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ABSTRACT Energy is a vital resource for human activities and lifestyle, powering important everyday

infrastructures and services. Currently, pollutant and non-renewable sources, such as fossil fuels, remain the

main source of worldwide consumed energy. The environmental impact of their exploitation has boosted

research and investments in alternative, clean and renewable sources, including photovoltaic and wind-

based systems. As a whole, buildings are one of the major energy consumption sectors. Hence, improving

energy efficiency in buildings will result in economical and environmental gains. In the case of households,

home energy management systems are mainly used for monitoring real-time consumption and to schedule

appliance operations so that the energy bill could be minimised, or according to another specific criterion.

This work aims to survey the most recent literature on home energy management systems, providing an

aggregated and unified perspective in the context of residential buildings. In addition, an updated literature

list regarding commonly managed household appliances and scheduling objectives are included. Physical

and operational constraints, and how they are addressed by home energy management systems along with

security issues are also discussed.

INDEX TERMS Energy efficiency, home energy management systems, household appliance models, load

management, optimal scheduling, smart homes, security.

I. INTRODUCTION

Energy is an essential resource to life and all living organ-

isms. In current days, electrical energy plays a vital role in

human lifestyle, powering key infrastructures and services.

Fossil fuels still account for the production of the majority

of worldwide consumed electricity. According to the United

States Energy Information Administration [1], in 2018, fos-

sil fuels ensured 62% of primary electricity production in

the United States. Unlike clean and renewable alternative

sources such as wind or solar, fossil-fuel exploitation has

a strong environmental impact as a result of green house

gas (GHG) emissions, global warming and health hazards.

In addition, its current consumption surpasses natural regen-

eration, resulting in an inevitable depletion of resources,

if other sources or options are not exploited.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ayaz Ahmad .

These concerns have fostered not only the search for

alternative, renewable and clean energy sources, but also

the awareness regarding energy efficiency and sustainability.

In the last few years, the traditional power grid has been

reshaped into an intelligent, highly reliable and fully auto-

mated infrastructure, paving the way to the so-called ‘‘smart’’

grid paradigm. This new power grid model supports the

deployment and integration of distributed generation and stor-

age resources, namely of renewable nature. It relies heavily

on smart appliances and two-way communication channels

linking the utility and consumers. This makes possible real-

time coordination and dynamic optimisation of grid operation

and resources [2].

At demand-side, smart homes incorporate digital sens-

ing and communication devices, which allow for continuous

consumption monitoring, intelligent appliance control and

communication with the utility and grid. Smart homes are

a key element to the operation and effectiveness of smart
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grids, not only by supporting optimised management to grid

resources and infrastructures, but also by contributing to

energy efficiency. Buildings are responsible for around 40%

of worldwide energy consumption [3], which is expected to

significantly increase over the next few years [4]. As such,

efficiency improvements, implemented at global scale, can

mitigate this trend, reducing energy consumption, wastage,

costs and environmental hazards associated with generation.

In the last few years, there has been a growing interest in

home energy management systems (HEMSs). They provide

the means for automated and intelligent control of smart

home appliances. HEMSs target efficient energy manage-

ment, contributing to preserving finite fossil fuel resources,

while lowering energy consumption, wastage and costs.

The conceptualisation of HEMSs involves several aspects,

including their definition, characterisation and overall archi-

tecture, as well as their underlying purpose in household

environments. Optimisation-based techniques are extensively

employed within HEMSs. They enable appliance alloca-

tion under dynamic objectives and constraints. In [5] this

trend is highlighted, calling for further research to address

HEMSs specific needs, in particular concerning scalability,

model complexity and uncertainties. Intrinsically linked to

the characterisation of HEMSs are: (i) their in-operation

goals, including minimising the overall energy bill, reducing

carbon emissions, or achieving a given target load profile,

just to name a few; (ii) the strategies employed to achieve

such goals, in particular how to schedule individual appli-

ances or deciding upon which unnecessary loads should be

turned off; (iii) managing household appliances; (iv) how they

are individually modelled.

This paper provides a comprehensive review with respect

to HEMSs, including an outlook on these systems and

closely-related topics. Approaches aiming at household

appliance modelling, scheduling strategies, operational and

residential objectives and constraints are discussed. In addi-

tion, the incorporation of residential load uncertainties into

HEMSs is also covered. Two main contributions are provided

in this work. Firstly, a thorough review on recent HEMS

developments is presented, including operational goals and

strategies to meet them, household appliance management

policies, incorporation of uncertainty in HEMSs’ decision

making, performance metrics, and common attack targets

and corresponding counter-measures. Secondly, an updated

literature list on HEMSs is included, which to some extent

can be regarded as gateway to the most relevant and updated

bibliography on the field.

The remainder of this paper is organised as follows.

In Section II HEMSs are defined, characterised and contex-

tualised within the smart grid digital paradigm. Centralised

and distributed energy management schemes are discussed,

as well as the most recent advances regarding the integration

of plugged-in electric vehicles on the digital grid. Section III

introduces the main approaches to energy saving in build-

ings. Section IV presents a literature categorisation regarding

household appliances included in HEMSs infrastructures.

Common managed appliances are presented, along with

adopted strategies to model their behaviour and dynamics,

including in-operation dynamics and uncertainties. Section V

is devoted to appliance scheduling, being discussed common

techniques, scheduling criteria and constraints. Section VI

focuses on cyber attack vectors and counter-measures for

HEMSs, while Section VII describes some of the challenges

this field is facing, alongwith prospective research directions.

Finally, Section IX concludes the survey.

II. HOME MANAGEMENT SYSTEMS

Smart buildings represent a branch of ubiquitous computing

that comprises the incorporation of Internet of Things (IoT)

technologies into buildings for comfort, healthcare, safety,

security and energy efficiency [6], [7]. They are an integrating

part of ongoing technological advancements in power grids,

boosting the deployment of smart sensors and other advanced

metering devices, which make remote communication, mon-

itoring and actuation on household appliances possible.

Among different types of buildings, smart homes have

been the subject of great research interest, particularly from

the energy efficiency point of view. Smart homes offer bet-

ter quality of life and efficiency by taking advantage of

remote monitoring and self-adaptive context-aware mecha-

nisms, in order to identify needs and preferences of resi-

dents, and also to coordinate appliance operation. Wired and

wireless sensor and actuator networks are deployed on smart

homes, being collected sensor data and contextual informa-

tion stored in a central platform. This entity is also responsible

for processing acquired information, enabling an optimised

management and actuation of household appliances, for the

sake of residents’ comfort and energy efficiency.

Distributed power generation has also been boosted, par-

ticularly from renewable sources such as hydro, solar and

wind [1]. Furthermore, individual households are also becom-

ing players in the production of their own electricity, via

local (micro) solar andwind systems.When power generation

exceeds local demand, the resulting surplus can be used to

charge local batteries, for subsequent domestic use, or inject

into the grid with a given profit. Grid power injection requires

a bi-directional interaction between the grid and local micro-

generation systems, propped up on a two-way communica-

tion network, so as to ensure grid safety and stability. Taking

advantage of advanced metering infrastructures (AMI) and

remote control and automation systems, grid information can

also be considered in managing power resources at house-

hold level. This is particularly valuable for utility and grid

companies, as it allows them to predict future demands with

superior accuracy, reducing electricity waste and decreasing

generation costs.

From a demand-side perspective, HEMSs are in-line with

the smart grid paradigm shift. A HEMS has the ability to

interact with household devices and the utility, allowing

appliance schedules to be adjusted, in order to cope with

constraints and taking into account external information,

such as updated grid prices or meteorological forecasts [8].
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FIGURE 1. HEMS architecture1.

This is usually achieved by turning devices on or off, reducing

the overall demand and considering periods of low electricity

price and higher power generation.

A. HEMS COMPONENTS

Figure 1 presents the general architecture of a HEMS, which

comprises the following components:

(a) Sensing and measuring devices – used to mea-

sure physical quantities, such as temperature, humid-

ity or light, or to detect motion or room occupancy, just

to name out a few. Smart meters are commonly used

by HEMSs, collecting detailed energy consumption of

individual appliances and other human activities-related

information. Smart meters also facilitate two-way com-

munication between HEMS and the utility.

(b) Smart appliances – consist of typical household devices

(e.g., dishwasher, refrigerators or air conditioning units),

enhanced with computing and communication capabil-

ities. Energy generation devices such as photovoltaic

(PV) panels and wind turbines are also considered. Smart

appliances communicate with a central platform, which

handles all measured data and coordinates appliance

uses.

1Icons taken from https://www.flaticon.com.

(c) User interface – a device via which residents can interact

with the HEMS. Interfaces can be used to display infor-

mation, such as current consumption or energy expenses,

and for specifying residents preferences, including appli-

ance priorities, comfort parameters or scheduling goals.

Touch screen or mobile application interfaces are very

common, although other less user-friendly options, e.g. a

computer terminal, can also be considered.

