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ABSTRACT With the rapid progress of the Internet of Things (IoT) technology, human behavior recognition

has become an important research topic in the field of ubiquitous computing and has obtained quite

a number of research achievements. Accurate human behavior recognition can enhance the quality of

human–computer interaction and facilitate the development of various sensing applications. With the

popularity of smartphones and the improved performance of sensors such as speakers and microphones

built in smartphones, the behavior recognition technique based on ultrasound signal of the smartphone

has gained more attention and achieved several research results. In this paper, we first review the common

behavior recognition techniques including light, video, sound, and frequency radio and outline their main

characteristics. Then, we introduce the fundamental principle of human behavior recognition based on

ultrasound signals. Specifically, these systems treat speakers and microphones embedded in smartphones

as the transceiver and leverage the received signal changes caused by human movement including phase

differences, frequency shift, and time of flight (ToF) to recognize human behavior. Next, we investigate the

state-of-the-art studies and applications and analyze the signal processing techniques such as data collection,

signal preprocessing, feature description, and behavior recognition approach. Afterward, according to the

purpose of these applications, we classify them into five groups and compare them in detail including

hand gesture recognition, activity recognition, hand trajectory tracking, vital sign monitoring, and lip

reading. Finally, we conclude by discussing the limitations, challenges, and open issues involved in behavior

recognition based on ultrasound signal of smartphone.

INDEX TERMS Doppler effect, human behavior recognition, smartphone, ultrasonic signal.

I. INTRODUCTION

With the significant advances in computer technology, human

behavior recognition has become an important research topic

and has attracted a variety of research efforts. The purpose

of human behavior recognition is to develop effective tech-

niques to model and understand human behavior from sensor

data. Although there are various human behaviors, we con-

centrate on some typical movements. These behaviors not

only include simple daily actions, such as waving a hand,

walking, and driving, but also cover health monitoring, such

as heartbeat and respiration monitoring. Accurate behav-

ior recognition can enhance the quality of human-computer
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interaction and facilitate various applications, such as health

monitoring, home entertainment, daily activity recognition,

etc. [1]. Recently, several effective physical models and

recognition algorithms have been proposed and related exper-

iments under realistic settings have been performed. Many

studies apply device-based (users need to wear device on

the body) approaches and they can measure accurately more

data and make precise control to sensing procedures [2].

These studies show that many systems can achieve satisfac-

tory recognition accuracy and may be employed in many

scenarios. In addition, we find that device-free (users do

not wear any sensor) behavior recognition approaches have

been widely studied due to their non-intrusive manner [3].

Specifically, these systems can decrease disturbance to daily

life and enable to monitor targets for long periods.
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TABLE 1. Comparison of the four types of recognition methods.

Human behavior usually changes the signal propagation

path and generates signal variation or shadow effect. The

relationship between human behavior and signal variation

is unique and can be exploited to recognize the behavior.

According to the types of signals received at the receiv-

ing devices, we classify them into four groups: vision [4],

light [5], radio frequency (RF) [6], and acoustic signal [7],

as shown in Table 1. This table lists some typical applica-

tions and compares recognized human behavior using these

four modalities. From the literature, we discover that these

four modalities can be utilized to recognize common human

gestures, such as hand gesture and daily activity. Besides,

no more recognized behaviors are mentioned in light-based

method. As for the other three modalities, they can be lever-

aged to develop many other applications, such as identity

authentication, vital signal detection, lip reading recognition.

From the types of recognized behaviors, they can imple-

ment similar functions. Therefore, which modality is selected

depends on the environmental condition. If we have a good

light condition and line-of-sight (LOS) scenario, we can

select the video-based method. If we want to monitor target

indoor or through the wall scenario, we can select RF signal

because we can easily access the devices and RF can propa-

gate across walls without disturbing subjects. If we can use

the audio device, we can select the audio-based method.

A. VISION-BASED METHOD

Quite an amount of research on behavior recognition adopts

the vision-based approach due to the ubiquitous availabil-

ity of digital camera. The idea of these approaches is that

the color features are effectively extracted by exploring

image processing techniques and human behaviors are iden-

tified by leveraging recognition algorithms. For example,

U. Lee et al. [8] first extracts finger features using the related

technique from data with depth information to detect the

presence of fingers and then recognizes the finger gestures

based on the detection results. Based on Hidden Markov

Model (HMM), Beh et al. [9] achieved the accurate recog-

nition of hand motions. Li et al. [10] proposed an activity

recognition method. They first use the activity mask gener-

ated by a conditional generative adversarial network (cGAN)

to locate the activities and then estimate activities by a Visual

Geometry Group-Long Short-Term Memory (VGG-LSTM)

network. Borges et al. [11] presented a survey about human

behavior recognition based on the video. First, they divide

the human activities based on visual recognition into four

classes which are interactions, human gestures, actions, and

behaviors. Then they categorize recognition approaches into

three groups, including hybrid approaches, appearance-based

approaches, and motion-based approaches. Moreover, they

introduce some techniques used in human action recogni-

tion methods. Bux et al. [12] presented a survey of human

activity recognition. They first introduce the segmentation

technique used for activity recognition and divide them into

two groups, including background construction-based and

foreground extraction-based. Then they study the methods

of feature extraction and classification. Although computer

vision-based recognition approaches are widely deployed and

achieve satisfactory recognition accuracy under several sce-

narios, many environmental factors would affect the recogni-

tion performance, such as the line of sight path, users’ skin

color, distance between camera and user, light condition, and

so on, making it challenging to design a widely applicable

system.

B. LIGHT-BASED METHOD

There is also an increasing research interest to treat light as a

sensing signal to realize human behavior recognition in recent

years. The principle of these systems is that human posture

may block light propagation and generate shadow. Appar-

ently, the unique relationship between shadow and human

posture can be built and explored to develop the sensing
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system. For example, LiSence [13] can reconstruct a 3D

user skeleton posture using the shadow generated from the

blocked visible light by the human body. GestureLite [14] can

classify 10 pre-defined gestures using the shadow caused by

hand. Different from the LiSense, it utilizes the ambient light

instead of lights mounted on the ceiling. And it uses machine

learning method to realize the classification of gestures per-

formed by the user. Although GestureLite achieves a high

accuracy of recognition, it usually recognizes the participant

postures and is not robust for strange subjects. Similarly,

LiGest [15] also uses the ambient light to recognize hand

gestures, and it is robust for strange subject, the position and

orientation of the user, and the lighting condition. LiGest first

utilizes the training samples to learn the unique shadow pat-

terns of handmovements and thenmatches the unknown hand

postures with the learned patterns to realize the recognition of

gestures. Although the light-based human behavior recogni-

tion technology achieves high accuracy, it usually needs users

to deploy some photodiodes and customized LEDs.

C. RF-BASED METHOD

Recently, behavior recognition approaches based on wireless

signals have brought a lot of attention due to the low deploy-

ment cost and widely applicable scenarios. The basic idea

of these approaches is that the wireless signal propagates in

a multi-path manner and the wireless channel keeps stable

when there are no people in the environment. However, if a

person moves within the range of wireless signal coverage,

the location and gesture of the user will affect the signal

propagation path, which results in channel disturbance due

to the signal changes caused by reflection, scatter, refraction,

and so on. Therefore, we can recognize different human

behaviors based on signal change characteristics and channel

distortion patterns. Specifically, we first extract the signal

disturbance caused by the user’smovement and detect the fea-

ture changes, and then identify human behaviors by exploring

recognition algorithms or classification models to facilitate

various applications.

Based on the deployed equipment of RF signal, we divide

them into two types, such as commercial off-the-shelf

devices (COTS) and bespoken devices. The former includes

many devices that can use radio frequency identification

(RFID) [16], received signal strength (RSS) [18], and channel

state information (CSI) [17]. The latter includes some soft-

ware defined radio (SDR) platforms [19], [20].

We first explored several representative applications based

on COTS devices. For example, GRfid [16] is a hand gesture

recognition system that identifies different hand gestures by

leveraging the phase changes of the captured RFID signal.

Similarly, WiFinger [17] is also a hand motion recognition

system that analyzes the relationships between human behav-

iors and the received signals. Specifically, WiFinger system

is based on the observation that the user’s finger leads to a

unique pattern in CSI data while performing a certain gesture.

Wang et al. [18] presented an approach which can be utilized

to recognize activities and gestures, simultaneously realize

the localization. They extract features from RSS data by

their designed sparse autoencoder network and then lever-

age the SoftMax regression classifier to obtain an activity

label.

We then investigate these applications with bespoken

devices. W. Li et al. [19] proposed a novel method that

uses unsupervised classification with HMM based on the

micro-Doppler radar to realize human activity recognition.

It builds a passive radar system based on an SDR plat-

form to obtain the Doppler information. WiSee [20] is

a novel gesture recognition system based on the WiFi

signal. It extracts Doppler shifts of orthogonal frequency

division multiplexing (OFDM) signal emitted from USRP-

N210 device. Although most of the recognition approaches

based on wireless signals do not require LOS path and can be

easily deployed, they usually are sensitive to the influence of

environment and user changes due to the multi-path effects,

which results in the lack of stable performance of these

approaches under different settings.

D. AUDIO-BASED METHOD

Acoustic signal has been widely studied in speech synthesis,

music information retrieval, and natural language processing

in decades. At the same time, human behavior based on

acoustic signal has drawn more attention among researchers.

We consider two types of acoustic signals: audible sound

and ultrasound. The former can be used to sense environ-

ment sound, extract sound features, and identify human

actions. The latter can be utilized to measure signal variation,

extract propagation path information, and recognize person

activities.

