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ABSTRACT Recently, device-free human behavior recognition has become a hot research topic and has

achieved significant progress in the field of ubiquitous computing. Among various implementation, behavior

recognition based on WiFi CSI (channel state information) has drawn wide attention due to its major

advantages. This paper investigates more than 100 latest CSI based behavior recognition applications within

the last 6 years and presents a comprehensive survey from every aspect of human behavior recognition.

Firstly, this paper reviews general behavior recognition applications using the WiFi signal and presents the

basic concept of CSI and the fundamental principle of CSI-based behavior recognition. This paper analyzes

the key components and core characteristics of the system architecture of human behavior recognition

using CSI. Afterward, we divide the sensing procedures into many steps and summarize the typical studies

from these steps, including base signal selection, signal preprocessing, and identification approaches. Next,

based on the recognition technique, we classify the applications into three groups, including pattern-

based, model-based, and deep learning-based approach. In every group, we categorize the state-of-the-art

applications into three groups, including coarse-grained specific behavior recognition, fine-grained specific

behavior recognition, and activity inference. It elaborates the typical behavior recognition applications from

five aspects, including experimental equipment, experimental scenario, behavior, classifier, and system

performance. Then, this paper presents comprehensive discussions about representative applications from the

implementation view and outlines the major consideration when developing a recognition system. Finally,

this article concludes by analyzing the open issues of CSI-based behavior recognition applications and

pointing out future research directions.

INDEX TERMS Channel state information (CSI), deep learning, human behavior recognition, model,

pattern, WiFi.

I. INTRODUCTION

Recent years have witnessed the rapid development of the

Internet of Things (IoT). The demand for pervasive com-

puting is dramatically increasing because IoT provides us

with useful information about monitoring target and facili-

ties development of ubiquitous computing applications. The

IoT technology can be employed on environment monitor-

ing [1], smart city [2], and industrial fields. Besides, this

technology also has spread into our daily lives and can be

used to sense human behavior [3], such as health monitor-
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ing [4], behavior understanding [5], user profile construc-

tion [6], activity inference [7], smart home control [8], human

localization [9], human position tracking [10], [11], and

occupancy detection [12], etc. These applications of human

behavior sensing largely enrich the research content and pro-

vide uswith novel human-computer interactionmethods. Tra-

ditional human sensing techniques usually require the user to

wear or carry some sensors, which restricts their application

environments and brings much inconvenience to users [13].

With the widespread deployment of WiFi devices in indoor

environments, the device-free WiFi-based behavior recogni-

tion technique has drawnmore attention because it overcomes

some existing shortcomings of common behavior recognition
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system, including the deployment cost, privacy violation, and

applicable environment limitations, etc. In other words, this

approach can be widely deployed in various environments

and work within the Non-Line of Sight (NLOS) path even

across the walls.

Currently, WiFi-based activity recognition techniques usu-

ally include two types of wireless signal, RSS (radio sig-

nal strength) and CSI (channel state information). RSS

provides coarse-grained information about communication

links while CSI describes fine-grained information about the

communication channel state [14]. We can measure RSS

using most wireless devices easily because the RSS col-

lection is supposed by almost all wireless chips. As for

CSI, we have to modify NIC driver to measure the CSI

using COTS devices, including Intel 5300 NIC [15], Atheros

AR9382 [16], Atheros AR9462 and AR9480 [17], Atheros

9580 [18], [19], and Atheros 9390 [20], [21]. Alterna-

tively, we can measure CSI using a special device such

as SDR [22] or WARP [23], [24]. At present, there has a

great many state-of-the-art WiFi-based recognition applica-

tions and studies. This part reviews some typical recognition

applications based on RSS or CSI.

RSS is a measurement of the power of the radio signal

at the received end. In other words, it describes the aver-

age signal power of the received signal. Currently, RSS-

based approaches have been extensively used in the field

of identification and have achieved great recognition perfor-

mance. In this section, we introduce some typical RSS-based

recognition applications, such as object tracking and loca-

tion [25]–[28], activity monitoring or recognition [29], hand

gesture recognition [30], driving behavior identification [31],

and crowd counting [32].

Youssef et al. [25] first propose the concept of device-free

passive (DfP) localization with RSS and present a passive

radio map construction and tracking application. In addition,

reference [25] displays promising pictures of passive device-

free localization and tracking. Wilson and Patwari [26] pro-

pose an approach for tracking and localizing the target behind

the wall. It adopts a statistical model to depict change rules

of the signal by using the variance of RSS caused by user

motion. Xiang et al. [27] propose an approach to enhance the

traditional RSS-based indoor localization precision by using

features of light, temperature, and humidity information.

Wilson and Patwari [28] propose radio tomographic imaging

(RTI) technology for imaging the attenuation. It utilizes a line

model for depicting the RSS to acquire images of moving

objects and locates a certain person in the area of RF coverage

by imaging the attention. Wang et al. [29] propose a device-

free localization and activity recognition (DFLAR) system

using deep learning. This system adopts 3-layer networks

to extract features. Compared with traditional handcraft fea-

tures extraction approaches, deep learning-based methods

improve 10% identification precision. Abudulaziz et al. pro-

pose Wisture [30], an RSS-based hand gestures recognition

system on the smartphone. This system can recognize non-

contact dynamic hand gestures (e.g., swipe, push, and pull)

using Long Short-Term Memory (LSTM) and Recurrent

Neural Network (RNN), and it achieves 94% accuracy in

gestures detection and classification. Depatla et al. propose

an RSS-based crowd counting system in through-the-wall

scenario [32]. This system tests 20 people in 5 different

through-the-wall scenarios (e.g., concrete, plaster, and wood)

and achieves the error of two people.

CSI can be expressed as a complex matrix, each entry of

which records the amplitude and phase response of the signal

transmission channel of each subcarrier. We can compute the

amplitude and phase of the received signal of each channel

from the complex number and evaluate the channel quality

using each entry of the matrix. Therefore, the amplitude of

the CSI signal quantifies the signal power attenuation after the

multi-path effect, similar to the received signal strength of the

wireless signal. Currently, there hasmany CSI-based recogni-

tion applications, such as indoor human behavior recognition,

indoor localization [33]–[41], indoor object state detection

[42], fire detection [43], traffic monitoring [44], wheat

moisture detection [45], object distinction [46], in-baggage

suspicious object detection [47], school violence monitor-

ing [48], and other identification applications in driving

scenario (e.g., risky driving behavior detection [49], [50],

driver fatigue detection [51], driver’s distracted behav-

ior detection [52], in-vehicle behavior and hand gesture

recognition [53], [54]).

This article concentrates on human behavior recognition

with CSI.We present the typical human behavior in this paper

to clarify the research area. Based on the behavior recognition

purpose, we divide CSI-based indoor human behavior recog-

nition applications into two groups, such as specific behavior

recognition and activity inference. Specific behavior recog-

nition refers to identifying some simple human behaviors

that we just consider as distinct actions, such as daily behav-

iors (e.g., walking, running, sitting, cooking, eating, lying,

standing, brushing, opening and closing door, etc.), abnor-

mal behaviors (e.g., slipping, falling, etc.), hand gestures

(e.g., wave, push, pull, sweep, clap, slide, draw the circle,

draw zigzag, sign languages, digit finger gestures, etc.), and

exercises (e.g., table tennis action, bodyweight exercise), etc.

Differently, activity inference usually refers to determining

the meaning of actions. This application aims to make the

behavior inference to reveal the real purpose of the activities

instead of specific behaviors, such as smoking activity detec-

tion, crowd counting, and user authentication, etc.

In general, according to identification techniques,

CSI-based recognition applications can be divided into two

types: pattern-based applications and model-based applica-

tions. The former recognizes human behavior by leveraging

pattern recognition methods which usually include some

machine learning algorithms. In addition, the pattern-based

approach usually requires more data to fit or train network

parameters. Differently, the latter recognizes behavior by

utilizing the mathematical or physical model that depicts

the unique relationship between CSI signal variation and

human behaviors. Thereby, the key of model-based methods
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is how to extract effective signal features to express human

behavior and build a model to measure the signal changes

caused by human activity. From the description of the model-

based approach, this approach determines human activities

with the model without the need of a lot of data, which is its

striking advantages compared with the pattern-based method.

Recently, deep learning technology has been widely applied

in various fields due to special characteristics compared with

traditional pattern-based methods. Specifically, it requires

a great number of experiment data to train neural network

parameters because it usually contains tens of thousands

to several million unknown parameters. Besides, the deep

learning-based approach has no definite feature extraction

procedure because this step usually is integrated into different

network structures. In other words, the deep learning-based

method can automatically extract or build complex features

by middle lays, which is an apparent difference compared

with pattern-based methods. Although the deep learning-

based methods usually are considered as one of the pattern-

based, based on the above analysis, we deem that deep learn-

ing applications should be classified as a group because of its

distinct difference compared with pattern-based applications.

Consequently, this paper categorizes state-of-the-art appli-

cations into three groups, including model-based, pattern-

based, and deep learning-based approach.

A. PATTERN-BASED BEHAVIOR RECOGNITION

In CSI-based behavior recognition applications, we findmore

applications based on the pattern. The pattern-based approach

aims to find distinct patterns to identify human behavior. This

depends on effective feature construction that can be lever-

aged to recognize different activities [3]. These features can

be either complicated or simple on the basis of behavior gran-

ularity and recognition purposes. Thereby, the pattern-based

approach usually need some samples to construct patterns

to accomplish CSI-based behavior recognition applications.

After collecting effective samples, we need to preprocess the

CSI data to remove the error data and noise data from hard

devices and ambient scenarios. The typical signal preprocess-

ing techniques include low past filter, Hamel filter, Principal

Component Analysis (PCA), Discrete Wavelet Transforma-

tion (DWT), and Butterworth filter, etc. Especially, for phase

information, we must implement phase calibration because it

has a good resolution for human action and is distorted easily

by device imperfection and other disturbance. Afterward,

we obtain clear data and can feed them into a classifier to

implement behavior recognition.

Currently, the general classifiers include Dynamic Time

Warping (DTW), Support Vector Machine (SVM), k-Nearest

Neighbor (KNN), HiddenMarkovModel (HMM), BPNeural

Network (BPNN), Self-Organizing Map (SOM), etc. This

article presents some typical behavior recognition applica-

tions, including daily behavior recognition [55]–[62], table

tennis action recognition [63], bodyweight exercise recog-

nition [64], danger pose detection [65], abnormal activ-

ity detection [66], falling detection [67]–[71], hand gesture

recognition [72]–[81], sign language recognition [82], [83],

sleep monitoring [84], respiration detection [85]–[88], lip

reading and speech recognition [89], [90], keystroke detec-

tion [91], [92], writing recognition [93]–[95], sedentary

behavior monitoring [96], smoking detection [97], crowd

counting [98]–[103], step counting [104], [105], human

presence detection [106]–[111], and user authentication

[112]–[123].

B. MODEL-BASED BEHAVIOR RECOGNITION

In the typical CSI-based behavior recognition applications,

we find that many different behavior models have been

employed. The model-based approach aims to design a phys-

ical model that relates the signal space to the physical

space and builds the physical law through the relationship

between the received signal and the sensing target [3]. In other

words, the model-based recognition approach correlates the

user’s motion to the received signal variation. Therefore,

it can recognize human behavior by exploring the physical

law based on the physical-mathematical models. Instead of

profile matching or pattern recognition, we can utilize the

model to identify human behavior with low computation

cost. Compared with the pattern-based method, the model-

based approach can achieve satisfactory performance with

small measurement data because of its utilization of the

model. Despite these advantages, it is challenging to apply

the model-based approaches in some scenarios because test

environments usually contain various stuff, making it hard to

develop a general mathematical model that depicts the CSI

features in the scenario.

Although many references involve model-based methods,

they do not give an explicit description. In this article, we con-

sider two types of models used in CSI-based behavior recog-

nition applications. The first one exploits the physical law

of signal propagation to depict the relationship between the

signal change of CSI and the user’s behavior, which can be

used to recognize human activities, such as Fresnel Zone

Model, angle of arrival (AoA), CSI-ratio model, interacting

model. Therefore, we can obtain the human action state

from these models, such as motion direction, speed, and

time, which interprets human behavior by using physical law

solely. The second one usually comprises two parts, the phys-

ical description of signal changes and recognition algorithms,

such as the CSI-speed model and CSI-activity model. Specif-

ically, this method first obtains signal fluctuations based

on propagation law and physical model and then leverages

classification or fitting methods to identify human behavior.

Therefore, this method combines models and classification

algorithms. Remarkably, we do not consider PSD (power

spectral density) and CFR (channel frequency response) as

a model because they solely describe CSI signal changes

based on the propagation path and cannot be utilized to

depict behaviors directly. This paper presents some represen-

tative model-based recognition applications, including daily

behavior recognition [124], [125], human presence detection

[126], [127], user authentication [128], walking direction
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estimation [129], handwriting recognition [130], and respi-

ration detection [24], [131]–[137].

C. DEEP LEARNING-BASED BEHAVIOR RECOGNITION

Recently, deep learning technology has been studied compre-

hensively and has achieved considerable progress. Therefore,

many recognition applications based on CSI using deep learn-

ing algorithms have been developed. Although the num-

ber of traditional pattern-based approaches of CSI exceeds

that of deep learning-based approaches, the growth speed of

deep learning applications is rapidly increasing. Compared

with pattern-based andmodel-based approach, deep learning-

based approach has many distinct benefits. We can benefit

from automatic feature discovery and behavior recognition

of deep learning algorithms. Specifically, it can automatically

identify and extract effective features and feed them into the

classifier. The procedures of feature extraction and classifica-

tion are implemented by the middle layers of the deep neural

network model. To accurately depict the features, the deep

learning-based approaches require a large number of samples

to continuously alter network parameters. The procedure of

training is labor-intensive and time-consuming, which is its

main disadvantage.

For CSI-based behavior recognition, we can obtain sat-

isfied identification accuracy if we build an appropriate

model and have massive samples. That is to say, there is no

need to pre-process CSI data that has complex features to

obtain feature descriptions in deep neural networks, which is

the advantage of the deep learning-based method. Besides,

we have to collect plenty of samples of CSI to train net-

work parameters and obtain good recognition accuracy. This

article presents some typical deep neural network models

used in CSI-based behavior recognition applications, includ-

ing Autoencoder, Convolutional Neural Network (CNN),

LSTM, RNN, Residual Neural Network (ResNet), and

Restricted Boltzmann Machine (RBM). In addition, we also

detailed introduce these applications, such as daily behav-

ior recognition [138]–[142], falling detection [143], [144],

syncope detection [145], hand gesture recognition [8],

[146]–[149], sign language recognition [150], gait and

walking direction recognition [151], [152], human presence

detection [153]–[155], crowd counting [156]–[159], user

authentication [160]–[163], and respiration monitoring [22].

The main contributions of this paper are given as fol-

lows. Firstly, we review the latest research progress of WiFi

CSI-based human behavior recognition and emphasize the

size of the samples. To the best of our knowledge, the present

paper is the first survey that contains a total sample descrip-

tion of CSI-based behavior identification. We exhibit the

accurate size of samples, classifiers and human behavior

from pattern-based, model-based, and deep learning-based

approaches according to identification techniques. Secondly,

we present the general framework that contains the main

structure of a typical recognition system. Based on the struc-

ture, we report a comprehensive statistic of state-of-the-art

applications from base signal selection, signal preprocessing

and behavior classification methods. Thirdly, we investigate

the state-of-the-art studies and exhibit them from the differ-

ent granularity of behavior. We select some typical applica-

tions and outline their characteristics from test equipment,

preprocessing methods, test environments, the size of partic-

ipants, recognized behaviors, classifiers, and system perfor-

mance. Finally, we make a comprehensive discussion about

a few typical activities from the implementation view and

provide some helpful insight into the development of these

applications.