(d) Central platform – aims at managing and optimising

energy usage. It receives smart meter information and

adopts a scheduling mechanism, usually computed via

an optimisation approach, assuming a given performance

index. Energy bill is a common choice, along with com-

fort, peak reduction and GHG emissions.

In a HEMS, sensors are continuously collecting infor-

mation regarding household activities. Usually, individual

appliance consumption signals are collected, although disag-

gregation techniques such as NonIntrusive Load Monitoring

(NILM) [9] can be applied to extract individual appliance

consumption. Collected data is then dispatched to the cen-

tral platform, where it is stored and processed. It should

be pointed out that billing data and weather forecast can

also be retrieved and used in the optimisation stage. Fur-

thermore, in a fully designed HEMS, the central platform

complements residents’ specifications and preferences with

sensed and inferred information. A scheduling strategy is then
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employed to determine appliance operation times that meet

user-defined preferences, under physical constraints. Proper

communication protocols between the central platform and

the underlying smart appliances ensure the implementation

of computed optimal scheduling.

B. CENTRALISED VS DISTRIBUTED MANAGEMENT

Although HEMSs are often deployed to reduce electricity bill

at demand-side, they can never operate in complete isolation

from the grid and customers. The reason is related to the

fact that the grid needs to ensure adequate supply to mul-

tiple customers under a dynamic load demand, namely by

deploying additional generators. Furthermore, a HEMS needs

to be aware of the demand required by other buildings, so that

high demand stress on the grid is avoided, in particular during

unexpected periods of time. If, for example, households start

shifting many loads to night periods, the grid infrastructure

may not be able to match demands within feasible time. This

could result in power outages and blackouts, and therefore

coordinated energy management is imperative.

Two approaches can be considered, namely centralised and

distributed [10]. Centralised HEMSs implement methodolo-

gies for coordination of consumption and generation on a

platform, which is located at the utility level. In this context,

the central platform, mentioned in Section II-A, no longer

handles appliance scheduling. It strictly assumes sensor data

aggregation, processing and inference tasks. Under this topol-

ogy, buildings should send to the grid consumption related

information, including sensor data, appliance operation needs

and constraints, just to name out a few. Next, taking this

information into account, the grid centralised management

platform schedules demand-side electricity and generator

operations in order to optimise specific criteria, for instance

operational costs, or peak-to-average ratio. This leads to a

massive constrained optimisation problem, with the corre-

sponding heavy computational burden.

Unlike centralised methodologies, distributed-based

approaches rely on several independent decision-making

entities to plan demand-side and grid operations. Commonly,

they cooperate with one another and the grid to find a mutual

agreement feasible solution that maximises individual goals,

without compromising other decision-makers’ goals or power

supply stability. As grid resources are managed in a dis-

tributed way, the underlying computational burden is shared

among all players, resulting in a significantly lower individual

computational overhead. This makes distributed strategies

very appealing, particularly in smart grid scenarios where

many different assets need to be coordinated. In order to

reach a global consensus, it demands frequent communica-

tion among participants. Despite the inherent increase in the

volume of transmitted data over communication networks,

sensitive information is typically not exchanged as much

as for centralised-based scheduling. For example, instead

of transmitting individual appliance operation needs and

constraints, decision-makers should only provide the mini-

mum required power level [11]. Decision-makers are mainly

modelled by intelligent agents in game-theory and multi-

agent-based techniques [10]–[12], or even mathematical

optimisation-based approaches [13]–[15].

It should be mentioned that, although distributed energy

management-based techniques are applied to groups of build-

ings [10], [11], [13], they can also be used for energy man-

agement at individual buildings level [14]. In such cases,

agents are assigned a single appliance and are responsible for

managing its operation.

C. ELECTRIC VEHICLE INTEGRATION

Throughout this review, an electric vehicle (EV) is any vehi-

cle in which electricity accounts for some or all driving

energy, which is ultimately supplied through a rechargeable

battery [16]. In the last few years, EVs have attracted con-

siderable interest from academia and practitioners alike [17].

They are set to play a major role in reducing global pollu-

tion, being a more efficient and less polluting alternative to

conventional internal combustion engines [18].

A large-scale adoption of EVs raises important challenges

for current and future power grids. As these vehicles require

substantial electricity, customer demand is expected to sig-

nificantly increase over the next few years. This results in

higher demand stress and generation capacity needs from the

grid infrastructure [17]. Furthermore, when the grid is not

able to generate or provide the required demand of electricity,

additional measures need to be adopted. In [19], [20] it is

argued that there are two main approaches to address the

challenges posed by EV charging: (i) to reinforce the grid

infrastructure and build additional networks to accommodate

substantial peaks; (ii) to develop and implement enhanced

charging management strategies capable of controlling EV

charging, while taking into account supply constraints of

the grid. It should be mentioned that, based on the flow of

electricity between the grid and a vehicle, charging can be

classified as unidirectional or bidirectional [17].

1) UNIDIRECTIONAL EV CHARGING

In unidirectional charging, EVs are handled as any other

electrical appliance, in the sense that an unidirectional flow of

electricity moves from the grid to the vehicle while charging

its battery. This category can be further split into uncon-

trolled or controlled charging. Uncontrolled or ‘‘dumb’’

charging follows traditional appliance use and charging

behaviour, since a EV is plugged-in when it needs to be

charged and unplugged by the owner, either when the bat-

tery is full or the vehicle is requested. The grid has no

prior knowledge regarding EV’s charging cycles, which

implies that when a significant number of EVs is simulta-

neously plugged-in, unexpected demand peaks may occur.

When the density of EVs served by a power grid is small,

the network infrastructure can still be capable of support-

ing increased demands [17]. However, in the case of large-

scale scenarios, peak-to-valley difference and the risk for

network losses are significantly increased, overloading the

infrastructure and causing undervoltage effects [21]. As for
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controlled or smart charging techniques, energy used in

EV charging and demanded by other on-site appliances is

safely balanced, thus allowing an efficient EV charging, while

minimising demand peak and grid stress.

Two approaches for EV charging can be found in the litera-

ture, including centralised and decentralised topologies [17].

In decentralised methodologies, each vehicle is equipped

with its own charging management system, which controls its

charging cycles and communicates with other vehicles. As for

centraliased charging schemes, a single entity is used to coor-

dinate individual charging cycles, while taking into account

global demand. Centralised solutions can be further split

into [17] (i) aggregator-based, (ii) distributor system operator

(DSO) based, and (iii) multi-agent-based. For both aggregator

and DSO-based strategies, a single entity manages several

vehicles from users with common interests. In aggregator-

based schemes, an aggregator is adopted, whereas for the

other approaches each distribution company ensures this ser-

vice. As both aggregators and DSO managers deal with large

electricity purchases, they have a stronger negotiating power

than if EVs were considered individually, which results in

lower bills.

Depending on the network topology, multi-agent systems

can also be considered. As discussed in Section II-B, groups

of independent decision-makers coordinate their demands,

in this case EVs charging, looking for a mutual agreement

that maximises individual goals without minimal impact on

each decision-maker preferences or power supply stability.

2) BIDIRECTIONAL EV CHARGING

Bidirectional EV charging considers that electricity can flow

not only from the grid to a vehicle, but also from a vehicle to

the grid. This allows EVs to be used as both mobile energy

storage systems and generators. As such, if EVs are capable

of not only demanding power from the grid, but also injecting

it in the grid through their own batteries as a source, then

they can be exploited to accommodate the highly dynamic

generation and demand in modern grids. When grid produc-

tion exceeds current demands, not fully charged EVs parked

at appropriate locations can accommodate overproduction,

while when demand suddenly peaks and the grid needs to

increase its generation, EVs can be used as local generators

supplying the required demand. As such, proper billingmech-

anisms are thus needed in this dual interaction with the grid.

Furthermore, EVs electricity supply needs to be carefully

managed, avoiding EV battery drainage and weighing the

impact on batteries lifetime.

Three bidirectional approaches are discussed in [17]:

(i) vehicle-to-grid (V2G), (ii) vehicle-to-building (V2B) and

(iii) vehicle-to-home (V2H). V2G is focused on tempo-

rary EV battery discharges to accommodate peak demands,

and for general power regulation. Aggregator-based unidi-

rectional approaches can also be considered, being several

EVs managed by an aggregating unity, which coordinates

charging and discharging cycles, taking into account the grid

needs. Both V2B and V2H are variants of V2G, where local

generation, usually from renewable sources, is balanced

between building/home supply and EVs batteries charging.

As renewable production is uncertain, power surplus can

be partially stored in EV batteries. When demand exceeds

current grid generation capacity, batteries can then be used

to account, at least in part, for extra power demand. This con-

tributes to power generation flattening and grid infrastructure

optimisation.

