ?dso, ?dpso))
represent primitive tasks, i.e., actions, and others (like con-
nect(?dso, ?dsi)) represent compound ones. While a primi-

tive task name maps to its unique action (given another map-
ping δ, which is given in the domain model), compound task
names map to one or more task networks that can be used
to refine them. This mapping is established by a set of so-
called decomposition methods M , which are part of the do-
main model. Each method m ∈ M is a 2-tuple (n, tn) map-
ping a compound task name n to a task network tn (see Fig. 1
for a graphical illustration of two methods for the task con-
nect(?dso, ?dsi) of our running example). Given that a task
network tn1 contains a compound task name n (i.e., there is
a task id t ∈ T1 with α1(t) = n), then a method (n, tn) can
be applied to tn1 creating a new task network tn2, in which
t is replaced by tn and ordering constraints pointing from or
to t are inherited by the tasks in tn.

For the sake of completeness, we would like to note that
many HTN planning models support so-called method pre-
conditions. Initially introduced for the HTN planning system
SHOP [Nau et al., 2001], they are still being used for mod-
els that are solved by its successor systems SHOP2 [Nau et
al., 2003] and SHOP3 [Goldman and Kuter, 2019]. Method
preconditions are state-based conditions specifying whether
the respective method may be applied in a current state.
Since their definition is tailored to progression-based search
(cf. Sec. 2.4) and therefore intended for this kind of planning
systems, we do not go into more detail here. A more in-depth
discussion of this feature is given by Höller et al. [2019a].

Definition 2. An HTN problem P is a tuple (D, sI , tnI) con-
sisting of the HTN domain D, an initial state sI ∈ sF , and
an initial task network tnI . An HTN domain D is a tuple
(F,NP , NC , δ,M) consisting of a finite set of facts F , finite
sets of primitive and compound task names NP and NC , re-
spectively, the action mapping δ : NP → 2F × 2F × 2F

assigning actions to the primitive task names, and a finite set
of decomposition methods M .

One of the most important aspects in hierarchical planning
is the definition of the solution criteria, because they alone
define in which way the model’s task hierarchy has to be re-
spected. In HTN planning, there is an initial task network
containing compound tasks that have to be refined relying on
the model’s methods. This is captured by the solution crite-
ria. Ghallab et al. [2004, Chapter 11.1] phrase it as follows:
“HTN planners differ from classical planners in what they
plan for and how they plan for it. In an HTN planner, the ob-
jective is not to achieve a set of goals but instead to perform
some set of tasks.” More formally:

Definition 3. A task network tnS is a solution to an HTN
problem P if and only if tnS can be obtained from the ini-
tial task network tnI by a sequence of method applications,
does not contain compound tasks anymore, and is executable,
i.e., it possesses a linearization of its (primitive) tasks that is
executable in the initial state sI .

Restricting the set of solutions to those that can be ob-
tained from the initial tasks via decomposition enables one
to exclude executable action sequences from the set of de-
sired solutions – simply because they cannot be produced by
exploiting the task hierarchy. This is the main reason for the
high expressive power of the HTN planning formalism. Erol
et al. [1996] proved that HTN planning is expressive enough

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6269



to model undecidable problems, such as the language inter-
section problem of two context-free languages. Geier and
Bercher [2011] reproduced that proof in the more simplistic
formalism outlined here. It is thus more expressive than the
classical STRIPS formalism (and many of its extensions) as
it can only be used to model decidable problems. Relying on
a comparison to the Chomsky hierarchy, Höller et al. [2014;
2016] conducted an in-depth analysis showing which prob-
lems (i.e., which intended solution sets) can be expressed by
various hierarchical and non-hierarchical formalisms.

2.4 Techniques for Solving HTN Problems

At the time being, there are essentially two important tech-
niques to solve HTN problems: Via standard search (like A∗)
and via compilation to a different problem class. For the first,
Alford et al. [2012] explain four different kinds of search al-
gorithms and provide necessary and sufficient criteria when
search terminates. Two of these search algorithms can be con-
sidered standard as many planning systems implement them1.
We briefly outline them below. Afterwards, we briefly outline
several compilation techniques to solve HTN problems.

Decomposition-based (or plan space) search. Search is
done in the space of task networks starting with the initial
task network given in the problem description. Given a search
node, the set of its successors in the search space is deter-
mined by the set of all decomposition methods for the com-
pound tasks present in the current search node. That is, each
existing method gets applied to its compound task in the cur-
rent task network thereby creating a new one. Adding order-
ing constraints is allowed as well in order to obtain a reason-
able ordering within a task network to guarantee executabil-
ity. Decomposition and ordering insertion is repeated until an
executable primitive task network is created. Two of the more
recent plan space-based planners are PANDA [Bercher et al.,
2014b; Bercher et al., 2017] and FAPE [Dvor̆ák et al., 2014;
Bit-Monnot et al., 2016].

