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ABSTRACT The market volatility in the oil and gas (O&G) sector, the dwindling demand for oil due to
the impact of COVID-19, and the push for alternative greener energy are driving the need for innovation
and digitization in the O&G industry. This has attracted research interest from academia and the industry
in the application of industry 4.0 (I4.0) technologies in the O&G sector. The application of some of these
I4.0 technologies has been presented in the literature, but the domain still lacks a comprehensive survey
of the application of I4.0 in the O&G upstream sector. This paper investigates the state-of-the-art efforts
directed toward I4.0 technologies in the O&G upstream sector. To achieve this, first, an overview of the
I4.0 is discussed followed by a systematic literature review from an integrative perspective for publications
between 2012-2021 with 223 analyzed documents. The benefits and challenges of the adoption of I4.0
have been identified. Moreover, the paper adds value by proposing a framework for the implementation of
I4.0 in the O&G upstream sector. Finally, future directions and research opportunities such as framework,
edge computing, quantum computing, communication technologies, standardization, and innovative areas
related to the implementation of I4.0 in the upstream sector are presented. The findings from this review
show that I4.0 technologies are currently being explored and deployed for various aspects of the upstream
sector. However, some of the I4.0 technologies like additive manufacturing and virtual reality are least
explored.

INDEX TERMS Artificial intelligence (AI), cyber-physical systems, digital-twin, framework, oil and gas
(O&G), industry revolution 4.0 (IR 4.0), industry 4.0 (I4.0), internet of things (IoT), simulation, upstream
sector

I. INTRODUCTION

The oil and gas (O&G) industry is the world’s primary
source of energy with a very complex process for production
and distribution. It is noted for the economic transformation
of the world, by supporting the demand for heat, electricity,
mobility, and other essential petrochemical products of the
world’s population [1], [2]. The process of production and
distribution involves state-of-the-art technology at different

levels. These levels are the upstream, the midstream, and
the downstream. The upstream segment involves exploration
and production activities such as geological surveys, onshore
and offshore drilling. The midstream segment involves op-
erations such as transportation, storage, and the trading of
crude oil, natural gas, and the products that are refined.
The downstream segment covers refining and marketing.
The upstream sector plays an important role in the O&G
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industry, hence this paper focuses on the upstream sector.
The O&G industry has recently experienced a downturn

due to the COVID-19 pandemic and increasing high market
volatility. In addition, the push for carbon taxes, greener
and clean energy among several countries and globally is
expected to see a long-term decline in the demand and
consumption of fossil fuels. Hence, there is the need to
identify the challenges of the conventional O&G sectors in
order to achieve a cost-effective and more efficient way to
keep the O&G industry more competitive.

A. CHALLENGES

The challenges faced by the conventional upstream sector
and the need for the adoption of the I4.0 are outlined as
follows.

• Dwindling price of oil and volatility - The O&G has
witnessed dwindling oil price and high volatility [3]
which is expected to affect investor’s interest.

• High cost - The cost of operation such as the rise
in the cost of new O&G deposits exploration and
development, cost of production especially offshore
and maintenance cost is still a major issue [4].

• High competition - The breakthrough in technology
for the commercialization of unconventional reservoirs
such as oil sands, shale gas, and coalbed methane
has led to increased competition in the O&G industry.
These unconventional reservoirs are complicated and
costly to produce O&G on a profitable scale.

• Environmental pollution - Crude oil production is still
faced with a high risk of environmental contamination.
The call for climate regulation and emission reduction
puts more pressure on the O&G industry. In addition,
the demand for renewable energy is on the increase and
becoming more economical.

• Timely decisions and forecast - The lack of advanced
monitoring, data analytics (DA) for asset management
and collaboration between production engineers, ven-
dors, partners, consumers currently affect operational
efficiency.

• Complexity in drilling and production process - The
search for new reserve in hard to reach and extreme
places makes drilling and production process complex
and introduces health, safety, and environment chal-
lenges [5]–[7].

To overcome these challenges, the O&G industry is grad-
ually moving towards the direction of intellectualization,
digitization, and automation by leveraging on the industry
revolution 4.0 (IR 4.0). The IR 4.0 is aimed at enabling
new ways of production, value creation, and real-time
optimization by adopting new and emerging technologies.
Some of the technologies that have been identified in
industry 4.0 (I4.0) are cybersecurity, internet of things
(IoT), cloud computing, big data analytics, augmented re-
ality (AR), additive manufacturing (AM), simulations, and
system integration [8]. The combination of some of the
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Figure 1. Journey of Industrial Revolution [13]

I4.0 technologies have paved the way for new technologies
such as digital twin (DT) and cyber-physical system (CPS).
The I4.0 in O&G can be described as the fusion of I4.0
technologies to integrate the physical and the virtual O&G
operations and objects in order to maximize productivity,
enhance efficiency, improve quality and productivity. There
are several vital roles I4.0 plays in the O&G industry
and some of which include enhancement of project design
and evaluation, deployment of intelligent oilfield, increase
the reliability on the ecosystem, and facilitation of cost
reduction [1], [9]. A description of the industrial revolution
is summarized as follows.

B. INDUSTRY REVOLUTION

The industry has experienced different revolutions, from IR
1.0 to IR 4.0 as shown in Fig 1. The IR 1.0 witnessed the use
of steam power to increase human productivity in the 18th
century. In the 19th century, the emergence of electricity
and assembly line production lead to mass production in IR
2.0. Subsequently, in the 19th century, the use of memory-
programmable controls and computers enabled industrial au-
tomation for the IR 3.0 era. The advancement of information
and communication technology is paving the way for IR 4.0
where machines are able to communicate with each other
over the network. These have opened the way for smart
concepts such as the smart manufacturing industry, smart
maintenance [10], and smart construction [11], [12].

C. O&G UPSTREAM SECTOR

The O&G industry involves complex industrial operations
that are focused on three main sectors involving upstream,
midstream, and downstream [2], [14]. Fig. 2 illustrates
the O&G sector. The upstream sector is the first phase
in the life cycle of O&G; which involves the exploration
and development, drilling and well completion, production
and optimization, reservoir engineering, and control center
operations [15]–[17].

There is limited literature that has discussed the I4.0 in
the O&G industry [18], [19]. The roles of I4.0 in facilitating
the intelligent oilfield in the upstream sector, intelligent
pipeline in the midstream sector, and intelligent refinery
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Figure 2. O&G Industry Sectors

in the downstream sector were discussed in [19]. In [18],
a survey carried out among 13 suppliers to the O&G
industry in Norway identified “little knowledge about the
concept I4.0” as one of the inhibitors to digitization in the
O&G industry. Although the research publications on the
applications of some of the I4.0 component technologies
appear to have grown in recent years, there is still a lack
of comprehensive review on the state-of-the-art adoption of
I4.0 in the O&G upstream sector. To address this gap, the
following contributions of this paper are outlined as follows.

D. CONTRIBUTION

• We provide an overview of the I4.0 which includes
the IoT, big data analytics, cloud computing, AM, AR,
autonomous robots, cybersecurity, system integration,
simulations, and DT and CPS and roles they play in
the upstream sector of the O&G industry.

• A systematic literature review (SLR) of the I4.0 tech-
nologies for different operations in the upstream sector
of the O&G is presented. This includes exploration and
development, drilling and well completion, production
and optimization, reservoir engineering, control opera-
tions, and equipment and operational parts.

• A conceptual framework for I4.0 for the O&G up-
stream sector is presented.

• We outline future trends and identify some of the
research opportunities and processes needed for the
integration of I4.0 in the upstream O&G sector.

E. ORGANIZATION

The rest of this paper is structured as follows. Section II
provides an overview of I4.0 technologies. The different
I4.0 technologies and their roles in the different aspects
of the upstream sector are presented. In Section III, the
review methodology is presented. Section IV covers the
findings and discussion of reviewed papers. This includes
the related works and review of the application of I4.0
technologies. The discussion is categorized into the various
operations in the upstream sector which include exploration
and development, drilling and well completion, production
and optimization, reservoir engineering, and control opera-
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tions. A review of the application of I4.0 in the upstream
sector is discussed in detail. In Section V, a conceptual
I4.0 framework for the upstream sector is presented and
the benefits of the I4.0 are identified in Section VI. Section
VII enumerates the open issues and challenges. Section VII
provides an insight into the future trends and finally, Section
IX concludes the paper.

II. OVERVIEW OF I4.0 TECHNOLOGIES

This section covers an overview of the state-of-the-art of the
I4.0 technologies. The technical, architecture, and protocols
of the I4.0 technology are not discussed in detail in this
paper but references are provided for in-depth details. The
term industrie 4.0 which refers to the industrial revolution
4.0 originated from Germany and was first mentioned at the
Hanover Fair in 2011 [20]. There are nine main technologies
associated with the I4.0 which are IoT, big data analytics,
cloud computing, AM, AR, autonomous robots, cybersecu-
rity, system integration, and simulations [8] as illustrated
in Fig. 3. The integration of these technologies paved way
for emerging technologies like the DT and CPS. These
technologies are described as follows and the review of their
applications in the O&G upstream sector is elaborated in
Section V.