D. SUMMARY

HEMSs provide automated and intelligent control of smart

home appliances, propped up on IoT and smart grid

paradigms. These management systems aim to improve effi-

ciency, promoting renewable energy use and bill cut. They

rely on smart sensors, appliances and AMI for continuous

monitoring.

Commonly, HEMSs operate by scheduling domestic con-

sumption loads, requiring two-way communication between

the grid and other customers to coordinate load demands in

order to avoid grid infrastructure overloading. This coordina-

tion can be achieved via centralised or distributed approaches.

Centralised management-based approaches carry out all

required operations on a single entity, which implies

having access to sensor data, appliance operation needs,

constraints and additional relevant information. This raises

several issues, such as sending private information over the

grid or dealing with the heavy computational burden associ-

ated to solving large-scale non-linear constrained optimisa-

tion problems. On the other hand, because all environment

information is available, the optimality of solutions is gen-

erally guaranteed. As for distributed approaches, they rely

on several independent decision-makers that cooperate with

one another to plan demand-side and grid operations. Even

though communication is more frequent than in centralised

methodologies, decision-makers commonly do not exchange

confidential data. Also, since information is generally incom-

plete, only suboptimal solutions are commonly obtained.

EVs are efficient and less polluting alternatives to con-

ventional transportation. The wide-spread of these vehicles

raises important challenges in terms of charging manage-

ment, for current and future power grids alike. In unidirec-

tional charging, EVs are handled as any common appliance,

considering only grid consumption, while in bidirectional EV

charging vehicles’ batteries are used as additional storage

units or generators. Bidirectional strategies rely on EVs to

mitigate the effects of dynamic grid behaviour, in particular

the unpredictability of renewable generation. In this context,

V2G has attracted considerable attention, motivating variants

for buildings (V2B) and households (V2H).

III. MANAGEMENT IN BUILDINGS

In a nutshell, household energy efficiency and bill reduction

can be achieved mainly in two ways: by reducing total energy

consumption, or deferring the operation of certain devices,

taking advantage of local production and off-peak tariffs. This

can be categorised as consumption reduction or consumption
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shifting [22]. Consumption reduction refers to reducing the

overall energy consumption, usually by increasing consumer

awareness, shutting down appliances not in use, purchasing

energy-efficient devices, or improving building construction

and design. Consumption shifting is, on the other hand,

focused on deferring certain loads over time, usually to

off-peak periods. Naturally, these two alternatives are not

mutually exclusive and can be employed together. Nonethe-

less, consumption reduction is less popular within residential

buildings, since it requires deeper, time-consuming and costly

interventions. Furthermore, determining optimal load shifting

times is also not a trivial exercise. In addition to physical and

preference constraints, load shifting is also conditioned by the

adopted billing scheme, local energy production, if available,

and baseline demands.

In short, demand-side load regulation can be addressed

through demand-side management (DSM) and demand

response (DR) programs. Despite being often used inter-

changeably, these are not synonyms, as they comprise distinct

techniques and strategies in order to achieve energy efficiency

and bill reduction at consumption-side.

A. DEMAND-SIDE MANAGEMENT

Demand-Side Management comprises a collection of

techniques to improve energy efficiency and reduce the over-

all energy bill at consumption-side [23]. DSM is a broad-

spectrum field, encompassing and extending concepts such

as energy efficiency and load management. Owing to the

fact that DSM related literature is somewhat disperse, there

is no general consensus regarding the classification and

categorisation of the underlying techniques.

DSM techniques can be categorised based on their tim-

ing and customer impact [23]: (i) Energy Efficiency (EE),

(ii) Time of Use (TOU), (iii) Demand Response, and

(iv) Spinning Reserve. EE accomplishes permanent energy

optimisation by promoting the adoption of energy-efficient

appliances and improving building design and construction.

Also considered within this category are end-user aware-

ness and behavioural changes towards a more efficient usage

of energy appliances. TOU and DR techniques share simi-

larities, as both promote energy efficiency and grid stabil-

ity by coordinating and shifting appliances operation, thus

balancing demands throughout the day. While TOU bills

demanded energy at different prices, conditioned by the time

of the day, DR promotes changes in electricity use as a

response to smart grid events, which can be, for instance,

grid price updates. As for spinning reserve techniques, they

aim to support traditional energy providers by adjusting loads

on demand-side according to the grid frequency, either by

increasing or decreasing demand. They also support commu-

nication among demand-side devices in order to promote fair-

ness in grid incentives, and contribute towards grid stability.

A different categorisation has been subsequently proposed

in [24]. The underlying techniques are split into (i) Energy

Efficiency, (ii) Demand Response, and (iii) Strategic Load

Growth (SLG). Comparing to the one proposed in [23], its

FIGURE 2. Demand-side management and demand response
categorisation.

main novelty concerns the inclusion of SLG techniques. Load

growth programmes are implemented aiming at changing the

load shape, by imposing increases or decreases in consump-

tion in certain periods of the day. This approach can be used

to foster consumption from renewable sources.

B. DEMAND RESPONSE

Demand response refers to changes in electricity use from

normal consumption patterns exhibited by demand-side

resources, as a result of changes in the price of electric-

ity or induced by incentive payments, aiming at lowering

electricity use when wholesale market prices are high, just

to name out a few [3]. Moreover, the ability to change appli-

ance schedules in real-time allows the accommodation of

unexpected grid demand peaks, while contributing to demand

flexibility. This is particularly important in addressing the

variability of energy production from renewable sources, both

at demand and supply sides. From a practical point of view,

DR has been shown to cut peak demands, helping with the

integration of renewable sources and supporting short-term

balancing of the grid [25].

As for DR-based techniques, there is also no consensual

categorisation. One of the proposals [23] considers splitting

DR into market and physical techniques. Market DR tech-

niques are directly focused on energy billing by means of

load shifting, taking into account static or dynamic billing

methods or financial incentives. On the other hand, phys-

ical DR is centred around the smart grid and underlying

infrastructure, consisting of signals sent out by the utility

to reduce or remove demands due to maintenance or failure

events.

Another more exhaustive categorisation is proposed

in [24]. Here, the authors split DR techniques into the follow-

ing six categories (Figure 2): (i) frequency-based, (ii) direct

control over utility equipment, (iii) direct control over

end-use equipment, (iv) price-based, (v) market-based, and

(vi)model-based.Frequency-based techniques use frequency-

based mechanisms to control devices on the demand-side,

switching them on or off, performing load shedding and

restoration.Direct control over either utility or end-use equip-

ment aims to control grid assets, such as transformers and

feeders, or demand-side appliances. For utility equipment,

the adoption of voltage reduction and protection relays is

reported, while protection fuses and clock-based controllers

can be considered at demand-side. In price-based techniques,
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indirect load control is carried out via tariffs such as TOU,

real-time pricing (RTP) or critical-peak pricing (CPP), while

in market-based demand-side resources are explicitly incor-

porated into electricity markets. Finally, model-based tech-

niques focus on coordinating devices and resources at both

demand and supply sides, in order to optimise energy use

and billing. The authors focus their discussion on model-

based predictive control (MPC), but alternative methodolo-

gies, such as machine learning-based techniques, can also be

considered.

Recently, two additional categories were considered in [3]

and [26], namely price-based and incentive-based tech-

niques. Both categories, in essence, are focused on schedul-

ing devices to minimise energy bill. Price-based techniques

adjust loads to dynamic grid prices, while incentive-based

techniques rely on deterministic and time-invariant policies,

such as direct load control and interruptible loads, to pro-

mote load reduction. Customers of incentive-based programs

should agree to reduce operative loads during specific peri-

ods. If they complywith this requirement a financial incentive

is awarded, otherwise a penalty is applied.

In recent years, renewable energy and storage systems,

both at demand and supply-side, have been increasingly inte-

grated on power grids. On the other hand, AMI, dynamic

billing policies, as well as automated DSM and DR also need

to be properly incorporated. In addition, demand-side load

adjustment should not be considered just to improve just a

single criterion. The utility, smart grid and customers often

have distinct and conflicting objectives. This has motivated

extensive research on multi-objective optimal resource man-

agement, notably MPC [27], [28], linear programming (LP)

and non-linear programming (NLP) [4], [29], [30] as well as

evolutionary algorithms (EAs) [31]–[34].

C. ENERGY BILLING SCHEMES

In the past, utility companies commonly used to consider

flat rate-based pricing, being customers charged according

to a given static rate per energy consumed unit. Recently,

owing to technological advances on smart metering, dynamic

billing schemes have become increasingly preponderant.

Five main billing approaches can be found in the literature

(see e.g. [35], [36]), namely:

(a) All-in-rate – billing is carried out at a given static rate,

which remains unchanged throughout the day.

(b) TOU – splits a given day into several periods. For each

period, energy is billed at a fixed rate. Periods usually

change over time, as well as the underlying billing rates.

Periods and energy prices can depend on the season of

the year, day of the week, or any other criterion.