Progression-based search. Again, search nodes are task
networks and search starts with the initial one. Whereas the
decomposition-based search allows to work on any part of
the given task network, the progression-based search works
on it in a “left-to-right fashion”. Among all tasks that have
no predecessor in their ordering constraints, search branches
over the choice which of these tasks to process next. If it
is a compound task, every available decomposition method
produces a new successor task network. If it is a primitive
task and executable in the current state, it gets executed (and
removed from the current task network) thereby progressing
said state. A solution is found when the current task network
has become empty since this means that all compound tasks
have been refined by applying decomposition methods and
all primitive tasks have been executed. A solution (i.e., a
sequence of actions) can be extracted from the path of ac-
tion executions from the initial task network to the empty
one. The best-known systems implementing this technique
are the SHOP systems [Nau et al., 2001; Nau et al., 2003;

1For illustrative examples we refer to our (introductory) HTN
planning tutorial (https://www.uni-ulm.de/in/ki/htn-tutorial-2018).

Goldman and Kuter, 2019]. Recently, we proposed an op-
timization of that algorithm that reduces branching and in-
tegrates heuristics [Höller et al., 2018b]. For the latter, i.e,
heuristic integration, we refer readers yet unfamiliar with
HTN planning to the illustrative explanation by Höller et
al. [2019b].

Compilation techniques. Since HTN planning is in gen-
eral undecidable, there cannot be a single compilation to any
other (decidable) problem class. Instead, one can use some
suitable bound and perform a series of compilations of in-
creasing size. Every solution in the compiled problem can be
translated to a solution to the original one. If a compiled prob-
lem is proved unsolvable, a new compilation is performed
with increased size. Due to the undecidability of HTN plan-
ning, this process may have to be repeated arbitrarily often
– termination can only be guaranteed for some special cases
where decidability is known. Alford et al. introduced such
translations to classical planning by bounding the decompo-
sition depth [Alford et al., 2009] or the size of any task net-
work that can be obtained when performing an HTN progres-
sion search [Alford et al., 2016a]. Another approach com-
piles HTN problems into Answer Set Programs (ASPs) while
bounding the length of the plans [Dix et al., 2003]. Simi-
larly, Mali and Kambhampati [1998] introduced the idea to
compile HTN problems into a sequence of SAT problems
in propositional logic. This approach was recently revived
and improved [Behnke et al., 2018; Behnke et al., 2019a;
Schreiber et al., 2019]. Similar to the older encoding for HTN
problems to classical ones [Alford et al., 2009], this encod-
ing bounds the decomposition depth, representing all possible
ways on how to decompose the initial task network using n
levels of decomposition.

3 Variants of Standard HTN Problems

There are many variants and extensions of standard HTN
planning. Some of them were developed as a compensation
to the strict way in which the task hierarchy dictates which
solutions may be generated, others introduced extensions that
make reasoning about the state-based consequences of com-
pound tasks easier, while again others abandon the idea of
task hierarchies altogether and introduce a hierarchy on the
facts instead. We provide a brief overview of the most im-
portant classes, most of which were developed or formalized
within the last ten years.

3.1 TIHTN Planning/Task Insertion

In HTN planning, the solution criteria enforce every sin-
gle action in a plan to be introduced by decomposition. In
terms of modeling effort, there are domains where this is an
intended capability, since this control rule-like requirement
may make the modeling process easier. Goldman [2009]

raises the example that it might be known that a certain medi-
cal treatment (that can be modeled as a “recipe”, i.e., in terms
of methods) will lead to a good outcome, but that it might
be difficult to model the causality behind it in terms of state
transitions. In other domains, this strict adherence to the de-
composition hierarchy might be a drawback, because it en-
forces the domain designer to ensure that all desired solu-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6270



tions can be created via the task hierarchy. As an alterna-
tive, many researchers have fused task hierarchies with the
capability to insert tasks directly, just as in classical planning.
That is, every action that is part of the domain model might
be added to any task network at any position. This idea has
often been described in the context of planning systems and
algorithms [Young et al., 1994; Kambhampati et al., 1998;
Gerevini et al., 2008; Dvor̆ák et al., 2014; Winer and Young,
2016]. Due to the capability to insert actions directly and
arbitrarily the set of solutions might be different compared
to the version of the same problem, in which task insertion
is prohibited. Thus, we obtain a new problem class. Geier
and Bercher [2011] formally defined the respective problem
class, called HTN planning with task insertion (TIHTN plan-
ning), by extending the solution criteria of HTN planning
(cf. Def. 3) in the way that solution task networks can be ob-
tained from the initial task network via a sequence of method
applications and task insertions.