A. INTERNET OF THINGS

The IoT enables machine-to-machine (m2m) communica-
tion over a network without requiring human-to-computer
interaction [21]. The machines are composed of embedded
systems with sensors/actuators, which transmit data using
different communication technologies over the internet. The
m2m is made possible by the ubiquitous presence of com-
puting resources around us that has enabled devices to in-
teract with each other via defined communication protocols
and architectures [21]–[23]. The IoT has developed over the
years with more focus on different industry requirements
which has given rise to application-specific IoTs [24]. The
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IoT has paved the way for several innovations in the industry
and opened up the concept of industrial IoT (IIoT) [25]. The
IIoT plays a significant role in the industry by providing an
efficient and optimized monitoring and control system that
reduces cost and enhances productivity.

Fig. 4 shows an IoT architecture that can be deployed for
the O&G upstream sector. It consists of the physical layer,
communication technology, network layer, and application
layer. The physical layer consists of the IoT nodes that are
used for data acquisition and control of the O&G equipment
and facilities. The nodes transmit data to the gateway or
base station via various communication technology. The
communication layer comprises wireless communication
technologies which can be categorized into short-range
and long-range communication. Examples of the short-
range communication technology are the Wi-Fi, Bluetooth,
and Zigbee while the long-range include the low power
wide area (LPWA) technologies such as narrowband IoT,
LoRa, and Sigfox. The unlicensed long-range technologies
(LoRa and Sigfox) are particularly suitable for remote areas
without cellular coverage. The network layer incorporates
several technologies such as cloud computing, software-
defined network, blockchain, and network servers. The data
from the nodes is routed to the application layer in a secured
manner via the various network layer technologies. The
Application layer allows for the processing of the data,
analysis, and visualization of the data. The enabling IoT
technologies, protocols, and other related terminologies are
discussed in detail in [21], [22], [26]. The IoT can be applied
in various operations such as control and monitor operations,
predictive maintenance, automation and control, health and
safety of the O&G industry [15], [23], [27].

B. BIG DATA ANALYTICS

In this section, the concept of big data analytics and the use
of AI tools for data analysis is presented. BD deals with
the huge amount of data being collected from a variety of
sources (volume), the speed at which the data are being
collected in real-time (velocity), and the formats in which
the data are collected (variety). BD analytics refers to the
process of researching massive amounts of data in order to
uncover hidden patterns and hidden correlations. The form
of data can be structured, semi-structured, and unstructured
[28], [29]. BD analytics is fundamental to the I4.0 in the
O&G sector. For instance, in seismic acquisition devices,
large amount of data are generated for the development of
two-dimensional (2D) and three-dimensional (3D) images of
the subsurface layers during O&G exploration. Additionally,
narrow-azimuth towed streaming (NATS) and Wide azimuth
(WAZ) tools are used in offshore seismic studies for the
collection of data and development of geological images.
In addition, drilling tools including logging while drilling
(LWD) and measurement while drilling (MWD) convey
various data to the surface in real-time. All these tools and
innovations are creating a massive amount of data that need
further interpretation and analysis [30]. Therefore, the daily
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Figure 4. IoT architecture for O&G

generation of huge data sets in the upstream sector is the
main driving force of the application of BD in the O&G
industry. The utilization of BD can be noticed in exploration,
drilling, oil recovery, and production [19], [31], [32].

In order to extract information and insights from the data,
data science techniques such as exploratory data analysis
and AI are employed. This helps to link related pieces
of data together and provide useful insights from existing
information. AI involves the use of computer algorithms
in an attempt to mimic the operations of human brains or
thought, to understand and make decisions [33]. AI also
can be defined as the theory and development of computer
systems to support decision-making processes that generally
require human intelligence [34]. In 2019, AI in the O&G
market was valued at USD2 billion and is expected to
attain USD 3.81 billion by 2025 [35]. The AI technology
can facilitate O&G companies in the digitization of records
such as geological data and charts and providing automated
analysis. This helps to identify issues such as pipeline
corrosion or increased equipment usage in a timely manner
[35]. Additionally, the O&G industry can use AI to evaluate
the potential impacts of new developments or to assess
the environmental risk associated with the new project
prior to the development of plans [36]. The branches of
AI are shown in Fig. 5. Several AI techniques have been
successfully applied in the O&G industry [2], [32], [37]–
[40]. Some of the applications include prediction of drilling
fluid density [41], drag reduction [42], and identification
of potential complications and optimize performance in
onshore operations [43].

4



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3121302, IEEE Access

Author et al.: Preparation of Papers for IEEE ACCESS

Artificial Intelligence 

• Machine Learning

• Fuzzy Logic

• Swam Optimization

• Planning

Machine Learning 

• Deep learning

• Convolutional Neural Network

(CNN)

• Recurrent Neural Networks (RNNs)

• Long Short-Term Memory Networks

(LSTMs)

• Stacked Auto-Encoders

• Deep Boltzmann Machine (DBM)

• Deep Belief Networks (DBN)

• Supervised LearningDeep Learning 

• Unsupervised Learning

• Reinforcement Learning

• Evolution Algorithm

• Natural Language

Processing

Figure 5. Branches of Artificial Intelligence

C. CLOUD COMPUTING

Cloud computing is an essential part of the I4.0 due to
the many advantages it provides for businesses and insti-
tutions. It involves the uses of on-demand cloud computing
services such as servers, storage, networking, software,
and intelligence. The use of cloud services can help to
save cost, increase production, enhance security and perfor-
mance and also improve speed and efficiency. The cloud
computing services can be deployed either as public or
private or hybrid or community cloud architecture. Cloud
computing can be rendered either as software-as-a-service
(SaaS), infrastructure-as-a-service (IaaS), or platform-as-
a-service (PaaS) [44]. The SaaS provides organizations
access to the software needed for their operation via the
internet without the need to bother about the operating
system. The IaaS offers pay-as-you-go for services such as
storage, networking, and virtualization. The PaaS provides
a platform for creating software that is delivered via the
internet. The SaaS, IaaS, and PaaS enable the industry to
take advantages such as mobile access to online software,
scalability, and reduction of hardware cost. The different
cloud computing and architecture are shown in Fig. 6.
Although cloud computing offers several advantages, there
are certain limitations that have been identified which in-
clude degradation of quality-of-service due to delays in
time-sensitive applications. Hence, the combination of cloud
computing and other forms of computing such as edge/fog
computing is explored [45]. More details on the architecture
of cloud computing can be seen in [46]–[48].

D. ADDITIVE MANUFACTURING

The AM is the computerized process of building 3D objects
by adding layer-upon-layer of material [49]. It enables the
fabrication of end-use products in aircraft, dental restora-
tions, medical implants, automobiles, and several industrial
parts. Several 3D manufacturing techniques have been iden-
tified which are vat polymerization, material jetting, binder
jetting, material extrusion, powder bed fusion, sheet lamina-
tion, direct energy deposition [50], [51]. More details on the
description of the different AM manufacturing techniques

Figure 6. Cloud computing services

be found in [49], [52]. The AM can be used to produce
complex geometries with high-strength materials that meet
the robust performance and environmental standards needed
by the O&G industry [52], [53]. This offers fast and on-
demand printing of spear parts which can reduce the high
cost of downtime in the O&G industry. The other potential
applications of AM within the O&G industry are outlined
by Vendra and Achanta [54]. It includes the drill bits and
bit models, heat exchangers, turbine blades and sensors,
acoustic and fluid filters, drilling tools, as well as downhole
logging spare parts. It was reported that the AM-designed
applications demonstrate enhanced reliability with about 30
% cost reduction and 70 % lead time reduction [54]. Shell
is employing AM (i.e., 3D printing technology) to develop
a prototype system connecting a huge vessel to O&G wells
in a station in the US Gulf of Mexico (The Stones). The
implementation of AM has helped Shell to save the cost
of about $40 million by highlighting the design flaws at
an early stage. Moreover, the team is able to show US
authorities how the 3D printed prototype system remains
stable in rough seas and disconnects during strong waves,
where the safety of the vessel system and crew members
are both equally important [55].

E. AUGMENTED REALITY

The AR uses animations, 3D geometries, and text to turn
the environment around us into a digital interface by plac-
ing virtual objects in the real world, in real-time [56].
AR can be applied in complex assembly by converting
instructional manuals into live videos. This provides AR-
based maintenance support for inspection and for checking
the status of the machine. In addition, it provides remote
supports for field technicians or workmen. The application
of AR for facility management in the O&G industry was
presented in [57]. It enables personnel to handle complex
interactions which include collision detection, navigation,
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device monitoring, and operations. For instance, the use
of AR was used to train personnel for commission in-
struments which provided calibration training, installation
training, instrument configuration, and error simulation [58].
In another work, Fenais et al. [59] investigated the risk
benefits of employing AR in horizontal directional drilling
(HDD) at a pilot project in Phoenix, Arizona. It was found
that the implementation of AR enables HDD and other site
operators to view the virtual models of subsurface utility
pipes at the construction site. AR was able to locate hidden
pipelines as well as other significant hindrances that are
present in the underground utility. Hence, with such visual
information support, the risk of future disasters such as
pipeline explosions can be significantly reduced.