(c) CPP – defines a peak rate at which customers are billed

during critically overloaded periods. These periods are

defined by the utility, based on a threshold regarding the

total consumption for a customer. In the remainder of the

time, this approach is exactly as TOU.

(d) RTP – energy tariffs are updated at a given rate, usually

on hourly or daily basis.

(e) Inclining Block Rate (IBR) – IBR considers a unit elec-

tricity rate, which increases with consumption in blocks

of several hundred kWh. By considering higher demands

more expensive, this billing scheme promotes load distri-

bution over time.

D. SUMMARY

Under the smart grid paradigm, DSM and DR have emerged

as the two most dominant programs for automated load

management at demand-side. While DSM-based approaches

focus on reducing energy consumption and improving the

overall efficiency, DR-based techniques adjust electricity use

in response to grid price changes. The adoption of these

programs can be beneficial for both end-users and utility

companies.

DSM is categorised into energy efficiency, strategic load

growth and demand response techniques. Energy efficiency

techniques encourage energy-efficient appliance usage,

building construction and design methods improvement,

along with end-user awareness and behavioural changes.

Load growth programmes are implemented for changing the

load profile shape, in order to increase or decrease consump-

tion at certain periods of time. DR techniques include the fol-

lowing standard categories, namely frequency-based, direct

control over utility equipment, direct control over end-use

equipment, price-based, market-based and model-based tech-

niques. These categories were recently extended by including

incentive-based and price-based techniques.

Further research on scheduling strategies, namely in terms

of optimisation techniques, is required to balance exploita-

tion of local production for self-consumption and grid injec-

tion. Uncertainties associatedwith appliance operation needs,

energy consumption, local production and grid prices must

also be addressed for the sake of robustness.

IV. HOUSEHOLD APPLIANCE MODELS

Buildings, both residential and non-residential, include a

multitude of electrical devices, each with its own specific

characteristics in terms of energy consumption and usage

profile. In order to address the increasing heterogeneity of

devices, HEMSs need to be adaptive and flexible enough to

cope with changing requirements and to accommodate new

challenges.

A. APPLIANCES CATEGORISATION

From a load scheduling point of view, household appli-

ances can be categorised based on how they are managed

by HEMSs. In [37] appliances are distinguished between

controllable, according to which appliance operations can be

scheduled over a given time horizon, and non-controllable

appliances, for which scheduling is not available. Only the

ability to define appliances’ start time is possbile, while inter-

rupting their operation or reducing their energy consumption

are not available. A broader categorisation is proposed in [8],

comprising the following six classes aiming to model differ-

ent groups of devices:
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(a) Uncontrollable loads – they cannot be changed or

re-scheduled by a HEMS. This class considers loads that

provide an added value to residents, sometimes com-

pletely controlled by users. Examples include, but are not

restricted to, entertainment equipments such as tv sets,

computers or sound systems.

(b) Curtailable loads – energy consumption can be adjusted

mid-operation, usually with no significant impact to res-

idents’ comfort. Such adjustments restrict energy con-

sumption by changing the underlying settings, with no

subsequent compensation. One example concerns dim-

ming indoor artificial illuminance during day-time as a

function of daylighting.

(c) Uninterruptible loads – once started, they should run a

complete cycle. Hence, the underlying HEMS, or resi-

dents, are only able to schedule the corresponding start-

ing time. Dishwasher, clothes washing or dryer machines

are typically included in this category.

(d) Interruptible loads – can be interrupted at any time, and

subsequently resumed, with little impact on their oper-

ation. Appliances included in this category are usually

modelled as equipments with constant consumption, eas-

ing the formalisation of underlying scheduling problems.

Examples include plug-in hybrid electric vehicles and

other rechargeable devices.

(e) Regulating loads – appliance operation states remain

as close as possible to a given reference, which is

defined by residents or a HEMS. Heating, ventilation and

air conditioning (HVAC) systems are exmaples of this

class.

(f) Energy Storage – comprise appliances such as external

batteries that store energy for subsequent use.

It should be stressed that no household appliance cate-

gorisation scheme is currently globally accepted. Different

terms are used to characterise identical concepts. As an

example, in [26] household appliances are classified as

schedulable or non-schedulable based on deferment flexi-

bility, while in [37], [38], the classes controllable and non-

controllable are analogous, even as elastic and inelastic

loads in [35]. The latter work also suggests a new class for

smart loads, further categorised in elastic and inelastic loads,

resulting from their ability to adjust power consumption

mid-operation.

It should be pointed out that even among authors follow-

ing the categorisation proposed in [8], a consensus has not

been reached yet on which appliances are assigned to each

category. Refrigerators, for instance, are such an example

due to their relatively short cycling characteristics. At hourly

resolution, consumption cannot be adjusted, and thus they

are regarded as uncontrollable devices [39], [40]. For lower

time resolutions, consumption can in principle be adjustable,

allowing them to be classified either as interruptible [41], [42]

or uninterruptible loads [38], [43]. Finally, loads can also be

categorised as thermostatically controlled, in the case they

are related to maintaining indoor temperature close to a given

reference value.

TABLE 1. Common controllable household appliances referenced in the
literature.

B. TYPICAL CONTROLLABLE APPLIANCES

Table 1 presents the most common controlled appliances in

the context of HEMSs found in the literature. As can be

observed, there is a clear predominance for some types of

appliances. Washing, dryer machines, dishwasher and charg-

ing of electric vehicles appear on the top of this list, with
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over 20 references each. Indoor temperature management is

also common, and associated to heating or cooling systems.

This finding is, to some extent, expected, as these appliances

are responsible for a high share of overall household energy

consumption. In comparison to other appliances equally

important for comfort and lifestyle, such as phone chargers,

personal computers, tv sets or entertainment systems, those

devices aremore prone to externalmanagement, making them

top candidates for HEMS-based supervision.

C. RESIDENTIAL LOAD UNCERTAINTIES

In household environments, accurate predictions of electricity

demand and local micro generation are difficult. If tariffs are

fixed, utility grid prices can be determined, otherwise they

can only be estimated, with a certain degree of confidence.

These uncertainties have an impact on computed load sched-

ules, which ultimately compromise energy bill and may lead

to breaches of contracted power limits or even impacting

residents’ comfort level.

The main sources of uncertainty in HEMSs are: (i) appli-

ance operation needs, (ii) appliance consumption, (iii) local

micro energy production, and (iv) utility grid prices. A way

to address uncertainties on forecasts is to remove pre-

dicted data from the decision-making process, and solely

relying on past and present data. In such cases, it is

suggested to consider heuristics and game-theory-based

approaches, or when uncertainty is explicitly included,

stochastic, robust, chance-constrained, (stochastic) dynamic

programming and (stochastic) fuzzy optimisation approaches

are recommended [8].

(a) Stochastic optimisation – uncertainties are modelled

as random variables and explicitly included in both

the objective function and constraints [44]–[46], being

the optimisation carried out for the expected value

of the objective function. If statistic distributions and

corresponding parameters are known, a simple approach

consists in replacing each random variable with the

underlying expected value. In the case of finite uncer-

tainty realisations, the expected value can be determined

by computing the objective function value for all possible

realisations and taking its expectation. For other cases,

an approximation of the set of possible realisations can

be computed via Monte Carlo sampling, assuming a

stochastic model, or based on field observations [44],

[47]–[49]. Finally, in some particular problems, decisions

need to be obtained based on a sequential methodology,

commonly via two-stage or multi-stage-based stochastic

optimisation approaches [8], [50].

(b) Robust optimisation – no assumptions regarding the

underlying uncertain variables are made, being them

modelled them based on intervals of values [47], [51].

These methods address uncertainties by considering real-

isations with stronger (worse) impact on problem solu-

tions. For instance, minimisation of household electricity

bill under uncertain non-schedulable demands consid-

ers non-controllable demands to be as high as possible.

A generic formulation for a robust optimisation problem

is as follows [50]:

min
x∈χ

max
ω∈�

F(x, ω) (1)

where � is the uncertainty set and χ is the space of

decision variables.

(c) Chance-constrained optimisation – not as strict as robust

alternatives, since optimisation is conducted for the

worst-case scenario with a predetermined confidence

interval, which is represented by a parameter α:

min
x∈χ ,ω∈�

F(x, ω)

subject to

P (hi(x, ω) ≥ 0) ≥ p

i = 1, · · · ,m (2)

In short, this method ensures that the probability of

matching one or more constraints is above a given thresh-

old. Therefore, it restricts the feasible region in order to

guarantee a high confidence level on computed solutions.

Unlike robust optimisation methods, chance-constraints

can use unbounded distributions of uncertainty [8].

(d) Stochastic dynamic programming – relies on the estima-

tion of a state-space model, such that for each state a

finite set of actions can be taken with a given proba-

bility, thus resulting in transitions to other states. This

method is applied recursively from the end nodes to

the initial node. As a finite set of states must be

defined, a rather simplistic and often incorrect model

may be obtained. Since a significant number of states

may emerge when modelling complex systems, stochas-

tic dynamic programming-based problems can become

NP-hard. Nevertheless, some approximations can allow

solutions to be achieved in polynomial time [8].