In our running example for an HTN problem (the home
entertainment domain), the signal flow between some source
and sink device was modeled by a recursive hierarchy, while
the actions’ preconditions and effects were used to ensure
that the used devices/cables are actually compatible. If the
same model/problem would be regarded a TIHTN problem,
actions harmful to a given overall task (think about an unplug
action) could be inserted arbitrarily thus invalidating the in-
tended signal flow. Thus, TIHTN problems, while having the
additional capability of task insertion, lose expressivity com-
pared to HTN problems. Thus we learn that task insertion
has to be treated with care in case the task hierarchy is used
to model physics rather than advice. If the task hierarchy is
introduced for advice on how to achieve something – i.e., if
not adhering the task hierarchy does not violate the correct-
ness of the intended solutions – then allowing task insertion
might be the right choice.

The lower expressivity of TIHTN problems is also backed
up by many theoretical investigations [Geier and Bercher,
2011; Alford et al., 2014; Höller et al., 2014; Alford et al.,
2015b; Höller et al., 2016; Alford et al., 2016b] making it –
in contrast to HTN planning – decidable [Geier and Bercher,
2011]. We would like to mention the most important observa-
tion that is responsible for its limited expressiveness: In TI-
HTN planning, recursion in the task hierarchy does not con-
tribute to the solutions that can be generated, i.e., it can be
ignored. In other words: For every TIHTN problem with re-
cursion there exists a non-recursive TIHTN problem with the
same set of solutions [Geier and Bercher, 2011, Lem. 1 and
2]. All that recursion does is to introduce further compound
and non-compound tasks – eventually resulting in some prim-
itive task network. Instead of using recursion to add the re-
quired primitive tasks we can instead rely on task insertion
making recursion redundant. Due to enforced acyclicity we
can compute the maximal number of decompositions and thus
the maximal task network size without task insertion. We
now exploit task insertion to turn such a task network into
an executable one. Between each two tasks we never need
to insert more actions than states (because we would run into
a state cycle otherwise), thereby showing that TIHTN prob-
lems can be decided. This lower computational complexity

can be exploited for heuristics, since task insertion plus delete
relaxation (ignoring all negative effects of primitive actions)
lowers the computational complexity even to polynomial time
[Alford et al., 2014].

Recently, Xiao et al. [2017] extended the TIHTN formal-
ism to express state constraints, called TIHTNS problems.
For this, they reintroduced the before-mentioned prevail con-
ditions by Erol et al.’s formalism that had been removed by
Geier and Bercher.

In addition to the planners mentioned before, the plan
space-based HTN planners PANDA [Bercher et al., 2014b;
Bercher et al., 2017] and FAPE [Dvor̆ák et al., 2014; Bit-
Monnot et al., 2016] both support task insertion.

3.2 Task Sharing

The hierarchy enforces courses of action to be in a plan, not
because of their effects on the world, but “just because I say
so” [Goldman, 2009]. Other than in classical planning, the
planner is not free to reuse parts of the plan that have al-
ready been introduced, e.g., for different sub-goals. To allow
this, some systems introduce task sharing. With task sharing,
when there are two identical tasks t1 and t2 that are unordered
with respect to each other, only one must be executed. I.e.,
the planner may eliminate one and make the other a shared
sub-task of the parent tasks of both t1 and t2.

Consider our running example again. There might be a
task where a DVD player and a Blu-ray player must be con-
nected with a TV by using an adapter, since the TV has only
a single input port. To connect the DVD player, it needs to
be connected with the adapter, and the adapter with the TV.
To connect the Blu-ray player, it needs to be connected with
the adapter as well and, again, the adapter with the TV. Such
tasks might be modeled using task sharing. Then, the system
can merge the connection of the adapter and the TV automat-
ically and no specific modeling of such cases is necessary.

Task sharing was first proposed in the context of the Action
Notation Markup Language (ANML) [Smith et al., 2008] and
implemented, for example, in the plan space-based planners
FAPE [Dvor̆ák et al., 2014; Bit-Monnot et al., 2016]2 and
CHIMP [Stock et al., 2015].

The influence of task sharing is not as drastic as that of task
insertion. In a theoretical investigation, both considering task
sharing and task insertion, Alford et al. [2016b] showed that
task sharing neither increases nor decreasing computational
complexity of the respective problem. Thus, HTN planning
with task sharing still remains undecidable.

3.3 Adding Preconditions and Effects to
Compound Tasks

In the previously introduced formalisms, compound tasks do
not possess preconditions or effects – instead of changing a
state their purpose is to get refined by one of its decomposi-
tion methods into a pre-defined task network. Yet, there are

2FAPE’s plan-space planning algorithm does not specifically
mention task sharing. Instead, when applying decomposition meth-
ods, it inserts constraints that the respective tasks must be present
instead of actually inserting them. A single (shared) task can then
be inserted to achieve multiple instances of the same constraint.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6271



several motivations for being able to specify preconditions
and effects for compound tasks as well [Bercher et al., 2016].