1) AUDIBLE SIGNAL

a: DEVICE-FREE PATTERN

Specifically, there are a large number of device-free applica-

tions about sensing audible sound for human behavior recog-

nition. For instance, Liu et al. [21] proposed a keystroke

recognition system by exploring the mm-level acoustic rang-

ing using a smartphone. It exploits two microphones on the

smartphone to measure mm-level distance difference and

identify keystroke based on the distance and position. Sim-

ilarly, SoundWrite II [23] is an audible sound-based text and

stroke recognition system. It includes stroke input detection,

stroke recognition, and text recognition using stroke com-

bination. It captures the sound signals reflected by moving

a finger on the table surface, extracts time and frequency

features, and identifies stroke using pattern classification

approaches. WordRecorder [24] is a passive sensing system

for handwriting recognition. It captures sound signals gen-

erated by pens and paper, and then sends the collected data

to a smartphone for text recognition. Chen et al. also pro-

posed a device-free hand gesture and handwriting recognition

system, called Ipanel [22], based on acoustic signals from

finger friction on a surface. When a user’s finger slides on

a nearby surface, the acoustic signal can be captured and ana-

lyzed to obtain the unique features from spatio–temporal and
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frequency domain. These features are converted into images

and are fed into CNN to identify finger motion.

b: DEVICE-BASED PATTERN

Besides these device-free applications, some recognition sys-

tems which require the participant to wear some acoustic

sensors have been developed. For example, BodyScope [25]

is an activity recognition system based on a wearable acoustic

sensor. It measures the sound produced in a person’s mouth

and throat and utilizes support vector machine (SVM) to

classify 12 user activities including eating, drinking, speak-

ing, laughing, and coughing, etc. Zhang et al. [26] presented

SoundTrack, a position tracking system that identifies the fin-

ger position in 3D space using a finger ring with a miniature

speaker and a smartwatch linking 4 microphones. Specifi-

cally, when the speaker wore on a user’s finger transmits the

sound signal at a specific frequency, the microphone arrays

on the target device capture the sound signal affected by

the finger motion. Then users calculate the finger’s posi-

tion in 3D space by exploiting phase information extracted

from the received acoustic signals. WritePad [27], a kind

of passive sound sensing system, was proposed to recog-

nize the numbers written on the hand back. It leverages the

smartwatch to collect the sound signals created by writing

numbers on the user’s hand back and then establishes a hybrid

convolutional neural network (CNN) to realize the number

recognition.

2) ULTRASONIC SIGNAL

Besides audible sound signal, the ultrasonic signal has been

deeply studied and widely used for human behavior recog-

nition. Here, we divide the human behavior recognition

based on ultrasonic signal into two groups, such as custom

device-based and COTS-based. Custom device-based pattern

usually needs users to wear devices on the body. Therefore,

this pattern provides some different options for human behav-

ior recognition compared with COTS-based pattern.

a: CUSTOM DEVICE-BASED PATTERN

Some systems recognize human behavior by using the cus-

tom device. For example, Huang et al. [28] designed a hand

gesture recognition system based on the ultrasonic signal.

This system requires users to wear eight sEMG sensors

and one ultrasound probe on the arm and then utilizes the

ultrasound imaging technique to depict the detected hand

gestures. Moreover, this system not only can detect discrete

finger movements but also predict continuous finger angles.

Chiang et al. [29] presented a system of pedestrian dead reck-

oning. This system requires users to wear the shoes with

sensors, one microphone on the one shoe and two buzzers

on the other shoe. In this system, authors argued that the

relative movement of people’s feet would cause different

Doppler shift and the Doppler shift can be used to infer the

step length, step event, and the step orientation. Furthermore,

they can utilize this inferred information to localize the user’s

location.

FIGURE 1. Four types of ultrasonic signal-based recognition.
(a) Deploying sound sensors in the environment. (b) Utilizing the only
microphone built in smartphone. (c) Using a laptop or desktop. (d) Using
speakers and microphones built in smartphone.

b: COTS-BASED PATTERN

Here we investigate these applications that apply COTS

speakers and microphones as the transceivers. As shown

in Fig. 1, we consider four types of ultrasound-based recog-

nition studies according to the deployed equipment: deploy-

ing sound sensors in environment [30]–[32], utilizing only

microphone built in smartphone [35], using laptop or desk-

top [33], [34], and using speakers and microphones built

in smartphone [36], [37]. Deploying sound sensors in an

environment means that we can install independent speaker

and microphone, as shown in Fig. 1(a). Utilizing only micro-

phones built in smartphone refers to these systems which use

the microphones built in smartphone to collect ultrasonic sig-

nals and deploy extra speakers emitting sound signals instead,

as shown in Fig. 1(b). Using laptop or desktop refers to uti-

lizing the speakers and microphones embedded in computer

to recognize behaviors, as shown in Fig. 1(c). While using

speakers and microphones built in smartphone indicates that

speakers transmit ultrasonic signals and microphones built in

the same mobile receive echo signals, as shown in Fig. 1(d).

We introduce some representative applications based on the

above four methods as follows.

Firstly, Kalgaonkar and Raj [30] proposed a dynamic ges-

ture recognition system based on ultrasound, which consists

of one transmitter and three receivers. This system extracts

frequency data of the echoes and compares them with the

original signal to recognize the behavior. Ghosh et al. [31]

proposed a non-intrusive and device-free sensing system to

recognize multiple types of user group activities using ultra-

sonic sensors. It utilizes the customized ultrasonic sensors

deployed in the monitoring area to sense human activities.

Wang et al. [32] proposed a contactless and real-time res-

piration monitoring system by sensing the chest translation.

It leverages the Doppler effect to build a mathematical model

depicting the link between Doppler shift and the direction

of airflow. Secondly, Swadloon [35], a direction finding and

indoor localization approach, was proposed based on smart-

phone. Ultrasonic signals first are sent from anchor speak-

ers, then the user shakes the smartphone or walks with the

smartphone. During the smartphone motion, the ultrasonic

signal is received and the disturbance of the signal is analyzed

100584 VOLUME 7, 2019



Z. Wang et al.: Survey on Human Behavior Recognition Using Smartphone-Based Ultrasonic Signal

to determine the motion direction displacement relative to

anchors using Doppler effect.

Thirdly, Pittman et al. proposed Multiwave [33], a com-

plex gesture (e.g., triangle, arrow) recognition system using

speaker and microphone embedded in the laptop based on

Doppler effect. This system validates its performance with

14 complicated gestures and achieves 94% accuracy with two

speakers. Liu et al. proposed DopGest [34], which is a hand

posture recognition system using speakers and microphone

built in laptop. Two speakers transmit the sound signal in

different frequency respectively and the DopGest recognizes

hand motions by combing k-nearest neighbor (KNN) clas-

sifier with dynamic time warping (DTW) algorithm after

extracting Doppler shift feature. Fourthly, LLAP [36] was

proposed to measure the distance between hand and device

and track the hand trajectory. It utilizes the speaker built

in smartphone and microphone as the transceiver and trans-

forms the phase changes caused by hand motions into the

distance of hand movement to track the hand. Differently,

Graham et al. [37] proposed a system to measure the distance

between mobile and object. This system first turns the mobile

phone into an active sonar system and then measures the time

of flight to realize the distance measurement.

Among these COTS-based applications, as shown in Fig. 1,

Fig. 1(a) and Fig. 1(b) need to deploy sound sensors in

the environment, which might result in extra deployment

cost. And Fig. 1(c) utilities the laptop to recognize human

behavior, which is not convenient to deploy. Fig. 1(d) lever-

ages smartphone with built-in speakers and microphones

to implement behavior recognition. The systems based on

Fig. 1(d) provide many advantages, such as zero device

cost, convenient deployment, excellent recognition accuracy,

wide application scenarios, and long-term monitoring with-

out disturbing participants. Therefore, we concentrate on

these applications that leverage smartphone as the hardware

devices to transmit and receive the ultrasonic signal.

Currently, there has been encouraging progress in human

behavior recognition using ultrasonic signal based on built-in

speakers and microphones of smartphone, such as distance

measurement [36], [37], encounter profiling [38], hand ges-

ture recognition [39]–[46], activity recognition [47], lip read-

ing [48]–[50], respiration detection [51], [52], Parkinson’s

diagnosis [53], hand trajectory tracking [36], [54]–[59],

multi-device interaction [60]–[62], direction finding and

localization [63]–[65], context sensing [66], [67], indoor

mapping [68], [69], acoustic imaging [70], grip sensing [71],

touch force sensing [72]–[74].

Compared with the conventional approaches (vision,

RF, light), the smartphone-based ultrasonic approach has

some merits. We illustrate the merits from the following

aspects. For the vision method, the ultrasound of smart-

phone approach does not require strict environmental condi-

tions. In addition, it can achieve real-time recognition results

using lower computation cost, making it cost-effective for

most behavior recognition. For the light-based method, the

smartphone-based approach does not require extra device

except smartphone and can identify more human behaviors,

such as heartbeat rate and respiration rate. Besides, the light-

based method is unsuited to sleeping conditions because we

usually turn off the light. Differently, the ultrasound methods

are not affected by the light condition and can conduct the

monitoring for a whole day. As for the RF-based method,

the smartphone-based approach has many advantages such

as low-cost deployment (compared with bespoke devices),

no need of modification of the device drivers (compared

with CSI), more accurate recognition (compared with RSS),

and less number of devices (compared with RFID). In all,

although ultrasonic-based recognition technology has many

strengths, more efforts are still needed to fully understand its

limits and enhance its robustness and recognition accuracy.

There are two types of human behavior recognition using

an ultrasonic signal from smartphone. The first one is

a device-based pattern. Specifically, users conduct some

actions when wearing or holding a smartphone. In this sce-

nario, the smartphone usually moves with the users’ move-

ment and the sound signal from moving smartphone is used

to recognize human behaviors [57], [75]. The second one is a

device-free pattern. Specifically, a smartphone is placed at a

place, such as tables or desks near the participant. In the mon-

itoring procedures, the smartphone usually keeps stationary

and the changed signal from the still smartphone is utilized

to identify human behavior. It is noteworthy that operating

on the touch screen is excluded from the device-free pattern

because the user needs to touch the devices.