F. AUTONOMOUS ROBOTS

The use of automation in the manufacturing industry has
made it possible for robots to cooperate, interact with one
another and work safely with humans [60]. Automation
enables the use of control systems to handle different
processes and machinery in the industry. Some of the
advantages of industrial automation are cost reduction in
wages and salary, maintenance, increase productivity, less
error and high quality, high flexibility, reduced turnaround
time, increased safety, and accurate information from data
collection. This involves the use of robotic process automa-
tion (PRA), which aims to reduce repetitive and simple
tasks [61], [62]. There are three types of automation which
are fixed, programmable, and flexible automation. The ap-
plication of robotics and automation in the O&G industry
was discussed extensively in [5], [6]. The application of
robotics in onshore includes pipe inspection, tank inspec-
tion, automated gas sampling, and external automated in-
spection for pipelines using drones/unmanned aerial vehicle
(UAV)/unmanned aerial system (UAS) [5], [6].

The use of drones or UAV or UAS in the O&G industry
provides safety, efficiency, and considered cost-effective and
has been used extensively for various applications [63]–
[67]. The use of drones has been used to complement
other forms of surveillance technologies such as satellite,
plane or helicopter imagery and ground digital acquisitions
and observations. For instance, in [67] the use of UAV
was shown to provide key input for reservoir modelling in
analogue producing fields which is useful for digital outcrop
models of subsurface reservoirs. Some of the applications
of the drones are illustrated in Fig. 7.

G. CYBERSECURITY

While I4.0 technologies are aimed at providing smart and
advanced manufacturing by marrying physical action with
the digital world, it opens up a new level of cyber risk that
needs a fully integrated approach for operational technology
and information technology. The attacks could be in the
form of physical attacks on critical infrastural attack or theft
of confidential information [68].
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Figure 7. Application of drones in O&G Sector

Table 1. Seven Layers Data Security of Cybersecurity

Layers Description
Mission critical assets Mission critical data that requires highest

level of protection
Data security Protects the storage and transfer of data

Application security Protect and secures application for mission
critical assets

Endpoint security Protects the devices and network
Network security Prevents authorized access to organization’s

network
Perimeter security Provides physical and digital security for

entire business
Human layer Provides policy, controls, reporting that

protect your critical assets from human
threats

Hence, cybersecurity has become an integral part of the
I4.0. Several security incidents related to cyberattacks from
malware such as the blackenergy [69], stuxnet, wannaCry,
ransom [70], Mirai – IoT botnets attack, Triton malware
have resulted in large scale disruption across several indus-
tries. For instance, Saudi Aramco O&G company a critical
provider in the global energy sector witnessed cyberattack
which took almost two weeks to recover leading to several
damages [71]. Another cyberattack that caused a major
disruption in the O&G industry is the Colonial pipeline
attack which disrupted supply for several days in certain
parts of the United States [72].

There are different layers of data security that have been
identified for cybersecurity and they include 1) mission-
critical assets, 2) data security, 3) application security, 4)
endpoint security, 5) network security, 6) perimeter security,
and 7) the human layer. The seven layers are described in
Table 1.

To address the cybersecurity issues in I4.0, many industry
standards have been introduced such as the ISO/IEC 27001,
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the NIST cybersecurity framework, ANSI-ISA-62433 series,
IEEE C37.240, ETSI TS 103 645 [73]. These standards
provide a structured approach, roles and responsibilities,
self-assessment tools, and control objective list to assist
businesses in risk management practices. There are other
cybersecurity standards recommended by other bodies such
as the European Union Agency for Network and Information
Security (ENISA), Internet Research Task force (IRTF),
and European Cyber Security Organization (ECSO). The
standards provide procedures for organizations to assess,
identify and provide countermeasures to limit the cyberse-
curity risk to tolerable levels. Methods such as failure mode
and effect analysis (FMEA) provides organizations a method
to prioritize IT risk using Risk PriorityNumber (RPN) [74].

An important technology that is adopted in the I4.0 for
cybersecurity is blockchain technology [75]. Blockchain
technology which is also known as the distributed ledger
technology is based on a peer-to-peer (P2P) topology that
enables transparency, traceability, integrity, and tamper-
resistance by using the decentralized system with cryp-
tographic hashing [19], [76]. The biggest innovation of
blockchain technology is that transactions are distributed to
all participants instead of being stored in the central database
[77]. It is also known as distributed ledgers where all parties
share a common ledger and any ongoing transaction on the
blockchain is updated to the ledger of all parties [78]. In re-
cent years, blockchain technology are been implemented and
used in the O&G industry; mainly in four aspects including
trading, management and decision making, supervision, as
well as cybersecurity [19], [77]. Some of the advantages
include the ability to track goods, equipment, and services,
to ensure data are secured and transactions are transparent
[19].

H. SYSTEM INTEGRATION

The system integration component of the I4.0 provides both
vertical and horizontal integration within the industry. The
vertical integration covers different hierarchies starting from
shop floor to top-management level [79]. These combine the
digitization of physical objects by gathering data using sen-
sors, actuators, and programmable logic controllers and the
data collated using supervisory control and data acquisition
(SCADA) [80]. The use of manufacturing execution systems
(MES) for collection of the data from the SCADA and
the use of enterprise resource planning (ERP) systems for
production status are employed at the managerial informa-
tion layers [81]. This integration facilitates transparency and
improved decision-making processes from the managerial
level to the shop floor. The system integration can help solve
problems associated with top management and specialist
for strategic implementation and quality management in the
O&G industry [4]. Also, system integration can be used to
optimize technical production and operation in the upstream
sector. The use of system integration that combines the
thermodynamic, economic, and environmental performance
indicators is used to save energy in the extraction of O&G

fields [82].

I. SIMULATION

Simulation has been used as a decision support tool for
solution development, validation, and testing of individual
elements or complete systems [83]. The I4.0 extends the use
of simulation in all phases of a product life cycle. Simulation
analyses are used through all phases of different planning
and operating levels of complex systems [84]. Simulation
methods are largely employed in the O&G industry and
considered to be one of the important steps in planning
and optimizing production and getting hydrocarbons from
oil wells [85]. For instance, the use of simulation methods
is used to overcome the challenges of cost, time faced
in obtaining information pertaining to the fluid transport
characteristic of shale gas under certain conditions [86],
[87], and models for prediction of offshore O&G pipelines
[88]. The combination of simulation models and other I4.0
technologies have opened up the technological concepts
such as the DT and CPS discussed in the next section.

J. DIGITAL-TWIN AND CYBER-PYHSICAL SYSTEM

The DT is one of the emerging technologies largely ap-
plied in the manufacturing [84], [89], [90], automation,
construction and building management [91], healthcare [92],
petrochemical [91] and utility industry [93]. DT has been
defined in the literature in different ways [94]–[96]. Just
as the name implies, it simply means a digital or virtual
representation of physical assets or products, or services. It
collects real-world data to create simulations via integrated
models that can be useful in providing decision support
in the life cycle of a product or system or service. In
creating a DT, the design of the asset, the functionality
of the asset, maintenance of the asset in the real world
needs to be specified. Then the technologies that can sup-
port the real-time flow of data and operation information
between the physical asset and its DT as shown in the
conceptual architectural diagram in Fig. 8 [97] need to
be acquired. It combines some of the I4.0 technologies.
The conceptual architectural diagram consists of six stages
which are: create, communicate, aggregate, analyze, insight
and act and discussed in detail in [97]. The create stage
covers the physical assets and integration of sensors to
measure the operational performance of the asset and the
environmental parameter that affect the operation of the
physical assets. The communicate stage entails the network
communication technologies that enable seamless, real-time
and bi-directional connectivity between the physical asset
and the digital platform. The aggregate stage involves the
collection of data and processing between the physical asset
and the digital platform. The analyze stage focuses on the
visualization and analysis of data while the insight stage
involves the use of the analyzed data to provide useful
information such as the difference between the DT model
and the physical asset analogue performance. The act stage
involves the actions or commands are fed back to physical
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Table 2. Difference between DT and CPS [98]

DT CPS

Creates high-fidelity virtual
models of physical objects in

virtual space

Couples the cyber world and
dynamic physical world using
control, communication and

computing
Integrates whole elements, the

entire business, and the process
data to ensure consistency

Data from sensors and actuators
are analyzed by cyber world and

sent back as commands to
control physical process

Modeling and simulation
analysis form the core elements

Sensors and actuators form the
core elements

and digital processes based on the insights generated from
previous stages.

The CPS is similar to the DT. The CPS is the integration
of computing, networking, and physical processes. Physical
processes can be controlled in real-time via feedback loops
on embedded systems with high computational powers
through network monitors. The major difference between
the DT and CPS are summarized in Table 2.

There are several applications of DT and CPS in the
O&G industry which include drilling, asset monitoring,
project planning, and life cycle management offshore plat-
form infrastructure [19], [99]–[101]. The application of I4.0
technologies discussed in this section are further elaborated
in Section III.