One motivation is to make it directly visible which state
features are changed due to the execution of a compound task.
In the angelic hierarchical planning approach by Marthi et
al. [2007; 2008], the compound tasks’ preconditions and ef-
fects describe state transitions under some refinement. This
property is exploited to find high-level solutions (i.e., contain-
ing compound tasks) that are guaranteed to be refinable into
a primitive solution. It is noteworthy, though, that the models
for which this property can be guaranteed are assumed to be
totally ordered (i.e., the initial task network and all task net-
works of the methods are totally ordered). At least in theory
this is a rather severe restriction as totally ordered HTN prob-
lems cannot express undecidable problems [Erol et al., 1996;
Alford et al., 2015a] and are hence less expressive than HTN
problems in general. Others exploit the compound tasks’
preconditions and effects to formalize and test criteria un-
der which a given decomposition method is regarded an ac-
tual implementation for the respective compound task [Bi-
undo and Schattenberg, 2001; Bercher et al., 2016]. These
criteria ensure that decomposition methods not respecting the
modeler’s intent can be identified and corrected.

Another main motivation for adding preconditions and ef-
fects to compound tasks is to be able to exploit them for
search. They can be used to detect state-based problems much
earlier, as the respective preconditions and effects will be no-
ticeable early on – possibly many levels of abstraction before
decomposition actually introduces the respective action(s). In
case task insertion is enabled, these preconditions and effects
further allow to insert compound tasks as well.

So far, we only mentioned two key motivations for extend-
ing compound tasks with preconditions and effects. We did,
however, not yet specify their impact on the respective prob-
lem class. That is, we did not yet mention the solution cri-
teria the respective problem classes rely on. These criteria
do, however, have a major impact on the problems that can
possibly be expressed with the respective formalism.

The most important decisions to be taken are whether task
insertion is allowed and, if so, whether the goal is specified
in terms of a state-based goal condition (just as in classi-
cal planning) or in terms of an initial task network that we
need to turn into a solution via decomposition. Some ap-
proaches using preconditions and effects for compound tasks
do rely on an initial task network that has to be turned into
a solution, e.g., the angelic hierarchical planning approach
[Marthi et al., 2007; Marthi et al., 2008] or hybrid plan-
ning [Biundo and Schattenberg, 2001; Bercher et al., 2014a;
Bercher et al., 2014b; Bercher et al., 2016] while others do
not: For some real-world planning applications, it might not
be necessarily required to restrict the set of solutions to those
that can be obtained from the initial task network. Many
planning approaches were created that rely on a hierarchi-
cal task model but without an initial task network and a
state-based goal description instead (i.e., with task insertion).
Those include approaches that do not allow preconditions
and effects for compound tasks [de Silva et al., 2019] and
those that do [Young et al., 1994; Kambhampati et al., 1998;
Winer and Young, 2016]. Fox [1997] refers to the respective

planners of the latter kind as operator decomposition plan-
ners, so we refer to the respective problem class as decompo-
sitional planning.

This class can be regarded a hybrid between TIHTN prob-
lems and classical problems, since tasks can be inserted and
compound tasks have to be decomposed if present in a current
search node. Computationally, it can be regarded equivalent
to classical planning, since the task hierarchy does not pose
any constraints. Although compound tasks need to be refined
in case they get inserted into a task network there will never
be the necessity to insert them in the first place.

As example, the HTN home entertainment model intro-
duced before would not work anymore if interpreted as de-
compositional problem: Since we are never forced to add the
connect tasks, the signal flow would not be accounted for cor-
rectly. Just as in TIHTN planning, the signal flow had to
be modeled via actions’ preconditions and effects to obtain
a valid decompositional planning problem. So using this ap-
proach excludes using a hierarchy as constraints, but still al-
lows using it for practical purposes as was done, for example,
for the generation of narratives [Winer and Young, 2016].

3.4 HGN Planning

All problem classes discussed so far were based upon a hier-
archy among tasks. In Hierarchical Goal Network (HGN)
planning [Shivashankar et al., 2012] there is no hierarchy
among tasks, but instead it defines a hierarchy on structured
state variables, which are referred to as goals in this context.
As in all previous problem classes, the hierarchy is given by a
set of decomposition methods. In contrast, the goal hierarchy
does not induce two kinds of state variables. All variables are
regarded of the same kind, no matter whether there exists a
method for it. Methods map goals to partially ordered sets of
goals, which are called goal networks.

Definition 4. A goal network gn is a tuple (G,≺, α), where
• G is a finite set of goal ids,
• ≺ ⊆ G×G is a strict partial order on G, and
• for every g ∈ G, α(g) is a goal, i.e., a DNF (disjunctive

normal form) formula over literals.

Please note that in the original publication about HGN
planning [Shivashankar et al., 2012], goal networks were as-
sumed to be totally ordered. It was extended to a partial order
later on [Alford et al., 2016b].