This paper investigates the state-of-the-art human behav-

ior recognition applications based on an ultrasonic signal

from the smartphone in the device-free pattern. Specifi-

cally, these studies utilize the ubiquitous smartphone with

built-in speakers and microphones without any hardware

modification. The speakers emit an inaudible sound sig-

nal and the microphones receive the changed signal caused

by human behavior. Then the changed ultrasonic signal

will be analyzed for human behavior recognition. These

applications usually include whole-body activity [47], [76],

hand waving gesture [40]–[43], hand trajectory track-

ing [36], [54]–[56], [58], [59], lip reading [48]–[50], and

vital sign monitoring [51]–[53], [77]. Notably, we primarily

focus on the applications that solely leverage the speakers and

microphones of the smartphone. The behavior recognition

systems leveraging the other built-in sensors of smartphone

(e.g., gyroscope, accelerometer) are beyond the range of our

research.

The contributions of this paper can be summarized as

follow. Firstly, we present a comprehensive review of recent

progress in human behavior recognition based on the ultra-

sonic signal of a smartphone. To the best of our knowledge,

this paper is the first survey on ultrasound behavior recog-

nition with speakers and microphones of the smartphone.

Secondly, we analyze the fundamental principle of human

behavior recognition based on ultrasonic signal and present

a typical framework that exploits speakers and microphones

built in smartphone as sensing devices. Meanwhile, we
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FIGURE 2. The fundamental principle of the ultrasonic-based human
behavior recognition using smartphone.

summarize the general signal preprocessing, feature descrip-

tion, and action recognition algorithms. Finally, we investi-

gate the state-of-the-art applications and make an in-depth

analysis and comparison, including hand gesture recognition,

activity recognition, lip reading, hand trajectory tracking, and

vital sign monitoring.

The rest of the paper is organized as follows. In this

survey, we first introduce the basic principle of human behav-

ior recognition based on the ultrasonic signal of a smart-

phone and provide a typical framework of human behavior

recognition based on the ultrasonic signal of smartphone in

Section II. Afterward, we introduce the signal generation,

signal properties, signal preprocessing, feature description,

and behavior recognition in Section III. Then we summarize

the related behavior recognition applications of ultrasound

signal based on smartphone in Section IV. And we discuss

the theoretical limitations of these approaches and some open

research topics in Section V. Finally, we conclude by summa-

rizing our research work in Section VI.

II. BASIC PRINCIPLE OF BEHAVIOR RECOGNITION AND

SYSTEM FRAMEWORK

In this section, wewill briefly introduce the fundamental prin-

ciple of human behavior recognition and system framework

based on ultrasound signals from the smartphone.

A. FUNDAMENTAL PRINCIPLE

As shown in Fig. 2, a typical hardware device for ultrasonic-

based behavior recognition system solely needs a smartphone

with speakers and microphones. We call the system as active

sonar sensing because the speaker emits the ultrasonic signal.

Therefore, we can actively transmit sound signal and make

precise control to the sound modulation by elaborating signal

waveform and parameter. The modulated sound signal is

emitted by the speakers and the changed signal is captured

by the microphone in the same phone. These changes stem

from environmental variation, such as parts of bodies and

nearby moving persons. When a user moves in the coverage

of the speakers and microphones, the sound signal is affected

by the movement. Therefore, the captured signal comprises

of ambient noise, reflection from participant movement and

furniture, and interference from another nearby person. The

captured signal is transformed and filtered to eliminate

FIGURE 3. General processing framework of human behavior recognition
based on the ultrasonic signal of a smartphone.

various noise. Then, the signal is analyzed and useful infor-

mation is extracted to represent the movement. In other

words, a user’s movement near the speakers and microphones

would affect the signal propagation paths and change the

phase and frequency of received signal during ultrasonic

signal propagation, which can be used to correlate the signal

changes with the corresponding behavior patterns. In addi-

tion, we can utilize the time of flight (ToF) of the sound signal

to localize the position of the target to track the continuous

movement of the hand. Therefore, ToF is generally used to

track a target or recognize the trajectory of an object.

B. SYSTEM FRAMEWORK

As shown in Fig. 3, a typical system framework using the

ultrasonic signal of smartphone comprises many important

components such as signal collection, signal preprocessing,

and behavior recognition. We introduce the function of these

components to present a clear description of the framework.

The first component is the signal collection which includes

signal generation, signal transmission, and signal reception.

Based on the requirements of the system, we can employ dif-

ferent types of modulation techniques to generate a different

signal. The signal can be emitted by real-time calculation

or by playing the recorded sound file. Then, when we need

to recognize some behaviors, we receive the changed signal

caused by human behavior and analyze the variation to get the

movement pattern. Because we receive the raw sound signal

from the microphone, the captured signal contains much

noise from hardware, ambient factors, other parts of body, and

another nearby person movement. Thereby, we must exploit

effective algorithms to eliminate noise and identify useful

information for the next step. Afterward, we build feature

vectors from the extracted signal to feed them into a classifier

and recognize human behavior. We also utilize the geometric

model to track target position. The detailed description of the

framework is presented in Section III.

III. PROCESSING OF BEHAVIOR RECOGNITION

In this section, we present a detailed description of the pro-

cessing framework for human behavior recognition based on
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TABLE 2. Comparison of five waveforms.

the ultrasonic signal of a smartphone, as shown in Fig. 3.

First, we introduce the signal collection from two aspects,

including the types of the emitted signals and the basic prop-

erties of signal extracted from the echoes including Doppler

shift, phase, and ToF. Then we analyze some preprocessing

methods and the feature extraction. Finally, we review the

common recognition approaches for behavior recognition.

A. SIGNAL GENERATING

Most applications discussed here apply the following pat-

terns: the speakers first emit ultrasound signal, and then the

microphone receives the signal and the system makes further

processing. Since we send the sound signal, we can make

more control over the sound signal. Waveform generation

plays a crucial role in the acoustic sensing system since it

determines the characteristics of the signal. We can benefit

from the good waveform design when conducting denois-

ing and feature extraction. According to the characteristics

of sound waveforms, many types of sound signals can be

employed, such as continuous wave (CW) signal [36], [52],

chirp signal [40], [68], frequencymodulated continuous wave

signal (FMCW) [51], [77], OFDM signal [54], Zadoff-Chu

sequence (ZC) [45], as shown in Table 2. They have their

advantages and limitations. Long CW signal is generally

used to improve signal-noise ratio (SNR); however, the spa-

tial resolution is not satisfactory. FMCW is another signal

that is commonly used in some applications. One of the

benefits is its strong anti-interference ability. In addition,

the OFDM signal is adopted due to its low processing com-

plexity. ZC sequence [45] has constant amplitude and is

perfect for synchronization due to its orthogonality with its

delayed versions [7]. We compare these five commonly used

waveforms in Table 2. This table lists some main waves, their

characteristics, disadvantages, and advantages.

Besides signal waveform, there are many factors that need

to be considered when using the ultrasonic signal. As shown

in Table 3, these factors include signal frequency, experimen-

tal devices, and the number of sensors. This table exhibits

and compares the frequency of the ultrasound signal used

in behavior recognition. From the table, we can directly

acquire the related hardware information about each system.

As the most popular smartphone operation system, Android

is applied by almost all brands of smartphones, such as Sam-

sung and Huawei.

Generally, ultrasonic signal refers to the sound signal with

a frequency above the average people’s hearing range. Usu-

ally, the hearing range of the average user is within 16 kHz

while a young user may hear the sound with a frequency

above 20 kHz [78]. Therefore, the range of frequency of

ultrasonic sound in these applications covers from 16 kHz

to 23 kHz. This frequency range usually meets our moni-

toring requirements. Therefore, to satisfy most application

scenarios, 20 kHz sound frequency is a better choice. Modern

smartphones are usually equipped with many microphones

and speakers to enhance sound signal quality and suppress

the noise from environment and hardware devices. For sim-

ple gesture, one speaker and one microphone are enough

to recognize it. For position tracking, one speaker and two

microphones or two speakers and one microphone is a good

choice because multiple sensors provide more information

about human movement space.

B. BASIC PROPERTIES OF SIGNAL

After receiving the signal from the microphone, we usually

extract three types of properties to realize human behavior

recognition, including Doppler effect, phase, and ToF. In this

section, we will concentrate on these three basic properties

and interpret the reason why they can be utilized for behavior

recognition.

1) DOPPLER EFFECT

The Doppler Effect is proposed by the Austrian physicist

Christian Doppler in 1842 to describe the frequency change

phenomenon that the wavelength of the object’s radiation

changes due to the relative motion of the source and the

observer. According to this phenomenon, we can recognize

different human behaviors. Based on Doppler effect of the

ultrasonic signal, different motions will lead to distinct fre-

quency changes. Therefore, we can utilize this attribute to

realize hand posture recognition, lip reading, human activ-

ity identification, etc. For example, the speaker emits the

ultrasonic signal at a given frequency, and the microphone

captures the sound signal. During the signal propagating in

air, the user’s hand moves away from the microphone, which

results in frequency shift, as shown in Fig. 4. Specifically,

we can observe that the microphone will receive a lower

frequency sound signal due to the hand moving away from

the microphone. On the contrary, the microphone will capture

the sound signal with the higher frequency due to the hand

moving towards the microphone.

Furthermore, the frequency shift can be computed by the

following formulas [34],

f
′

= (
v+ v0

v− v0
) f (1)

1f = f
′

− f (2)
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TABLE 3. Comparison of systems in adopted signal, signal frequency, experimental devices, and sensors used.

FIGURE 4. Doppler shift [59].

where f
′

and f are the frequency of the received sound signal

from the microphone and the frequency of the original signal

from the speaker, respectively; v and v0 refer to the speed of

sound in air and the hand or object relative to the microphone,

respectively.

2) PHASE

The phase information of the sound signal is an important

feature to depict the position of a time point on the wave-

form cycle and can be affected by the objects located in

the propagation paths. It is usually utilized to measure the

distance and track trajectory. The basic idea of using phase

information for human behavior recognition is that the ultra-

sound signal can be reflected by the objects located in the

propagation paths, which results in phase changes of the

received signal. Specifically, a moving object would affect

ultrasound signal propagation and change the signal phase

during the sound signal propagating between the receiver

and transmitter. Therefore, phase changes can be utilized to

recognize human behaviors. For example, W. Wang et al.

proposed a trajectory tracking scheme, called LLAP [36].