III. REVIEW METHODOLOGY

There are several methods of review that have been identi-
fied in the literature [102], [103]. The review types are based
on the methods used for searching, evaluating, synthesizing,
and analyzing the items that comprise the body of knowl-
edge. Three categories have been identified in [102] which
are systematic, semi-systematic, and integrated review. The
semi-systematic literature review method was applied in
this article due to the diverse discipline and research areas
covered. The objective of this research is to find out the
state-of-the-art and the application of the I4.0 technologies
in the O&G upstream sector.

A comprehensive literature review was conducted to
identify the available publication regarding the application
of I4.0 technologies in the O&G upstream sector. The
literature review covered publications between year 2012
and 2022 published by scholars and practitioners. This
includes articles, reviews, conference papers, and technical
reports in the English language. The literature was identified
in the Scopus database, google scholar, and google. The
Scopus database was chosen due to the broad coverage of
scientific peer-reviewed publications. Other methods using
google scholar and google were chosen in ordered to retrieve
technical reports and white papers from practitioners and
other published works not found in the Scopus search. An
initial search from the Scopus database using the keywords
contained in the title, abstract, and index terms was carried
out. The keyword used is shown in Table 3. The keyword
was carefully selected to focus on publications related to the

Table 3. Procedure for the search of articles

Search
Index

Specific content

Database/
source

Scopus, web, google scholar

Keywords TITLE-ABS-KEY ( ( "4.0" OR "industry 4.0" OR
"industry revolution*" OR "cyber*" OR "IoT" OR "Big

data" OR "Artificial intelligence" OR "digital twin"
OR "autonomous robots" OR "additive manufacturing"

OR "system integration" ) AND ( "oil and gas" ) )
Publications Reviews, conference papers, journals, tech report

I4.0 technology components that have been applied in the
O&G industry. Based on the keyword search a total number
1544 publications were found in the Scopus database. Based
on the identification of publications between the year 2012
and 2021 and removal of duplicates, 1080 publications were
identified and screened.

A second search was conducted with the reference lists
of all identified reports and articles based on the following
research questions.

RQ1: What is the state-of-the-art of industry I4.0 in the
O&G upstream sector in the last 10 years?

RQ2: What are the applications of the I4.0 in the O&G
upstream sector?

RQ3: What is the framework for the implementation of
I4.0 in the upstream sector?

RQ4: What are the benefits and challenges faced in the
adoption of I4.0 technologies in the O&G upstream sector?

RQ5: What are the future trends in the application of I4.0
in the upstream sector?

The 1080 items were further screened by skimming
through the titles of the publication and abstract for content-
based inclusion using the five research questions. 228 items
were found not related to the objective of the research and
46 items were not accessible. A total of 809 publications
from the Scopus database were accessed for eligibility and
classified into review, journal, and conference papers. A
total of 67 review papers, 637 conference papers and 102
journals. A final selection process was carried out by giving
priority to peer-reviewed journals, SLR review papers, and
conference papers whose topics have not been well covered
in the journal papers. The same process was applied to
the documents from google scholar and google websites.
A total of 223 documents were considered for full reading
and included in the review process. The preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
flow diagram is shown in Fig. 9.

IV. FINDINGS AND DISCUSSION

The findings from the 223 documents and discussion are
presented in this section.

A. RELATED PAPERS

To answer RQ1 and RQ2, related papers on the I4.0 tech-
nologies were analyzed. Although several review papers on
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Figure 8. A concept of digital-twin architecture [97]
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Figure 9. PRISMA flow diagram

the application of different I4.0 technologies were identified.
Only 5 which focused on systematic literature review (SLR)
were analyzed [27], [34], [99], [104], [105] and summarized
in Table 4. A review of IoT within the context of the O&G
industry was presented in [27] and a review of DT within
the context of the O&G industry was presented in [99].
In [99], the key application areas such as asset integrity
monitoring, project planning, and life cycle management
were identified and the following challenges: cybersecurity,
lack of standardization, and uncertainty were discussed.
Nguyen et al. [105] focused on the role of big data (BD)
in the O&G industry. This covers the application of BD in
the exploration, drilling, reservoir, production, refining and

transportation in O&G industry. While this works focused
on specific components of I4.0 technologies for the O&G
sector, Lu et al. [19] presented a systematic review on oil
and gas 4.0. The roles of I4.0 technologies in facilitating
the intelligent oilfield in the upstream sector, intelligent
pipeline in the midstream sector, and intelligent refinery
in the downstream sector were discussed in [19]. Shafiee
et al. [34], presented a review on decision-making support
in the O&G upstream sector. Different decision-making
support methods were identified which include AI. From
the review of the existing literature, there is still a lack
of comprehensive survey on the I4.0 technologies in the
upstream sector. Hence, this paper provides a comprehensive
survey on the various I4.0 technologies that can be applied
to the various operation and processes in the upstream
sector. The findings are discussed in the next section.

The review of the application of I4.0 technologies in
the O&G upstream sector is discussed under the following
exploration and development, drilling and well completion,
production and optimization, reservoir engineering, control
center operations, and equipment, and operational parts. The
discussion presented here provides answers to RQ2.

B. EXPLORATION AND DEVELOPMENT

The primary step in the upstream sector is related to O&G
exploration, and this step is regarded as one of the most ex-
pensive activities with high accident risks [9], [106]–[108].
The O&G exploration involves searching and identifying hy-
drocarbon located underneath the earth’s surface [109] and it
can be performed onshore (on land) or offshore (in shallow
waters or deep waters). The first phase of exploration is
known as seismic study (or geological data study), where
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Table 4. Summary of related systematic review journals

Ref. Year Focus CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9

[19] 2019 I4.0 technologies such as
in DT, AR, blockchain,

BD, IoT in O&G

×
√

× Google Scholar, Web of
Science, ScienceDirect

√
×

√
× ×

[27] 2020 IoT in O&G
√ √

× Scopus, OnePetro, IEEE
explore, Springer, Web of

Science

×
√

× ×
√

[34] 2019 AI and other decision
support systems in O&G

√ √
× Scopus, Web of Science,

Onepetrol, Knovel, IEEE
Xplore, American Society
of Mechanical Engineers
(ASME) digital collection

and Google scholar

√ √ √ √
×

[99] 2020 DT in O&G
√ √

× Scopus, OnePetro, IEEE
Xplore, Springer, Elsevier

√ √ √
×

√

[105] 2020 BD in O&G
√ √

× OnePetro, IEEE Xplore,
Springer, Elsevier

√
× × × ×

CR1-time-limit consideration, CR2-sample size, CR3-PRISMA flow diagram, CR4-database, CR5-exploration and development, CR6- drilling and well
completion, CR7-production and optimization, CR8- reservoir engineering CR9-control operations.

Table 5. Seismology of Onshore and Offshore in O&G Industry

Onshore Offshore

Involves the use of Vibroseis for
the generation and sending of
seismic waves deep into the

earth.

Pressure waves generated from
the short bursts of huge energy

are released to travel through the
water column to the sea bed and
beyond that to the earth’s core.

Reflected waves are recorded by
geophones located on the surface

of the earth.

The array of acoustic sensors
know as hydrophones are used

to capture reflected waves.
The cross-section of the earth

with potential O&G are
evaluated by reservoir engineers,

geophysicists and geologists
from seismic data recorded using

the geophones.

Once seismic data is captured by
hydrophones, the use of

multiple remotely operated
vehicles (ROVs) equipped with

suitable sensors are deployed for
more data collection in order to
establish the potential presence

of O&G.

Figure 10. Seismic interpretation workflow in O&G exploration of the

upstream sector using I4.0 [9]

the location of the O&G reserves is determined via seismic
exploration by using a detailed map with high-resolution
acoustic data [5]. The purpose of the seismic study is to
assist interpreters (geologists and geophysics) in identifying
geologic features.

Table 5 shows the seismology of onshore and offshore in
O&G industry [5].

Fig. 10 illustrates the seismic interpretation workflow in
O&G exploration of the upstream sector using I4.0 [9].

Technology and supercomputers with advanced algo-
rithms play an important role to reduce the cost and time
involved in O&G exploration [110]. For example, the de-

velopment of ground penetrating radar (GPR) technology
is employed together with BD for subsurface investigation
and exploration, which enables the experts to make fast
and important decisions. On the other hand, Exxon Mobil
used full wavefield inversion (FWI) combined with super-
computer technology to produce high-definition images into
subsurface geologic structures and the physical characteris-
tics of rocks [111]. These capabilities help to identify the
hydrocarbon resources more accurately in the exploration
phase, as well as in development and production phases
[111].

Nowadays, due to digitization in the exploration phase,
O&G companies have increased their capabilities to mon-
itor, record, and analyze data far more efficiently using
advanced technology [31]. The interpretation of seismic
reflection data involves high-performance computers, ad-
vanced visualization techniques, and the generation of var-
ious seismic data types and attributes. The use of seismic
data involves two processes which are data acquisition and
data processing and they are discussed as follows.