The remainder of this article is arranged as follows.

In Section II, we present some surveys of human behavior

recognition. Moreover, we introduce background which con-

tains the basic concept of CSI and the principle of CSI-based

behavior recognition. In Section III, we give some gen-

eral approaches and the general framework of CSI-based

behavior recognition, including base signal selection, signal

preprocessing, and three behavior recognition techniques

(e.g., pattern-based recognition, model-based recognition,

and deep learning-based recognition). In Section IV,

we divide state-of-the-art CSI-based activity identification

applications into three groups and many subgroups based

on behavior and review them in detail. Section V presents a

discussion about identification techniques and system perfor-

mance. Issues and future directions are given in Section VI.

Finally, the conclusion is provided in Section VII.

II. RELATED WORK, CHANNEL STATE INFORMATION,

AND THE PRINCIPLE OF CSI-BASED

BEHAVIOR RECOGNITION

A. RELATED WORK

With the wide popularity of wireless networks, WiFi

devices have been extensively employed in various indoor

environments. Currently, WiFi-based behavior recognition

approaches have been widely studied and the related applica-

tions are increasingly emerging due to their major strengths.

Meanwhile, some surveys of WiFi-based recognition report

the behavior recognition progress using CSI and review the

state-of-the-art research results, (see in Table 1). However,

they have some weaknesses in some aspects. Next, we sum-

marize their major features. Although reference [164], [169]

present the survey on WiFi-based contactless activity recog-

nition and highlight behavior recognition frameworks, they

do not provide enough description of the typical applica-

tions. Liu et al. [173] review wireless sensing applications

using 4 different techniques, including RSSI, CSI, FMCW

(Frequency Modulated Carrier Wave), and Doppler shift.

The authors select some typical applications and analyze the

features of them. However, this paper lacks the description

of signal preprocessing, experimental performance evalu-

ation and recognition approach analysis. The articles [3],

[165]–[167] come from the special issues of behavior recog-

nition based on Wi-Fi CSI and present the survey on CSI-

based behavior recognition from a different view, including

pattern-based and model-based approaches, deep learning
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TABLE 1. Related surveys on CSI-based behavior recognition.

techniques, and behavior granularity. Although these articles

present the key content from their interest, they lack the

detailed analysis of typical behavior recognition applications.

Wang et al. [168] present a survey onWiFi-based recognition

from challenges, opportunities, and applications, and empha-

size the model used in WiFi-based recognition. Although

it describes some physical models and discusses further

research opportunities, it does not provide a comprehensive

analysis of existing applications. Two papers [170], [171]

are the newest surveys that cite more references and present

a detailed survey on WiFi-based recognition. However,

Khalili et al. [170] do not introduce the framework of activity

recognition and reference [171] lacks a detailed description

of every application. Although reference [172] investigates

many references, it focuses on through-the-wall applications

and emphasizes the special application scenario, whose aim

is different from that of this paper.

Based on the above analysis, we find that these surveys do

not present a comprehensive review of WiFi CSI-based sens-

ing, especially for human behavior recognition. Therefore,

there is a pressing need for a detailed survey on CSI-based

behavior recognition that contains general activity recogni-

tion framework, more application overview, more detailed

signal processing statistics, accurate classification approach

description, and the statement of typical applications in detail.

This article effectively overcomes the weaknesses existed

in the above surveys and contains some essential contents,

including the accurate number of samples, detailed pre-

processing method statistics, more comprehensive applica-

tion analysis, and more thorough references. Specifically,

FIGURE 1. Recognition technique statistics of the different time from
Table 3.

this paper investigates more than 100 latest behavior recog-

nition applications using CSI and categorizes them from

behavior recognition methods. Besides, we make statistics

about the number of different recognition methods accord-

ing to the paper publishing time, as shown in Fig. 1. The

number of behavior recognition applications based on CSI

goes up rapidly, which indicates that this is a heat research

topic. We notice that the numbers of pattern-based and deep

learning-based behavior recognition applications are gradu-

ally increasing. The growth rate of deep learning-based appli-

cations is quicker than that of the pattern-based applications.

The number of model-based applications quickly increases

in 2018 largely because the Fresnel zone model is proposed

and applied, which shows that this approach can effectively

monitor the breathing rate. From Fig. 1, we deem that the

number of behavior recognition applications based on CSI

will steadily rise because of the wide adoption of pattern-

based methods, further study of deep learning-based method,

and proposal of the appropriate model.

To clarify the major content of this paper, we use some

tables to summarize the analysis results of human recogni-

tion using CSI. Specifically, the paper exhibits the behav-

ior recognition framework using CSI and main composition

(see in Table 2), including base signal selection, signal pre-

processing, and three types of classification methods. This

paper presents the state-of-the-art studies (see in Table 3) and

analyzes these CSI-based behavior recognition applications

from classification technique aspects, such as the pattern-

based, the model-based, and the deep learning-based. For

a more detailed analysis of these applications, this article

presents Tables 4 to 8, which contains system name, equip-

ment, preprocessing methods, experimental environments,

the number of participants, classifiers, behaviors, and sys-

tem performance, etc. In addition, this article presents a dis-

cussion which recognition approach (e.g., the pattern-based,

model-based, and deep learning-based) is more suitable and

has the best performance for some typical behaviors, such

as daily behavior, falling detection, hand gesture, crowd

counting, user authentication, respiration monitoring. In sum,

this paper presents a complete framework, precise sample
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statistic, detailed analysis of applications, and a compre-

hensive discussion about CSI-based behavior recognition

applications.

B. CHANNEL STATE INFORMATION

CSI is a metric that describes the channel properties of wire-

less communication links and considers the several factors

affecting signal propagation, such as signal scatter, environ-

mental attenuation, and distance attenuation. The purpose of

the introduction of CSI is to ensure effective and reliable

data transmission by quantifying the channel fading effect

and adjusting the signal transmission rate. Specifically, when

the wireless signal propagates in a multi-path manner, it will

be obstructed by the objects in the line of sight (LOS) path,

which leads to signal changes, including amplitude attention

and phase shift. Besides, the reflection from the test environ-

ment also changes the signal waveform. Therefore, CSI is

introduced to evaluate the communication link state. That’s

to say, the quality of the wireless channel can be estimated by

the CSI matrix, and the communication rate can be adjusted

based on the CSI. In the IEEE 802.11n/ac standards, CSI is

measured and parsed from the PHY layer using orthogonal

frequency division multiplexing (OFDM) technology. In the

frequency domain, the wireless channel can be defined as:

Y = H × X + N (1)

where H is the channel matrix representing CSI information;

the received and transmitted signal vectors are Y and X ,

respectively; N refers to an additive white Gaussian noise

vector. According to formula (1), H can be expressed as:

H (i) = |H (i)| ejsin6 H (i) (2)

where H (i) represents the value of CSI for the ith subcarrier,

which includes the amplitude and phase of CSI; the amplitude

and phase of the ith subcarrier are |H (i)| and 6 H (i).

C. THE PRINCIPLE OF CSI-BASED HUMAN

BEHAVIOR RECOGNITION

The principle of WiFi CSI-based behavior recognition is

based on the observation that different human motion within

the coverage of the WiFi signal can cause distinct wireless

channel disturbances and the corresponding relationship is

unique. Therefore, we can utilize the correlation between CSI

dynamics and user activities to recognize human behaviors.

To effectively describe wireless signal changes caused by

human behaviors, we explain how the radio signal propagates

and why the users affect wireless channels as follows.

A typical indoor human behavior recognition system con-

sists of a WiFi access point, PC (e.g., WiFi receiver), and

users. The wireless signal propagates in a multi-path manner

and the wireless channel keeps relatively stable when there

are no people in the range of the WiFi signal. However,

once a person stands or moves in the coverage, the signal

propagation paths will change due to signal reflection, which

results in channel disturbances, including amplitude attention

FIGURE 2. WiFi signal propagation.

and phase distortion. In other words, the users will cause the

received channel state information changes due to the multi-

path effects, which can be leveraged to recognize human

behaviors. Specifically, the unique corresponding relation-

ship between CSI dynamics and human behaviors can be

obtained based on the behavior profile construction, which

can be utilized to recognize different behaviors by correlating

the signal changes with the corresponding channel distortion

patterns. As shown in Fig. 2, according to the Friis [174]

free space propagation equation, the power receiver can be

represented as follows.

Pr =
PtGtGrλ

2

(4π)2 (d + 4h+ 1)2
(3)

where λ is signal wavelength; d is the length of the LOS

between AP and PC; Pt and Pr refer to the transmitting and

receiving power, respectively; Gt and Gr are the transmitting

and the receiving gains, respectively; h is the vertical distance

from the reflection point to the LOS; 1 is the length of the

body’s reflection path; h and 1 are crucial factors that affect

the received power, which indicates that the obstacle and

reflection significantly affect signal propagation. From the

formula (3), the received power is inversely proportional to

the square of the propagation path. That is to say, the greater

the distance, the smaller the receiving power and the more

difficult the sensing.

In the frequency domain, the channel frequency response

(CFR)H (f , t) can be defined as follows.

Y (f , t) = H (f , t) × X (f , t) (4)

H (f , t) = e−j2π1ft
∑N

k=−1
ak (f , t) e−j2πτk (t) (5)

where Y (f , t) and X (f , t) are the received and transmitted

signal, respectively; ak (f , t) refers to the signal changes of the

k th path; the phase shift caused by the propagation delay of

τk (t) is e
−j2πτk (t); e−j2π1ft refers to the phase shift caused by

frequency offset 1f between the transmitter and the receiver.

As shown in Fig. 3, the human’s movement changes the

WiFi signal propagation; thus, the propagation paths can be

divided into two categories, such as static path and dynamic

path. In general, the signal of the static path is not affected

by the human body and the frequency state response of this

path is Hs(f , t). Differently, the signal of the dynamic path

is affected by the human body and other objects (e.g., floor,
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FIGURE 3. Multi-paths caused by behaviors.

wall, etc.), and the dynamic path frequency state response

Hd (f , t) can be expressed as follows.

Hd (f , t) =
∑

k∈Pd
ak (f , t)exp

(

−j2πdk (t)
/

λ
)

(6)

where Pd refers to a total dynamic path; dk (t) is the length

of the k th path at time t; λ is the wavelength. The total CFR

power is expressed as follows.

H (f , t) = e−j2π1ft (Hs (f , t) + Hd (f , t)) (7)

The energy of the entire CFR changes along with the

body’s motion; therefore, we canmake the following assump-

tion that the human body moves with a constant speed,

the length of a certain path k changes at a constant speed vk
for a short time period. Let dk (t) denotes the length of the k th

path and dk (t) = dk (0) + vk t , the instantaneous CFR power

in time t can be written as:

|H (f , t)|2

=
∑

k∈Pd
|ak (f , t)|2 + |H s (f , t) |2

+
∑

k,l∈Pd ,k 6=l
2|ak (f , t)al(f , t)|

× cos

(

2π(vk − vl)t

λ
+

2π (dk (0) − dl (0))

λ
+ φkl

)

+
∑

k∈Pd
2ak (f , t)Hs (f , t)

× cos

(

2πvk t

λ
+
2πdk (0)

λ
+φsk

)

(8)

where the initial phase deflection of the signal is 2πdk (0)
λ

+
φsk or 2π(dk (0)−dl (0))

λ
+ φkl . Formula (7) and formula (8)

provide a significant view: the total CFR power is a sum that

contains a constant offset and a set of sinusoids, where the fre-

quencies of the sinusoid are related to the speed changing rate

of path length. By measuring these sinusoid frequencies and

multiplying the carrier wavelengths with these frequencies,

the speed variation of the path length can be obtained. Then

the movement speed of the human body can be calculated by

observing the CSI changing, and different human behaviors

can be identified.

FIGURE 4. CSI-based behavior recognition framework.

III. GENERAL METHODS AND FRAMEWORK OF

CSI-BASED HUMAN BEHAVIOR RECOGNITION

In this section, we present a general framework for CSI-based

behavior recognition using COTS (commercial off-the-shelf)

WiFi devices, introduce the crucial components, interpret

their important role, and analyze their key characteristics.

Based on signal processing procedures, the behavior recog-

nition system comprises four parts, such as data collection,

base signal selection, signal preprocessing, and behavior clas-

sifiers, as shown in Fig. 4. Based on the behavior recognition

technique, we first categorize the recognition approaches

into three groups, including pattern-based, model-based, and

deep learning-based methods. Then, we introduce the key

parts of the classifier of three types and analyze their main

characteristics.

In general, we collect CSI data using a PC equipped with

a network interface card (NIC) when the PC communicates

with the access point (AP). After collecting CSI data, wemust

choose a suitable base signal, such as amplitude, phase,

the combination of amplitude and phase, or phase differ-

ence. In order to wipe out the noise of the CSI stream and

obtain more accurate CSI data, signal processing approaches

become essential. As shown in Table 2, this paper presents

some representative techniques to acquire precise CSI data,

including low-pass filter, Hampel filter, PCA, DWT, data

interpolation, phase sanitization, Butterworth filter, Savitzky-

Golay filter, and Band-pass filter, etc. After signal processing,

we recognize human behaviors using three types of recog-

nition techniques, such as pattern-based, model-based, and

deep learning-based approaches. The pattern-based method

usually needs to extract features and classify different activ-

ities using machine learning algorithms (e.g., DTW, SVM,

KNN, HMM, etc.) and neural networks (e.g., BPNN, SOM).

The model-based method usually utilizes some typical mod-

els, such as Fresnel zone model, AoA, human respiration

model, interacting model, CSI-speed model, and CSI-activity

model, to identify human behaviors. Compared with the

pattern-based methods, the model-based approach has fewer

applications due to the difficulty of the building model.
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TABLE 2. CSI-based human behavior recognition process.

At present, the deep learning-based method is gradually

applied in activity identification. Although this approach

requires a large number of samples to train a deep neural

network (e.g., Autoencoder, CNN, LSTM, RBM, etc.), it not

only can automatically extract behavior features and clas-

sify samples but also can achieve satisfactory performance.

In summary, this architecture gives us a general description of

CSI-based behavior recognition. The more detailed activity

recognition processes can be illustrated as follows.

A. BASE SIGNAL SELECTION

Generally speaking, accurate and complete data collection

depicting user movements is very important to effective

behavior recognition. Without adequate data, it is hard to

mine behavior profiles or build a mathematical model to

characterize the correlation between human behavior and

corresponding signals. Furthermore, the selection of the base

signal plays a crucial role in behavior recognition as it decides

the resolution of data and the accuracy of behavior identifi-

cation. For example, a complex number contains more infor-

mation compared to a real number as we may calculate the

direction and amplitude based on its real and imaginary parts.

Currently, we can categorize the signal selection of existing

applications into four groups: amplitude, phase, the combina-

tion of amplitude and phase, and phase difference.

1) AMPLITUDE

The physical meaning of CSI amplitude is the quantification

of the signal power attenuation after multi-path fading [186].

The user motion in the WiFi-enabled area affects the wireless

signal propagation and changes the amplitude of signal

arriving at the receiver, leading to amplitude variation. There

is a unique relationship between the frequency of ampli-

tude changes and human walking speed, which means the

movement of a person can be detected after the measurement

of amplitude. For instance, E-Eyes [55] utilizes amplitude

measurements of CSI to realize nine kinds of daily activity

(e.g., walking, cooking, washing, etc.) identification.