This system first extracts the phase change information of

the ultrasound signal received by the microphone and then

100588 VOLUME 7, 2019



Z. Wang et al.: Survey on Human Behavior Recognition Using Smartphone-Based Ultrasonic Signal

FIGURE 5. Two models of ToF. (a) Using one speaker and two
microphones. (b) Using two speakers and one microphone.

converts the phase changes into distance information to

achieve the tracking of the hand movement.

The phase information can be expressed by (3) according

to [36], which can be used to recognize behaviors. And

we will analyze how this phase information obtained in

Section III.C.

ϕp (t) = −(
2π fdp (t)

c
+ θp) (3)

where ϕp (t) means the phase information of path p; dp (t)

is the time-varying path length; c and f are the speed

of sound in air and the frequency of the original signal,

respectively; θp is the initial phase lag caused by hardware

delay.

3) TOF

In addition to the commonly used phase information and

Doppler shift, the time of flight can be used to track a target.

It means that the speakers transmit sound signal, the signal

will be reflected by the user’s hand, and the microphone

captures the reflected signal. The time difference between

transmitting signal and capturing the reflected signal can be

used to calculate the distance from the speaker through hand

to the microphone. Then the distance will be utilized to local-

ize the hand position to realize hand tracking. According to

the studies on hand tracking based on the ultrasonic signal of a

smartphone, there are two kinds ofmodels usually used to cal-

culate time difference (see in Fig. 5). Fig. 5(a) depicts that one

speaker transmits the ultrasonic signal and two microphones

capture the echo signal to localize the hand [58]. Fig. 5(b)

shows that two speakers emit a signal and one microphone

receives the echo signal to localize the hand [56]. Since

signal emitted from speaker is reflected by hand, a constant

propagation distance can draw an ellipse on a plane. If we

want to determine the position of the hand, wemay exploit the

smartphone that owns two microphones and one speaker or

two speakers and one microphone. Because the smartphone

can generate two elliptical propagation paths and these two

paths may intersect at one point. This point is the position of

the hand. Because modern smartphones are usually equipped

with more than one speaker and microphone, the experiments

can be conducted without extra cost.

FIGURE 6. Localization scenario [56].

For example, as shown in Fig. 6, two speakers

(Sr , Sl) built in smartphone emit a sound signal and the

microphone (M) captures the reflected signal. The distance

of signal propagating in the air can be expressed by (4)

and (5) [56].

dSlHM = (t4 − t1) × c+ dSlM (4)

dSrHM = (t5 − t3) × c+ dSrM (5)

where dSlHM and dSrHM are the distance from Sl to M across

H and from Sr to M across H, respectively. c is the speed of

sound in the air; dSlM and dSrM refer to the distance from Sl
to M and from Sr to M, respectively; t1 and t3 refer to the

time that the microphone receives a sound signal transmitted

by Sl and Sr , respectively; t4 and t5 are the time that the

microphone receives reflected sound signal transmitted by Sl
and Sr , respectively.

C. PREPROCESSING

The original signal captured by a microphone cannot be used

to extract features directly due to the much noise. In addition,

the signal drift of original signal stemming from the time

elapses and device diversity also decreases the effectiveness

of data. To improve recognition accuracy, we need to pre-

process the raw signal before extracting effective features.

We can take many effective processing methods such as

fast Fourier transform (FFT), denoising, FFT Normaliza-

tion, audio signal segmentation, and I&Q demodulation, etc.

In this section, we provide an analysis of these processing

approaches. Since the processing methods are different in the

measurement of Doppler shift and phase information, we will

analyze these methods by dividing them into two groups:

Doppler shift and phase information.

1) DOPPLER SHIFT

a: FFT

The captured sound signal is a time sequence, and it repre-

sents the time-domain sound signal data. However, we could

not obtain sufficient information from the time-domain data.

Since the time-frequency diagram contains more useful

information, we want to transform time-domain space to

frequency-domain space. Fortunately, we can conduct FFT

to convert the time-domain data into frequency-domain data.
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FIGURE 7. The spectrograms of the original signal and the signal after
processing [40]. (a) The spectrogram of the original signal. (b) The
spectrogram of the signal after the FFT-based normalization.

After getting the frequency domain data, we analyze the sig-

nal characteristics and eliminate noise. For example, we can

perform some signal processing approaches such as bandpass

filter or FFT normalization to obtain clean data.

b: DENOISING

Denoising can be used at two aspects including noise removal

and computation complexity reduction. For example, envi-

ronmental noise may occur at high frequency or low fre-

quency which can be removed using denoising methods, such

as filters and threshold vector. At the same time, filters can

be used to improve computation efficiency when sampling.

Specifically, the ambient noise (e.g., human activities, etc.)

in the received signals can change signal waveform and

decrease the quality of data. With this interference, we cannot

accurately extract Doppler shift features. Therefore, we first

identify these noises and then eliminate them by using various

methods. For example, we can remove environment noise

with threshold vector [43], keep carrier frequency and sup-

press noise with bandpass filter [76].

c: FFT NORMALIZATION

In addition to the ambient noise, another challenge that

needs to be tackled is how to remove signal drift caused

by time-elapse and hardware diversity. We can observe from

Fig. 7(a) that the amplitude of different frequency bins has

unpredictable signal drift. Although themagnitudes in 19 kHz

bin vary from −83dB to −24dB, their relative amplitude

is robust and keep in a stable range. As a result, audio

spectrogram has a similar shape. Because we utilize Doppler

shift to recognize behavior, we pay more attention to sharp

frequency change such as peak and trough values. According

to the characteristics of this noise, we can utilize FFT-based

normalization (see formula (6)) to normalize the amplitude of

frequency bins for each time stamps to eliminate signal drift.

|Y (f )| =
Y (f ) − Ymin(T )

Ymax (T ) − Ymin(T )
(6)

where Ymax (T ) and Ymin (T ) are the maximum and minimum

amplitude of frequency bins at time T, respectively; Y (f )

refers to the amplitude of frequency f at time T; |Y (f )|means

the normalized value of Y (f ).

For example, at the time stamp 0.5 s, we can

obtain from Fig. 7(a) that Ymax (T ) and Ymin (T ) are

approximately −30 dB and −95 dB respectively; Y (19kHz)

is about −35 dB; then |Y (19 kHz)| (see in Fig. 7(b)) is

approximately 0.92 according to (6). As Fig. 7(b) shows,

the signal drift is eliminated, the signal spectrum becomes

smoother, and stable frequency information is kept after

FFT-based normalization.

d: SEGMENTATION

If users move or perform the same motion continuously for a

period of time, we should divide recorded signals into single

motion elements for recognition. SilentTalk [48] recognizes

soundless lip movements using the ultrasonic signal. This

system identifies lip movements to recognize the content of

talking without sound. Therefore, the lip movement is similar

to the normal talking in spite of soundless. As a result, we can

leverage the language rules to improve recognition accuracy

because the content of talking is meaningful words or sen-

tences. In other words, although we recognize lip motions

without sound, we can exploit the pronunciation rules to

enhance recognition precision. SilentTalk takes two steps

to segment the received signal. Specifically, the sentence is

first divided into words with a short silent interval based

on English speech and then the word is split into syllables

by inter-syllable segmentation. This system utilizes a sliding

time window and short-time Fourier transform (STFT) to

implement the above procedures. Different from SilentTalk,

AudioGest [40] utilizes the Doppler effect to recognize hand

gestures. Therefore, it focuses on frequency changes of the

received signal and depicts them with an audio spectrogram.

It converts the signal frequency shift into a color image and

utilizes the image to depict frequency feature. Specifically,

it first subtracts the normalized spectrum values and then

squares the amplitude of frequency bins. After processing

the whole image with Gaussian smoothing, binarization is

conducted to segment the Doppler shift zone comprising

peak pixels. The frequency shift is identified using image

processing techniques.

e: DIMENSIONALITY REDUCTION

Dimensionality reduction refers to the reduction of the num-

ber of stochastic variables by obtaining some main variables

which can represent the whole information. It discards some

redundant information of the data and retains the useful infor-

mation. Its purpose is to reduce computation complexity and

improve system robustness. It can usually be used in feature

selection and feature extraction using machine learning or

deep learning algorithms. Currently, there are some common

methods used in human action recognition with the audio

signal on the smartphone. For example, B. Fu et al. [47]

reduce the dimensions of the data by Principal Component

Analysis (PCA), Independent Component Analysis (ICA),

and Random Projection. They validate the effect of dimen-

sion reduction with classification score using random forest

classifier. From the comparison results, as shown in Fig. 8,
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FIGURE 8. Comparison results of three types of dimensionality reduction
techniques [47].

FIGURE 9. The demodulation structure.

we can observe that the three techniques have a gradual

increase in the classification score as the size of the feature

vector becomes larger. The results show that PCA holds the

best accuracy of dimension reduction than the other methods

and its classification score keeps stable when the size of the

feature vector reaches a certain value.

2) PHASE INFORMATION

Different from the processing procedures of Doppler shift

extraction, the received signal should be demodulated in order

to obtain the phase information. We analyze the processing

procedures of phase information as follows.

a: I/Q DEMODULATION

Doppler shift and phase can be used to recognize human

behaviors. To obtain phase information from the captured

signals, the captured signals first need to be demodulated

into In-phase (I) component and Quadrature (Q) component.

The I component refers to the component whose direction is

the same as the received signal, while the Q component is

orthogonal to the received signal. The demodulation structure

is shown in Fig. 9.

As shown in Fig. 9, we obtain the two components [36].

Assuming that the emitted signal is expressed as A cos (2πft),

the signal propagates in the air in the multi-path pattern, and

the signal received from path p is shown in (7):

Rp (t) = 2A
′

pcos(2π ft −
2π fdp (t)

c
− θp) (7)

where 2A
′

p means the amplitude of the received sound signal;

dp (t) is the time-varying path length; c refers to the speed of

sound in air; f means the frequency of original signal; θp is

the initial phase lag caused by hardware delay.