(e) Stochastic fuzzy optimisation – consider fuzzy logic the-

ory, such that truth values are in the interval [0, 1]. When

dealing with forecasts, uncertainties can be replaced with

non-crisp values, which enable HEMSs to make quick

decisions that lead to approximate optimal schedules,

within a certain level of confidence [8].

D. SUMMARY

HEMSs allow continuous monitoring and management of

household appliances based on user defined criteria, such

as the overall electricity bill or residents’ comfort, just to

name out a few. A clear lack of consensus concerning a

unified categorisation of household appliances, from aHEMS

management perspective, is noticed. Nevertheless, household

appliances can broadly be categorised into appliances sup-

porting remote HEMS control and management, and those

not available for management. Controllable appliances can

be further categorised based on how HEMSs regulate their

operation: curtailable and regulating loads, where energy con-

sumption is adjusted during in-operation stages; uninterrupt-

ible loads, which cannot be managed in any way after being
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started; interruptible loads, which can be interrupted and

subsequently resumed at any point during execution; energy

storage systems, allowing extra storage for later use. Some

appliances are more appealing than others with respect to

smart management and scheduling. This is the case of wash-

ing machines, electric vehicles and HVAC systems, in part

due to their significant consumption and support for external

management, with smaller impact on residents’ comfort and

lifestyle. HEMSs define appliances in-operation schedules

over a future time horizon, based on appliance requirements,

in terms of consumption and local generation, which are typi-

cally not known. As such, scheduling techniques need to deal

with uncertainties. In this context, stochastic and robust meth-

ods, chance-constrained optimisation and stochastic variants

of dynamic programming and fuzzy optimisation methods

were discussed.

V. SCHEDULING

In order to improve energy efficiency and residents’ com-

fort, HEMSs monitor household consumption and coordinate

appliance operations. This can be achieved via consumption

reduction or consumption shifting, with the latter far more

popular in residential buildings. Consumption shifting relies

on scheduling techniques to find optimal operation timing for

household appliances. Prior to their adoption and deployment

in real-world scenarios, critical choices need to be made

concerning the devices to be managed, scheduling criteria,

operational constraints, and the scheduling techniques to be

considered. This section is devoted to discussing dominant

scheduling techniques, criteria and constraints.

A. TECHNIQUES

In the context of consumption shifting, the choice of a par-

ticular scheduling technique involves a number of issues.

Scheduling is conducted over a future time horizon, for which

household demands and electricity generation cannot be per-

fectly predicted. As such, adequate and representative con-

sumption profiles are required. In addition, the incorporation

of uncertainties for future demands and generation should

also be considered.

More strongly linked to the optimisation strategy is the

process of modelling appliances by a HEMS and the under-

lying time domain representation. Its discretisation into

equal-length slots is widely employed, namely hourly-based

slots [57], [59], [86]. In some cases, time domain discretisa-

tion helps the specification of constraints related for instance

to appliance models or comfort parameters, just to name out

a few. Such representations, however, lead to a larger num-

ber of variables, increasing the corresponding computational

burden. In such cases, the underlying problems should be

reformulated to reduce the number of variables and con-

straints [87]. Continuous time domain representations can

also be considered (see e.g. [88]–[90]), improving scheduling

flexibility, as appliances in this case are not constrained to

fixed slots.

A wide variety of methods and techniques have been

suggested to improve energy usage through load schedul-

ing [8], [35], [91]–[93]. These methodologies can generically

be grouped into five categories: i) mathematical optimisa-

tion; ii) heuristic andmetaheuristic methods; iii) model-based

predictive control; iv) machine learning; v) game theory

approaches.

1) MATHEMATICAL OPTIMISATION

HEMSs define appliance operation schedules over a given

predefined time horizon, so that some particular criteria are

optimised, while taking into account underlying constraints.

A common approach to find feasible solutions relies on deter-

ministic optimisation-based methodologies. The correspond-

ing problem formulation can be grouped into the following

categories:

(a) Linear Programming (LP) problems – the objective

function and constraints are strictly expressed by linear

relationships, being binary programming [4], [94] and

mixed-integer linear programming (MILP) [30], [39],

[43], [46], [55] the most predominant methods. LP prob-

lems are appealing due to their relatively low compu-

tation burden and the availability of specific software

packages. Algorithms such as branch and bound, sim-

plex or interior point can be employed. Commercial and

non-commercial solvers with support for linear program-

ming problems are also available, namely GLPK [95],

CPLEX [96] or GAMS [97].

(b) Non-Linear Programming problems – either the under-

lying criteria or constraints, or even both, are expressed

by non-linear functions. These techniques are more

powerful than LPs, but on the other hand the com-

putation burden is larger. Common solvers with sup-

port for non-linear problems include SCIP [98], [99],

GAMS or LINGO [100]. Mixed-integer non-linear pro-

gramming (MINLP) problems are commonly formulated

in the context of HEMSs [29], [56], [101].

(c) Convex Programming problems – consider convex objec-

tive functions, linear equality constraints and concave

inequality constraints. Convex programming problems

can be solved by least squares, conic programming, geo-

metric optimisation and Lagrange multiple methods [35].

(d) Dynamic Programming – the optimisation problem is

structured into multiple stages, being scheduling deci-

sions made sequentially, one at a time, and not indepen-

dently at each time interval [102], [103].

A drawback of deterministic formulations, in the context

of HEMS scheduling, is the lack of precise knowledge con-

cerning demand, local micro generation or grid prices over

the scheduling horizon. Although scheduling could be found

by solving LP orMILP problems, by considering demand and

production forecasts, optimal solutions can only be found if

future uncertain realizations match forecasts. For uncertainty

sources modelled by probability distributions, a stochas-

tic optimisation approach can be used [70], [71], [104].
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This methodology was followed in [44], leading to household

energy bill cuts of around 41%, when compared to tradi-

tional deterministic optimisation approaches, with uncertain-

ties were considered for household appliance consumption,

operation times, and with respect to renewable electricity

generation.

2) HEURISTICS AND METAHEURISTICS

For large problems, mathematical optimisation methods are

computationally expensive, being heuristics and metaheuris-

tics approaches a valuable alternative. They rely on high-level

procedures to search for admissible solutions, resulting in a

lower computational burden than mathematical optimisation

methodologies. They are particularly attractive for problems

where it is typically easier to find one suboptimal solution,

but extremely difficult and time-consuming to find a global

solution.

In this class of methods, genetic algorithms (GA)

[31]–[34], [52], [92] and differential evolution (DE) [68]

have stood out in the context of HEMSs, along with

swarm intelligence-based algorithms, namely particle

swarm optimisation (PSO) [33], [72], [79], [83] and tabu

search [53], [54], [84].

3) MODEL PREDICTIVE CONTROL

HEMSs scheduling can be regarded as a receding-horizon

optimal control problem, such as MPC. At current discrete

time k , a horizon-dependent optimal control sequence is

computed based on current states sampled from the system,

being only the first control action implemented on the sys-

tem. At next time step k + 1 this procedure is once again

repeated. MPC supports dynamic modelling and disturbance

prediction [57], [71], [92], [105], useful to address problem

uncertainties. One of the drawbacks of MPC-based tech-

niques is related to the stability of the underlying closed loop

system and the sub-optimality of the corresponding control

system. Nevertheless, MPC has been reported to achieve a

satisfactory performance regarding the energy management

of buildings, outperforming other control schemes, such as

in the case of heating [106], [107], cooling [108], [109]

and ventilation [110]. However, MPC-based methodologies

involve very often significant modelling costs, as they require

a detailed plant model, rely on data acquisition from the

plant, along with the implementation of required observers,

expert monitoring and deployment. This has been pointed

out as a limitation regarding the application of MPC-based

technologies in medium to large buildings [92].

4) MACHINE LEARNING

Traditionally, utility companies have heavily relied on con-

trol systems, physical modelling and numerical calculations

to monitor and manage grid infrastructures [111]. With the

recent technological advances in IoT and smart grid technolo-

gies, a new generation of digital sensors equipped with com-

puting and communication capabilities is being deployed.

This results in the collection of massive data volumes, which

need to be subsequently processed. On the other hand, renew-

able energy generation increases both the complexity and

uncertainty of gridmanagement. As this new set of challenges

is not fully addressed by traditional strategies, the application

of machine learning and data science-based techniques have

been suggested in the context of building and grid manage-

ment [93], [111], in particular for: (i) appliance scheduling,

and (ii) forecasting building energy consumption.

5) APPLIANCE SCHEDULING

Artificial neural networks (ANNs), as a class of univer-

sal approximators, can learn to solve scheduling problems

by means of supervised training. Among ANN topologies,

feedforward architectures are commonly chosen, while con-

sidering as inputs, for instance, future demands and gen-

eration forecasts, time of day and occupancy information.