FallDeFi [70] achieves 93% precision of falling detection

through the analysis of amplitude variation of CSI subcar-

riers. WiFi-ID [112] realizes user identity recognition with

93% accuracy for two users by analyzing the amplitude of

the CSI stream.

2) PHASE

In theory, the phase contains more information than the

amplitude and can be used to depict the signal changes and

corresponding user motion. However, as phase is periodic

compared to amplitude and its measurement value is affected

by device clock and carrier frequency, it must be calibrated

to generate practical phase features. Usually, a linear trans-

formation is a simple and effective calibration method. For

example, Wu et al. [106] employ the linear transformation to

revise phase information of CSI and implement user authenti-

cation. However, phase calibration has some adverse effects.

For instance, a key limitation of the phase calibration is the

lack of clear explanation and accurate description, which

leads to the difficulty of building a precise phase-basedmodel

that represents the user motion. Meanwhile, the filter process

might remove some phase information describing user move-

ment, resulting in the loss of some detection capability.
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3) COMBINATION OF AMPLITUDE AND PHASE

A combination of amplitude and phase might be a use-

ful approach in that it can effectively utilize the advan-

tages of both features and improve recognition accuracy.

For instance, WiseFi [176] achieves better performance

(e.g., average accuracy: LOS 89.1%, NLOS 82.5%, and

through-one-wall 73.4%) for activity recognition by using

the combined approach. NotiFi [66] can automatically detect

abnormal activities by applying the combination of phase and

amplitude of CSI. SignFi [150] identifies nine digits finger

gestures with an average 86.66% precision by utilizing the

information of phase and amplitude.

4) PHASE DIFFERENCE

Compared to phase, phase difference has several benefits

such as space diverse and less noise. It is sensitive to human

movements and can be leveraged to identify behaviors.

Currently, there have been several studies that use the phase

difference to detect various vital signals and complex activi-

ties. For example, Anti-Fall [68] distinguishes fall and fall-

like activities by using the CSI phase difference over two

antennas. RT-Fall [69] applies the phase difference of CSI

to realize falling detection with satisfactory performance.

FreeSense [115] can automatically detect humans by the anal-

ysis of the phase difference of two signals. PhaseBeat [85]

can monitor the user’s respiration rate and heartbeat by

analyzing the CSI phase difference. However, the approach

usually uses an antenna array to measure phase difference,

which leads to this method unavailable without an antenna

array.

B. SIGNAL PREPROCESSING

As known to all, the measurements of CSI comprise helpful

signals, disordered noise, and a few outliers. These bad data

mainly come from ambient environments, signal interfer-

ence, and some moving persons. Thus, the methods of data

preprocessing are significant since it can remove outliers,

filter noise, calibrate the phase, and retain valuable data.

Currently, various signal preprocessing techniques can be

used to implement noise removal, data interpolation, and

phase sanitization. Generally speaking, the premise of correct

behavior recognition is to obtain precise data representing

human behaviors. Therefore, the data preprocessing is neces-

sary before further feature extraction. Specifically, to reduce

invalid data and enhance the accuracy of behavior recogni-

tion, we must remove the noise caused by multi-path effects

and hardware devices. There are several de-noising methods,

such as low-pass filter, Hamel filter, PCA, Discrete Wavelet

Transform (DWT), data interpolation, and phase sanitization.

1) LOW-PASS FILTER

The low-pass filter is an ordinary method that only allows

some signals below the cutoff frequency to pass. Since

human activities always cause low variation frequency of

CSI signals, the low-pass filter can effectively wipe out

high-frequency noise and constant value that cause by the

multiple-path effect and has been widely used at many appli-

cations, such as RT-Fall [69], Anti-fall [68], WiGeR [74],

and R-TTWD [108], etc. Although the low-pass filter has

great performance, there are still some noises that cannot

be removed effectively. These noises usually come from the

internal state of WiFi network interface cards (NICs) of

sender and receiver or environment variation [169].

2) HAMPEL FILTER

Currently, there have many abnormal values in the collected

CSI data due to the sudden changes in equipment and envi-

ronment, and so on. Hampel filter is an efficient technique to

remove outliers that are far away from their neighbor data.

Specifically, it finds the outliers and replaces them with the

mean of data by utilizing a moving average window, which

eliminates the negative impacts caused by invalid data. In the

case of the CSI signal, the outliers caused by the intrinsic

hardware feature and deployment environment can be wipe

out by Hamel filter. For instance, Wi-Sleep [84] applies

Hamel filter to wipe out the noise and monitors respiration

rates. WiHACS [57] utilizes Hamel filter to denoise and iden-

tifies seven kinds of activities, i.e., sitting, walking, falling,

etc. Although Hamel filter is efficient to remove noise, this

approach usually fits these signals that only have Gaussian

noise [164].

3) PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a data processing

method that represents the data with part features of a matrix,

which reduces data dimensionality and enhances processing

efficiency. Specifically, some eigenvectors are selected to

construct a new matrix that represents the original matrix

by computing the eigenvalue of the matrix. In CSI-based

behavior recognition, the PCA is mainly used to wipe out

the noise and data redundancy at signal processing steps

(e.g., Wi-Wri [93], WiHACS [57], FreeSense [126], and

CareFi [96], etc.). The PCAworks well if the selective princi-

pal components can describe the original matrix [189]. In the

case of CSI data processing, we can employ PCA on the

measurement data to remove various noises and redundant

data coming from off-the-shelf devices and environments.

4) DISCRETE WAVELET TRANSFORM

DiscreteWavelet Transform (DWT) can be used at image pro-

cessing because it can remove the noise of signal, extract and

preserve some useful image edge information. It can over-

come the shortcomings of the traditional Fourier transform

image processing. These shortcomings include difficulties in

detecting the local abrupt signals and the loss of image edge

information when removing signal noise, and so on. On the

contrary, DWT performs better than the Fourier transform in

removing signal noise. Currently, there has a lot of applica-

tions that utilize DWT to denoise, such as WiFinger [76],

WiStep [105], etc.
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5) DATA INTERPOLATION

During the realistic applications, despite a constant rate of

data delivery at the transmitter, the receiver usually cannot

receive stable and constant data due to data loss or trans-

mission delay. Therefore, effective means must be taken

to address this question. Data interpolation is an effective

method to solve this question due to its simplicity and practi-

cality. Specifically, to get data at a fixed rate, we can add the

sample computed from its neighbor to the time slot missing

data, which constructs even CSI sequences, eliminates data

clustering and fuzzy measurements, and enhances data accu-

racy. For example, Smokey [97] employs the interpolation

method to preprocess the received data and achieves the

recognition of smoking behavior.

6) PHASE SANITIZATION

Although we can acquire the raw phase information, it can-

not be used directly due to carrier frequency offset (CFO)

and sampling frequency offset (SFO) [165]. Specifically,

CFO comes from the lack of synchronization at the central

frequency between the transmitter and receiver clocks, and

the process of the analog-to-digital converter (ADC) can be

likely to produce SFO. Moreover, the raw phase PM can be

expressed as [157]:

PM = P+ 2π
mi

N
1t + β + N (9)

where P is the genuine phase; 1t is the time lag due to

SFO; β is the phase offset due to CFO; N is the noise. From

formula (9), due to the value of 1t and β are unknown,

the genuine phase cannot be calculated directly. However,

phase sanitization (e.g., linear fitting method) is proposed to

remove the impacts of CFO and SFO, which makes phase

information applicable for any detection [110].

C. PATTERN-BASED HUMAN BEHAVIOR RECOGNITION

The purpose of pattern-based recognition is to find the pat-

terns and regularities from data. In most cases, the recog-

nition procedure is to assign a label to a given input data.

Therefore, many recognition problems can be treated as

classification problems. As for pattern-based behavior recog-

nition, we attempt to identify human behaviors by lever-

aging CSI variation pattern. Specifically, we first collect

data that contains CSI changes caused by human behaviors.

Then, we determine the CSI variation regularity and estab-

lish a unique mapping relationship between CSI variation

and human behaviors. Based on the mapping, we exploit

some recognition methods to identify specific behaviors.

Therefore, the key to this approach is to relate the CSI signal

variation profile to specific actions. How to identify and

describe distinct patterns to distinguish different behaviors

is challenging because CSI change is complicated. In gen-

eral, the pattern-based approach for behavior recognition

consists of two processes: feature extraction and activity

classification. From identification processes, we can discover

that these two steps are crucial to accurately identifying

human behaviors. We introduce their basic principles and

main implementation methods as follows.

1) FEATURE EXTRACTION

Feature extraction refers to a process that usually transforms

the original information into new data types that can be easily

utilized by the following classification. After feature extrac-

tion, we get a more effective data description. The measure-

ment data usually contain much redundant information and

they cannot be utilized directly without feature extraction.

Therefore, feature extraction plays a crucial role in CSI recog-

nition approaches. Currently, we can extract many features

from preprocessed data, such as statistical characteristics,

Doppler shift, wavelet features, and time-frequency diagram.

a: STATISTICAL CHARACTERISTICS

Statistical characteristics refer to some statistical results com-

puted from the original waveform data. They effectively

describe the general features, simplify data representation

and reduce the data complexity. We can calculate the sta-

tistical features based on the original time-domain data.

Similarly, we can also get the statistical results based on

the frequency domain data after FFT transformation of time-

domain data. Some behavior recognition applications employ

statistical features to extract features, such as TW-See [61],

Anti-Fall [68], RT-Fall [69], etc.

b: DOPPLER SHIFT

Doppler shift refers to the frequency changes of the original

signal observed at one user when there is a relative speed

between transmitter and user. It usually can be used to extract

frequency shifts and deduce the object speed. Specifically,

human movement changes the path length of the body’s

reflected signal, resulting in changes in the signal at the

receiving end. The Doppler frequency shift of the received

signal can be expressed as follows.

fDoppler = f
vpath

C
(10)

where c is the speed of light propagation; vpath refers to

the speed of the path length changes; f is the carrier fre-

quency of the signal. Currently, there have some activity

recognition applications based on Doppler shift. For instance,

WiSee [182] implements behavior recognition by exploring

the Doppler shift. WiFit [64] counts bodyweight exercise

repetitions by applying the doppler shift.

c: WAVELET FEATURES

Wavelet transform is a new feature transformation method

similar to the short-time Fourier transform (STFT). It over-

comes the shortcoming of STFT that window size does not

change alongwith frequency differences. After wavelet trans-

form, the wavelet coefficients of each frequency band are the

corresponding features needed to be processed. We call these

coefficients as wavelet features. Wavelet transform achieves

better performance of local feature extraction as it can
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analyze signals at the scale of more fine-grained frequency.

For example, the CARM [124] uses the wavelet transform

to distinguish speeds and frequencies of different behav-

iors and realizes eight kinds of behaviors (e.g., running,

walking, sitting, and falling) recognition with an average

accuracy of 96%.

d: TIME-FREQUENCY DIAGRAM

The time-frequency diagram describes the relationship

between time and signal amplitude of all frequencies. For a

given time signal, we can transform it into a two-dimensional

color image using a time window. The image contains the

time, different frequencies, and corresponding amplitudes.

In the case of CSI signal, the image illustrates the time

index, subcarrier index, and signal amplitude values reflected

by human motions. Based on the energy changes of differ-

ent frequencies along with time, we can clip the time, get

each action segment and identify specific behaviors, such as

E-eyes [55], WiTT [63], Smokey [97], andWiStep [105], etc.

2) BEHAVIOR CLASSIFICATION

After feature extraction, we will identify human behavior

by utilizing different classifiers based on the characteristics

of specific applications. Specifically, for some simple clas-

sification problems that can be represented by a statistical

characteristic, we can use the simplest comparison method

by designing the threshold to distinguish the behavior types.

In other words, we can acquire a computing value based

on some methods, and it can be used to determine whether

the behavior is identified to a certain type according to the

threshold assigned. For example, Kun et al. [190] use this

method to recognize whether there are human activities in

the environment and Zhang et al. [68] compare the standard

deviation of signal with the threshold to determine whether a

‘‘fall-like activity’’ is a fall action.

Differently, for the complex problems with high dimen-

sional feature space, common methods cannot easily yield

satisfactory recognition results. Therefore, in these cases,

we can employ machine learning techniques to identify the

pattern of CSI changes and relate these to human behav-

iors. Machine learning includes numerous algorithms, such

as DTW, HMM, Conditional restricted Boltzmann machines

(CRBMs), SVM, KNN, Artificial Neural Network (ANN),

BPNN, and SOM, etc. Although all these algorithms might

generate similar classification results for the small data

set or data with fewer features, they may produce a signif-

icantly different recognition result for large data set or data

with a big number of features. Here we give the specific

characteristics of machine learning algorithms utilized by the

representative studies and applications.

a: DYNAMIC TIME WARPING

Dynamic Time Warping (DTW) is an important method that

compares the similarity of two sequences, and it is also a

template matching algorithm [191]. In order to judge simi-

larity, DTW calculates the distance of the two sequences by

utilizing a dynamic programming algorithm. There are some

DTW classification applications of CSI, such as WiGeR [74]

and Mudra [75]. WiGeR and Mudra utilize DTW to identify

hand gestures. Even though DTW does not require training

samples, it also has some side effects, such as a large amount

of calculation and the recognition performance dependence

on breakpoint detection and template, etc., [169].

b: SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a common classifier in the

pattern recognition field. It transforms the linearly indivis-

ible samples of low-dimensional inputting space into high-

dimensional feature space samples to divide the samples

by using the nonlinear mapping algorithm, which realizes

the sample separation in high-dimensional feature space.

There are some SVM classification applications of CSI,

such as DeNum [146] that achieves digit gesture recognition

(e.g., 0 to 9) by using SVM. Although SVM has a better clas-

sification result, it is difficult to achieve multi-classification

when the capacity sample is too large.

c: K-NEAREST NEIGHBOR

K-nearest neighbor (KNN) is a common classification

method that classifies the data according to its K nearest

neighbor. Specifically, KNN first finds the K nearest neigh-

bor of the target and then calculates the node number of

each type of K neighbors. We assign the target to the type

based on its neighborhoods which hold the maximum nodes

of that type. Currently, there have some human behav-

ior recognition applications based on KNN. For example,

FreeSense [115] applies KNN for user authentication and

Wi-Wri [93] achieves the recognition of 26 English letters

by using DTW and KNN. Despite the simplicity of theory

and usability of deployment, KNN has some shortcomings

as it just considers K nearest neighbors of one point. For

data that have imbalance types or have large scale mea-

surement values, the performance of KNN will severely

decline.

d: HIDDEN MARKOV MODEL

Hidden Markov model (HMM) is a statistic model that usu-

ally is utilized to solve time sequence problems. Specifically,

we can take the HMM to address the problems with the

following two features. First, the problem describes sequence

state changes, such as time sequences and state sequences.