Then this received signal is multiplied with cos (2πft)

and − sin (2πft) respectively. After that, filters are used to

remove the high-frequency components to get the following

two components:

In-phase (I) component:

Ip (t) = A
′

pcos(
−2π fdp (t)

c
− θp) (8)

Quadrature (Q) component:

Qp (t) = A
′

psin(
−2π fdp (t)

c
− θp) (9)

We then get the phase for path p by combining the above

two components as the real and imaginary parts into a com-

plex signal, as shown in (3).

b: FILTERING

From Fig. 9 we can find that filters are used before we

obtain the I and Q components. According to the charac-

teristics of applications, different filters will be used for

a different purpose. For example, we can eliminate high-

frequency components with a low pass filter [52] and enhance

computational efficiency with suitable sampling rate by using

decimation and interpolation steps, such as cascaded integra-

tor comb (CIC) filter [36]. After getting these two compo-

nents, there still is the impact of other noise, which can be

removed for calibration with the median filter [52].

D. FEATURE DESCRIPTION

Features refer to that the most effective characteristics of the

original information, such as statistical information, veloc-

ity, direction, size of the target, and texture, etc. Gener-

ally, the original signal contains an amount of redundant

information. Thus, we should concentrate on meaningful

data. According to the state-of-the-art applications, there are

two commonly used information for feature description in

human behavior recognition using smartphone-based inaudi-

ble acoustic sensing: Doppler shift and phase. We will intro-

duce how these two types of information are used for human

behavior recognition in this section. And Table 4 shows the

comparison results of the two information.

1) DOPPLER SHIFT

As we know, human movements will impact the frequency

of acoustic signals, which results in a Doppler shift. We can

utilize the frequency changes to recognize human behaviors.

To obtain the frequency change information, we can analyze

the time-frequency diagram of the echo signal, as shown

in Fig. 10. From the diagram we can see that the diagram

includes time, frequency, and amplitude, which depicts the

relationship between time and signal strength on all fre-

quencies. The diagram can also be utilized to estimate the

hand moving speed, duration in air, and hand waving range

by specific algorithms [40]. Specifically, the time-frequency

diagram is different for different human behaviors. Fig. 10(a)

represents the diagram of waving hand from right to left,

while Fig. 10(b) depicts the diagram of waving hand from up

to down. From Fig. 10, we observe that the time-frequency
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TABLE 4. Comparison of extracted features.

FIGURE 10. The time-frequency diagram of different movements [40].
(a) Waving hand from right to left. (b) Waving hand from up to down.

diagram describes the unique relationship between human

behavior and frequency variations. Thus, we can recog-

nize human behaviors according to the unique relationship

between behaviors and frequency variations. For example,

AudioGest [40] analyzes the distinct diagram of different

hand postures to realize the hand movement recognition, and

its recognition accuracy is up to 96%.

2) PHASE

The recognition of human behaviors can also be achieved by

extracting phase changes of the received signal as the feature.

And the phase change information is easier to be measured

in the time domain. Specifically, the time domain complex

signal obtained by (3) describes the relationship between

phase changes and the distance of handmovement. Therefore,

the phase change information can be used to track human

hand trajectory and measure the distance. Obviously, when

the hand moves towards the microphone, the phase of the

dynamic vector (caused by the handmovement) will increase,

as shown in Fig. 11. We can observe that the hand motion

leads to the complex signal changes in a specific pattern.

Since the phase of the sound signal will increase by 2π when

the sound signal propagation path decreases by c/f , we can

obtain the hand movement distance by calculating the phase

changes. The static vector in Fig. 11 represents the reflection

FIGURE 11. The complex signal changes due to hand motion [36].

of static objects (e.g., wall, desk, etc.) and can be removed to

obtain the dynamic vector.

E. BEHAVIOR RECOGNITION

In this part, we analyze the behavior recognition tech-

niques. We divide this part into two categories including

pattern-based and model-based. The former considers the

problems as a classification problem. We can train the classi-

fier by collecting a lot of data to obtain ideal classifier param-

eters. The latter argues that the problems can be addressed by

using mathematical models. We can get recognition label by

some simple calculation without need of a large amount of

data.

1) PATTERN-BASED

The aim of specific human behavior recognition (e.g.,

hand gesture recognition, activity recognition, and individual

authentication) is to label the unknown behavior with known

dataset. Therefore, this kind of human behavior recogni-

tion can be converted into a classification problem. Gen-

erally, classification problems can be effectively addressed

using pattern-based methods and need more data compared

with model-based methods. These methods solely utilize

some common algorithms and calculate the parameters of

algorithms to realize pattern classification. In this section,

we will introduce some common classification methods used

in smartphone-based human behavior recognition. These

methods usually include some machine learning methods,

such as SVM, random forest (RF), etc. Furthermore, some

teams expect that the features can be extracted automatically

to improve the classification accuracy. Therefore, they use

deep learning methods to train neural networks to recognize

and classify behaviors. Several commonly used classification

methods are shown in Table 5. Although thesemethods can be

used to classify human behaviors, all of them have limitations

and advantages.

a: MACHINE LEARNING

SVM. SVM is a common method of discrimination and

a supervised learning model in the field of machine

learning. To make indivisible samples of low-dimensional

space linearly separable, SVM transforms the samples into
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TABLE 5. Comparison of classification methods.

multi-dimensional feature space by the nonlinear mapping

algorithm. In other words, it constructs an optimal hyperplane

to segment data to achieve the classification. In behavior

recognition applications based on the ultrasonic signal of

a smartphone, SVM is widely used for classification and

recognition due to its good classification performance, such

as [47], Dolphin [43], SonicOperator [41]. However, SVM is

difficult to implement when the dimension of the sample is

high because it is difficult to find the ideal hyper-plane.

RF. Random forest is a kind of classifier that contains

multiple decision trees. It utilizes these decision trees to

train the classificationmodel and identify different behaviors.

The random forest can generate a high accurate classifier,

process multi-dimensional data without feature selection, and

maintain high accuracy even a large part of features are

missing. Due to its good performance, some systems utilize

random forest classifier to recognize human behaviors based

on the ultrasonic signal of a smartphone, such as [42], [47].

However, it will be easy to fall into over-fitting on some noisy

sample set classification or regression problems.

b: DEEP LEARNING

In addition to the methods mentioned above, some teams

begin to identify human behaviors with deep learning. Deep

learning is a method of machine learning and learns fea-

tures from dataset automatically without the need for feature

extraction [79], [80]. It combines lower-level features to form

more abstract high-level features. And the behavior recogni-

tion technique based on deep learning trains neural network

models to perform human behavior recognition. For example,

convolutional neural network (CNN) [46], [76] and recurrent

neural network (RNN) [41] are introduced into human behav-

ior recognition. Compared with the SVM method in [47],

the recognition accuracy of using CNN [76] has been greatly

improved.

2) MODEL-BASED

In this part, we present the model-based method used in

behavior recognition applications. The model-based method

usually applies mathematical model to describe the prob-

lems. Therefore, it usually needs small data compared with

pattern-based method. The difficulty of model-based method

is how to develop an appropriate model to illustrate the spe-

cific problem. Therefore, we usually design a specific model

for a problem. For the behavior recognition using ultrasonic

signal of smartphone, the applications involve user local-

ization, hand trajectory tracking, and vital sign monitoring.

To localize the user’s hand and track the hand movement,

the authors usually establish a time-based model to calculate

distance using ToF or extract phase information to measure

the change of phase caused by the target movement. As afore-

mentioned in Section III.B, there are two time models based

on time of flight utilized to realize hand localization. One is

leveraging two speakers to transmit sound signals and one

microphone to capture the echoes [56]. The other is employ-

ing one speaker to emit the signal and two microphones

to capture the reflected signal [58]. Although the distance

from one speaker to one microphone through the hand can

be calculated with the time of flight, it is not sufficient to

localize the hand because the hand could be any position

of the ellipse. Therefore, two microphones or two speakers

could be employed to yield two ellipses whose intersection

point is the position of the hand.

Besides time model, the phase information of the reflected

signal can be used for hand tracking. For 1D handmoving dis-

tance measurement, the phase change can be used to convert

into the distance change to realize hand movement distance

estimation [36]. For 2D hand tracking, the initial position

of the hand and the phase change, which are obtained from

the captured signal, are combined to achieve hand movement

tracking [55]. Additionally, the phase change information

caused by human motions can be utilized to monitor vital

signs and for health assistance [52], [77].

IV. APPLICATIONS

In this section, we review the applications of human behav-

ior recognition using smartphone-based ultrasonic signal

and analyze their main characteristics in detail. Specifically,
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TABLE 6. Gesture recognition.

FIGURE 12. The categories of applications.

we divide these applications into the following categories:

hand gesture recognition, activity recognition, hand trajectory

tracking, vital sign monitoring, and lip reading, as shown

in Fig. 12. We present many comprehensive tables (Table 6

- Table 10) to illustrate the crucial components of different

systems and explain the characteristics of these state-of-the-

art applications.

A. HAND GESTURE RECOGNITION

Human gesture recognition plays a vital role in human-

computer interaction (HCI) research because it can greatly

enhance communication quality and help to develop various

applications. Here, we focus on the hand gesture recogni-

tion using the ultrasonic signal from smartphone. With con-

venient hand motion identification, we can easily operate

smart devices and enrich control commands. The structure

of hand gesture recognition using the ultrasonic signal based

on the smartphone is shown in Fig. 13. The speakers emit

an ultrasound signal and the microphone captures the echo

signal reflected by the user’s hand. In this section, we review

the hand gesture recognition systems based on the ultrasonic

signal of smartphone and compare these systems in pre-

processing techniques, experimental scenarios, recognized

behaviors, and accuracy in Table 6.

In 2014, Q. Yang et al. proposed an in-air gesture recogni-

tion system based on the continuous inaudible sound signal,

called Dolphin [43]. Dolphin emits a 21 kHz ultrasonic signal

using the loudspeaker and captures gesture-reflecting signals

using the microphone. It extracts the Doppler shift from

FIGURE 13. Recognize hand gestures by using the ultrasonic signal based
on a smartphone [42].

the received signal and recognizes gestures using continu-

ous Doppler shift sequences. Different from other systems,

Dolphin employs a two-step recognition method. It first

defines 10 groups of gestures called predefined groups and

some groups include some finer granular gestures. Therefore,

for an unknown gesture, Dolphin first classifies the gesture

into a predefined group with a manual method. If this prede-

fined group has no finer granular gestures, Dolphin obtains

its label as the classification result of the unknown gesture.