1) Data Acquisition

The acquisition of seismic data involves the use of a
large number of seismic sensors known as geophones. The
geophones are ground motion sensors that convert ground
vibrations into voltages by capturing reflected waves (10 -
100 Hz) sent by vibration source. These sensors are usually
deployed over large areas via seismic cables which limits
flexibility and increases the cost of deployment [112]. To
address these challenges, wireless geophone sensor net-
works [112] and the use of subsurface cameras [113] is
proposed. The use of geophone sensors networks proposed
in [112] makes use of a reconfigurable antenna, wireless
node, and gateway for the collection of seismic data in
order to overcome the challenges faced with wired seismic
cables. A similar geophysical sensor network proposed in
[113] computes wireless 3D subsurface images in real-time
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using wireless geophysical sensors. While these methods
seem promising there are still several open issues associated
with the use of geophysical sensor network methods some
of which includes interference issues, power consumption
and short-range communication, adaptability of different
geophysical sensors/methods to different subsurface geo-
physical properties.

2) Data Processing

Due to the BD generated from the seismic attributes, and the
difficulty in translating these data to geological information,
the use of AI and machine learning (ML) is being employed
in the interpretation to improve evaluations [114], [115].
Analyzing and interpreting these data with conventional
methods such as seismic amplitude displays alone can be
very challenging and less accurate [114]. Hence, the studies
from [114], [116] have shown the use of BD analytic and
AI in seismic data analysis.

For instance, the use of unsupervised ML and BD analytic
methods for seismic data analysis can provide better under-
standing of geologic patterns [114]. Roden [114] employed
unsupervised ML such as principal component analysis
(PCA) for selection of seismic attributes and self-organizing
maps (SOM) for classification and interpretation of the
seismic data in a five-stage approach. The stages included 1)
identification of geological issues, 2) application of PCA for
selection of seismic attribute, 3) SOM ML tool is applied
to identify natural clusters in the data, 4) 2D color map is
applied to the clusters to identify natural patterns, and 5)
use of the patterns for geological interpretations. The use
of the PCA and SOM multi-attribute approach gives better
risk assessment and interpretation needed by geoscientist.
Studies conducted by [116] demonstrated the advantage of
BD analytic and ML techniques for discovery of new and
unique exploration criteria in the West Siberian Petroleum
Basin. An approach called “from particulars to general” used
by Olneva [116] used ML algorithms to identify separate
objects in a seismic and geological pattern with a regional
database of 40,000 sq.km of 3D data. The advantage of this
approach is that it enables the creation of library for typical
seismic images which can be used for pattern recognition.
The identification of geological leads of hydrocarbon using
ML learning technique for semantic segmentation and post-
processing resulting in fairly accurate predictions [117].

C. DRILLING AND WELL COMPLETION

Once the O&G reserves are identified, the production from
beneath the earth will take place [14], [106]. These pro-
duction processes include drilling, extraction, and recovery
of oil. Access to reservoir rocks requires drilling which is
one of the most important processes and remains crucial to
O&G production [107]. The drilling operations are carried
out to either confirm the presence of a reservoir or to
commence the production and commercialization of the
O&G. The onshore drilling is considered easier compared
to offshore drilling because, in the offshore fields, artificial

platforms (movable or permanent) are required for support
base. Additionally, in the offshore fields, ROVs equipped
with visual cameras and sensors are used to collect real-
time data which are sent to control centers. The real-time
data from the ROVs are used for decision-making during
the complete process of drilling [5]. This helps to enhance
efficiency and personal safety during drilling inspections and
damage control. The various application of I4.0 in drilling
and well completions from published works are discussed
as follows.

1) Drilling Operations

The I4.0 technologies are facilitating the digitization of
drilling operations in the upstream sector of the O&G. These
include data acquisition from bottom hole location with
MWD, acquisition of surrounding geological formations
with real-time LWD, and enhancement of drilling efficiency
[118]. The acquisition of data from sensors and IoT, BD
analysis, AI, DT, modeling is allowing for better decision
making in drilling events and performance prediction and
optimization.

The use of AI techniques such as artificial neural net-
works, ANN, radial basis function, RBF, fuzzy logic, FL,
support vector machine, SVM, and functional networks (FN)
have been explored in the prediction of pore pressure while
drilling [119], drilling optimization [120], forecasting of
gas-to-oil ratio (GOR) from a generic hydraulically fractured
reservoir [121], selection of drill bits [122], hole cleaning
in horizontal wells [123] and condition-based maintenance
systems for downhole tools [124]. Other areas of application
such as the use of AI in the detection and mitigation of
lost circulation incidents during drilling [125]–[127] and
prediction of drilling problems [128], [129] have shown
promising results. This helps to increase the productive time
of drilling in O&G wells. The use of AI has been adopted
to improve the accuracy of prediction of rock characteristics
which are determined by elastic parameters like Poisson’s
ratio and Young’s modulus [130]–[133]. Such accuracy
minimizes the risk associated with well drilling operations.
In addition, the use of AI has been used to estimate the rate
of penetration (ROP) which is associated with the speed
at which drilling is performed [134]–[137]. The use of AI
offers a real-time prediction of the ROP based on surface
operational parameters such as weight on bit, rotations per
minute, mud flow, and differential pressures.

Furthermore, the use of AI has been proposed to improve
health and safety by using DL to monitor and detect safety
violations by personnel on drilling platforms [138]. Health
and safety of drilling workers can also be monitored using
IoT devices such as heart rate monitor, toxic gas monitor,
gesture detectors, slip and fall detectors, smart helmets,
motion active sensors, as well as a self-contained breathing
apparatus [23].

Robots can be used to execute operational decisions based
on AI in the oil wells. For instance, Liu et al. [65] developed
a UAV-based air monitoring system for methane (CH4) mon-
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itoring over the oil fields. The system consisted of low-cost
gas sensors, a microcontroller, a LoRa wireless transceiver,
and a SD card reader. It was tested at two different oil fields
in North Dakota, and the results indicated that the system
was capable of measuring CH4 concentrations over the
oil fields. Similarly, the use of semi-autonomous industrial
robots was used for methane leak inspection in [139]. The
application of AI for accurate sand production prediction
in wells [140] and for shale well production [141] have
also shown promising results. The use of discrete event
simulation DT in studying the operational risk in oil sand
mining and processing of bitumen in response to geological
uncertainty was shown to be a good coordination tool [142],
enhancement of drilling operations using IoT and AI models
[143] and detection of fault in submersible screw pumps in
oil wells [144]. The use of AI in the detection of casing
damage due to non-uniform in-situ stress has been explored
in [145]–[147]. The AI aids the prediction of the casing
damage by using historical and real-time data. This helps to
optimize the maintenance intervals of the casing.

2) Prediction

I4.0 technologies have been applied to improve the accuracy
in several drilling processes. For instance, AI/ML technol-
ogy is used to predict pore pressure [119], prediction of
pore structure type [148], to predict oil recovery and the
gas-to-oil ratio [121], [149], as well as for drilling and
well completion [150]. DT integrated AI platforms have
been explored to predict the remaining useful life of a
subsea tribosystem [151]. The use of AI in the prediction of
the multi-phase flow physical parameters such as velocity,
pressure, and phase fraction with less computational time
when compared to computational fluid dynamic [152]. In
[153] demonstrated the use of AI in the prediction of nuclear
magnetic resonance (NMR) total porosity and free fluid
porosity estimation from seismic data.

The application of AI has been explored in the prediction
of corrosion rate of metal casing string in downhole casing
leaks in O&G producing wells can help to improve the
wellbore integrity management [154] and prediction of the
hydrate formation condition that occurs during O&G drilling
[155]. The understanding of geomechanical properties in
well formation using AI enables the prediction of future
wells [156]. A reliable model was developed using AN-
FIS for predicting the amount of dissolved gas in oil at
reservoir conditions [157]. The prediction of troubles in the
drilling process and automation of log curves digitization
was addressed using radial basis function neural network
AI technique [158]. The estimation of turbulence coefficient
(D) based on skin factor, reservoir rock, and fluid properties
using AI techniques was presented in [159]. The use of AI in
the prediction of bottom-hole pressures in multiphase flow
wells was presented in [160]. Similarly, the use of AI in the
prediction of volume fractions in gas-oil-water multiphase
flow system was presented in [161]. Other applications of
AI in the exploration and development include accurate

prediction of oil recovery factor which plays an important
role in the early reservoir life [162], [163], oil formation
volume factor [164], prediction of bottom-hole pressures in
multiphase flow [160], prediction of volume fractions in gas-
oil-water multiphase flow system [161].