When multiple devices need to be simultaneously managed,

two strategies can be followed. One considers training an

individual ANN for each appliance [112], while the other

approach considers training a single ANN to control multiple

devices [113].

Reinforcement learning (RL) has evolved around the con-

cept of an intelligent agent in a dynamic environment. This

agent iteratively learns how to best act while performing a

given task. At each iteration, the agent observes and eval-

uates the current environment state, takes an action from a

previously defined set and receives a reward as a result of the

conducted action. The goal of an agent is to either maximise

rewards or their expected values [114].

6) BUILDING ENERGY CONSUMPTION

Predictive models can be used to estimate electricity con-

sumption, either for the entire building or for some spe-

cific uses, including eating, cooling, washing and dryer

machines [115]. They can also be used to predict micro

generation for sources such as solar or wind [116]–[118].

In essence, this problem can be regarded as time-series fore-

casting, for which machine learning-based approaches can be

considered [93], [111], [116], [119]:

(a) Statistical and conventional regression methods, such

as time-series decomposition, ARMA, AIRMA, mul-

tiple linear regression [120] or ordinary least squares

regression [121] offer a balance between simplicity

and performance. However, for non-linear time-series

the underlying prediction error tends to be unaccept-

able [119] unless an online parameter adjusting mecha-

nism is implemented.

(b) Artificial neural networks, including multilayer

perceptron and feedforward neural networks [122], con-

volutional neural networks (CNNs) [111], [123], recur-

rent neural networks (RNNs) [111], [124] and restricted

boltzmann machines (RBMs) [111], [125]. Concern-

ing RNNs, long short-term memory (LSTM) architec-

tures are effective in dealing with a variety of high

complex problems [124], [126]. The incorporation of

VOLUME 8, 2020 5709



J. Leitão et al.: Survey on Home Energy Management

additional layers within deep ANN architectures signif-

icantly improved generalisation performance, both for

short and long terms. The main drawback of these high

complex topologies is the training computational burden.

(c) Capsule networks rely on the concept of a capsule, which

is capable of learning implicit features over a limited

domain of input deformations [127], [128]. They have

also been considered to forecast time-series data, namely

to building energy forecast [129], [130].

(d) Support vector machines (SVMs) [131] are intrinsi-

cally adapted to solve regression problems, under the

so-called support vector regression (SVR) modelling.

Furthermore, they provide satisfactory results even

when few data samples are available [119]. The appli-

cation of SVR-based techniques to building energy

forecast has been suggested in a number of works

(see e.g. [132]–[134]), being the underlying prediction

performance superior to traditional techniques and even

to some ANN-based data-driven models.

(e) The joint application of segmentation and regression

techniques rely on the concept of shape-similar data

clustering. Instead of using all available data to train

a machine learning-based model, it adjusts models to

capture data patterns assigned to a given cluster. In [135]

a K-means clustering algorithm was used to segment

electricity readings on a hourly basis, along with a

CNN model used to approximate each cluster, while

in [136] household electricity loads are predicted by

using classification and regression trees, together with

self-organising map data clustering.

(f) Gaussian process regression (GPR) is a non-parametric

method based on gaussian processes (GPs) [137].

GPs represent time-series as a collection of jointly mul-

tivariate gaussian random variables, and they are com-

pletely specified by a mean and covariance function.

Given a training data set, they can be regarded as defining

a set of functions that pass through the observations

and are otherwise normally distributed, in log marginal

likelihood sense [138].

(g) Ensembles of several models combine different tech-

niques, while taking advantage of their individual

strengths. They have, in the last few years, gained consid-

erable interest in building energy consumption modelling

and forecast. In some cases, they have shown to outper-

form regular single models, although their adoption has

been hampered, in part due to implementation complex-

ity and computational burden. Examples include random

forests and boosting decision trees [119].

7) GAME THEORY

Game theory-based approaches are usually employed within

amulti-agent framework, where each agent chooses a strategy

to maximise an individual utility function. Agents’ utility

functions are defined according to the underlying operation

objectives, and conditioned by other agents’ strategies [35].

Two main categories can be found, namely cooperative and

non-cooperative games. The former considers communica-

tion among agents, acting as a group to reach a common goal,

while in the latter category agents are self-interested and do

not communicate with one another, unless for self-enforcing

purposes.

For a single household, cooperative games are not the

most appropriate techniques, as they target scenarios with

multiple customers, which coordinate behaviours in order

to minimise the overall consumption, optimise grid resource

usage or maximise social welfare [139]–[142], just to

name out a few. In the case of multiple households,

cooperation principles should be incorporated within DSM

programmes [143]. From the utility company point of

view, balancing demands from individual households in a

given supplied region enables flattening energy consumption

throughout the day, which leads to a sustainable and more

efficient use of grid resources.

Although customer coordination could be centralised and

implemented based on heuristics and mathematical opti-

misation techniques, it implies a significant computational

burden, in particular when the number of agents is large.

In these cases, distributed DSM-based approaches are supe-

rior to traditional DSM strategies, which solely focus on

utility-consumer interactions, enabling peak-to-average ratio,

energy costs and customers’ daily charges to be reduced.

B. CRITERIA

In the following, some of the criteria commonly considered

for scheduling appliances are listed [35]:

1) Electricity bill – is the most common objective, as the

main motivation of residential consumers is to minimise

the underlying bill, while taking into account available

tariffs and renewable micro-generation [13], [46], [49],

[58], [59], [69], [73], [74], [144], [145].

2) Distribution system losses – due to Joule effect in

power lines and other equipment deployed along the grid

network, namely transformers, a fraction of generated

power is lost. A common approach to deal with this

problem includes deploying generation sources along

the power line, regulated by an optimal dispatch strat-

egy [60], [75], [76].

3) Peak load – utility companies encourage customers to

minimise peak load demand or even to achieve a partic-

ular load profile, which benefits grid management [46],

[80], [82], [146], [147]. By defining individual target

loads, utility companies promote a balanced use of

power grid resources, expressed as peak-to-average load

ratio (PALR). The closer this ratio is to one, the flatter

consumption load is throughout the day [38], [61].

4) Carbon emission – taking into account the environmen-

tal impact of energy consumption, HEMSs can incor-

porate carbon and other GHG emissions as additional

criteria [77], [148]. Penalty fees can also be charged to

consumers based on GHG emission levels, as consid-

ered in [147], where pollutant emissions are indirectly

reduced through electricity cost minimisation.
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5) Customer comfort – the solution to the underlying

scheduling problem provided by HEMSs can take into

account customers’ comfort and preferences, commonly

under the form of constraints. If considered as an objec-

tive function, they are complemented by additional cri-

teria, such as energy bill. In [85] appliance usage and

customer comfort were taken into account in managing

air-to-water heat pumps connected to a residential floor

heating system, while in [58] a multi-objective mixed

integer non-linear programming model was developed

for optimal energy use in a smart home, ensuring a

meaningful balance between energy saving and comfort-

able lifestyle.

6) Social welfare – can be regarded as the balance between

consumer grid benefits and their associated costs [35].

As such, HEMS considering this goal aim to improve

social welfare of a community of consumers, at a global

scale [13], [62], [149].

C. SCHEDULING CONSTRAINTS

The household energy management problem includes the

following two main groups of constraints: appliance con-

straints and comfort constraints. Appliance constraints are

related to how household appliances are modelled. In this

context, average non-varying consumption [59], [63]–[65],

[69], [78] is often adopted instead of individual consump-

tion profiles assigned to each operation cycle phase [43],

[63], [66], [67], [94]. This is mainly due to model simplicity

and lack of detailed consumption profile data for control-

lable appliances. Other constraints include household con-

tracted power, energy generation and availability of external

batteries.

Evaluation of customer comfort is a very complex task,

in part due to the perception and subjectiveness of individ-

ual’s comfort. Customer comfort can be assessed in terms

of [8], [35]:

(a) Inconvenience due to timing – is related to discomfort

perception resulting from scheduling appliances outside

their preferred time window.

(b) Inconvenience due to appliance use – considers any

discomfort stemming from a load that was prematurely

stopped, whose intensity was reduced or not even per-

formed at all. Examples include premature stop of a

clothes dryer load and lowering indoor reference temper-

ature for HVACs, resulting in a deterioration of indoor

thermal comfort.

(c) Inconvenience due to appliance priorities – refers to any

precedence and priority of certain appliances over others.

A common example is related to clothes washing and

dryer machines operation, as laundry needs to be previ-

ously washed before being dried out. User-defined prior-

ities concerning household appliances are also addressed

here. For instance, a customer can specify which clothes

washing loads should be given preference over dish-

washing. Failure to comply with such priorities can be

modelled by a HEMS through discomfort penalties.