Otherwise, Dolphin further classifies the gesture into a finer

granular gesture with machine learning methods.

Specifically, Dolphin collects data and generates a fre-

quency vector with 60 points by using FFT. After noise elim-

ination and normalization, it obtains a concise shift sequence

M that depicts the basic change of movement direction and

comprises −1 and 1. Based on the M, Dolphin determines

the predefined group of the unknown gesture. The process

of determining gesture’s predefined group is called manual

method because it solely compares two digital sequences

comprised of−1 and 1. Because some gestures have a similar

movement pattern, we can categorize them into a group using

the compressed vector M. If we cannot identify the label of

this gesture, we need to make a further judgment in the group.

Based on the group, we can further use common machine

learning algorithms to train classifiers to recognize them.

When needing further to determine the finer granular gesture,

a larger vector with 1800 points is constructed and fed into

machine learning algorithm such as Native Bayes, K-nearest

neighbor classifier, Bayes Net, Random Tree, Large Linear
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classifier (Liblinear), and SVM, to obtain the finer granular

gesture’s label as the classification result of unknown gesture.

The reason to employ two steps recognition process is that it

is difficult to recognize a set of 24 gestures using a simple

machine learning classifier. Three different android devices

are used to validate the system performance with 7 classifiers

in 3 environments. This system recognizes 24 pre-defined

gestures with an average accuracy up to 94%, such as simul-

taneous waving of both hands and one-handed in different

directions.

In 2016, W. Ruan et al. proposed a training-free hand ges-

ture recognition system using inaudible audio signal, Audio-

Gest [40]. This device-free system first analyzes weak echo

signal mixed with ambient noise and then conducts FFT to

identify the Doppler shift caused by hand movement. The

authors apply FFT normalization to eliminate the audible

noise and signal drift and obtain audio signal segmentation

using Gaussian smooth filter. Next, the system interprets

the relation between audio spectrograms and hand actions.

It builds a model to estimate hand speed using the frequency

shift. Based on the interpretation, the authors obtain hand

moving speed, direction, duration, and distance. The authors

conduct comprehensive experiments to validate the system

performancewith three electronic devices and 3900 hand ges-

tures from 5 users in 5 test environments. Results demonstrate

that AudioGest achieves an accuracy up to 95.1%with 6 hand

gestures (e.g., up-down, down-up, etc.). Furthermore, it incor-

porates three aspects including moving speed, in-air duration,

and waving range into hand gesture recognition. Besides,

it considers six directions of motion and three levels of speed,

duration, and waving range (e.g., slow speed, medium speed,

fast speed, etc.), as shown in Fig. 14. Theoretically, Audio-

Gest can recognize up to 6×3×3×3=162 gestures by com-

bining these waving attributes. Practically, it can accurately

identify 6 hand gestures due to the measurement accuracy of

one microphone.

In 2017, X. Li et al. presented an in-air hand recognition

system based on ultrasound signal and Doppler effect, called

SonicOperator [41]. This system utilizes the Doppler shift

caused by different hand gestures to realize the classification

for gestures. SonicOperator first performs FFT to transform

time domain data into frequency domain data, then eliminates

ambient noise and normalizes the sample data. Afterward,

it utilizes the transfer learning method to train RNN and alters

the training objective function to transfer the knowledge of

feedforward neural network into RNN. The system validates

its performance with a set of 24 gestures and 36000 sam-

ples in 3 environments. The experimental results show that

SonicOperator can recognize 24 pre-defined gestures with an

average accuracy of 95%.

In 2018, H. Watanabe et al. [42] proposed a method using

a smartphone with a cover shielding microphone to improve

gesture recognition accuracy. They find that the frequency

changes usually are similar when the user performs some

hand gestures, which makes it difficult to classify them.

They think that a cover on a microphone can modify the

FIGURE 14. Hand gestures by combining waving attributes [40].

FIGURE 15. Spectrograms of different gestures when the microphone is
covered [42].

propagation path and change the characteristics of the

received signal. Therefore, the Doppler effect will be altered

and more features can be obtained, leading to the improve-

ment of recognition accuracy. The authors investigate the

time series and extract 10 features. Meanwhile, they exam-

ine spectrogram and compute 9 features. The authors utilize

19 features to validate the system performance with 8 par-

ticipants performing 6 hand gestures using 4 different types

of devices covered four shield forms (e.g., half shield, hole,

sponge, and directivity). As shown in Fig. 15, there is obvious

difference between the right swipe and left swipe when the

microphone is covered. The experimental results show that

the average recognition accuracy is improved 15.3% by cov-

ering the microphone.

B. ACTIVITY RECOGNITION

Accurate recognition of human activities is the research direc-

tion of future intelligent life. By recognizing basic activities

in daily life (e.g., bending, kicking, stretching arms, etc.),

the interaction quality between people and the environment

or smart devices can be improved, and the scope of intelligent

applications can also be expanded. In this section, we review

the activity recognition systems based on the ultrasonic signal

of smartphone and compare these systems in preprocessing

techniques, experimental scenarios, recognized behaviors,

and recognition accuracy, as shown in Table 7.

In 2017, B. Fu et al. [47] proposed a whole-body activity

recognition system based on the inaudible sound signal. It uti-

lizes a speaker and a microphone on the same smartphone to
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TABLE 7. Activity recognition.

FIGURE 16. Motions and the position of smartphone [76].

emit and capture ultrasound signal and analyzes the sound

spectrogram based on Doppler shift. The distance between

amplitude peaks can be extracted to facilitate improving clas-

sification accuracy. Because the frequency changes caused

by person actions can be efficiently identified from the spec-

trogram, authors recognize three motions (bicycles, squats,

and toe touches, see in Fig. 16) by using machine learning

classification methods. This system achieves an accuracy

between 73% and 92% for different motions and classifi-

cation methods. In the next year, they designed the CNN

model [76] to classify the three motions with an accuracy

of 88% for bicycles, 91% for squats, and 97% for toe touches.

C. HAND TRAJECTORY TRACKING

The handwriting input is an important requirement for many

smart devices and has been widely studied because it can

achieve fast information input and enrich human-computer

interaction procedures. However, those early handwriting

recognitions usually need to touch the screen, which may

be inconvenient in some scenarios. To further improve the

quality of HCI, researchers have extended the early touch-

based recognition to in-air trajectory tracking. With this HCI

method, we can easily input information on small screens or

use screen simultaneously. Currently, there are some stud-

ies about hand trajectory tracking using smartphone-based

inaudible acoustic signals, which greatly promotes the

progress of smart sensing techniques and HCI means. In this

section, we review the hand tracking systems based on the

ultrasonic signal of smartphone and compare these sys-

tems in preprocessing techniques, experimental scenarios,

recognized behaviors, and recognition accuracy, as shown

in Table 8.

In 2016, W. Wang et al. proposed a hand gesture tra-

jectory tracking scheme called LLAP [36]. It leverages the

speakers and microphones on same smartphone and builds

a device-free hand gesture tracking system. The idea of this

FIGURE 17. Sensing results of drawing in air. (a) Drawing square.
(b) Drawing word [36].

FIGURE 18. Tracking accuracy. The black lines refer to the ground truth
trace while the green lines refer to the trace that FingerIO tracks [54].

system is that ultrasound signal phase changes caused by

hand or finger can be effectively measured and converted

intomovement direction andmovement distance. This system

achieves mm-level accuracy for hand movement distance by

using sound phase features and implements two-dimensional

hand gesture recognition by using multiplexing continuous

waves. The authors use I/Q demodulation to obtain the com-

plex signal and then separate it into static vector and dynamic

vector. The former stems from LOS path or static objects and

the latter comes from the handmoving. Therefore, the authors

obtain the moving distance by calculating the phase changes

according to the dynamic vector. This system achieves a

hand gesture tracking with higher accuracy, lower latency,

and much higher speed solution. For 2-D tracking, the LLAP

obtains a tracking error of 4.57mm and achieves accuracy

of 92.3% for 26 Latin letters and 91.2% for some words such

as ‘‘yes,’’ ‘‘can’’, and ‘‘bye’’ (see in Fig. 17). At the same

time, it implements a low latency of less than 15ms on the

smartphone.

The same year, R. Nandakumar et al. proposed a fine-

grained finger trajectory tracking solution, called Finge-

rIO [54], which can track any pattern that user draws and

achieve millimeter-level tracking accuracy (see in Fig. 18).

FingerIO utilizes the speakers and microphones on the same

smartphone. Specifically, the speaker emits an inaudible
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TABLE 8. Hand trajectory tracking.

FIGURE 19. Applications. (a) Any surface could be a writing surface. (b) A
FingerIO device with smartwatch form. (c) Track movements when the
smartphone is in the pocket. (d) Track with an occluded smartwatch [54].

FIGURE 20. Leveraging the hand movement trajectory to track the
rotation angle of the steering wheel [58].

sound signal in the form of OFDM with cyclic suffix and the

microphones capture the echoes affected by finger moving.

WithOFDMsignal, it corrects the sample errors and enhances

finger recognition accuracy. It validates the system perfor-

mance using a smartphone and a smartwatch with the built-

in speakers and microphones. FingerIO achieves an average

tracking accuracy of 8 mm with a smartphone and 1.2 cm

with a smartwatch in 2D finger tracking. It can work well

in the interaction space of 0.5 m × 0.5 m region and even

the phone is in the pocket which occludes from the finger,

as shown in Fig. 19.