Second, the data of the problem consists of two types,

observable data (observation sequences) and unobservable

data (hidden sequences or state sequences). We infer the hid-

den sequence based on an observation sequence. Currently,

several gesture recognition applications based on CSI have

applied HMM to identify human movements. For example,

Wang et al. [124] use HMMs to build a CSI behavior model

for distinct motion states and realize the 8 kinds of behavior

recognition. Despite the robustness for fine motion, HMM

needs to tackle computation cost for the data with large

hidden features.
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D. MODEL-BASED HUMAN BEHAVIOR RECOGNITION

The purpose of model-based recognition is to leverage a

mathematical or physical model to depict the signal varia-

tion caused by human behavior. Thereby, to identify human

behavior, we have to build an appropriate model to interpret

the CSI changes generated by user actions. However, many

activities are conducted in indoor environments; therefore,

the environment poses many effects on CSI propagation,

which increases the difficulty of developing the physical

model. Besides, CSI aims to evaluate wireless link state and

improve communication qualification, which makes it diffi-

cult to correlate the specific signal change with the specific

human behavior. In other words, the key of the model-based

behavior recognition approach is to first establish the model

that relates the signal space to the physical space and then

utilize the model to determine the human behaviors based on

the relationship between the received signal and the sensing

target. Based on the physical model or mathematical model,

human behavior can be accurately identified by exploring

physical laws. In state-of-the-art CSI-based behavior recogni-

tion applications and studies, the typical models include Fres-

nel Zone Model, AoA, human respiration model, interacting

model, CSI-speed model, and CSI-activity model.

FIGURE 5. Fresnel zone model [186].

1) FRESNEL ZONE MODEL

The concept of Fresnel zone originated from the research

on the interference and diffraction of light in the early

19th century. When applied in a radio propagation area,

Fresnel zones refer to the series of concentric ellipsoids with

two foci corresponding to the transmitter and receiver anten-

nas [3]. As shown in Fig. 5, assuming P1 and P2 are two

transceivers with a certain height, for a given radio signal with

wavelength λ, the Fresnel zones containing n ellipses can be

constructed by ensuring:

|P1Qn| + |P2Qn| − |P1P2| = n
λ

2
(11)

where Qn is a point on the nth ellipse. The ellipse is the

boundary of the Fresnel zone.Moreover, the innermost ellipse

is defined as the 1st Fresnel zone, the elliptical annuli between

the first and the second ellipse are defined as the 2nd Fresnel

zone, and the nth Fresnel zone corresponds to the ellipti-

cal annuli between the (n− 1)th and the nth ellipses [192].

Apparently, the width of the Fresnel zone keeps decreasing

as increasing of n and approaching λ/2.

From themathematical view, Fresnel zonemodel describes

the relationship between the geometric target position and

the CSI power or amplitude caused by the target motion.

In other words, when a target goes across different Fresnel

areas, the signal path formed by the body reflection will

vary with the different Fresnel area. Specifically, the different

behaviors can be recognized by analyzing the signal path

changes, such as walking direction estimation [129], respi-

ratory detection [131]–[135], [193], human detection [126],

and behavior recognition [125], [194].

FIGURE 6. AoA estimation [176].

FIGURE 7. Antenna array with one incident signal.

2) ANGLE OF ARRIVAL

The angle of arrival (AoA) is a measurement that deter-

mines the propagation direction of RF waves on the antenna

array. The basic idea is that whenever the user’s body part

occludes CSI measuring from a certain direction, the signal

intensity of AoA corresponding to the same direction will

descend distinctly [194]. Specifically, as shown in Fig. 6,

the human body blocks the signal propagation along the

AoA θi, but it does not affect signal transmission in other

directions, i.e., θ1, θ2, θ3, etc., which obviously leads to the

weakness of the signal intensity of the AoA θi. In general,

AoA can be evaluated by the phase difference between the

antennas of the array [3]. As shown in Fig. 7, the phase

difference between the adjacent antennas can be depicted as

follows.

ϕ = e−j2π f τ = e−j2π fd sin θ/c (12)

where f is the frequency of the incident signal; c is the

speed of the light; d is the interval between the adjacent

antennas; d sin θ refers to the path difference; d sin θ
/

c refers

to the time delay. Moreover, the more antennas, the better

the AoA estimation performance. In order to acquire accurate

angle estimation, the MUSIC (multiple signal classification)

algorithm has been applied, which adopts two or more AoA

VOLUME 7, 2019 155997



Z. Wang et al.: Survey on Human Behavior Recognition Using CSI

measurements from known points and utilizes triangulation

to calculate the position of the signal source. All in all,

the different behaviors can be tracked by analyzing the sig-

nal phase difference, such as handwriting recognition [130],

human detection [126], [107], respiratory monitoring [136],

and activity recognition [176].

FIGURE 8. Interacting model [128]. (a) Signal propagation along multiple
paths. (b) Detailed illustration of the 3rd path.

3) INTERACTING MODEL

Wang et al. [128] present an interacting model that realizes

person identification. The model treats skin, fat, and bone as

three concentric layers, and each layer’s medium of signal

propagation is uniform. Moreover, the user is asked to stand

on the vertical line in the middle of the TX-RX antenna.

As shown in Fig. 8 (a), the signal received S from the ith path

can be expressed as follows.

S = Ae−j2π f
∑n

i=1 (di
√

µiεi)+φ0 (13)

where A refers to the medium absorption of signal propaga-

tion process; φ0 is the initial phase of the signal; di refers to

the length of the ith path; the permeability and permittivity

are µi and εi, respectively. Wang et al. just consider the paths

of three layers and signals reflected by the human body, as

shown in Fig. 8 (b). The signal received S can be extended as:

S = Ae−j2π f
∑n

i=1 (hi(µ0,ε0,M ,E,R,L)
√

µiεi)+φ0 (14)

where hi refers to a function that calculates the propagation of

the ith path; the permeabilities, permittivity, and radiuses of

the human body in each layer are M , E , and R, respectively;

L means some location parameters.

4) CSI-SPEED MODEL AND CSI-ACTIVITY MODEL

Wang et al. [124] propose CARM in 2015, a human activ-

ity recognition system using the CSI-speed model and

CSI-activity model [124], [186]. The principle of these two

models can be demonstrated as follows. As shown in Fig. 9,

when one person moves from P1 to P2, the WiFi signal

is reflected by the wall and the human body, and propaga-

tion paths are changed, which causes multipath components.

Specifically, the multipath components consist of LOS com-

ponent and NLOS component caused by the wall, the human

body, and other objects. The authors divide these multi-

path components into two types, such as static component

(e.g., LOS component and the component caused by the wall

and other objects) and dynamic component (e.g., the compo-

nent caused by the human). Furthermore, the authors build

FIGURE 9. CSI-speed model [186].

the CSI-speed model and CSI-activity model to estimate the

speed of human activities and multiple movement states by

using the complex-valued channel frequency response (CFR)

and analyze the amplitude and phase of CSI from static com-

ponent and dynamic component. Due to some randomness

of the CSI phase, it is difficult to develop a speed model

by using phase information. Instead, the CSI-speed model

builds a relationship between CSI amplitude and walking

speed and evaluates the velocity of activities [186]. Further-

more, the author applies HMM to establish the CSI-activity

model and identify human behaviors based on CSI energy

changes on low-frequency components (e.g., caused by slow

movement) and high-frequency components (e.g., caused by

fast movement). CSI-activity model achieves great perfor-

mance for quantifying the relationship between the velocity

of human and activities.

E. DEEP LEARNING-BASED HUMAN

BEHAVIOR RECOGNITION

Deep learning is one of the machine learning algorithms and

can classify the data by exploiting the deep neural network

(e.g., autoencoder, CNN, LSTM, and RBM, etc.). Usually,

machine learning algorithms require accurate features as

input because these features characterize the input data and

determine output results. Therefore, well-designed features

are the premise of correct behavior recognition and directly

affect classification accuracy. However, some feature extrac-

tion may rely on empirical experience, decreasing classifica-

tion accuracy. Different frommachine learning, deep learning

usually does not need feature extraction steps since it can

automatically discovery and extract features from input data

with a neural network model. Deep learning enables a new

classification approach that can handle a large scale of data

with complex features. In other words, with deep neural

networks, there is no necessity to pre-process data for the

acquirement of feature descriptions, which is the significant

advantage of deep learning. Meanwhile, the large scale of

unknown parameters in the neural network can automati-

cally be calculated by the training process. Although the

training process usually is extremely time-consuming, it can

achieve satisfactory performance. Deep learning approaches

have been widely adopted in many scenarios: from the

classical image recognition applications to the challenging
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natural language processing, up to visual art applications, and

so on [195]. In this section, we analyze the specific neural

network models applied in CSI-based behavior recognition

applications, including autoencoder, CNN, LSTM, and RBM.

1) AUTOENCODER

Autoencoder is an unsupervised neural networkmodel, which

manages to rebuild the input data as the output by setting

a narrow-hidden layer. Specifically, it can learn the implicit

features of input data, which is called coding. Afterward,

the original input data can be reconstructed with the new

features learned, which is called decoding. Intuitively, it can

be used for data dimensionality reduction because the neural

network model can find hidden features that can reproduce

the input data on the output by utilizing the internal represen-

tation layers. In addition, it can also be utilized as a feature

extractor since the new features learned by the encoder can

be fed into the supervised learning model. For example,

Doong [158] use autoencoder to extract hierarchical features

from the original input and achieve the estimation of people’s

numbers.

FIGURE 10. The structure of CNN.

2) CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a famous and rep-

resentative deep learning model, which is used in image

recognition and speech signal processing field extensively.

As shown in Fig. 10, a typical convolution network con-

sists of an input layer, some hidden layers, and an output

layer with a full connection layer. Hidden layers comprise a

sequence of convolution layers, rectified linear unit layers,

and pooling layers. Specifically, the convolution layers are

the crucial parts of hidden layers and implement convolution

calculations. It can extract distinct features depicting the input

data from a low level and concrete features to a high level and

abstract features when hidden layers gradually increase. Relu

layers finish nonlinear computation using activation function,

which may build a complicated mapping relationship. The

pooling layer usually includes maximization pooling or aver-

age pooling. Although pooling computation just chooses one

from some results, it has become an indispensable part of

deep learning as it can keep the translation invariance, rota-

tion invariance, and scale invariance, decrease the number

of parameters, reduce computation cost and alleviate over-

fitting. Jakkala et al.[152] use the deep convolutional net-

work (DCNN) to identify the user’s gait. DeepFalls [143]

can automatically distinguish falls and fall-like activities by

using DCNN.

FIGURE 11. RNN structure with the LSTM block. (a) Overall structure.
(b) The detailed structure of the LSTM block at the pth time step.

3) LONG SHORT-TERM MEMORY NETWORK

The traditional neural network assumes that all inputs are

independent of each other. This assumption may not be true

for some applications such as natural language processing.

Therefore, recurrent neural network (RNN) is proposed to

address time sequences problems. Specifically, RNN is a

simple cyclic neural network and can process sequential

information. It performs the same task for each element of

the sequence, whose outputs depend on the previous compu-

tation result. However, it cannot effectively tackle the long-

term dependency problem because the output of the system

depends on the previous information that occurred a long

time ago. To solve this problem, some researchers propose the

LSTM (see in Fig. 11). It is an improved RNN and can effec-

tively process and predict important events with relatively

long-term dependencies and intervals in time series. It has

been used in various scenarios, such as image analysis, docu-

ment summary, speech recognition, image recognition, hand-

writing recognition, music synthesis, and so on. Compared

with RNN, LSTM adds a ‘‘processor’’ called cell to the

algorithm to judge whether the information is useful or not.

Three gates are placed in a cell, called the input gate, for-

get gate, and output gate. Information entering LSTM will

be judged according to the specific rules. Only information

certified by the algorithm will be retained, while other infor-

mation will be forgotten through the forget gate. Based on

this principle, LSTM is an effective technique for solving the

problem of long-term dependency and achieves satisfactory

performance. For example, Yousefi et al. [165] use LSTM to

distinguish between lying down and falling. Feng et al. [178]

recognize walking, running, and hand moving by applying

LSTM, SVM, DTW with KNN.

4) RESTRICTED BOLTZMANN MACHINE

Restricted Boltzmann machine (RBM) is a type of improved

Boltzmann machine (BM) to simplify network structure and
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accelerate computation performance. BM, a random recur-

rent neural network based on the energy model, is proposed

by G. E. Hinton et al. in 1984, to address complex learning

problems by extracting the inherent representation of data.

However, the learning processes of BM is complicated and

time-consuming due to the connections among all nodes.

To reduce computation complexity and enhance learning effi-

ciency, RBM divides all nodes into two groups (e.g., input

units and hidden units) and eliminates the link between

units within the same group, which enables a more efficient

training algorithm. RBM has been extensively applied in

numerous scenarios, such as collaborative filtering, weight

initialization, dimensionality reduction, classification, fea-

ture learning, topic model building, and deep belief network.

In the case of human behavior recognition based on CSI,

RBM can be used as feature extraction by using its powerful

capability of representing complicated and hidden features.

For example, Zhou et al. [146] built a stacked RBM for

automatic feature extraction with higher accuracy and effec-

tiveness to distinguish ten kinds of number gestures. Specif-

ically, the authors first constructed the multi-layer RBM and

then trained link weights with the probabilistic generative

model layer by layer to obtain near-optimal initial values.

Afterward, they unrolled the RBM and fine-tuned the weights

with the back-propagation algorithm. Finally, the output of

the last hidden units formed the effective features fed in the

classification algorithm.

IV. CSI-BASED HUMAN BEHAVIOR

RECOGNITION APPLICATIONS

Behavior recognition based on WiFi has received much

research attention in recent years due to the popularity of

WiFi devices indoors, the simplicity of approach, and the

accuracy of the recognition results. In addition, since the

CSI is sensitive to propagation path variation, it can be

leveraged to depict these changes caused by human actions.

As a result, CSI-based behavior identification techniques are

widely used in the behavior recognition field. In general,

human behavior recognition applications are categorized into

two types: the pattern-based and the model-based applica-

tions based on whether the applications use the model to

interpret human behavior. Although the recognition method

based on deep learning can be regarded as a type of the

pattern-based method, it is better to consider applications

based on deep learning as a distinct recognition system due to

its characteristics (e.g., without the feature extraction process

and requiring a mass of data to train network parameters).

Consequently, we categorize the state-of-the-art applications

(as shown in Table 3) into three groups, including pattern-

based, model-based, and deep learning-based. For better

understanding and analysis of CSI-based human behavior

recognition applications, we divide applications of each

recognition technique into two types, such as specific behav-

ior recognition and activity inference according to the pur-

pose of behavior recognition.

Specific behavior recognition refers to some simple human

behaviors which we just consider as distinct actions. Specif-

ically, we only need to concentrate on the characterization

of specific actions and can obtain their labels without further

inferences. According to behavior granularities, we classify

the specific behaviors into two types, such as coarse-grained

specific behavior and fine-grained specific behavior. The

coarse-grained specific behaviors refer to some activities

which we conduct with a large range. Specifically, it consists

of some simple daily activities and physical exercises, such

as jogging, lying, sitting, cooking, washing, standing, walk-

ing, playing table tennis, bodyweight exercise, etc. These

activities usually last some time with a certain periodicity

and happen regularly. Besides, we regard some abnormal

activities such as falling as coarse-grained behaviors, which

usually occurs suddenly and experiences a very short time.

The fine-grained behaviors refer to the specific human activ-

ities with a small motion distance. It consists of hand motion,

lip movement, heart rate, and respiration, etc.

Differently, activity inference usually refers to determin-

ing the meaning of actions. Specifically, it aims to make

the behavior inference to reveal the hidden purpose of the

activities instead of specific behaviors. For example, when

we want to count the number of persons in the room, we do

not focus on someone’s specific behaviors. We can count

the number of crowds by identifying the differences between

different individuals. The activity inference usually includes

smoking detection, crowd counting, step counting, human

detection, and user authentication, etc. Based on the analysis,

we investigate the state-of-the-art applications and exhibit a

comprehensive statistic based on the purpose of the applica-

tions, as shown in Table 3.