3) Risk Analysis

The demand for intelligent fields, smart wells, and real-time
analysis has increased the utilization of I4.0 technology in
the O&G industry. For example, BD was used to smarten
the drilling platforms and pipeline infrastructure in [165],
to evaluate drilling rig efficiency and performance [166],
[167], as well as to reduce the risk of drilling operations
[168]. Johnston et al. [168] applied big DA in the attempt to
minimize the operational risks in drilling and wells domains.
Expertise and big DA are used to analyze the huge amount
of data from approximately 350 O&G wells in the UK North
Sea. The data sets are including the drilling parameters, well
logs data, and geological formation data. The results showed
a clear correlation of borehole quality with the drilling
parameters, however, that was dependent on the geology and
region. Moreover, it was also found that big DA is capable
to be applied as a quality control tool in future operations
in O&G. In addition, drones or UAVs can be deployed to
oversee operations of any risky task. Shukla and Karki [6]
outlined several robotic technologies are used to facilitate
drilling operations in the modern time. For example, the
ROVs, UAVs, under-water welding robots, and under-water
manipulators are utilized in offshore O&G facilities.

4) Data Integrity

To achieve efficient drilling operations, data from different
surfaces, downhole sensors, drilling operational data such
as logged activities, operator data, and incident reports are
collected. Additional data such as weight on bit, revolution
per minute, depth, and torque obtained from the drilling rig
sensors are collected to predict penetration rates as well as
the equipment failure [30], [31]. From the prediction of the
rate of penetration, predictive data models which take into
account all the above data and necessary parameters are
developed to optimize the oil extraction process [31]. This
predictive analytics help in the reduction of drilling time
which results in a smooth oil extraction process [31]. There
are high risks involved in crude oil production whether
onshore or offshore [2]. Hence, there is an urgent need for
the O&G industry in exploring new technologies to collect,
process, and manage information to ensure efficient, safe,
and reliable production processes at low operating costs [2].

Blockchain technology can be used to set standards that
can be followed for collaboration among stakeholders and
service providers that are involved in executing and automat-
ing drilling. Additionally, it will enhance data security by
allowing secure sharing of sensitive data within the system
[9]. Blockchain technology has been employed to design and
construct well and facilities [78], to track drilling equipment
history and maintenance [169], automating drilling [78], as
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well as to optimize drilling operations [78]. Lakhanpal et
al. [78] reported that proper data sharing can be achieved
with the implementation of blockchain technology and IoT
for the drilling as well as the production operations in
O&G industry. For instance, if the types and efficiency of
artificial lift utilized in a legacy well are recorded in a
blockchain database, the support engineers are able to make
an appropriate strategy for the well based on the provided
information. Moreover, the availability of stimulation history
of a formation on a blockchain allows engineers to make a
proper selection to optimize the well productivity.

D. PRODUCTION AND OPTIMIZATION

Analysis of BD in a short period for decision making is
challenging to production engineers. Advances in ML have
created a novel workflow that can reduce the workload on
engineers. For instance, ML techniques have been applied in
production pattern data recognition. ANN model can be used
to forecast end pressure with knowledge from patterns in
data [170]. Various ML applications are used for numerous
pumps to implement predictive maintenance, select optimal
operations regimes to save cost, and optimize production
[171]. Apart from application for equipment maintenance,
well treatment operation such as hydraulic fracturing and
chemical treatment is another area with high-cost saving
potential. Therefore, I4.0 technologies have found useful-
ness in artificial lift optimization, hydraulic fracturing, and
fluid separation.

1) Artificial Lift Optimization

Well performance in the unconventional formation such
as shale generates several challenges during hydrocarbon
production. Subsequently, resulting in drastic production
decline in a very short period. Hence, artificial lift systems
(ALS) are installed in oil wells to improve drawdown and
flow rates, minimize pressure loss in the production tubing
and to cut cost. Moreover, to achieve optimum recovery
within a short period, appropriate ALS must be selected.
Selecting appropriate ALS for a well must depend on
the production condition, completion depth, well trajectory
surface facilities, safety condition, cost, reservoir rock and
fluid properties. These selection criteria sometimes need
an upgrade or replacement to keep up with the subsurface
and surface condition resulting in loss of man-hour. Hence,
modern technology such as IoT, AI, and ML can be used to
improve operations abilities to make systematic decisions
and forecast future occurrences based on past events and
production trend [172]. Kandziora et al. [173] used a unique
AI-based application that allows the operator to prevent
electrical submersible pump failure 12 days before the actual
failure occurred and at the same time optimizing production.

2) Hydraulic Fracturing

Well treatment operations are carried out to stimulate the
flow of hydrocarbon to old oil wells or increase the initial
flow rate of new oil wells. Data obtained from produced

well treatment jobs can be used to predict the efficacy of
future hydraulic fracturing jobs through ML investigation.
An accurate prediction in terms of additional oil production
enables reliable estimation of investment. Ben et al. [174]
used ML to predict well head pressure in real-time during
hydraulic fracturing jobs. They tested several ML methods
on the historic data of 100 hydraulic fracturing stages from
several wells in the Delaware Basin. The ML algorithm
predicted the well head pressure with acceptable accuracy.
Therefore, the algorithm produced can assist engineers to
monitor and optimize the pumping schedule. Likewise,
Makhotin et al. [175] used ML to predict oil rate after
hydraulic fracturing at one of Siberia oil field and [176] used
AI to forecast well performance using hydraulic fracture
parameters. Their study has brought about modern-day data
driven technique to unconventional reservoirs.

3) Fluid Separation

Surface processing plant needs optimization to minimize
intermediate components and the flash from the crude oil
during primary and secondary separation process to obtain
quality oil. This can be achieved by the choice of operating
pressure in surface separators, which have a notable effect
on the quality and quantity of oil produced at the stock tank.
AI can be used to select optimum middle-stage separation
pressure and temperature for different crude oil. Mahmoud
et al. [177] used an optimized algorithm to forecast the
optimal operational condition that will increase crude oil
recovery.

4) Pipeline and Field Operation

Some of the characteristics of intelligent oilfields are de-
ployment of self-diagnostics, control and monitoring sys-
tems, autonomous operations, use of advance mathematical
models for control of equipment, and real-time exchange
of data for controlled objects [178]. Oil pipeline moni-
toring plays important role in the O&G industry because
several important parameters obtained from the pipeline are
representative data used in production. The monitoring of
pipelines is not only for production measurement but for
many other purposes such as security, preventive and predic-
tion of pipeline maintenance, pipe leakage, and equipment
control as well as for automation systems. Location detec-
tion and pipeline route information are essential for pipeline
surveillance. This helps to identify the position of pipeline
incidents and to easily trace reported incidents by using
global positioning systems and geographical information
systems [179]. There are several causes of O&G pipeline
failure that have been identified in [180]. They include
corrosion, external factors, human negligence, installation
and erection, and manufacturing. The use of wireless sensor
networks (WSN) is a common practice now in pipeline
monitoring [180]–[182]. The combination of WSN, IoT,
BD and AI enable remote access to data obtained from
the pipeline and enhance smart monitoring [183]–[188].
The data collected via IoT needs to be analyzed using the
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Figure 11. Illustration of pipe monitoring using wireless sensor network [182]

appropriate framework for decision making to minimize the
risk associated with corrosion, erosion, wear and tear [189].
AI has been applied to predict the rate of erosion in pipe
fittings [190], modeling of two-phase-flow in pipes [191],
and defect prediction in pipelines [192].

An example of the application of wireless monitoring of
pipeline using the WSN is shown in Fig. 11.

This paves the way for the concept of intelligent oil
field (IoF) or smart field or digital oil field. The use of
the I4.0 technologies enable the O&G industry to carry out
multi-site remote collaboration, monitor complex reservoir
environments, enhance production and maximizing the NPV
of cumulative field production. The use of CPS for crude-oil
scheduling network for smart field operations was presented
in [193] and [194].

The uses of AI has been employed to model the scour
pattern around submerged pipes located in sedimentary beds
[195], use of BD analysis for safety factors in the pipelines
[196], use of ML to automate and reduce variability in
manual output in the development of corrosion loop for
pipes [197]. AI has also been applied in the prediction
of optimum wellhead choke size which determines the
flow rate in pipelines [198] and choke flow coefficient
for both nozzle and orifice type chokes with adequate
precision [199]. BD analysis has enabled real-time query
and management of O&G well production data in China
national petroleum corporation [200]. The security of the
pipeline infrastructure from third-party attacks is crucial as
more attacks are witnessed in the O&G industry. To this
end, projects such as PipeSecure2020 are being initiated
to define new layers of protection for the security of gas
pipelines [201].

E. RESERVOIR ENGINEERING

In the area of reservoir engineering, the interpretation,
modelling, and prediction of the parameter involved in
reservoir simulations are based mainly on the stratigraphic
rock analysis [31], [114]. The prediction of rock char-
acteristics is carried out using comprehensive geological

information in different regions across the world [114].
However, a significant obstacle for reservoir engineers is that
how to integrate the 3D seismic data, wellbore data, relative
permeability, downhole pressure, and sand production [202],
[203]. Employing BD analytics to a variety of enormous
information can be used to generate information that assists
engineers to understand better the reservoir changes over
time [204]. The high volume of data is collected through
small-scale and cost-effective sensor devices and transmitted
by the IoT technique. Subsequently, the data is integrated
into the BD system and is normalized into a time sequence.
This allows reservoir engineers to continuously monitor the
reservoirs using the stored results in chronological order.
Moreover, integration of BD technique and cloud computing
enables the reservoir engineers to adjust the development
parameters in real-time, such as optimization of gas lift,
optimization of formation water injection, spacing, and
pattern of water displacement [202]. The application of
I4.0 technologies are discussed under the following head-
ings: reservoir management, enhanced oil recovery (EOR),
reservoir characterization, reservoir simulations, and carbon
capture.