In analogy to the other hierarchical planning approaches,
where a method maps a compound task to a task network,
here a goal g (resticted to a conjunction of literals) maps to
a goal network. In addition, methods as defined by Shiv-
ashankar et al. [2012] contain a precondition prec, leading
to the triple (g, prec, gn). Their formalization assumes that a
progression planner (cf. Sec. 2.4) is used to solve the respec-
tive problems, thus prec describes in which states (generated
by the action sequence applied so far) the respective method
is applicable – just as for some HTN formalisms [Nau et al.,
2001; Nau et al., 2003; Goldman and Kuter, 2019]. If applied
to a goal id g in a goal network gn1, the method prepends
g ∈ G1 with gn. The set of solutions is defined inductively:

Definition 5. Let P be an HGN problem with the initial goal
network gn = (G,≺, α) and initial state s0.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6272



1. If G is empty, then the empty plan is a solution.
2. Otherwise, let g ∈ G be a goal id in gn without prede-

cessors, and α(g) be its goal.
(a) If α(g) is satisfied in s0, P ′ is the problem that re-

sults from removing g from gn, and π is a solution
to P ′, then π is a solution to P .

(b) Let a be an action that is relevant for α(g) (i.e., it
fulfills one of its literals) and applicable in s0. Let
π be a solution for P ′, which differs from P in the
updated initial state s′

0
= γ(s0, a). Then a ◦ π is a

solution to P .
(c) Let m = (gm, prec

m
, gnm) be a method that is ap-

plicable to s0 and gm be relevant to α(g). Then,
the set of solutions for P includes the set of solu-
tions for P ′, in which gn has been replaced by gn′

resulting from the application of m to g.

One important subtlety in Def. 5 is that only those actions
can be applied that are contributing towards some goal. This
prevents arbitrary action applications similar to HTN plan-
ning. Interestingly HGN problems are computationally as
hard as HTN problems because of this [Alford et al., 2016b].

Shivashankar et al. [2013; 2016; 2017] developed planners
that solve HGN problems based on progression search and
informed heuristics.

3.5 GTN Planning

Goal-Task Network (GTN) planning fuses HTN with HGN
planning [Alford et al., 2016b]. Instead of featuring ei-
ther task or goal networks, this formalism features the fu-
sion of both, called goal-task networks. Consequently, the
solution criteria are those of Def. 3 and Def. 5 combined.
Non-surprisingly, GTN problems are also undecidable, just
as HTN and HGN problems [Alford et al., 2016b]. As of yet
there does not exist a planner that is capable of solving the
respective problems.

3.6 Extension of the State Model

So far, all problem classes that we surveyed rely on a simple
state transition semantics, i.e., all actions have deterministic
effects that make some properties instantaneously true. In
particular in real-work applications, this might not be suffi-
cient anymore. Then, extensions to this simple model might
be required that incorporate, for instance, continuous effects,
the use of functions, or time. One of the few attempts to
formally describe the integration of time and resource con-
sumption is done by the Action Notation Modeling Lan-
guage (ANML) [Smith et al., 2008]. ANML implicitly re-
lies on acyclic task hierarchies. The planner FAPE is able
to cope with most of the language features given in ANML.
One of the more recent appraoches that integrates time into
HTNs is described by Molineaux et al. [2010]. They extend
HTN models expressed in the SHOP2 input language [Nau et
al., 2003] (and the planner) by nonlinear continuous effects
known from PDDL+ [Fox and Long, 2006]. This includes,
e.g., reasoning about fluents (describing continues values like
the fuel-level of a vehicle), which may change over time.

4 Discussion & Conclusion

For each given problem at hand, there are always countless
possibilities on how to model it. Modeling it as a hierarchi-
cal planning task may bring several advantages, from practi-
cal ones like being able to present plans on more abstract lev-
els to more theoretical ones like being able to express more
constraints on the set of desired solutions. It is of crucial
importance to understand the – sometimes subtle-looking –
differences between the formalisms as otherwise plans may
be generated that are no solutions to the modeled problem
or the desired solution(s) cannot be found. We provided a
survey and discussion on the vast set of more recent hierar-
chical planning formalisms highlighting their differences and
similarities from a theoretical point of view while also giving
pointers to systems capable of solving them.

References

[Alford et al., 2009] Ron Alford, Ugur Kuter, and Dana S.
Nau. Translating HTNs to PDDL: A small amount of do-
main knowledge can go a long way. In IJCAI, pages 1629–
1634. AAAI Press, 2009.

[Alford et al., 2012] Ron Alford, Vikas Shivashankar, Ugur
Kuter, and Dana Nau. HTN problem spaces: Structure,
algorithms, termination. In SoCS, pages 2–9. AAAI Press,
2012.