A. PATTERN-BASED BEHAVIOR

RECOGNITION APPLICATIONS

Currently, there have plenty of pattern-based human behavior

recognition applications using CSI because the pattern-based

approach provides many advantages. According to identifi-

cation purposes, the pattern-based applications are divided

into three groups, such as coarse-grained specific behav-

ior recognition applications, fine-grained specific behavior

recognition applications, and activity inference applications.

We make some tables to elaborate on the characteristics

of typical applications from many aspects, including the

device used, preprocessing methods, test scenarios, number

of users, recognized behaviors, classifier, and recognition

performance, as shown in Tables 4 to 6. We can obtain

key features of each application from Tables 4 to 6 because

these columns describe the characteristics of the applications.

Besides, we categorize the applications based on the specific

function, compare them from the above aspects, and obtain

the key difference of these identification systems. In Table 4,

there is one extra column compared with Table 5 and 6, titled

TTW (Through the Wall), which is used to mark whether

these applications can work in through-the-wall scenarios.

The reason that the column solely exists in this table is that the
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TABLE 3. CSI-based human behavior recognition applications.

coarse-grained behavior has a big activity range, which can

be identified in through-the-wall scenarios. On the contrary,

fine-grained behavior usually cannot be identified because

the variation of CSI through the wall is too weak to be

detected. Differently, behavior inference normally involves

some continuous movements; therefore, we usually focus on

the activities rather than the application scenarios.We analyze

the key components of activity recognition applications as

follows.

1) COARSE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

a: DAILY BEHAVIOR RECOGNITION

Wu et al. propose a novel device-free through-wall

human behavior identification system in 2018, called

TW-See [61]. This system identifies seven kinds of behaviors

(e.g., walking, hand swing, boxing, etc.) by applying the

opposite robust PCA (Or-PCA), low-pass filter, and BP

Neural Network. Specifically, the authors utilize low-pass

filter to eliminate the noise of raw CSI data. Next, Or-PCA

is applied to extract the correlation between human motion

and changes of CSI values. Furthermore, the authors adopt a

normalized variance sliding window algorithm to estimate

the beginning and end of the behaviors to segment activ-

ity samples. Besides, eight kinds of features are fed into

three-layer BP Neural Network, including STD, MAD, IR,

DA, MEA, and so on. The authors collect samples in three

different environments (e.g., environment 1 and 2: 12-inch

concrete wall, environment 3: the top of the wall is glass, and

the bottom is concrete.). The experiments demonstrate that

TW-See can identify activities in a through-the-concrete-wall

scenario with an average 94.46% accuracy.
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TABLE 4. Pattern-based coarse-grained specific behavior recognition applications.
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TABLE 5. Pattern-based fine-grained specific behavior recognition applications.
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TABLE 6. Pattern-based activity inference applications.
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TABLE 6. (Continued.) Pattern-based activity inference applications.

b: TABLE TENNIS ACTION RECOGNITION

Chen et al. propose WiTT [63] in 2018, a unique system that

can detect and classify table tennis activities by analyzing

the changes of CSI values. Firstly, the authors use DWT,

PCA, and Butterworth low-pass filter to wipe out the noise

and extract useful features. Next, the authors utilize SVM

to train samples and classify 9 activities of playing table

tennis, such as forehand attack, backhand stroke, forehand

pull, forehand pick, backhand pull, backhand close shot, step,

step by step, and squat. The extensive experimental results

prove that WiTT only has an average 79.78% accuracy for

9 kinds of behavior identification due to some similar actions,

90.33% accuracy for six types of activity recognition, and

more than 96.34% detection rate for presence detection of

table tennis actions.

c: BODYWEIGHT EXERCISE RECOGNITION

Li et al. propose a device-free bodyweight exercise moni-

toring system in 2018, called WiFit [64]. This system can

accurately count the repetition of bodyweight exercise by

analyzing the Doppler effect caused by human activity. This

system first applies the impulse-based method to automat-

ically segment each exercise, and then SVM is utilized to

count the number of activities according to doppler features

of three exercises (e.g., sit-up, push-up, squat). The authors

invite 20 persons to participate in experiments and collect a

total of 4350 samples in the office and meeting room. The

results show that this system can count the number of repe-

titions of bodyweight exercise with an accuracy of 99% and

accurately classify exercise type with an accuracy of 95.8%.

d: DANGER-POSE DETECTION

Zhang et al.[65] propose a device-free danger-pose detection

system in 2018. This system can automatically identify three

kinds of dangerous behaviors when taking a shower in the

bathroom, including steady lying position, the whole-body

sinks below the water surface, and the face sinks below

the water surface. The central components of this system

consist of preprocessing, activity classification, and danger

detection. Specifically, the authors select amplitude and phase

as base signals and then calibrate phase. Furthermore, the

authors extract static and dynamic features from CSI low-

frequency signals and feed these features in one-class SVM.

The authors evaluate the performance of this system using

three types of criteria, such as precision, recall, and F1-score.

According to experimental results, it demonstrates that this

system accurately recognizes danger-pose with 83.61% pre-

cision, 96.23% recall, and 89.47% F1-score.

e: ABNORMAL ACTIVITY DETECTION

Zhu et al. propose a device-free non-invasive abnormal activ-

ity detection system in 2017, called NotiFi [66]. This sys-

tem leverages some steps including PCA, non-parametric

Bayesian model, and Hierarchical Dirichlet Process (HDP)

to detect five kinds of abnormal actions (e.g., slipping on the

ground, falling, running, and breath pausing, etc.). Specif-

ically, the authors first exploit PCA to remove noise and

then design a model to describe the activity as the CSI

state trajectory, including amplitude and phase information.

The abnormal activities can be identified by exploiting the

non-parametric Bayesian model and Dynamic Hierarchical

Dirichlet Process. NotiFi is evaluated in three scenarios

(e.g., LOS, NLOS, through-one-wall scenario) from three

rooms, including office, laboratory, and apartment. The

experimental results show that NotiFi has a fine performance

with an accuracy of 89.2% in LOS, 85.6% in NLOS, and

75.3% in a through-one-wall scenario.

f: FALLING DETECTION

Wang et al. propose a real-time, contactless, and cost-saving

indoor fall identification system, called RT-Fall [69] in 2017.

The authors utilize the phase, amplitude, and phase difference

of CSI to detect falling motion. The authors discover that

the phase difference of CSI is sensitive to fall and fall-like

activity. Therefore, the authors exploit the phase difference

for activity segmentation based on the correlation between

human activities and phase change variance. In addition,

the end of fall and fall-like activity can lead to a sharp power

profile decline pattern in the time-frequency domain, which

can be utilized to validate the activity segmentation. After

signal preprocessing (e.g., interpolation and band-pass filter),

the fall-like activity segmentation is performed to separate
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fall-related activities. Next, eight features are obtained in real-

time and fed into v-SVM to identify fall activity. Experiments

are conducted in four indoor scenarios, and results are com-

pared with the WiFall to validate the algorithm performance.

The results demonstrate that RT-Fall can separate the falls

with the precision 100% and achieves 91% of sensitivity and

92% of specificity. Moreover, the sensitivity and specificity

on average of RT-Fall are 14% and 10% higher than that of

WiFall.

2) FINE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

a: HAND GESTURE RECOGNITION

Tian et al. propose a specific device-free hand gesture iden-

tification system, called WiCatch [80] in 2018. This sys-

tem identifies 9 kinds of hand gestures by applying phase

information of CSI, including one-hand gestures (e.g., pull,

push, slide, leftward, rightward, and wave hand) and two-

hand gestures (e.g., boxing, open the fridge, and open the

window). This system consists of four main processes, such

as interference elimination, virtual array construction, motion

trajectory reconstruction, and gesture classification. Specifi-

cally, the authors eliminate phase errors caused by SFO, CFO

and STO (a random time shift that can cause phase offset of

CSI) and then utilize the Gerschgorin Disk Criterion (GDC)

algorithm to estimate the number of angles of hand gestures.

Moreover, the authors apply SVM and radial basis func-

tion (RBF) kernel to classify the spectrums of hand gesture

and achieve single-hand and two-hand gestures identification

with 0.97 and 0.96 average accuracies, respectively.

b: PHYSIOLOGICAL INDICATOR DETECTION

Liu et al. [88] propose a breathing and heart rate detection

system during human sleeping in 2018, which can identify

sleep postures (e.g., curl up, supine, prone, and recum-

bent) and realize breathing rate tracking. The main compo-

nents of the system consist of CSI collection, coarse sleep

event detection, heart rate estimation, breath rate estima-

tion, and sleep event and posture identification. Specifically,

the authors apply Hampel filter to remove outliers of each

CSI subcarriers, and then a moving average filter is adopted

to remove high-frequency noise that does not come from

breath breathing or heartbeats. After that, the authors apply

the PSD-based approach to estimate the human breathing

rate. To evaluate the system performance, the authors uti-

lize another four different techniques to identify respiration

rates, such as discriminant analysis (DA), KNN, SVM, and

RF. This system can infer heart rate with errors of 57%

are less than 2 b/min and over errors of 90% are less than

4 b/min. Moreover, this system achieves over 90% accuracy

for four sleep postures recognition using KNN (K = 5),

SVM, and RF.

c: SIGN LANGUAGE RECOGNITION

Shang et al. proposeWiSign [83] and improve it [82] in 2017,

two sign language recognition systems that recognize eight

sign languages such as Hello, Thanks, Yes, No, etc. The main

characteristics of WiSign are that this system leverages train-

ing data that solely have sparse labels to recognize ges-

tures by using transfer learning and semi-supervised learning.

Specifically, the authors choose two features as input vectors

from the calculated eight waveform statistic features based on

the received raw signal. Next, the authors classify unlabeled

data with small labeled data based on SVM and KNN to

use the semi-supervised learning-based solution. In addition,

the authors discrete the feature values of any two samples and

judge whether they are similar according to the absolute value

of discretization feature calculation formulation. Based on

this calculation and SVM, the authors implement the transfer

learning-based solution. The experiments show that WiSign

can achieve the mean prediction accuracies of 87.01% with

the transfer learning-based approach and 87.38% with the

semi-supervised learning-based approach for all participants,

which are better than traditional SVM. In order to improve

recognition accuracy, another laptop is introduced and dif-

ferent kernel functions of SVM is applied [82]. Meanwhile,

for some complicated gestures whose signal often overlaps,

a weighted voting system is employed. The experiments show

that the system obtains a better mean false positive of 1.55%,

and enhances the recognition accuracy to 93.8% compared

with having only one laptop in the same environment.

d: LIP READING AND SPEECH RECOGNITION

Wang et al. propose WiHear [89] in 2016, a novel sys-

tem to hear talks with WiFi signals. Two core components

include the mouth motion profile for feature extraction and

the learning-based signal processing approach for lip reading.

Mouth Motion Profile construction consists of the following

steps: localizing the mouth, filtering out interference and

reflection using 3-order Butterworth IIR band-pass filter,

partial multipath removal using delay over 500 ns in the

time domain and FFT, and building mouth motion profile

using the calculation of a coefficient C. The coefficient C

depicts the peak to peak value on every subcarrier in a slid-

ing window and is representative value of every time slot.

Afterward, authors apply discrete wavelet packet decompo-

sition of 4-order Symlet wavelet filter on the filtered signal.

The lip-reading includes the following steps: segmentation

with detection of the silent interval, feature extraction with

Multi-Cluster/Class Feature Selection (MCFS) scheme that

extracts main features from wavelet profiles, classification

with dynamic time warping (DTW). The authors conduct

experiments for recognition of 14 different syllables under six

scenarios, including LOS, NLOS, and through-the-wall envi-

ronments. Experiment results show that WiHear can achieve

recognition accuracy of 91% for a single person speaking less

than seven words and up to 74% for hearing less than four

users simultaneously.

e: KEYSTROKE DETECTION

Ali et al. propose a keystroke recognition system in 2015,

called WiKey [91]. This system can detect keystroke accord-
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ing to the movement of hands and fingers. Firstly, the authors

apply Butterworth filter and PCA to eliminate some high-

frequency noise and extract the signals which only con-

tain variations caused by movements of hands. The authors

determine the start and end of activities by detecting an

increase and decrease in rates of change in the CSI time

series. Based on the experiment observation, means and vari-

ances or frequency components calculated from waveform

cannot be used as feasible features due to the similarity

between different keystrokes. Therefore, the authors utilize

the extracted keystroke waveforms as feature representation

since the shapes containing both time and frequency domain

information of the waveforms are suitable for classification.

The authors choose Daubechies D4 (four coefficients per fil-

ter) wavelet and scaling filters because they preserve enough

information and finish the maximum computation. WiKey

utilizes an ensemble of KNN using DTW distance as the

comparison metric between keystroke shape features. Exten-

sive experiments demonstrate that WiKey achieves more than

97.5% keystroke detection rate and 96.4% single keys recog-

nition accuracy. In real-world experiments, WiKey achieves

a recognition accuracy of 93.5% for keystrokes in a continu-

ously typed sentence.

f: WRITING RECOGNITION

Zhang et al. propose a novel device-free letter recognition

system, called LetFi [94] in 2018. This system can success-

fully detect the hand motion of writing 26 capital letters

in the air and estimate which letter has been written. The

main processes consist of robust CSI measurement extrac-

tion, the detection of the start and end point of the letter-

writing activities, multi-domain feature extraction based on

coherence histogram, and action classification using SOM

network. Specifically, the authors apply PCA to extract the

1st principal component and utilizes it as the metric to detect

the start or end of the letter-writing action. Furthermore,

the authors utilize Fast Fourier Transformation (FFT) to

acquire multi-domain features that contain amplitude and

phase information of CSI matrixes. Next, the authors use

SOM neural networks to train and test 832 (16 × 26× 2) CSI

samples and realize accurate classification of multi-domain

features. The results show that LetFi has 95% identification

precision for the 26 capital letter recognition.

g: SEDENTARY BEHAVIOR MONITORING

Yang et al. propose CareFi [96] in 2018, a device-free Seden-

tary Behavior (SB) monitoring system. In CareFi, the authors

categorize sedentary behaviors into dynamic and static activ-

ities which have different properties. The authors find that

different subcarriers are sensitive to different parts of the

human body. They employ PCA to obtain the trends of

CSI changes and distinguish dynamic activities based on

the main features such as variance or kurtosis. Different

from other applications, the authors utilize the frequency

information to capture the critical features representing the

static postures and occupancy position. In addition, they pro-

pose a foreground detection method based on kernel density

estimation (KDE) to extract coarse motion. On the prepro-

cessing phases, linear interpolation, subcarrier refinement

with IFFT and FFT, and DWT coefficients for temporal

de-noising are utilized to acquire the sanitized CSI data. For

dynamic activities, the authors choose the first four PCA

components and eight features to describe activities, includ-

ing entropy, mean, variance, standard deviation, kurtosis,

skewness, interquartile range, and mean crossing rate. The

authors apply Pearson product-moment correlation coeffi-

cient (PPMCC) to measure the similarity between two sig-

nal vectors and distinguish static postures. According to the

experiment results, CareFi achieves 94.9% average accuracy

for six common activity recognition, including reading, write,

type, drink, sit up or down, and phone. The classification

accuracy of human activities under environmental interfer-

ence achieves 97.5%, and accuracy for other conditions vary

from 90.5% to 100.0%.

3) ACTIVITY INFERENCE

a: SMOKING DETECTION

Zheng et al. propose Smokey [97] in 2016, a ubiquitous

passive smoking detection system. The smoking procedures

are decomposed into six steps in a certain order. The authors

find that different smoking phases affect different subcarri-

ers because the subcarriers have distinct sensitivity to the

motions of different parts of the human body. Based on

this principle, the authors utilize the rhythm/order infor-

mation to detect smoking activities from time-varying and

subcarrier-dependent CSI information. The system consists

of data processing, motion acquisition, and activity analysis.