The tracking accuracy of the above two schemes is

still limited to the effect of multipath propagation and

other motions. To reduce the impact of these two factors,

S. Yun et al. proposed Strata [55] in 2017. Strata first esti-

mates the relative distance change of the finger by extracting

phase changes from the channel tap which corresponds to

the finger movement. Moreover, the absolute distance of the

finger is estimated by Strata using the changes in the channel

impulse response. Then, Strata combines the relative distance

FIGURE 21. Vital sign - heartbeat monitoring using the ultrasonic signal
based on a smartphone [77].

and the absolute distance to achieve high precision trajectory

tracking. It can estimate the distance change according to

the phase and also can calculate the absolute distance from

the channel variation. And the comprehensive experiments

validate the system performance. The median tracking errors

of Strata, LLAP, and improved FingerIO are 0.3 cm, 0.7 cm,

and 1.5 cm in 1D environment and 1.01 cm, 1.9 cm, and

3.47 cm in 2D scenario. Strata can get the average error

within 0.6 cm when drawing a simple shape in a 2D space.

It also achieves low latency with the position update every

12.5ms.

In 2018, X. Xu et al. presented SteerTrack [58], a device-

free steering tracing system tracks the rotation angle of steer-

ing wheel based on the ultrasonic signal from a smartphone,

as shown in Fig. 20. It utilizes the speaker built in smart-

phone to emit ultrasonic signal, captures sound echoes by

the microphone, and then leverages the relative correlation

coefficient (RCC) and reference frame to analyze the hand

movement trajectory. Then, it maps the steering wheel in 3D

to 2D ellipse. It designs a method based on geometrical

transformation to estimate the rotation angle of the steering

wheel according to the hand movement trajectory. Extensive

experiments with 5 participants and 5 different smartphones

for 6 weeks are conducted to evaluate the system perfor-

mance. It can recognize three different steering maneuvers

with an accuracy of 97.73%. SteerTrack also can estimate the

rotation angle of the steering wheel with an average accuracy

of 4.61 degree error.
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TABLE 9. Vital sign monitoring.

In 2019, W. Liu et al. proposed DMT [59], a device-free

finger motion tracking system based on the ultrasonic signal

from a smartphone. It uses a smartphone with multiple speak-

ers and microphones to transmit and receive an inaudible

sound signal. DMT leverages a Fourier fitting algorithm to

detect minute Doppler shift. With the frequency changes,

authors develop a geometric method to track the hand tra-

jectory and recognize hand gestures by an image matching

algorithm. It effectively eliminates the temporal signal drift

and diverse-device drift based on a threshold method. After-

ward, using tracking model, it obtains the hand trajectory by

linking the finger position. It leverages the particle filter to

determine the initial position and exploits an image match-

ing algorithm to match the gesture. Extensive experiments

validate system performance. DMT achieves Doppler shift

recognition accuracy of more than 90% and finger motion

identification accuracy of more than 95%.

D. VITAL SIGN MONITORING

Human vital signs (e.g., breathing, heartbeat, hand trembling,

etc.) reflect a person’s physical health condition. Accurate

measurement and long-term monitoring of these vital signs

enable us to obtain the participant’s physical condition timely

and take precautions in advance. Therefore, vital sign mon-

itoring has drawn wide attention due to its significance to

one’s health. Instead of wearing-based monitoring techniques

that require subjects to wear or attach some sensors on

the body and are infeasible in some scenarios, the device-

free pattern provides more advantages which are suitable

for long-term monitoring. The vital sign monitoring using

smartphone-based ultrasonic signal is increasingly drawing

more attention, such as heartbeat monitoring (see in Fig. 21),

diagnosis of Parkinson’s disease, breathing monitoring, etc.

In this section, we review the vital sign monitoring sys-

tems based on the ultrasonic signal of smartphone and com-

pare these systems in preprocessing techniques, experimen-

tal scenarios, recognized behaviors, and accuracy, as shown

in Table 9.

In 2015, R. Nandakumar et al. designed a contactless

system, called ApneaApp [51], to identify apnea events dur-

ing sleep with a smartphone. It measures the chest and

abdomen movements from respiration and uses FMCW sig-

nal as the transmitted sound signal. Authors leverage this

signal to obtain time difference calculated from frequency

shift and extract the amplitude changes of chest movements

due to respiration. Meanwhile, multiple breathing signals

can be tracked simultaneously because they experience dif-

ferent propagation time. Other non-breathing body move-

ments can be determined due to different reflection features.

And they proposed some algorithms including central apnea

algorithm, obstructive apnea algorithm, and hypopnea algo-

rithm and analyzed the echoes for apnea-hypopnea index

estimating. Therefore, many apnea events including central

apnea, obstructive apnea, and hypopnea, can be effectively

detected. Extensive experiments with 37 participants and

four different sleeping positions demonstrate that this sys-

tem achieves concurrent breathing movement tracking from

multiple users. ApneaApp achieves a respiration frequency

accuracy of 99.2% when the smartphone is placed within 1

m away from the user. This system also computes the mean

error of Apnea-Hypopnea Index (AHI) which is the average

rate of apnea events during the sleep duration. The mean error

of AHI is 1.9 event/hr.

In 2017, Wang et al. proposed SonarBeat [52], a device-

free vital monitoring system to monitor the breathing rate

using the phase changes of the received sound signal.

It detects the periodic rise and fall of signal caused by the

chest movement. Specifically, the speaker emits an ultrasonic

signal as a CW radar. The microphone of the same phone

captures the reflected echoes. This system first obtains I/Q

values after signal preprocessing and then extracts a useful

phase to estimate the breathing rate after phase unwrapping.

Comprehensive experiments with 5 participants in three dif-

ferent scenarios for three months are conducted to validate

system performance. It achieves a mean estimation error of

0.2 bpm for breathing rate. It also confirms its robustness to

a different direction, different ranges, and different breathing

rates of different users.

In addition to monitoring the breathing, Wang et al. [53]

proposed a tremor detection application using smartphone-

based inaudible acoustic sensing for the early diagnosis of

Parkinson’s disease in 2017. It detects the handmovements by

extracting the phase changes of the reflected signal and then

determines whether the hand is static, moving or trembling.
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Although users do not need to hold the smartphone, their

hand needs to move within 30 cm around the mobile phone.

Additionally, the tremor detection application can further

measure some parameters such as trembling frequency and

trembling magnitude to determine the intensity of the tremor.

In 2018, Qian et al. proposed a passive heartbeat monitor-

ing system using an ultrasonic sound signal, called Acoustic-

cardiogram (ACG) [77]. It leverages the speaker embedded

in a smartphone to emit the inaudible FMCW sound signal

and utilizes the two microphones to receive the echoes con-

taining heart rate and heartbeat rhythm. Two microphones

can effectively eliminate the pseudo self-interference coming

from direct power leakage by comparing the difference of the

signals of them. This system first obtains the heartbeat signal

from the mixed signal including ambient noise and respira-

tion, then calculates the phase changes of the sound signal.

Next, authors mitigate the echo from speaker to receiver

and utilize the spectrogram of the baseband signal and PCA

analysis to obtain chest motion from breathing and body

vibration from the heartbeat. Then it recognizes heart rate

using the peak value of frequency domain, extracts the heart-

beat data from environment noise with IIR comb notch filter,

and adopts EM algorithm to obtain individual heartbeats. The

results of the experiments with 10 subjects show that it can

monitor heart rate with a median error of 0.6 beats per minute

and estimate heartbeat rhythm with a median average error

of 19 ms.

E. LIP READING

The traditional speech recognition systems have some short-

comings: it can easily degrade the performance due to

the ambient noise; it cannot be applied to special places

(e.g., study room, sickroom, etc.) that require being quiet;

it is not suitable for the speech impairment. Nowadays,

the smartphone-based lip language recognition system can

provide a promising solution to these questions and has

attracted more attention of researchers due to the rapid

development of smartphones. The basic principle of these

systems is that users make soundless lip movements and

the lip motions will reflect the ultrasonic signal emitted by

the speaker (see in Fig. 22). Then the echo signal received

at the microphone will be analyzed to realize lip language

recognition and individual authentication. In this section,

we review the lip reading systems based on the ultrasonic

signal of smartphone and compare these systems in pre-

processing techniques, experimental scenarios, recognized

behaviors, and recognition accuracy, as shown in Table 10.

In 2017, J. Tan et al. proposed SilentTalk [48], a device-free

lip language recognition system based on the Doppler effect

of ultrasonic signal. The speaker transmits ultrasonic signals

and the microphone from the same smartphone receives the

echoes affected by mouth movements. Then, a band-pass

Butterworth filter and an adaptive filter are used to remove

interference and time difference of arrival (TDoA) are utilized

to suppress multi-path noise. The system first analyzes the

frequency shift and then qualifies the relationship between the

FIGURE 22. Soundless lip movement recognition using the ultrasonic
signal based on a smartphone [48].

FIGURE 23. Structure of autoencoder-based DNN model [50].

frequency change and mouth movement using a Frequency

Shift Detection Model (FSDM). Then, it employs a Contin-

uous Lip Reading Model (CLRM) on FSDM to recognize

continuous lip reading. The experiment with 10 volunteers

and 12 basic mouth motions is conducted to validate the

system performance. SilentTalk can recognize 12 different

English syllables (e.g., b, f, d, etc.) with an accuracy up to

95.4%. It also achieves the average accuracy of identifying

short sentences whose length is less than 6words up to 74.8%.

Different from the SilentTalk which recognizes the human

language, LipPass [50] is a user identity authentication

system using the speaker and microphone embedded in a

smartphone. In 2018, L. Lu et al. proposed the device-free

recognition system by leveraging distinct behavioral schemes

of user’s lip movements. LipPass analyzes the Doppler shift

caused by peoples’ lip movements and finds the unique lip

movement patterns of users. It utilizes a 3-layer deep neu-

ral network (see in Fig. 23) to extract useful features from

Doppler profiles to describe the lip movement rule. Next,

authors apply SVM and Support Vector Domain Descrip-

tion (SVDD) to build a binary classifier and a spoofer iden-

tifier. For multiple words, authors develop a weighted voting

method to enhance authentication accuracy. The experiment

with 48 participants in 4 real scenarios is conducted to

validate the system performance. LipPass achieves average

90.21% identification accuracy and 93.1% detection accuracy

of a spoofer.