1) Reservoir Management

Reservoir management involves the use of technology, in-
formation and resources to control operations in order to
obtain the maximum possible economic recovery from a
reservoir. Thus, involves optimization of oil production,
operating cost and capital investments in order to achieve
maximum net present value (NPV). The concept of reservoir
management and its operations have been categorized in
[205] under four main categories which are reservoir op-
erations, completions operations, well operations, and top
side facility operations. The reservoir operations manage-
ment involves the ability to manage several operations such
as multi-layer reservoir properties estimation, steam flood
monitoring, monitoring of water or gas injection, monitoring
of chemical flood and event detection. The completions
operation management involves inflow profiling, detection
of water or gas breakthrough, forecasting of production
performance and assessment of well completions integrity.
The well operations management include the detection of
downhole sensor malfunctions, closed loop monitoring, and
control of chemical injection rate, real-time virtual metering
at gauged and ungauged locations knowledge discovery, and
diagnostics, prognostics and prescriptive in well monitor-
ing. The top side facility operations management involves
pipeline integrity management, compressor and pump per-
formance monitoring, and flow forecasting for optimizing
pipeline operations. For effective management operations,
in-well measurements and subsurface monitoring of wells
and reservoirs in real-time are needed. Downhole BD from
multiple downhole distributed sensors (such as temperatures,
acoustic, strain, frequency, pressure, flow rate) and data from
time-lapse seismic and electrical potential and production
logging tools are obtained and used for data driven decision
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supports. This process involves the use of different I4.0
technologies such as IoT, BD and AI, and cloud computing.
For instance, [202] applied IoT, BD and simulations to
optimize the application of EOR projects in Daqing oilfield
China. Real-time data collected from various sensors via IoT
were integrated to BD system for computation of different
production parameters. These parameters were fed as inputs
to numerical reservoir simulation models. The application
of this systems helped to reduce prediction error by more
than 46 % when compared to traditional reservoir simulation
which operated base on geo parameters. Bello et al. [205]
presented the application of BD, AI, cloud computing in
different case studies related to reservoir management. This
include the use of ML for estimation of O&G flow rates and
forecasting in multiphase production wells, characterization
of matrix acidizing operations using permanent downhole
gauges (PDG), distributed temperature sensors (DTS) and
distributed acoustic sensors (DAS), analysis of PDG and
DTS data for flow profiling in vertical gas well and analysis
of flow profiling using PDG and production logging tool
(PTL) for automated production performance of well sys-
tem. The use of AI, BD and cloud computing have helped to
reduce the error between predicted values and actual values
in the reservoir management [205], [206]. Physics-based
models have also been combined with AI models to for
automatic detection of clusters by employing spatial and
temporal field data [207]. Furthermore, the evaluation and
disclosure of reservoir which includes confirmed reserves,
probable reserves and possible reserves to the security and
exchange commission (SEC) has to be well managed by the
O&G industry. The use of AI has been used to enhance the
evaluation and management of the SEC oil and gas reserves
between China and SEC [208].

2) Enhanced Oil Recovery

The global demand for oil continues to increase and the oil
production rate declines due to the lack of new oil fields
and a decline in production from existing oil wells. This
have resulted in considerable research on EOR approaches
(gas, chemical and thermal) to improve the productivity
of reservoirs [209], [210]. However, lack of a specific
recommendation for reservoirs has limited EOR applica-
tions [211]. Hence, the selection of the appropriate EOR
method can save cost and increase oil recovery. The most
common methods used in the O&G are conventional EOR
screening (CEORS) and the advanced EOR screening (AE-
ORS). CEORS utilizes pre-defined screening criteria such
as acceptable ranges of reservoir rock and fluids properties
to determine the best EOR method to implement [212].
AEORS includes the use of ML algorithm to discover the
valuable screening rules (relationship between the reservoir
properties and successful implementation of EOR methods)
from past successful EOR projects [212]. Consequently,
Nasr et al. [213] investigated the application of three
ML algorithms namely rapid basis function-artificial neural
network (RBF-ANN), adaptive-network-based fuzzy infer-

ence system (ANFIS) and multilayer perception-artificial
neural network (MLP-ANN) forecast the efficacy of silica
nanofluid displacement experiment using sandstone and
carbonate core samples. They concluded that ANFIS model
had the shortest implementation time with the least fitting
problem. Hence, it can be used for selecting the effective-
ness of silica-EOR projects. In similitude, Giro et al. [211]
used AI to correlate physical and chemical representations
of injected fluids, including EOR materials with reservoir-
specific information on lithology, porosity, permeability, oil,
water, and salinity condition to recommend EOR injection
fluids. This allows users to consider the EOR methods based
on availability and cost. SVR method was used to determine
the optimum surfactant structures as a predictive tool EOR
[214].

3) Reservoir Characterization

Reservoir characterization is the estimation of petrophysical
properties such as permeability, water saturation, poros-
ity, grain composition and sand fraction of the reservoir
subsurface responsible for the presence of hydrocarbon
[211]. Nevertheless, estimation of these reservoir properties
is a cumbersome process due to heterogeneous nature of
the subsurface (pore space and reservoir geometry) [215].
Consequently, conventional formation evaluation based on
well logs to establish a statistically significant correlation
between the reservoir storage and fluid flow characteristics
cannot provide enough information for deriving reservoir
characteristics [216]. For instance, lateral variation in sand
continuity in carbonate reservoir provides inaccurate pre-
diction of permeability far away from the well location. For
instance, when the number of wells is less, estimation using
well logs do not provide satisfactory results [216]. AI has
been used to circumvent these problems by integrating ML
with an expert system to predict depositional facies, which
can be validated with facies interpretation from conventional
cores in test wells [217]. Elkatatny et al. [218] employed
ANN to predict the permeability of heterogeneous carbonate
reservoir while the prediction of porosity and permeability
were carried out using functional network and support
vector machine [219]. Optimal selection of support vector
regression hyper-parameters for prediction of permeability
in well characterization was explored in [220] and ant
colony optimization was used to predict permeability of gas
reservoir [221].

Wang et al. [222] utilized the random forest ensemble
ML method to implement an inverse modelling approach to
predict time-lapse saturation profile. Real field production
and injection data were used to mitigate against the labor-
intensive, time-consuming, and expensive traditional method
of using seismic, well logs, and core data. Seismic data on
the other hand are prone to the strong background sound and
the relationship between seismic data and projected reservoir
properties vary from one location to another [211]. A deep
neural network (DNN) can be used to solve problems
usually associated with longitudinal waves in reservoir char-

15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3121302, IEEE Access

Author et al.: Preparation of Papers for IEEE ACCESS

acterization. Yang et al. [223] used cluster analysis and DNN
to optimize seismic features prone to oil and gas response.
The seismic gas reservoir distribution forecasted using this
method had higher accuracy and was consistent with actual
drilling information. BD analytics and simulation models
enable the early detection of reservoir souring [224]. The
use of BD analysis has been used to develop a simulation
platform to predict reservoir parameters and evaluate oil
well productivity in the south china sea [225]. AI has been
applied in the development of models to determine the
reservoir fluid properties such as bubble point pressure (Pb)
and gas solubility (Rs). These properties play important role
in reservoir management. The use of functional networks
(FN) and type-2 fuzzy logic systems have been explored
in the prediction of porosity and permeability of the O&G
reservoirs [226], [227].

4) Reservoir Simulation

Reservoir simulation has been recognized as an economical
means to solve complex reservoir problems in a reasonable
time frame [228]. Large data from existing reservoirs are
used to develop reservoir simulation models. In the ab-
sence of data for new fields and reservoirs, heterogeneous
data from statistical characteristics from existing fields or
reservoirs within geologic environments are often used.
Numerical and simulation models are needed to make
economic decisions and are particularly useful in the study
of unconventional reservoirs. Crude oil recovery from un-
conventional reservoirs includes shale, coal, tight sand, and
oil sand. These reservoirs contain massive amounts of oil
and natural gas, but they present a technological challenge
to both geoscientists and engineers in terms of producing
economically on a commercial scale. For instance, the
application of DT which combines physical and virtual
model was used to study the capillarity, sorption, and
injection salinity mechanism in unconventional reservoirs
[100]. The effect of the mechanism on transport phenom-
ena was characterized mathematically and illustrated via
simulations by using multiscale algorithms. The application
of analytical and physics-related computational algorithms
on BD generated from unconventional reservoirs that are
needed for decision making was presented in [229]. These
computational algorithms were applied to model and simu-
late the complexity of unconventional reservoirs. ANN was
explored in choosing the best location for injection in gas-
assisted gravity drainage for reaching the optimized pressure
and production rate in a fractured carbonate reservoir [230].
The result showed high efficiency and ANN as a powerful
tool for optimizing the location of the injection. The use of
AI was used to improve history match in the simulation of
reservoir model [231].