Specifically, due to the inherent noise of the CSI stream,

linear interpolation is adopted on the irregular data to obtain

the CSI sequence with samples evenly spaced in time. After-

ward, the variations of CSI caused by motions are detected

from dynamic noises utilizing the image processing algo-

rithm, and the composite motions are acquired based on the

temporal correlation and the frequency correlation. Then, the

authors utilize autocorrelation to analyze the periodicity of

the composite motions in each detection window and identify

smoking motions according to the range of smoking period

and the threshold of the standard deviation of periods. This

system achieves 92.8% detection accuracy for the smoking

activities and misjudges normal activities as smoking action

with 2.3% error. In a static environment, the true positive

rate (TPR) of Smokey can be as high as 0.976, and the average

false positive rate (FPR) is low to 0.008, while in a dynamic

environment, the TPR reduces to 0.919 and the FPR increases

to 0.097.

b: CROWD COUNTING

Zou et al. propose FreeCount [99] in 2017, a device-free

crowd counting system based on CSI data. Firstly, the authors

apply the wavelet-based de-noising scheme to remove the

ambient noise of the raw CSI data. Then, some features
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(e.g., statistics features, transformation-based features, and

shape-based features) are calculated. Afterward, the authors

choose the most representative features which are sensitive

to human motion while resilient to environmental varia-

tion. Finally, rather than using the raw CSI feature space,

the authors develop a robust crowd counting classifier based

on transfer kernel learning (TKL) in the reproducing kernel

Hilbert space to construct a domain-invariant kernel for SVM

training. This system with TKL achieves 91.97% estimation

accuracy, outperforming SVM with RBF kernel by 38.78%.

In all, FreeCount estimates the number of people with 96%

accuracy up to 7 users, consistent with that under temporal

and environmental variation.

Zou et al. propose WiFree [101] in 2018, a novel applica-

tion for occupancy detection and crowd counting. This system

applies OpenWrt and the Atheros CSI tool, which collects

more CSI data related to human behavior. The authors apply

the low-pass filter and wavelet-based de-noising scheme to

filter the noise of CSI data and then sanitize the raw CSI

stream. In addition, the authors apply DTW to extract features

and count the crowd by using transfer kernel learning (TKL)

and SVM. This system detects seven volunteers in three

rooms (e.g., discussion room, conference room, and seminar

room) of different sizes. The results demonstrate that WiFree

achieves 99.1% accuracy for occupancy detection and 92.8%

accuracy for crowd counting.

c: STEP COUNTING

Zhang et al. propose a device-free multi-runner step count-

ing system in 2018, called Wi-Run [104]. This system can

automatically estimate the number of steps when users run on

the treadmill by three novel approaches, including Canonical

Polyadic (CP) decomposition, stable signal matching, and

the peak detection method. Specifically, the authors apply

Hampel filter and Savitzky-Golay filter to eliminate noises

that contain both low and high-frequency components. Next,

Canonical Polyadic is applied to decompose signals related to

running. Finally, the authors apply a peak detection method to

estimate steps for each runner. The experiment results show

that Wi-Run has 88.25% average accuracy for overall step

estimation. Moreover, this system has an average of 91.30%,

90.21%, 86.97%, 84.53% accuracy when runners increase

from two to five, respectively.

Xu et al. propose a novel device-free step counting system

based on the torso frequency analysis, called WiStep [105]

in 2018. This system can count in-place walking steps even

when the user’s torso speed is almost zero. Firstly, the authors

apply Butterworth bandpass filter, PCA, and DWT to filter

high-frequency noise caused by external interference, and

then the time-frequency analysis method is utilized to seg-

ment and identify the walking by analyzing amplitude vari-

ances of CSI streams. Furthermore, wavelet decomposition

is applied to extract useful coeffcients which are related to

these frequencies induced by feet or legs. Finally, the authors

apply the Short-time energy of the coeffcients to count steps.

According to extensive experiments, WiStep achieves 90.2%

and 87.59% accuracy for overall step counting in laboratory

and classroom, respectively.

d: HUMAN DETECTION

Zhu et al. propose R-TTWD [108] in 2017, a novel device-

free moving human detection system in a through-the-wall

environment. This system employs Hampel identifier, PCA,

low-pass filter, and SVM to detect human behavior. The

authors adopt the Hampel filter to remove outliers that are

some points falling out of the closed interval, and then they

apply the 1-D linear interpolation algorithm to obtain con-

tinuous samples located in consecutive and even time slots.

Afterward, they utilize low-pass filter and PCA to remove

noise at the top position of the spectrum. After human detec-

tion and feature extraction, the authors apply SVM to classify

the samples. The system achieves over 99% detection rates in

many general experimental scenes which have different wall

materials, dynamic moving speeds, and so on.

e: USER AUTHENTICATION

Shah et al. propose Wi-Sign [119] in 2018, a unique two-

factor authentication (2FA) system that does not depend on an

auxiliary device to determine the second factor. This system

recognizes user identity by exploiting the signing motion.

In other words, the authors identify hand geometry and the

way of hand movement to estimate the people’s identity.

Firstly, the authors utilize the Inverse Fast Fourier Transform

(IFFT) to transform the frequency domain of CSI to time-

domain Channel Impulse Response (CIR), which deletes

more than 500ns multipath delay. Next, the authors apply

low pass Butterworth filter, DWT, and PCA to filter high-

frequency noise and acquire detail-coefficients. A threshold

method based on the first-order variance of the selected prin-

cipal component is applied to determine the start and end

of hand motion. Besides, the authors use one-class SVM

(LIBSVM) with RBF kernel to classify eight features, includ-

ing mean, skewness, kurtosis, standard deviation, etc. The

experiment results show that Wi-Sign has an average 79%

TPR for user’s identity recognition of 14 users and has an

average 86% TNR for attack detection (The common attack

is that the intruder mimics the signer).

B. MODEL-BASED HUMAN BEHAVIOR

RECOGNITION APPLICATIONS

Currently, there are some model-based human behavior

recognition applications using CSI. These applications uti-

lize the physical law and mathematical model to depict

the CSI variation and recognize human behavior. We make

Table 7 interpret the main components of each applica-

tion, including the device used, preprocessing method, test

environment, number of users, classifier, and recognition

performance. From this table, we discover that there exist

many evident differences between model-based approach

and pattern-based approach. Specifically, there are more

daily activity recognition and user authentication applications

using a pattern-based method while there are one or two
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TABLE 7. Model-based human behavior recognition applications.

similar applications using the model-based method. Con-

versely, the number of respiration applications based on the

model far exceeds that of applications based on the pattern.

The leading cause is the difference in the characteristics of

these two methods. Specifically, pattern-based methods are

suitable for recognition or inference of large range activity

while model-based methods are fit to recognize the peri-

odic activities with fine granularity. Besides, we notice that

the types of recognized behavior are very different. Specifi-

cally, there are six types of model-based applications while

there are about eighteen types of pattern-based applica-

tions. The latter outweighs the former. The reason may be

that building an appropriate model is challenging because

many factors affect the precision of the model. The typical

model-based applications include daily behavior recogni-

tion [124], [125], human detection [129], walking direction

estimation [126], and respiration detection [24], [131]–[136].

We interpret the key element of these applications as

follows.

1) COARSE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

DAILY ACTIVITY RECOGNITION

Wang et al. propose a CSI-based human activity recognition

and monitoring system, called CARM [124] in 2015. Two

powerful theory models are proposed: a CSI-speed model,

which describes the relationship between CSI dynamic value

and human movement speeds, and a CSI-activity model,

which depicts the relationship between the movement veloc-

ity of human body parts and a special individual action.

Furthermore, the authors propose a series of signal process-

ing approaches, including PCA to de-noise, DWT to extract

features that represent the movement speeds, and HMM

to address different individual activity speeds. Furthermore,

it uses the Baum-Welch algorithm to calculate the average

vector and covariance matrix associated with each state and

the transition probabilities of HMM. In addition, the authors

apply the Exponential Moving Average (EMA) algorithm to

adjust the detection threshold to determine the start or end of

an activity. Based on thesemodels and algorithms, the authors

VOLUME 7, 2019 156009



Z. Wang et al.: Survey on Human Behavior Recognition Using CSI

deeply analyze the correlation between CSI value and human

speed. The experiments with eight different actions in lab-

oratory and apartment are used to validate the system. The

results show that CARM can effectively detect small move-

ments and large movements with a true positive rate (TPR)

larger than 98% when the distances at 5 meters or 12 meters,

respectively. Besides, it implements impressive mean activity

identification accuracy of 96% across all activities in the

trained environment and an identification accuracy for more

than 80% in a new environment and with a new individual.

2) FINE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

a: HANDWRITING RECOGNITION

Li et al. propose the first WiFi-based hand motion track-

ing system, called WiDraw [130] in 2015. This system can

automatically track the hand’s trajectory and estimate the

letters written. The key structure of WiDraw consists of

initial phase calibration and MUSIC algorithm. Specifically,

the authors apply a laptop that equips Atheros 9590 to col-

lect CSI data and then calibrate the phase of CSI stream.

After that, the authors utilize a low pass filter to eliminate

noise caused by environment inference. In addition,MUSIC’s

1-D AoA model is adopted to track the hand’s trajectory

and realize the identification of drawn letters, words, and

sentences. According to experimental results, WiDraw has

fine performance of in-air handwriting (e.g., letters, words,

and sentences) identification with an average 91% precision.

b: RESPIRATION DETECTION

Zhang et al. propose a novel contact-free breath tracking

system in 2019, called BreathTrack [136]. This system can

automatically track the status of respiration by exploiting

Hampel filter, FIR high pass filter, and joint AoA-TOF sparse

recovery method. Specifically, the authors apply the Hampel

filter and FIR high pass filter (the cutoff frequency is 0.05Hz)

to eliminate low-frequency noise. To avoid the phase dis-

tortions (e.g., Carrier Frequency Offset (CFO), Sampling

Frequency Offset (SFO), Packet Detection Delay (PDD), and

PLL Phase Offset (PPO)), the authors apply a combination

of hardware and software methods. Furthermore, a joint

AoA-TOF sparse recovery method is adopted to get the phase

variation of attenuation coefficient and acquire respiratory

state and breathing rate. The results show that BreathTrack

achieves more than 99% breath detection precision in most

scenarios.

3) ACTIVITY INFERENCE

a: WALKING DIRECTION ESTIMATION

Wu et al. propose the first CSI-based device-free human

walking direction estimation system, called WiDir [129]

in 2016. This system estimates a walking direction angle in

real-time by analyzing the phase between two subcarriers.

WiDir mainly consists of data acquisition, pre-processing,

feature extraction, and direction calculation. Specifically,

the authors apply the Savitzky-Golay filter to remove noise

and smooth signals of CSI. After phase delay estimation

and Fresnel direction estimation, a temporal-spatial model

is applied to infer the walking direction. Extensive results

demonstrate that WiDir can successfully detect the human

walking direction with a median error of less than 10 degrees.

b: USER AUTHENTICATION

Wang et al. propose a novel device-free person identification

system, called WiPIN [128] in 2018. This system can rec-

ognize user walking and infer the user’s identity by utilizing

the SVM and interacting model. The authors apply some

techniques to process CSI data, including Butterworth filter

to denoise and multipath effect removal based on IFFT-FFT

frequency-domain method. After acquiring robust features

that can represent walking, the authors utilize the interacting

model and SVM to analyze the correlation between walking

characteristics and the user’s identity. According to extensive

experimental results, WiPIN has 92% precision of the user’s

identity recognition over a group of 30 users.

c: HUMAN PRESENCE DETECTION

Xin et al. propose a novel device-free indoor human presence

detection system, called FreeSense [126] in 2018. It not only

implements human presence recognition but also models the

sensing coverage for movements. This system can automat-

ically detect indoor users by using the MUSIC algorithm,

Fresnel zonesmodel, AoA, andWi-HDmodel, and have great

anti-interference ability to resists noise, such as multi-path

effect and device difference. Firstly, the authors apply the

MUSIC algorithm to evaluate the phase difference between

the waveforms in some receiving antennas. Furthermore,

the Fresnel zones model, AoA, andWi-HDmodel are utilized

to estimate the coverage size and the sensing granularity.

The experiments demonstrate that FreeSense achieves an

average 0.53% false positive rate (FP) and an average 1.40%

false-negative rate (FN); moreover, the coverage estimation

approach of FreeSense has an average accuracy of 1.36 m.

C. DEEP LEARNING-BASED BEHAVIOR

RECOGNITION APPLICATIONS

Currently, there have some deep learning-based human

behavior recognition applications using CSI. These appli-

cations leverage the striking advantages of deep learning to

recognize human behaviors. We make Table 8 to analyze the

key features of recognition applications using deep learning

from the following aspects, including the device used, prepro-

cessing method, test environment, number of users, classifier,

and recognition performance. From this table, we notice that

the number of recognized behavior types using deep learning

is between that of model and pattern. We deem that deep

learning is becoming an important research method in behav-

ior recognition using CSI. From recognition approaches,

we find that most applications apply common deep mod-

els (e.g., Autoencoder, CNN, LSTM, RNN, and ResNet),

which indicates that the general deep learning algorithm

can be used at CSI-based behavior recognition and the
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TABLE 8. Deep learning-based human behavior recognition applications.
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capability of automatic feature extraction and classification

can be exploited when developing these systems. We believe

that more and more CSI-based behavior recognition appli-

cations will employ deep learning algorithms because it

can build and extract the high-level behavior features that

usually cannot be extracted by pattern-based or model-

based methods. The typical deep learning-based applications

include daily behavior recognition [138], [139], [141], [142],

falling detection [143], [144], syncope detection [145], hand

gesture recognition [8], [146], [147], [149], sign language

recognition [150], gait and walking direction recognition

[151], [152], human detection [153], [154], crowd count-

ing [156]–[158], user authentication [161], and respiration

monitoring [22]. We explain the key components of these

applications as follows.

1) COARSE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

a: DAILY BEHAVIOR RECOGNITION

Wang et al. propose a novel device-free spatial diversity-

aware activity recognition system, called WiSDAR [138]

in 2018. This system identifies eight kinds of activities

(e.g., walking, falling, running, sitting, picking, pushing,

waving, boxing) in four environments (e.g., laboratory,

hall, apartment, office) by using Low-pass filter, PCA,

STFT, CNN, and LSTM. Specifically, because daily activi-

ties cause more low-frequency components of CSI streams,

the authors apply low pass filter and PCA to wipe out high-

frequency noise. Moreover, the STFT is adopted for feature

extraction. Finally, the authors utilize CNN and LSTM to

train 5760 CSI samples collected from six students. The

sufficient experimental results show that WiSDAR achieves

96% stable identification precision for eight kinds of activity

identification. Zou et al. propose a novel device-free human

behavior recognition system, called DeepHare [132] in 2018.