[Alford et al., 2014] Ron Alford, Vikas Shivashankar, Ugur
Kuter, and Dana Nau. On the feasibility of planning graph
style heuristics for HTN planning. In ICAPS, pages 2–10.
AAAI Press, 2014.

[Alford et al., 2015a] Ron Alford, Pascal Bercher, and David
Aha. Tight bounds for HTN planning. In ICAPS, pages 7–
15. AAAI Press, 2015.

[Alford et al., 2015b] Ron Alford, Pascal Bercher, and
David Aha. Tight bounds for HTN planning with task in-
sertion. In IJCAI, pages 1502–1508. AAAI Press, 2015.

[Alford et al., 2016a] Ron Alford, Gregor Behnke, Daniel
Höller, Pascal Bercher, Susanne Biundo, and David Aha.
Bound to plan: Exploiting classical heuristics via auto-
matic translations of tail-recursive HTN problems. In
ICAPS, pages 20–28. AAAI Press, 2016.

[Alford et al., 2016b] Ron Alford, Vikas Shivashankar,
Mark Roberts, Jeremy Frank, and David W. Aha. Hier-
archical planning: Relating task and goal decomposition
with task sharing. In IJCAI, pages 3022–3029. AAAI
Press, 2016.

[Barták and Dvorák, 2016] Roman Barták and Tomás
Dvorák. On verification of workflow and planning
domain models using attribute grammars. In Proc. of the
15th Mexican Int. Conf. on AI (MICAI), pages 332–345.
Springer, 2016.

[Barták and Vlk, 2016] Roman Barták and Marek Vlk. Hi-
erarchical task model for resource failure recovery in pro-
duction scheduling. In Proc. of the 15th Mexican Int. Conf.
on AI (MICAI), pages 362–378. Springer, 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6273



[Beetz et al., 2012] Michael Beetz, Dominik Jain, Lorenz
Mösenlechner, Moritz Tenorth, Lars Kunze, Nico Blodow,
and Dejan Pangercic. Cognition-enabled autonomous
robot control for the realization of home chore task intelli-
gence. Proc. of the IEEE, 100(8):2454–2471, 2012.

[Behnke et al., 2016] Gregor Behnke, Daniel Höller, Pascal
Bercher, and Susanne Biundo. Change the plan – How
hard can that be? In ICAPS, pages 38–46. AAAI Press,
2016.

[Behnke et al., 2018] Gregor Behnke, Daniel Höller, and Su-
sanne Biundo. totSAT – Totally-ordered hierarchical plan-
ning through SAT. In AAAI, pages 6110–6118. AAAI
Press, 2018.

[Behnke et al., 2019a] Gregor Behnke, Daniel Höller, and
Susanne Biundo. Finding optimal solutions in HTN plan-
ning – A SAT-based approach. In IJCAI. IJCAI, 2019.

[Behnke et al., 2019b] Gregor Behnke, Marvin Schiller,
Matthias Kraus, Pascal Bercher, Mario Schmautz, Michael
Dorna, Michael Dambier, Wolfgang Minker, Birte Glimm,
and Susanne Biundo. Alice in DIY wonderland or: In-
structing novice users on how to use tools in DIY projects.
AI Communications, 32:31–57, 2019.

[Bercher et al., 2014a] Pascal Bercher, Susanne Biundo,
Thomas Geier, Thilo Hörnle, Florian Nothdurft, Felix
Richter, and Bernd Schattenberg. Plan, repair, execute,
explain – How planning helps to assemble your home the-
ater. In ICAPS, pages 386–394. AAAI Press, 2014.

[Bercher et al., 2014b] Pascal Bercher, Shawn Keen, and Su-
sanne Biundo. Hybrid planning heuristics based on task
decomposition graphs. In SoCS, pages 35–43. AAAI
Press, 2014.

[Bercher et al., 2016] Pascal Bercher, Daniel Höller, Gregor
Behnke, and Susanne Biundo. More than a name? On im-
plications of preconditions and effects of compound HTN
planning tasks. In ECAI, pages 225–233. IOS Press, 2016.

[Bercher et al., 2017] Pascal Bercher, Gregor Behnke,
Daniel Höller, and Susanne Biundo. An admissible HTN
planning heuristic. In IJCAI, pages 480–488. IJCAI,
2017.

[Bit-Monnot et al., 2016] Arthur Bit-Monnot, David E.
Smith, and Minh Do. Delete-free reachability analysis for
temporal and hierarchical planning. In ECAI, pages 1698–
1699. IOS Press, 2016.

[Biundo and Schattenberg, 2001] Susanne Biundo and
Bernd Schattenberg. From abstract crisis to concrete relief
– A preliminary report on combining state abstraction and
HTN planning. In ECP, pages 157–168. AAAI Press,
2001.