Constraints are not all equally processed by HEMSs. Some

need always to be met at the risk of major household impact,

while others may only be partially met. The degree to which

a constraint is not satisfied distinguishes hard from soft con-

straints, being for instance the capacity of external batteries

and contracted power common examples of hard constraints.

It should be mentioned that the majority of comfort con-

straints can be incorporated as soft constraints, since a lower

comfort lever can be perfectly acceptable if it leads to a mean-

ingful energy bill reduction. Constraints can be addressed in

two different ways, either by including them as part of the

objective function within an unconstrained multi-objective

framework or by explicitly formulating the scheduling prob-

lem as a constrained optimisation problem [150].

1) MULTI-OBJECTIVE TRANSFORMATION

Multi-objective transformation addresses constrained opti-

misation problems by regarding constraints as additional

objectives, leading to an unconstrained multi-objective

problem (MOP). MOPs can be solved by computing a rep-

resentative approximation of the set of pareto optimal solu-

tions, using commonly heuristic and metaheuristic-based

techniques, mostly in the form of EAs [151]–[158]. However,

a more common approach transforms the MOP into a single-

objective problem (SOP), usually by means of a weighted

sum of the underlying objectives [4], [159]–[162].

Bounded objective and physical programmingmethods are

common alternatives to single-objective problem transforma-

tion via weighted sum [8]. As for bounded objective methods,

they consider all but one objective as constraints, within

an acceptable range. This implies that the chosen objective

is more relevant to the problem, otherwise it would had

been taken as a constraint. Concerning physical programming

methods, a deeper knowledge of the underlying problem is

required, as they rely on explicitly functions to model trade-

offs between objectives.

A HEMS can, thus, come up with an optimal schedul-

ing programme by combining its operational objectives and

constraints into a single objective function, associating a

scalar weight to each objective and constraint. An alternative

approach explicitly considers all constraints, as described

in Section V-C.2.

2) EXPLICIT CONSTRAINT HANDLING

The way constraints are handled by HEMSs strongly depends

on their scheduling strategies. Current frameworks for MPC,

LP or NLP typically provide native support for hard con-

straints, ensuring the feasibility of computed solutions.

On the other hand, soft constraints can also be considered,

usually by relaxing the constraint specification by means of a

user-defined infeasibility degree or by removing the original

constraint and penalising deviations from it.

Heuristic optimisation methods intrinsically allow to solve

unconstrained problems [163]–[165], which implies the

selection of constraint-handling techniques (CHTs). These

techniques are categorised into early CHT (up to year 2000)
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and current techniques (2000s-2010s) [165]. Although they

have been designed for heuristic-based methods, some of

them can also be employed in other scheduling techniques.

3) EARLY CONSTRAINT-HANDLING TECHNIQUES

All CHTs present similar shortcomings, namely in terms of

generalisation capacity, parameter fine-tuning and premature

convergence. They can be grouped into the following subcat-

egories [163], [164]:

(a) Penalty functions – constraints are replaced with an addi-

tional term on the adopted criteria function f (x), which

penalises the evaluation of a given solution, according

to its degree of constraint violation. This term is usually

represented by means of a penalty function, φ(x), being

a solution evaluated as eval(x) = f (x) + φ(x).

Penalty functions of different types have been consid-

ered, namely: (i) static penalties [164], [166] which

define fixed-value penalisations, (ii) dynamic penal-

ties [167]–[171] computed based on information from

the evolutionary process, namely infeasibility degree,

generation number or best fitness in the population [164],

and (iii) less popular alternatives derived based on co-

evolution [172] and segregated GA [173] principles.

Penalty functions are extensively adopted, mostly due to

their simplicity, ease of implementation and integration

with existing optimisation-based scheduling strategies,

but they require proper tuning, in particular in terms of

optimal penalty values. As such, it has been suggested

adopting the minimum penalty rule [164], according to

which penalisation should be kept just above the limit

below which infeasible solutions become optimal. The

most tricky aspect of the penalty function approach is

how to find appropriate penalty parameters in order to

guide the search towards a constrained optimum.

(b) Special operators – in evolutionary and genetic algo-

rithms, crossover and mutation operators are used

to maintain population genetic diversity. As infeasi-

ble individuals may be generated, tweaks have been

proposed to preserve the feasibility of candidate solu-

tions [174]–[178]. Some examples include GENO-

COP [163], GENOCOP III [179], decoders [180], [181]

and repair algorithms [182]–[184], just to name out a few.

(c) Separation of objectives and constraints – treating objec-

tives and constraints separately, unlike penalty functions.

Examples include co-evolutionary techniques [185],

[186], optimising objectives and constraints in two

distinct populations, and multi-objective optimisation

[187]–[189].

Feasibility rules [190] consist of a set of rules that govern

comparisons between individuals, assuming an explicit

preference for feasible solutions over infeasible alterna-

tives [191]–[193]. A drawback of this methodology is a

poor exploration of infeasible regions, which can lead

to a premature convergence to a solution, resulting in a

suboptimal solution.

4) CURRENT CONSTRAINT-HANDLING TECHNIQUES

The so-called current CHTs consist mostly in modifica-

tions to existing techniques, split into the following main

approaches [165]:

(a) Feasibility rules – widely employed in heuristic and

metaheuristic methodologies considered in the context of

GA [194], [195], DE [196]–[199], PSO [200]–[202] and

artificial bee colony (ABC) [203], [204].

(b) Stochastic ranking (SR) – this technique was origi-

nally proposed to address the shortcomings of penalty

functions, resulting from poor tuning [205]. SR has

been widely applied together with evolutionary strate-

gies [205], DE [206], [207] and ant colony optimisa-

tion [208], [209]. It is based on the definition of a penalty

function, which quantifies the degree of constraint viola-

tion of a candidate solution, implementing an adaptive

ranking of candidate solutions, taking into account the

underlying objective and penalty function values. Pairs

of feasible solutions are compared based on the objective

function, whereas for pairs with one or both infeasi-

ble solutions a user-defined probability Pf determines

whether comparisons are carried out using the objec-

tive or penalty functions. Other ranking-based techniques

can be found in the literature, namely adaptive rank-

ing mutation operator [210] and multiple ranking [211],

[212]. The popularity of these techniques is mainly due to

simplicity and ease of integration with population-based

heuristic and metaheuristic algorithms.

(c) ǫ-Constrained method [213] – the objective function is

employed in comparing pairs of feasible solutions, being

candidate solutions considered infeasible if and only if

they exceed a user-defined degree of infeasibility ǫ ∈ R.

This parameter has a strong influence on the selective

pressure of feasible solutions [165]. Larger values allow

deeper infeasible regions to be explored, while smaller

values increase selective pressure, which results in fewer

feasible solutions. Hence, a careful tuning of this param-

eter is required, being a constant value is commonly

adopted, although a dynamic conditioning version of ǫ

can also be found in the literature (see e.g. [214]).

(d) Penalty functions – despite their shortcomings, they still

remain a popular CHT, in particular those embedding

adaptive features [165]. New penalty functions have

explored co-evolution and multi-population concepts,

such as in [172], [215], [216]. Heuristic and metaheuris-

tic algorithms, such as DE [172], [216], GA [217],

PSO [218] and artificial immune systems [219] take

advantage of this approach.

(e) Special operators – despite the active research interest,

the inherent problem-dependency of specialised opera-

tors hinders a proper categorisation of published works.

Furthermore, as specialised operators are developed

for nature-inspired heuristic algorithms, their adoption

and incorporation with other techniques can be quite

challenging [165].
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(f) Multi-Objective Optimisation – in recent years, highly

competitive constraint-handling techniques based on

MOPs were developed [165], implemented within frame-

works such as evolutionary [220], [221] and pareto dom-

inance [152], [222], just to name out a few.

(g) CHT Ensembles – motivated by the no-free-lunch

theorem [223], multiple CHTs can simultaneously be

applied to the same problem, exploring individual

strengths and mitigating shortcomings. CHT ensembles

result in a high computational burden, which have ham-

pered their extensive use. Some examples include ensem-

bles of feasibility rules, penalty functions, ǫ-constrained

and SR [224]–[226].

Constraint metamodelling [227] is another group of

techniques focusing on the development of metamodels for

constrained optimisation problems. They can be particularly

useful in black-box scenarios, where constraint boundaries

are not explicitly provided. Metamodels can be used in fea-

sibility checking and prediction, constraint estimation and

repair of infeasible mutations [228].