This system can automatically identify 5 daily behaviors

(e.g., sit, stand, walk, run and lying down) in three different

rooms (e.g., conference room, office, apartment) by utilizing

Autoencoder Long-term Recurrent Convolutional Network

(AE-LRCN). Specifically, the authors apply the Atheros CSI

Tool and OpenWrt to acquire CSI measurements, and then

the low-pass filter and median filter are applied to eliminate

inherent noise. Besides, the authors utilize AE-LRCN to

train 400 thousand CSI samples and realize activity recog-

nition. According to experimental results, DeepHare can

identify 5 types of daily actions with 97.6% accuracy.

b: FALLING DETECTION

Chowdhury et al. propose DeepFalls [143] in 2017, a fall

detection based on Wi-Fi spectrograms and deep convolution

nets. This system first linearly interpolates the signal and

then used Hampel identifier to wipe out outliers of CSI

stream. Afterward, de-trending subcarriers, zero-padding,

and tapering CSI waveforms are applied as the signal seg-

mentation techniques for the detection of fall and fall-like

activities. Next, this system applies the Singular Spectral

Analysis (SSA) to remove the noise of CSI amplitudes

rather than using DWT. Due to the shortcomings of STFT

and Continuous Wavelet Transform (CWT) spectrograms,

the authors decompose the input signal to Intrinsic Mode

Functions (IMFs) with the Complete Ensemble Empirical

Mode Decomposition with Adaptive Noise (CEEMDAN).

Then, the Hilbert Huang Transform (HHT) of the decom-

posed IMFs is applied to create spectrogram images, which

are fed into 10-layer Deep Convolutional Neural Networks

(DCNNs) for classification. The extensive experiments

demonstrate that DeepFalls achieves satisfactory recognition

performance compared with RT-Falls. In all environments,

DeepFalls achieves a higher sensitivity (7.7%) and specificity

(11.9%) on average than RT-Fall. When the furniture posi-

tion is changed in the same room, DeepFalls implements a

4.07% higher sensitivity and 14.66% higher specificity than

RT-Falls. When training on one scenario and testing in dif-

ferent scenarios, the sensitivity and specificity of DeepFalls

are much lower than before. In this scenario, DeepFalls has

9.67% and 12.3% improvement in sensitivity and specificity

than RT-Falls.

2) FINE-GRAINED SPECIFIC BEHAVIOR RECOGNITION

a: HAND GESTURE RECOGNITION

Zhou et al. propose a novel device-free real-time finger ges-

ture recognition system in 2018, called DeepNum [147]. This

system can automatically detect ten kinds of number finger

gestures in three environments (e.g., meeting room, corri-

dor, student studio) by using Higher-Order Singular Value

Decomposition (HOSVD) and CNN. Specifically, the authors

apply HOSVD to wipe out the noise of the CSI stream

and acquire useful high-dimensional principal components.

In addition, the authors utilize a 7-layer CNN to train 3000

(300 × 20 × 50%) samples of CSI and realize finger gesture

recognition. According to the experimental results, DeepNum

has 98% accuracy for 10 finger gesture identification.

b: SIGN LANGUAGE RECOGNITION

Ma et al. propose a sign language recognition system, called

SignFi [150] in 2018. This system can identify more than

25 hand gestures by using 9-layer CNN. Specifically, because

CSI phase change in the range of −π , π , phase calibration

becomes necessary. Besides, a 9-layer CNN and KNN with

DTW are utilized to identify 276 sign gestures. Accord-

ing to the experimental results, when SignFi validates sys-

tem performance with one user in three places, such as

laboratory, home, and both laboratory and home environ-

ments, this system has great performance with the accuracy

of 98.01%, 98.91%, and 94.81%, respectively. In addition,

SignFi achieves 86.66% mean precision for the recognition

of 150 sign gestures performed by five different volunteers.

c: RESPIRATION DETECTION

Khan et al. [22] propose a novel device-free end-to-end deep

learning-based approach to detect human respiration rate

using CSI in 2017. The main components of this approach

consist of adaptive cancellation, deep activity classification,
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and breathing rate estimation. Specifically, the authors apply

USRP B200 SDR to collect the CSI data stream and then

utilize an adaptive filter to wipe out the redundant echoes of

signals. Furthermore, the authors utilize Random Forest (RF)

and CNN to monitor the human breathing rate in three dif-

ferent environments, such as breathing motion environment,

static environment, and random motion environment. In a

static environment, the breathing rate detection performance

with RF is pretty great than that with CNN, and RF has

100% accuracy whereas CNN achieves 94.85% accuracy.

In other environments, the CNNmodel has higher robustness

than RF and the performance of CNN outweighs that of

RF. Specifically, CNN achieves the recognition accuracy of

81.03% and 85.17% while RF obtains 71.07% and 81.97%

accuracy in random motion and breathing motion environ-

ment, respectively.

3) ACTIVITY INFERENCE

a: GAIT SENSING AND WALKING DIRECTION ESTIMATION

Xu et al. propose a novel device-free cycle-independent

human gait and walking direction detection system

in 2018 [151]. This system can recognize human gait and

walking direction by using Inverse Fast Fourier Transfor-

mation (IFFT), Butterworth bandpass filter, PCA, STFT,

and attention-based RNN encoder-decoder neural network.

Specifically, it requires three steps to handle raw CSI, includ-

ing long delay removal using IFFT, CSI de-noising using

Butterworth bandpass filter, and CSI refining using PCA.

In addition, the authors apply the attention-based RNN

encoder-decoder neural network to determine human gait

and walking direction. The results show that this system

can recognize human gait from a group of eight volunteers

with 89.69% average F1 scores and identity direction from

eight walking directions with 95.06% accuracy. Moreover,

the mean recognition accuracy considering both direction and

human gait exceeds 97%.

b: HUMAN PRESENCE DETECTION

Wang et al. propose an innovative deep learning-based

activity recognition system in 2019, called CSI-Net [154].

This system comprises four aspects: biometrics estimation

(including body fat, muscle, water, and bone rates), human

identification, hand sign recognition from 0 to 9, and falling

detection. Firstly, the authors adopt mini-PC which equipped

with Intel 5300 NIC to collect a great number of samples

of CSI (e.g., biometrics estimation: 43077, human identifica-

tion: 43077, hand sign recognition: 23896, and falling detec-

tion: 24398). Next, the median filter, mean filter, Butterworth

filter, and DWT are applied to wipe out the noise, and then the

Local Temporal Average is employed to smooth CSI streams.

Finally, the authors apply DNNs, LibSVM, and Naïve Bayes

to classify human activities. The result shows that DNNs

has better identification performance (e.g., human identi-

fication: 93%, sign recognition: 100% and fall detection:

96.67%.) than LibSVM (e.g., human identification: 85.28%,

sign recognition: 90.24 % and fall detection: 81.46%.), and

Naïve Bayes (e.g., human identification: 72.97%, sign recog-

nition: 81%, and fall detection: 73.01%.).

c: CROWD COUNTING

Liu et al. propose WiCount [157] in 2017, a robust deep

learning-based crowd counting system by identifying walk-

ing and other specific activities (e.g., eating, waving, typing,

talking, sitting down). This system uses Butterworth filter,

weighted moving average filter, PCA to wipe out high-

frequency noise of CSI stream. Next, SVM and Back Propa-

gation Neural Network (BPNN) are applied to realize crowd

estimation. According to experimental results, WiCount can

automatically estimate the number of crowds up to five and

ten with 82.3% and 75% precision, respectively. In addition,

the experiments show that the combination of amplitude and

phase information as behavior features can improve crowd

counting precise and deep learning algorithm performs better

than SVM for crowd counting.

d: USER AUTHENTICATION

Lin et al. propose a device-free user authentication system,

called WiAU [161] in 2018. This system can automatically

recognize 16 kinds of activities (e.g., walk, one arm wave,

high arm wave, sit down, drink water, squat, phone call,

etc.) and infer one user’s identity according to walking gait.

Specifically, the authors apply Butterworth low-pass filter

to remove the high-frequency noise of raw CSI stream.

Furthermore, Automatic Segmentation Algorithm (ASA) is

used to segment continuous behaviors. Finally, the authors

apply a convolution module that contains one CNN layer

and 15 ResNet layers to prove user authentication (e.g., legal

users and illegal ones). In this experiment, the authors invite

12 volunteers (9 males and 3 females) to participate in exper-

imental data collection. The data ratio of training, validation,

and testing is 60%, 20%, and 20%, respectively. Experimental

results confirm that WiAU achieves over 98% precision for

identity identification.

V. DISCUSSION

In this section, wemake a detailed discussion on certain kinds

of behaviors from different aspects, including test environ-

ment, size of samples, and system performance. This dis-

cussion section focuses on analyzing the characteristics of

these behaviors and comparing the difference of the system

implementation. We hope this part provides some insights

into the development of human behavior recognition using

CSI. Based on the representative applications, we analyze

some main behaviors (see in Fig. 12), such as daily behav-

ior recognition, falling detection, hand gesture identification,

crowd counting, and user authentication. Since almost all

systems employ Intel 5300 NIC as CSI collection device,

we do not emphasize the hardware device in the following

discussion.
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FIGURE 12. Recognition technique statistics of the different human
behaviors from Table 3.

A. DISCUSSION ON DAILY BEHAVIOR RECOGNITION

Daily behavior recognition is an important research field

because it can be utilized to identify human life state and pro-

vides helpful information to evaluate lifestyle. Daily behav-

iors have been widely studied and can be recognized using

different recognition methods. The main reasons may be

explained as follows. Firstly, the range of daily behavior is

bigger than that of other behaviors. Therefore, the variation of

CSI is easily measured and the different behaviors are easily

discriminated. Secondly, daily behavior recognition can be

treated as a classification problem that can be effectively

tackled. Therefore, we find that many applications of daily

behavior recognition employ the pattern-based method rather

than model-based methods.

We analyze the main characteristics of daily behavior

recognition andmake some comparisons between recognition

methods. Firstly, from the size of samples, the number of sam-

ples of the pattern-based methods is less than 5000 and the

median value is 2000. The samples of model-based methods

are usually 1500 which is less than that of the pattern-based

methods. Furthermore, the samples of deep learning-based

are above 5500 except Khan et al. [141] and the maximum

value reaches one hundred thousand. Secondly, we observe

that the activities are conducted usually in 2 to 4 scenarios to

assess system performance and the type of activities is usually

5 to 9, which validates the robustness of the system. The

overall performance of daily behavior recognition is close

to 95% for three recognition techniques, which indicates

that different recognition methods are not a decisive factor.

Although the performance of deep learning-based is a little

higher than other methods, it usually requires more com-

putation and more data to train neural network parameters,

which is the main disadvantage. The best recognition results

are shown as follows. DeepHare[139] has 97.6% precision

using the deep learning-based approaches, WiHACS [57]

achieves 97% precision using the pattern-based methods,

and CARM [124] applies model-based methods and has

96% accuracy. Thirdly, in through-the-wall scenarios, the

identification accuracy may decrease, such as WiHACS [57],

DFS [60], and TW-See [61]. For a special test environment,

Wei et al. [56] consider the effect of radio-frequency interfer-

ence that seriously decreases recognition precision. Besides,

WiSPPN [142] studies human behaviors by analyzing human

pose and calculates key point coordinates instead of behavior

types; therefore, it applies a different evaluation metric to

assess the system performance.

B. DISCUSSION ON FALLING DETECTION

Falling is a serious threat to the life of persons, especially

for the elderly. Therefore, many researchers pay more atten-

tion to the falling detection using CSI due to its many

advantages. Currently, there some studies which can auto-

matically detect falling behaviors, such as WiFall [67],

Anti-Fall [68], RT-Fall [69], FallDeFi [70], Dong et al. [71],

DeepFalls [143], and WmFall [144]. Based on the analysis

of these applications, we obtain the following results. Firstly,

for the falling detection, the pattern-based method is more

popular than the deep learning-basedmethod. To validate sys-

tem performance, many applications conduct the behaviors

at 2-3 test environments. In addition, we notice that some

applications of falling detection consider falling as one of the

recognized behaviors while some applications solely identify

falling activity, such as DeepFalls and FallDeFi. Secondly,

we discover that the number of samples of falling detection

is similar to that of daily behavior when using pattern-based

methods because some falling detection applications consider

falling as a common behavior. The samples of falling have

less size compared with that of daily behavior using deep

learning because these systems usually consider whether the

behavior is falling or not, which is a simple binary classifica-

tion problem. Thirdly, the recognition accuracy of falling is

lower than that of daily behavior using the pattern-based and

deep learning-based approach because the duration of falling

is very short, which leads to the difficulty of the detection

and identification. Therefore, many applications add another

evaluation parameter, false alarm, to provide a more pre-

cise assessment. The recognition accuracy of pattern-based

and deep learning-based hold similar results, about detection

accuracy of 90% and the false alarm rate of 12%. Some

typical applications make comparisons with other applica-

tions to confirm system improvements. For instance, WiFall

achieves 87% detection precision with a false alarm rate

of 18%. RT-Fall compares its performance with WiFall and

has a 14% higher sensitivity and 10% higher specificity than

WiFall. Furthermore, FallDeFi and DeepFalls compare their

performance with RT-Fall. FallDeFi and DeepFalls are more

sensitive to detect falling than RT-Fall. FallDeFi achieves

93% accuracy of falling detection, compared with RT-Fall

and CARM, this system improves 12 % and 15 % accuracy,

respectively. DeepFalls has an average 7.7% higher sensitiv-

ity and 11.9% higher specificity than RT-Fall. Dong et al. [71]

realize falling detection in the staircase with 94% precision.
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The results indicate that the test environments affect the

recognition accuracy of falling detection.

C. DISCUSSION ON HAND GESTURE RECOGNITION

Hand gesture recognition is an important field of human

behavior recognition because it can provide effective infor-

mation input for HCI (Human-Computer Interaction) and

more help for communication of the deaf. Currently, there

has a lot of systems which identify various hand gestures,

such as WiG [73], WIGeR [74], Mudra [75], WiFinger [76],

WiFinger [77], PWiG [78], Chen et al. [79], WiCatch [80],

iGest [81], DeNum [146], FreeGesture [8], DeepNum [147],

Widar3.0 [148], and Temporal Unet [149]. From the recogni-

tion technique, we find that the pattern-based method is more

popular than the deep learning-basedmethod for hand gesture

recognition. The experimental scenarios of these applications

are simple compared with daily behavior. From the size

of samples, the number of samples of the pattern-based is

less compared with the deep learning-based. The size of

samples used in pattern-based approaches is less than 500

(except WiG [73]) while the number of samples used in deep

learning-based approaches is over 1000 for common hand

gestures (e.g., DeepNum [147]: 6000,Widar 3.0 [148]: 1700).

From system performance, the overall recognition accuracy

is about 93% for LOS scenarios and less 90% for NLOS

scenarios, such as WiG [73] and PWiG [78]. DeepNum has

an overall accuracy of 98% for American sign language,

which is more accurate than other sign language applications.

WiCatch [80] considers two hand gesture recognition and

achieves 95% recognition accuracy. We notice that the num-

ber of hand gestures varies from 4 (e.g., WiG [73]) to 9 (e.g.,

Mudra [75]) and the size of ASL (digital gestures) is up to 10.

D. DISCUSSION ON CROWD COUNTING

Crowd counting is a significant study because it can pro-

vide helpful information on population mobility and human

dynamics. Based on the information, we can conduct some

intelligent crowd management when person density reaches

some thresholds. Currently, there has many applications

which estimates the number of users according to differ-

ent walking states, including FCC [98], FreeCount [99],

Guo et al. [100], WiFree [101], Wi-Count [102], HFD [103],

Chen et al. [156], Wi-Count [157], Doong et al. [158],

and DeepCount [159]. The pattern-based systems have more

applications than deep learning-based systems. We observe

that the size of samples of pattern-based is less than

1000 while that of deep learning-based is above 16000. The

experimental scenarios are very different, varying from 4 dif-

ferent environments (FCC [98]) to a single environment

(Doong [158]). The recognized number of crowds varies from

5 users (WiCount [157]) to 15 users (FCC [98]). All these

applications recognize walking users and the recognition

precision decreases with the increase of users. From the

perspective of recognition performance, the pattern-based

methods have better results, and the counting accuracy is

higher than 90%while all deep learning methods are less than

90%, which indicates pattern methods are suitable to crowd

counting applications.