[Bresina et al., 2005] John L. Bresina, Ari K. Jónsson,
Paul H. Morris, and Kanna Rajan. Activity planning for
the mars exploration rovers. In ICAPS, pages 40–49.
AAAI Press, 2005.

[de Silva et al., 2019] Lavindra de Silva, Lin Padgham, and
Sebastian Sardina. HTN-like solutions for classical plan-

ning problems: An application to BDI agent systems. The-
oretical Computer Science, 763:12–37, 2019.

[Dix et al., 2003] Jürgen Dix, Ugur Kuter, and Dana Nau.
Planning in answer set programming using ordered task
decomposition. In Proc. of the 26th German Conf. on AI
(KI), pages 490–504. Springer, 2003.

[Dvor̆ák et al., 2014] Filip Dvor̆ák, Roman Barták, Arthur
Bit-Monnot, Félix Ingrand, and Malik Ghallab. Planning
and acting with temporal and hierarchical decomposition
models. In ICTAI, pages 115–121. IEEE, 2014.

[Erol et al., 1994] Kutluhan Erol, James Hendler, and
Dana S. Nau. UMCP: A sound and complete procedure for
hierarchical task-network planning. In AIPS, pages 249–
254. AAAI Press, 1994.

[Erol et al., 1996] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. Complexity results for HTN planning. An-
nals of Mathematics and AI (AMAI), 18(1):69–93, 1996.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning.
Journal of AI Research (JAIR), 27(1):235–297, 2006.

[Fox, 1997] Maria Fox. Natural hierarchical planning us-
ing operator decomposition. In ECP, pages 195–207.
Springer, 1997.

[Geib, 2004] Christopher W. Geib. Assessing the complexity
of plan recognition. In AAAI, pages 507–512. AAAI Press,
2004.

[Geier and Bercher, 2011] Thomas Geier and Pascal
Bercher. On the decidability of HTN planning with task
insertion. In IJCAI, pages 1955–1961. AAAI Press, 2011.

[Georgievski and Aiello, 2015] Ilche Georgievski and
Marco Aiello. HTN planning: Overview, comparison, and
beyond. Artificial Intelligence, 222(0):124–156, 2015.

[Gerevini et al., 2008] Alfonso Gerevini, Ugur Kuter,
Dana S. Nau, Alessandro Saetti, and Nathaniel Waisbrot.
Combining domain-independent planning and HTN
planning: The Duet planner. In ECAI, pages 573–577.
IOS Press, 2008.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated Planning: Theory and Prac-
tice. Morgan Kaufmann, 2004.

[Goldman and Kuter, 2019] Robert P. Goldman and Ugur
Kuter. Hierarchical task network planning in common
Lisp: The case of SHOP3. In Proc. of the 12th Europ.
Lisp Symp. (ELS), pages 73–80. ACM, 2019.

[Goldman, 2009] Robert Goldman. A semantics for HTN
methods. In ICAPS, pages 146–153. AAAI Press, 2009.

[González et al., 2017] José Carlos González, José Carlos
Pulido, and Fernando Fernández. A three-layer planning
architecture for the autonomous control of rehabilitation
therapies based on social robots. Cognitive Systems Re-
search, 43(Supplement C):232–249, 2017.

[Höller et al., 2014] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Language classification of

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6274



hierarchical planning problems. In ECAI, pages 447–452.
IOS Press, 2014.

[Höller et al., 2016] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Assessing the expressivity
of planning formalisms through the comparison to formal
languages. In ICAPS, pages 158–165. AAAI Press, 2016.

[Höller et al., 2018a] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Plan and goal recognition
as HTN planning. In ICTAI, pages 466–473. IEEE, 2018.

[Höller et al., 2018b] Daniel Höller, Pascal Bercher, Gre-
gor Behnke, and Susanne Biundo. A generic method to
guide HTN progression search with classical heuristics. In
ICAPS, pages 114–122. AAAI Press, 2018.

[Höller et al., 2019a] Daniel Höller, Gregor Behnke, Pascal
Bercher, Susanne Biundo, Humbert Fiorino, Damien Pel-
lier, and Ron Alford. HDDL – A language to describe hi-
erarchical planning problems. In Proc. of the 2nd ICAPS
Workshop on Hierarchical Planning, pages 6–14, 2019.

[Höller et al., 2019b] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. On guiding search in HTN
planning with classical planning heuristics. In IJCAI. IJ-
CAI, 2019.

[Kambhampati et al., 1998] Subbarao Kambhampati, Amol
Mali, and Biplav Srivastava. Hybrid planning for partially
hierarchical domains. In AAAI, pages 882–888. AAAI
Press, 1998.

[Mali and Kambhampati, 1998] Amol D. Mali and Subbarao
Kambhampati. Encoding HTN planning in propositional
logic. In AIPS, pages 190–198. AAAI Press, 1998.