D. SUMMARY

Mathematical optimisation-based scheduling techniques are

the most popular choice for small and medium-sized

scheduling problems addressed by HEMSs. For large

enough problem instances, less computational demanding

methodologies such as heuristic-based techniques have been

favoured. Machine learning-based approaches have also

been successfully applied to building energy management

problems, both for scheduling appliances and forecasting

household demand, along with micro generation. Among

residential consumers, electricity bill remains one of the

most selected criteria, followed by customer comfort and

carbon emissions. On the other hand, distribution losses, peak

load and peak-to-average load reduction are more aligned

with utility’s goals. Scheduling constraints can be addressed

differently by HEMSs, namely by including them in the

objective function or by considering explicitly constraint

devoted methodologies. As for explicit constraint-handling,

penalty functions have remained popular over the years,

in particular adaptive penaltymethodologies. Feasibility rules

are also another popular choice, in particular for heuristic

optimisation-based scheduling. In the last few years, the trend

on CHTs has been more oriented to problem specialisation

based on existing techniques than to the synthesis of novel

formulations.

VI. SECURITY

Grid infrastructures are inevitably exposed to threats, such

as related to information privacy or equipment and transmis-

sion failures, just to name out a few, which may threaten

the stability of power generation and supply, with possi-

ble severe socio-economic impact. As such, improving the

resilience of grid infrastructures has attracted considerable

interest from academia, governments and industries [229].

Security challenges emerge at both physical and cyber spaces

of HEMSs and smart grids [230]. At the physical level,

power system security measures focus on the coordination

of distributed power generation and energy storage, in order

to ensure a stable power supply, particularly in addressing

time-variance and uncertainties associated with renewable

energy resources [231]. At the cyber level, the main chal-

lenges concerns the lack of embedded security features in

most field devices, which can be exploited by attackers to

gain unauthorised access to the overall system, or launching

remote coordinated attacks [230].

The identified critical vulnerabilities of HEMSs and smart

grids fostered the development of counter-measures to these

attack vectors. In the following, prominent HEMSs and smart

grid attack vectors and counter-measures are discussed. The

reader is referred to [229], [230], [232], [233] and references

therein for a thorough discussion on this subject.

A. ATTACKS ON SMART GRID

Smart grid attack schemes can be grouped into the following

subcategories [230]:

(a) Generation systems – power generators are man-

aged by automatic generation control (AGC) sys-

tems, which employ load-frequency control (LFC)

and distribution mechanisms to maintain a desirable

generation-supply balance with minimum operational

costs. False data injection [234], [235] and control

signal adulteration [236] attacks are commonly aimed

to damage generators and power lines, being respon-

sible for interrupting power supply and for power

swinging.

(b) Transmission systems – interdiction of transmis-

sion lines and tripping of transformers, generators,

buses or substations are common attack vectors carried

out by manipulating commands or due to false data

injection [230]. Alternatively, attackers can gain unau-

thorised access to system topology information, identify-

ing strategically vulnerable components as future attack

targets [237].

(c) Customer-side – customer-side equipments generally

lack built-in security features, which attackers may

take advantage for energy theft [238], information leak-

age [239] and denial-of-service [240] attacks. It should be

noted that, even though isolated single-building attacks

have a very insignificant impact on grid stability, syn-

chronised attacks over large clusters of consumers can

severely damage transmission lines and cause large-scale

power outages [230].

(d) Electricity market – this kind of attack exploits higher

prices in dynamic pricing schemes, such as RTP, during

periods of higher demand stress, for illegal profit based

on the price margin between on-peak and off-peak tariffs.

The scheme is propped up on buying additional electric-

ity at lower prices to be sold at higher rates during a

subsequent attack [230].
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B. COUNTER-MEASURES

Counter-measures to the aforementioned attack vectors can

be categorised into three distinct classes, namely protection,

detection and mitigation [230]. Mechanisms implemented

for protecting the overall system aim to avoid external

attacks before they could occur. They compromise sev-

eral strategies, such as secure communication channels and

protocols, re-configuration of topological information and

preservation of critical information, being the latter strictly

shared on a ‘‘need-to-known’’ basis. When protection mech-

anisms fail to prevent an attack from occurring, the second

defence level is used to detect malicious activities through

intrusion detection systems (IDSs) and intrusion preven-

tion systems (IPSs) [241], physical watermarking of con-

trol inputs [242], model-based [243], game-theoretic [244],

kalman filters [245] or machine learning-based techniques,

namely ANNs [246]. Using information provided by detec-

tion mechanisms, mitigation counter-measures are subse-

quently employed to accommodate ongoing attacks, relying

on optimisation-based approaches [247], [248] and game-

theory techniques [249]–[252].

C. SUMMARY

False data injection and information manipulation, along

with interception, are the most prevalent vectors of attack

in HEMSs and smart grids. These attacks aim to steal

confidential information and feed monitoring entities with

false/erroneous information, thus inducing, as a response,

a wrong reactive behaviour, which ultimately can lead to

power supply infrastructure damage and compromise the

underlying stability. Counter-measures to these attacks are

focused on three distinct levels: protection mechanisms act as

primary filters that prevent malicious attackers from gaining

access to the system and subsequently deploying attacks;

detection mechanisms identify malicious activities related

to attacks; mitigation systems aim to accommodate ongoing

attack events.

VII. CHALLENGES AND RESEARCH OPPORTUNITIES

In the following, some relevant challenges in the context of

HEMSs and smart grids are discussed:

(a) Grid infrastructure reliability – in the last few decades,

energy demand has been increasing at a global scale,

a trend expected to further accelerate with exponential

growth of plugged-in electric vehicles in the next few

decades, as a result of their impact in terms of consump-

tion patterns. As such, actions should be taken on the

grid infrastructure side, in order to accommodate this

increasing demand. On the other hand, load manage-

ment algorithms for balancing customers’ demand and

reduce peak-to-average ratios are required to be more

efficient, which is expected to foster new computational

paradigms.

(b) Consumption coordination – Load scheduling algorithms

addressing heterogeneous and uncertain information

are required, being decentralised solutions favoured,

as they bring more flexibility to the coordination

of clusters of customers or sections of the grid.

Besides, data mining-based algorithms can be exploited

in scheduling consumption, modelling and forecast-

ing demand-side loads, thus providing tools for inte-

grating automatic context discovery, artificial context

awareness and human-in-the-loop interaction, leading

to improved self-adaptive and self-reconfigurable

management algorithms.

(c) Distributed energy resources – Coordination among all

grid generators is crucial for a stable supply, in par-

ticular regarding renewable generation units, due to

uncertainty and intermittent power output. This implies

further investigation on optimal placement of energy

resources. Finally, improved management of plugged-in

electric vehicles resources is also required, taking into

account their dual profile, namely as consumers and

generators.

(d) Security and privacy – Securing sensitive information

and protection against cyber attacks are paramount in

the context of HEMSs and smart grid systems. The main

potential sources of attack these systems face, following

the trend in the industrial sector, are related to indus-

trial espionage for obtaining competitive advantages

in a liberalised market, cybercriminals launching mass

attacks, or cyberwarfare from a hostile State. Improving

the overall resilience in such a dynamic environment

requires continuous monitoring and follow-up of poten-

tial threats and vulnerabilities, using the best practices

and developing sophisticated frameworks to deal with

these challenges.

VIII. SIMILAR WORKS

Several surveys focusing on energy management and HEMSs

have been published in the last few years. In Table 2 the major

similarities and differences with the present work are listed,

considering the last 5 years.

The present survey aims to provide a comprehensive

update on HEMSs literature, focusing on: (i) appliance

scheduling approaches [8], [26], [35], [91], [92]; (ii) con-

strained scheduling problem in terms of goals and con-

straints [8], [26], [35] and SOP and MOP formulations [8];

(iii) categorisation models of appliances, which are typically

considered on HEMSs [5], [8], [26], [35]; (iv) cyber-security

in terms of vulnerabilities, attack vectors and counter-

measures [230], [233]. A recent surveyworth to bementioned

for its thorough and clear review on energy management

solutions, performance metrics and optimisation objectives

to improve consumption-side energy usage is that of [253],

but it lacks in addressing issues concerning to distributed

energy resources in new generation smart power grids. These

issues, in terms of smart grid techniques and their contri-

butions to rational energy usage are covered in the present

survey, being their shortcomings and research directions

discussed.
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TABLE 2. Comparison between previous surveys and the present work.

IX. CONCLUSION

Home energy management systems make possible real-time

monitoring of household electricity consumption, remote

control and planning of appliance operation. These sys-

tems enhance traditional homes with ‘‘smart’’ capabilities,

playing an active role in the new power grid paradigm.

In this context, the present survey presents a thorough review

on HEMSs, including in-operation goals and strategies to

meet them, along with household appliance management,

uncertainties in HEMSs’ decision-making and performance

metrics. Security issues and resilience to cyber attacks

are also discussed. In addition, this work presented the

readers with insights on the current challenges these sys-

tems are facing, namely regarding dynamic infrastructure

management, dynamic scheduling in the context of dual dis-

tributed energy sources and consumer clustering, and cyber-

physical resilience. Addressing these issueswill imply further

research on automatic and dynamic context discovery and

identification of behavioural changes, self-adaptation, self-

reconfiguration, artificial awareness, uncertainty modelling

and outlying pattern detection.
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