E. DISCUSSION ON USER AUTHENTICATION

User identity authentication is an important premise for

almost all applications because it can prevent illegal access

to private information. Currently, a great deal of applications

based on CSI realize user’s identity recognition, including

WiFi-ID [112], WiWho [113], WifiU [114], FreeSense [115],

Wii [116], Chen et al. [117], AutoID [118], Wi-Sign [119],

Liu et al. [120], BodyPIN [121], BioID [122], WiPIN [128],

Shi et al. [160], and WiAU [161]. Many user authentication

systems apply pattern-based methods except WiAU [161],

NeuralWave [162], FingerPass [163], Kong et al. [163], and

WiPIN [128]. The authentication number of users varies

from 2 (e.g., WiFi-ID [112]) to 30 (e.g., BodyPIN [121],

WiPIN [128]). The size of samples of these applications is

similar to the falling detection applications. Most experimen-

tal environments contain 2-3 kinds of scenarios, such as the

office, laboratory, and apartment, etc. Like crowd counting,

most authentication applications utilize walking to determine

user identity except BioID [122] and Wi-Sign [119], which

utilities lip-motion and hand-motion to identify user’s iden-

tity, respectively. The best recognition accuracy is Wii [116],

which achieves 98.7% for two user’s authentications. Other

remarkable systems are BodyPIN [121], and WiPIN [128]

because these systems can determine 30 users with 92%

recognition accuracy. WiAU [161], applying a deep learning

method, achieves 98% recognition accuracy for 12 users,

which is a satisfactory result for crowd counting.

F. DISCUSSION ON RESPIRATION MONITORING

Normal respiration plays a crucial part in daily life because

abnormal respiration state may endanger a person’s life.

Currently, plenty of systems based on CSI can detect human

breath rate, including PhaseBeat [85], TR-BREATH [87],

Liu et al. [88], Wang et al. [131], TinySense [132],

Yang et al. [134], Zhang et al. [135], FullBreathe [24],

BreathTrack [136], FarSense [137], and Khan et al. [22].

Different from other behavior recognition that usually applies

the pattern-based or deep learning-based methods, most

respiration monitoring applications leverage model-based

methods. The number of users varies from 2 (e.g., Tiny-

Sense [132]) to 12 (e.g., TR-BREATH [87]). The pattern-

based method achieves the best results for the number of

users (12 users) and recognition accuracy (above 98% for

doze users under LOS and 9 users under NLOS scenarios).

BreathTrack [136] monitors 8 users and achieves over 99%

accuracy inmost scenarios. For deep learning-basedmethods,

Khan et al. [22] leverage CNN and obtain 98.85% recognition

accuracy for 3 users, which is a common result because it

collects more measurement data using USRP B200.

All in all, the pattern-based method is widely employed

in most behavior recognition applications since it has many

important advantages, such as fewer sample requirements

compared with the deep learning-based approach, wide and
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FIGURE 13. CSI without and with RFI [56].

deep study, simple recognition steps, and without the need

of the precise mathematical model. Model-based approaches

are extensively exploited in respiration monitoring due to the

small range of body motion. In other words, the physical

model is more appropriate for the detection of minor body

motion. Deep learning is gradually being applied in CSI-

based human behavior recognition because it has achieved

extraordinary success in various scenarios, including image

processing, speech recognition, and natural language pro-

cessing, etc. Thereby, we hope that these CSI applications

can leverage its powerful feature extraction and recognition

capability to identify human behaviors. Generally, deep learn-

ing approaches need a large number of samples to extract

features and implement classification, which is not absolute

requirements based on our analysis. Thereby, if we have more

samples, we can leverage the strengths of deep learning.

If we have small size samples, we can select appropriate

recognition algorithms based on characteristics of the sys-

tem. Therefore, we deem that the size of samples affects the

selection of recognition algorithms. In summary, we should

select appropriate recognition methods to identify human

behavior based on application requirements, experimental

environments, and characteristics of algorithms.

VI. ISSUES AND FUTURE RESEARCH DIRECTIONS

Recently, human behavior recognition based on CSI has

achieved remarkable success in many fields due to the pop-

ularity of WiFi devices and the improvement of recogni-

tion algorithms. However, we have to face many challenges

when developing specific behavior recognition applications.

Besides, with the gradual changes in requirements and work

environment, we have to tackle more complex problems.

In this section, we discuss some crucial issues and present

some promising research directions. We hope that these

contents provide some insights into the analysis of activity

identification systems and facilitate the development of novel

applications. We consider some representative problems and

research trends, including electromagnetic interference, mul-

tiple users, through the wall, multiple AP, standard dataset,

robustness, and security issues. These issues and further

directions are discussed as follows.

A. ELECTROMAGNETIC INTERFERENCE

Although the dense deployment of WiFi brings us a more

convenient network link, it causes serious electromagnetic

interference, which reduces the accuracy of behavior recogni-

tion. As shown in Fig. 13, Wei et al. [56] exhibit a device-free

activity recognition system with radio frequency interference

(RFI), which can identify 4 kinds of behaviors (e.g., lying,

sitting, standing, and walking). Based on this system, authors

find that the CSI signal has been seriously affected and the

measurement data have been apparently changed by RFI.

Consequently, the behavior recognition accuracy decreases

due to electromagnetic interference. Huang et al.consider

the co-channel interference from channel overlap of WiFi

devices and propose WiAnti [196], a robust anti-interference

activity recognition system using CSI. WiAnti analyzes the

co-channel interference and proposes a subcarrier selection

algorithm to choose some subcarrier with a weak correlation.

The system achieves 95.865% recognition accuracy, an 8%

improvement compared with WiFall. With the increase of

WiFi devices, how to reduce electromagnetic interference and

improve the recognition accuracy may not be a nonnegligible

issue. The effect of RFI on system performance should be a

factor considered when developing and evaluating a gesture

identification based on CSI.

FIGURE 14. Multi-person behavior recognition.

B. MULTI-PERSON BEHAVIOR RECOGNITION

Multi-person behavior recognition refers to that the system

can recognize the gestures conducted by more than one per-

son simultaneously, as shown in Fig. 14. Specifically, when

multiple persons perform actions in the coverage of CSI

signal, besides the effect of gesture conducted by one user

on the CSI, the mutual position of users also pose more

complicated influence on CSI signal, which extraordinarily

increases the difficulties of recognition because the user may

walk to different positions. However, multi-person behavior

identification is also indispensable for some applications.

Thereby, some applications evaluate system performance by

analyzing the test scenario. For instance, WiMU [59] is a

multiple user gesture recognition system using a WiFi signal.

It utilizes WiFi signal propagation law to build a theoretical

model for depicting multiple user movement. It achieves

average accuracies of 95%, 94.6%, 93.6%, 92.6%, and 90.9%
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for 2, 3, 4, 5, and 6 simultaneously performed gestures,

respectively. Tan et al.propose MultiTrack [62], a multi-user

tracking and activity recognition system. It extracts signal

reflection describing each user using multiple WiFi links and

achieves over 92% precision for activity recognition under

multi-user scenarios. WiHear [89] identities 9 vowel pronun-

ciation according to mouth motion profile, and it has 91%

precision for one person and 74% precision for 3 persons.

TinySense [132] detects a multi-person breathing rate by

analyzing biggest stream with the peak-valley difference.

Moreover, this system obtains over 95% and 88% precision

for respiration rate detection of 1 or 2 volunteers at the

same time. Yang et al. [134] propose a multi-person sleeping

respiration monitoring system. This system estimates two

people’s breathing rate with the Mean Absolute Error (MAE)

of 0.5bpm∼1bpm. TR-BREATH [197] detects the respiratory

rate of 1 to 7 people. In this system, the accuracy of a sin-

gle breathing estimation is 98.5%, and the average accuracy

of 1 to 7 respiratory estimation is 96.9%. We discover that

the increase in the number of users usually decreases the

recognition accuracy. How to effectively address the effect of

multiple persons and recognize different actions conducted

by different users is a challenging problem.

C. THROUGH THE WALL DETECTION

CSI signal has a remarkable benefit because it can propagate

through the wall. The communication between the sender

and the receiver that locate in different rooms do not be

interrupted if the distance between them keep a rational range.

Consequently, human behavior recognition in a through-the-

wall scenario by using CSI extends the research field and

provides us with promising applications. With the power-

ful communication through the wall, many systems have

implemented attractive functions, such as E-Eyes [55], Ten-

sorBeat [86], WiHACS [57], WiseFi [176], Smokey [97],

NotiFi [66], R-TTWD [108], WIGeR [74], FallDeFi [70],

DFS [60], and TW-See [61]. However, from these through-

the-wall activity recognition applications, we find that only

DFS [60] and TW-See [61] involve the material of walls,

such as concrete walls and glass walls. For instance, DFS [60]

identities 8 kinds of actions in two experiments with exceeds

85% precision. As shown in Fig. 15 (a) and Fig. 15 (b), two-

sided walls, such as the concrete wall, and the glass wall and

concrete wall, isolates receiving end and transmitting end.

TW-See [61] recognizes seven daily behaviors (e.g., walking,

hand swing, boxing, etc.) with an average 94.46% recognition

precision in two through-the-wall scenarios (e.g., through

the glass wall, and through the concrete wall), as shown

in Fig. 16. These systems prove that the material of walls

can affect signal propagation and lead to different recognition

accuracy. Although a few applications discuss the recogni-

tion performance in through-the-wall scenarios, they do not

provide a comprehensive analysis of variation of through-

the-wall CSI signal. The applications and analysis of human

behavior recognition in the through-the-wall scenario will be

the hot research topic.

FIGURE 15. ‘‘Through wall’’ experiments of DFS [60]. (a) Corridor with two
concrete walls. (b) Experiment with one glass wall.

FIGURE 16. ‘‘Through wall’’ experiments of TW-See [61]. (a) Experiment 1
with one concrete wall. (b) Experiment 2 with one glass wall.

FIGURE 17. Wi-Fi-based activity recognition with multiple APs [198].

D. MULTIPLE ACCESS POINTS (APS)

Due to the short WiFi communication distance and low trans-

mission power, the traditional CSI-based behavior recogni-

tion applications often use a single AP to validate algorithm

accuracy [198]. However, various factors (e.g., wall, noise,

etc.) severely distort the signal propagation and attenuate

signal energy, which may decrease recognition accuracy.

With the popularity of WiFi devices, multiple access points

are available in our daily environments. Therefore, utilizing

multiple access points seems to be a potential solution to

improve recognition accuracy. As shown in Fig. 17, data col-

lection with multiple APs provides us with more information

from more communication links, which enhances behavior

recognition accuracy in complex experiment environments.

For instance, NotiFi [66] adopts five APs to evaluate the

impact of the number of AP on behavior recognition accu-

racy. The experiments in NotiFi confirm that the increase in

the number of WiFi AP can improve system performance.

However, the relationships between recognition accuracy and

the number of APs remain unclear. Li et al. [198] propose a

learning method that can analyze the CSI of multiple APs.

This approach adopts 9 APs to collect data of CSI and then

utilizes CNN to identify human activities. It proves that using

multiple APs for human activity recognition can increase the
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identification precision effectively. However, how to decrease

the RF interference from multiple APs, how to assign the

position of the APs to obtain the optimal recognition accu-

racy, and how to coordinate the communication among these

APs are the crucial problems to be solved.

E. STANDARD DATASET

Currently, almost all behavior recognition applications eval-

uate system performance using specific samples. Usually,

authors recruit some participants to conduct some typical

actions and collect the CSI data. The experiential environ-

ments are settled according to the specific requirements of

the application. Consequently, system performance usually is

validated under their own system arrangement. The compre-

hensive evaluation and comparison among more systems are

difficult because the experiment conditions are very differ-

ent. Although some applications provide some comparison

with other applications, more analysis and discussion are

needed. The standard dataset can significantly improve sys-

tem performance evaluation and comparison. With an open

and accurate dataset, we can accurately assess the system

performance from many different aspects. As for how to

build the dataset, we can obtain some experience from other

open and successful datasets, such as CIFAR10 [199], Ima-

geNet [200], MNIST [201]. When building the dataset, many

factors should be considered, such as action types, number of

participants, the difference of users, test environments, and

size of samples. We deem that the successful development of

the standard dataset will boost the studies and applications of

behavior recognition based on CSI.

F. ROBUSTNESS

Many behaviors of current applications are conducted in

indoor environments. As a result, the environment exerts

an important effect on recognition accuracy [183]. Besides,

the number of participants, age of the users, the position

of devices, and types of gestures will affect recognition

accuracy. How to make the algorithm available under differ-

ent indoor scenarios and for different users is an essential

issue because it confirms whether the approach has robust-

ness. Some applications seek the solution using a model-

based or deep learning-based approach. They can alleviate

the problem and improve recognition accuracy under dif-

ferent environments. However, with these two approaches,

we have to face the difficulty of modeling or gathering large

samples. Therefore, how to tackle this question has no clear

answer. Currently, we can take some measures to mitigate

the effect of different test environments. Development of a

universal framework to tackle this problem seems to be a

potential approach [8], [22], [138], [141], [147], [150], [161],

[187], [188]. Keeping robust and available for many scenarios

is a fundamental problem for behavior recognition using CSI

and can be solved in further research.

G. SECURITY ISSUES

The human behavior recognition based on CSI works

under device-free and non-intrusive pattern, which provide

a long-term and accurate monitoring of a user. The behavior

recognition brings us many advantages and disadvantages.

On the one hand, it provides us with more control over the

smart device, timely health care to the elderly, and more

help for the impaired person, which are their advantages.

On the other hand, it may bring many disadvantages [202].

For instance, it can be utilized to steal private information

by recognizing keystroke information [91], inferring a text-

based password [92]. Besides, continuous behavior recog-

nition actually poses strict surveillance on the user, which

may lead to a serious threat to people’s privacy if this infor-

mation is utilized illegally. Furthermore, it can be leveraged

to control the device remotely without permission in a quiet

state. Therefore, how to control device only under the author-

ity or how to prevent private information leak using CSI are

essential problems.

VII. CONCLUSION

Human behavior recognition technology is an important

research direction in the field of ubiquitous computing.

Currently, human behavior recognition based on WiFi CSI

has drawn more attention because it can overcome the short-

comings of traditional methods, such as the requirement of

wearing physical sensors, privacy violations, and deployment

costs. As a result, much significant research progress has been

achieved in many application fields. This paper investigates

state-of-the-art behavior recognition applications based on

CSI and presents a comprehensive review of the key char-

acteristics of these applications.

Firstly, this paper introduces the current general identifi-

cation methods of behavior recognition, overviews related

surveys, introduces the concept of channel state information,

and illustrates the principle of CSI-based behavior recogni-

tion. Secondly, the article presents the general framework of

behavior recognition in detail, such as base signal selection,

signal preprocessing, the behavior recognition techniques

including pattern-based, model-based, and deep learning-

based approaches. Thirdly, based on the above recognition

techniques, the article categorizes the existing studies and

applications into three groups and elaborates on each typi-

cal application from the test device, experimental scenarios,

number of users, behaviors conducted, classifier and system

performance. Fourthly, this paper analyzes some specific

applications and presents extensive discussions on the selec-

tion of recognition techniques and performance evaluation.

These discussions provide some helpful insights into devel-

oping an identification system. Finally, this article concludes

by presenting open issues and research future.
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