[Marthi et al., 2007] Bhaskara Marthi, Stuart J. Russell, and
Jason Wolfe. Angelic semantics for high-level actions. In
ICAPS 2007, pages 232–239. AAAI Press, 2007.

[Marthi et al., 2008] Bhaskara Marthi, Stuart Russell, and
Jason Wolfe. Angelic hierarchical planning: Optimal and
online algorithms. In ICAPS, pages 222–231. AAAI Press,
2008.

[McDermott, 2000] Drew V. McDermott. The 1998 AI plan-
ning systems competition. AI Magazine, 21(2):35–55,
2000.

[Molineaux et al., 2010] Matthew Molineaux, Matthew
Klenk, and David Aha. Planning in dynamic envi-
ronments: Extending HTNs with nonlinear continuous
effects. In AAAI, pages 1115–1120. AAAI Press, 2010.

[Nau et al., 2001] Dana S. Nau, Yue Cao, Amnon Lotem,
and Héctor Muñoz-Avila. The SHOP planning system. AI
Magazine, 22(3):91–94, 2001.

[Nau et al., 2003] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami,
Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Ya-
man. SHOP2: An HTN planning system. Journal of AI
Research (JAIR), 20:379–404, 2003.

[Nau et al., 2005] Dana S. Nau, Tsz-Chiu Au, Okhtay Il-
ghami, Ugur Kuter, Dan Wu, Fusun Yaman, Héctor
Muñoz-Avila, and J. William Murdock. Applications of
SHOP and SHOP2. Intelligent Systems, IEEE, 20:34–41,
2005.

[Nau, 2007] Dana S. Nau. Current trends in automated plan-
ning. AI Magazine, 28(4):43–58, 2007.

[Schreiber et al., 2019] Dominik Schreiber, Tomáš Balyo,
Damien Pellier, and Humbert Fiorino. Tree-REX: SAT-
based tree exploration for efficient and high-quality HTN
planning. In ICAPS. AAAI Press, 2019.

[Seegebarth et al., 2012] Bastian Seegebarth, Felix Müller,
Bernd Schattenberg, and Susanne Biundo. Making hybrid
plans more clear to human users – A formal approach for
generating sound explanations. In ICAPS, pages 225–233.
AAAI Press, 2012.

[Shivashankar et al., 2012] Vikas Shivashankar, Ugur Kuter,
Dana Nau, and Ron Alford. A hierarchical goal-based for-
malism and algorithm for single-agent planning. In AA-
MAS, pages 981–988. IFAAMAS, 2012.

[Shivashankar et al., 2013] Vikas Shivashankar, Ron Alford,
Ugur Kuter, and Dana Nau. The GoDeL planning sys-
tem: A more perfect union of domain-independent and
hierarchical planning. In IJCAI, pages 2380–2386. AAAI
Press, 2013.

[Shivashankar et al., 2016] Vikas Shivashankar, Ron Alford,
Mark Roberts, and David W. Aha. Cost-optimal algo-
rithms for planning with procedural control knowledge. In
ECAI, pages 1702–1703. IOS Press, 2016.

[Shivashankar et al., 2017] Vikas Shivashankar, Ron Alford,
and David Aha. Incorporating domain-independent plan-
ning heuristics in hierarchical planning. In AAAI, pages
3658–3664. AAAI Press, 2017.

[Sirin et al., 2004] Evren Sirin, Bijan Parsia, Dan Wu, James
Hendler, and Dana Nau. HTN planning for web service
composition using SHOP2. Journal of Web Semantics,
1(4):377–396, 2004.

[Smith et al., 2008] David E. Smith, Jeremy Frank, and
William Cushing. The ANML language. In KEPS, 2008.

[Sohrabi et al., 2009] Shirin Sohrabi, Jorge A. Baier, and
Sheila A. McIlraith. HTN planning with preferences. In
IJCAI, pages 1790–1797. AAAI Press, 2009.

[Stock et al., 2015] Sebastian Stock, Masoumeh Mansouri,
Federico Pecora, and Joachim Hertzberg. Online task
merging with a hierarchical hybrid task planner for mobile
service robots. In IROS, pages 6459–6464. IEEE, 2015.

[Winer and Young, 2016] David R. Winer and R. Michael
Young. Discourse-driven narrative generation with bipar-
tite planning. In INLG, pages 11–20. ACL, 2016.

[Xiao et al., 2017] Zhanhao Xiao, Andreas Herzig, Laurent
Perrussel, Hai Wan, and Xiaoheng Su. Hierarchical task
network planning with task insertion and state constraints.
In IJCAI, pages 4463–4469. IJCAI, 2017.

[Young et al., 1994] R. Michael Young, Martha E. Pollack,
and Johanna D. Moore. Decomposition and causality in
partial-order planning. In AIPS, pages 188–193. AAAI
Press, 1994.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6275