Similarly, Tan et al. proposed another authentication sys-

tem in 2018, called SilentKey [49]. This system leverages

a speaker to transmit 17.5 kHz continuous wave signal and

a receiver to capture the ultrasonic signal to identify lip

reading. A sequence of specific mouth actions of a user can

be used to build a unique feature and determine a user’s

identification. Specifically, it analyzes the signal changes
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TABLE 10. Lip reading.

caused by the minute mouth movements and extracts unique

feature description reflecting unique user identification. It uti-

lizes a Hilbert transform to analyze signal’s envelopes to

build mouth movement profiles. It extracts three kinds of

features including rhythm, duration, and envelope differences

of reflections to construct feature vector. It leverages DTW

to quantify the envelope differences, utilizes an improved

DTW to measure the distortion degree of signal and speak-

ing rhythm, and applies a peak detection method to deter-

mine the start and end position of the echo signals and the

duration time. The authors recognize user’s identity using

SVM with above 3D feature vectors. The experimental result

with 50 participants shows that SilentKey achieves a rate

of true positive (TPR) around 70% to 83.1% and a rate of

true negative (TNR) around 86.7% to 90.7% for individual

authentication. SilentKey can face some attacks because the

input cannot be duplicated. It also studies the impact of basic

mouth movements, such as letters, syllables, and numbers on

echo signals and designs effective mouth movement sets for

ultrasonic identification recognition.

V. LIMITATIONS AND FUTURE DIRECTIONS

Over the last decades, researchers have proposed many

promising human behavior recognition methods based on

the ultrasonic signal. With the popularity of the smartphone,

behavior recognition studies based on the inaudible acoustic

signal are constantly emerging because they leverage the

powerful sensing capability of built-in speakers and micro-

phones, which extends the smartphone to an active sonar

device. However, speakers and microphones embedded in

smartphones are designed for common conversation, which

usually does not meet our requirements when treating them

as acoustic sensors. Therefore, we will face many chal-

lenges when employing a smartphone as a signal transceiver.

Moreover, different types of mobile phones own their dis-

tinct hardware features, which increases more difficulties

when developing behavior recognition algorithm. Although

many researchers have presented many effective methods

and developed some prototype systems to solve these prob-

lems, we have to consider many limitations when develop-

ing related applications. Meanwhile, we also try our best

to design potential applications in this field. In this section,

we discuss the limitations as well as possible future research

directions of behavior recognition technology based on ultra-

sonic signal of the smartphone.Many researchmethods based

on audible sound can be employed in ultrasonic applications.

A. LIMITATIONS

1) HETEROGENEITY

Currently, there are various smartphone brands and they are

comprised of several electronic devices, leading to diverse

hardware characteristics. These significant differences bring

about a considerable impact on algorithm design when

measuring physical signal and processing data using these

phones. Device diversity hinders the scalability of the algo-

rithms proposed because many parameters of the algorithm

may depend on the specific devices. Meanwhile, hardware

signal drift and noise interference are also crucial factors

in signal measurement. Because accurate data collection is

the premise of behavior recognition, we have to consider

these features when developing and evaluating the algorithm.

A possible solution to this problem is to apply transfer learn-

ing algorithm.

2) ROBUSTNESS

Most applications of behavior recognition leverage

phase [36], [54], Doppler shift [40], [42], and ToF [56], [58]

to measure signal reflection, propagation distance, and mov-

ing velocity of hand actions. These features are sensitive to

the test environments and can easily be affected by the test

scenarios. Complicated indoor environment and multi-path

effect can decrease recognition accuracy. Therefore, many

evaluations of the system usually are conducted in quiet

scenarios where there is seldom environment interference.

For example, the behavior recognition accuracymay decrease

when identifying a person’s movement if there are other

persons passing the test area. How to design a more robust

algorithm to mitigate environmental noises is still a challeng-

ing problem.

3) MOVEMENT TYPES

Wecan divide these applications into two groups, such as vital

sign monitoring and action recognition. The former identifies

the periodic and rhythm features to estimate respiration rate

and heart rate. It just calculates a single frequency value.

The latter measures the acoustic signal, segments it into

discrete sequences, and feeds them into a classification algo-

rithm. Although theoretically, we can classify a number of

action types, we just identify some limited actions due to
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weak measured data or insufficient data collection. The typ-

ical applications are AudioGest [40] and Ipanel [22] that

can recognize more actions compared with other implemen-

tations. To recognize more movements, we require more

data processing algorithms to differentiate more types of

human movements and enhance the resolution of signal

measurements.

4) STANDARDIZED DATASET

Most researchers evaluate their system using some specific

actions conducted by some participants, which makes the

test data work well under the specific environment. However,

it is difficult to compare and evaluate system performance

because there are not a common standardized dataset and

estimation criteria. Therefore, standardized human gesture

data are required to evaluate the current various recogni-

tion algorithms. As for development of standard dataset,

we can obtain some valuable experience from many suc-

cessful datasets, such as CIFAR10, IMDB, Fashion-MNIST,

ImageNet, MNIST, etc. When we want to build a successful

dataset, we must consider various factors, such as types of

actions, age of users, noise level of experimental scenarios,

interference nearby, distance between user and smartphone,

orientation of the smartphone, volume of the speaker, num-

ber of the participants, etc. Besides these common factors,

we hope that the test covers more daily activities (e.g., walk-

ing, running) and more smartphone states (e.g., in the pocket,

NLOS condition). As for the vital signal monitoring, it is

recommended to measure the data using medical devices

approved by medical management institution. We also hope

the dataset can be used at model-based, pattern-based or deep

learning-based human behavior recognition. Therefore, the

size of the dataset should meet the need of large amount data.

B. FUTURE DIRECTIONS

1) MULTI-MODAL DATA FUSION

Many hand gesture applications based on inaudible acous-

tic signal have achieved a good recognition accuracy using

unimodal measurement data. However, multi-modal data will

improve identification performance because we can take

many data fusion algorithms, which enables us to suppress

noise and increase sufficient data. For example, we can

use multiple speakers and microphones because the modern

smartphone contains many sound sensors to enhance com-

munication quality [77]. Besides, we can incorporate signal

phase, Doppler frequency shift, and ToF into data measure

and algorithm design, which can effectively improve the

accuracy of data collection and increase recognition preci-

sion [21].

2) APPLICATION EXTENSION

Nowadays, behavior recognition based on ultrasonic signal

has been applied in many scenarios. Besides common gesture

recognition, its application area has been extended to dis-

ease diagnosing, information input, and vital sign detection,

etc. Although current research has achieved some essential

progress, deeper studies and more advanced algorithms are

still required to enlarge the acoustic sensing research ranges.

For example, we hope to diagnose more diseases, input

more data, and present more helpful health-care assistance.

Besides, many novel applications are applying acoustic-based

methods such as liveness detection [81], [82].

3) SECURITY ISSUES

Smartphone-based human behavior recognition using ultra-

sonic signals is a novel method for HCI. With zero-cost

deployment and convenient interaction scheme, this method

has drawn more research interest. However, it brings some

issues about security. As an example, the human cannot hear

the ultrasonic signals, thus it might be utilized to recognize

human motion [83], identify keystroke sequences [84], guess

Android unlock pattern [85], and infer user’s input text [86],

which will steal people’s information and violate people’s

privacy. Seriously, this method can be utilized to conduct

ultrasound attacks and perform control commands [87].

4) DEEP LEARNING

Nowadays, deep learning has gained striking attention due

to its overwhelming performance advantages in image pro-

cessing, speech recognition, natural language processing,

and recommendation systems [79]. Naturally, we want to

utilize its excellent capability of feature representation and

feature extraction to improve the recognition accuracy of

human behavior identification based on the ultrasound signal.

Recently, there are many studies based on audible sound

signal employing the deep learning method. For example,

Ipanel [22] applies CNN to extract features to recognize

common user gestures (e.g., click, flip, scroll, zoom, etc.) and

handwriting (10 numbers and 26 alphabets). Ipanel achieves

encouraging recognition accuracy and provides compelling

evidence that the application of deep learning can signifi-

cantly improve identification precision. And the performance

of the system outperforms that of the other studies. These

results indicate that deep learning can largely enhance system

performance and increase recognition accuracy. Therefore,

we can apply deep learning methods to human behavior

recognition based on ultrasonic signal of the smartphone.

VI. CONCLUSION

Recently, IoT hasmade encouraging progress andmany novel

applications have been increasingly emerging. It enables

us to link and access more devices and perform more

human-machine interactions. Therefore, we need more con-

venient interaction methods to communicate with devices

effectively. Among the existing interaction means, the

method based on ultrasonic signal holds many striking advan-

tages and its applications are constantly surging. It can pro-

vide fine-grained action identification and does not interfere

with a person’s normal life. Apart from interaction, sensing

based on ultrasound signal has many potential applications,

such as vital signal monitoring, identification authentication,

information stealing, and data input, etc. With the popularity

of smartphone, human behavior recognition leveraging the

embedded-in speakers and microphones is becoming a hot
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research topic because it presents cost-effective deployment

and convenient interaction pattern. These studies allow us

to implement ubiquitous data acquisition and information

processing, which significantly enriches the IoT applications.

In this paper, we first present conventional human behav-

ior recognition and review the state-of-the-art applications

applying the following techniques, such as video, light, RF,

and audio. Then we introduce the fundamental principle of

the ultrasonic-based recognition system and analyze the main

signal properties from the echo signal, including phase, fre-

quency shift, and ToF. Next, we present the architecture of

the behavior recognition system based on ultrasonic signal

and summarize the contents from basic signal selection to

behavior recognition. Specifically, the speaker first trans-

mits ultrasonic signal, the microphone captures the echoes

changed by human behavior from microphone, then the sys-

tem conducts signal preprocessing procedures to eliminate

noises and the main algorithm to extract useful features and

classify human actions. Afterward, we investigate in detail the

state-of-the-art applications of the behavior recognition using

smartphone-based ultrasonic sensing in five areas, including

hand gesture recognition, activity recognition, hand trajectory

tracking, vital sign monitoring, and lip reading. We present

many tables to exhibit and compare the crucial compo-

nents of different systems and interpret the characteristics of

these state-of-art applications. Finally, based on current study

trends, we discuss the limitations and open issues involved in

human behavior recognition based on ultrasonic signal of the

smartphone.
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