5) Carbon Capture and Storage

The O&G industry is expected to play a significant role in
carbon capture and storage (CSS). The CCS involves cap-
turing carbon dioxide emission from energy-related sources

before it mixes with the atmosphere, compressed and trans-
ported to be kept in a storage site. This storage site could
be porous geological formations that are thousand of meters
underneath the surface of the earth. Examples of storage
sites are former oil and gas fields either onshore or offshore.
The application of I4.0 technologies can be deployed to
determine and manage the best storage sites. For instance, a
numerical simulation (compositional field scale) model was
used to examine fluid flow dynamic forces of a current CO2-
EOR project in Texas, USA. A hybrid scheme that utilizes
particle swarm optimization (PSO) and ANN was used to
envisage time-series project responses (hydrocarbon produc-
tion, CO2 storage, and reservoir pressure data) to optimize
CO2-EOR process. The CO2 storage capacity increased by
21.69 % and oil production by 8.74 %. This shows the
success of the combined optimization for CO2-sequestration
and oil recovery can be used in making decisions for other
CO2-EOR cases [232].

F. CONTROL CENTER OPERATIONS

In the O&G industry, the control center is an important part
of operations and it is a command center for control of all
the processes and monitoring of all the parameters. The con-
trol rooms deploy SCADA systems that are interfaced with
displays and monitors [233]. The operations in the control
centers include emergency shut down, and monitoring of
equipment such as pumps and compressors. In many cases,
the control centers still require human intervention to handle
these operations and therefore have to be manned 24/7. With
the deployment of I4.0, intelligent data centers can monitor
and control several operations using data collected from
smart objects with fewer human interventions anywhere
and everywhere [15], [234]. The use of IIoT allows for
remote control and multi-site coordination of control center
operations. The control centers are equipped with remote
monitoring software and analytics that helps to process
and convert the numerous stream of data into actionable
instructions.

Fig. 12 shows a control center in O&G industrial oper-
ation for process control and monitoring. Other functions
of the control center include data storage and visualization.
The performance and condition of devices such as control
valve positioners, mission-critical valves can be monitored
remotely from the control center and proactive maintenance
can be scheduled automatically [235]. Control centers are
now being operated using DT and CPS technologies [236]–
[238]. Thanks to advanced communication technologies
such as highway addressable remote transducer (HART),
WirelessHART® (IEC 62591) and FOUNDATION Fieldbus
capabilities [235]. The use of blockchain and IoT technology
helps to reduce downtime and improves the reliability of
the O&G facilities. Blockchain and IoT technology were
applied to reduce failure rates in pumps, increase relia-
bility while ensuring transparency and traceability [239].
However, control centers require adequate skills and this
is carried out by using simulators that are developed for the
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Figure 12. Example of control center operation for O&G industry [241]

O&G industry to train personnel [240].

Currently, AR is considered a useful support tool for the
exchange of information between the workers on-site and
designers of the O&G products [242]. This aids in mod-
ification and on-site improvements of the O&G products.
However, one of the major challenges of the control room
is cyberattacks. Hence, attempts have been made to develop
network security risk evaluation method for SCADA sys-
tems [243] and cybersecurity measures for industrial control
systems [244], [245].

G. EQUIPMENT AND OPERATIONAL PARTS

The study in [246] has shown the progress in the application
of AM in the O&G industry. The benefit of AM application
in O&G is the ability to provide on-demand production of
consumables or failure-prone components directly on-site or
near-site and production of components and sub-assemblies
with complex features and shapes. Two categories of metal
AM technologies are powder bed fusion (PBF) and directed
energy deposition (DED) [247]. Some of the applications
include the use of laser aided AM (LAAM) [248], wire and
arc AM (WAAM) for fabrication of superduplex stainless
steel [249], [250], and metal AM for manufacturing turbo-
machinery components [251].

While AM provides several benefits, there are several
issues that could slow the adoption of AM in the O&G
upstream sector. The characteristic and performance of AM
materials in harsh, corrosive environments which require
minimum downtime requires a rigorous test. Another issues
is the repeatability of the AM process with effects on the
microstructure of the build component. An example is the
susceptibility to hydrogen embrittlement based on different
build orientations of AM 718 alloy [252] and testing relative
to a particular AM material and heat treatment of UNS(4)
S17400 [253]. Hence, standards are being formulated to
facilitate improvements in design equipment and faster
prototyping [254], [255].

H. SUMMARY

The reviewed literature shows that the I4.0 technologies
have been widely explored in the O&G upstream sector.
Some of the technologies like BD analytics, AI, IoT, sim-
ulations, cloud computing, AM, AR, system integration are
actively been applied in the O&G upstream sector. From the
review the application of AI has been widely explored and
results have shown remarkable performance compared to the
traditional method of estimation and prediction. The use of
AI helps to overcome some of the limitations associated
with numerical simulation techniques such as computation
complexity and time consumption while offering better
accuracy. However, some of the AI techniques are faced
with limitations of data size, dimensionality making them
inappropriate for certain tasks. To overcome these limita-
tions, the use of hybrid-AI techniques was demonstrated
in [131], [207], [220], [226]. The application of AM and
AR are still emerging areas with limited published works
compared to other I4.0 technologies. This may indicate slow
adoption in the O&G sector. This is due to the need for a
high level of standardization required for the application of
AM materials in harsh environments and also the need to
determine use cases where AR is best applied. Cybersecurity
remains a vital area and requires continuous research and
efforts to safeguard critical infrastructure and confidential
information.

The majority of the published works reviewed are still
at conceptual and laboratory stage. However, some of the
I4.0 technologies have been adopted for industrial scale
application. For instance, the deployment of AM by Siemens
in the production of turbine [256], DT in aweelah Gas
Compression Plant in the United Arab Emirates (UAE)
[257], ML in optimization of Wapiti horizontal gas well
[258], unmanned smart field in United Arab Emirates [259].
In addition, several industry players are already providing
digitized services to the O&G by using some of the I4.0
technologies. A more recent collaboration between Exxon
Mobil and the Massachusetts Institute of Technology (MIT)
energy initiative utilized AI robots to navigate and explore
oceans, as well as to detect oil seeps [150]. Similarly, an
autonomous robot for O&G site (ARGOS) robots is used
to carry out inspections at the locations where exploration
is taking place, during the day or night as well as to
optimize subsurface data analysis by the collaboration of
Total Societe Anonyme (S.A.) and Google cloud companies
[150]. The partnership between British Petroleum (BP)
and Belmont Technology Inc/Houston developed a cloud-
based geoscience platform called “Sandy” to perform sim-
ulations, interpret geology, geophysics, historic, reservoir
project information, and link the information together to
create a robust image of BP’s subsurface assets [35]. The
partnership between Shell and Microsoft developed Azure
C3 IoT software platform and intelligent drilling solution
(Geodesic™) aimed at improving the accuracy and con-
sistency in the directional control of a horizontal well in
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order to reach the most productive layers of rock containing
hydrocarbon [260]. The solutions were designed to make
real-time decisions and better predict their outcomes through
the streaming of drilling data and process algorithms. The
solution enables geologists and drillers to visualize payzone
in a unique environment by using the features such as an
easy user interface (drilling simulator), and a suite of tested
algorithms [260]. Other industries like Baker Hughes (GE),
Equinor, Chevron, and BP Plc are also leading the digital
innovation and engineering.

V. I4.0 FRAMEWORK FOR UPSTREAM O&G SECTOR

To answer RQ3, a discussion on the framework for I4.0
is presented in this section. The review of literature has
shown the wide adoption of I4.0 technologies in the O&G
upstream sector. However, there is a lack of a framework
that allows for seamless integration and application of the
different technologies. Efforts have been made to propose
and develop architecture for the adoption of some of the
I4.0 technologies. An example is the proposed Service
Oriented Architecture (SOA) to address the issues of BD
in the O&G industry [261]. An IoF architecture for the
vertical integration in the O&G industry that incorporates
the industry standard IEC 61499 and OPC UA was proposed
in [262]. This architecture focused on the CPS with three
different abstraction models.

The frameworks that aids the deployment of I4.0 in
the O&G industry will play an important role in early
adoption. The deployment of industry 4.0 cuts across dif-
ferent disciplines and requires cross-disciplinary collabora-
tion [263]. Hence, frameworks that support the integration
of third-party systems to communicate effectively without
undermining the security and privacy of data are needed.
There is a need for standard protocols for communication
between the different I4.0 devices and systems in order to
facilitate the exchange of information. Notably, there are
existing architectures that have been proposed for I4.0 and
examples include Reference Architecture Model for Industry
4.0 (RAMI 4.0), Production harmonizEd Reconfiguration of
Flexible Robots and Machinery (PERFoRM), project Pro-
duction harmonizEd Reconfiguration of Flexible Robots and
Machinery (IMPROVE), and project Basic System Industrie
4.0 (BaSys 4.0) [264], [265]. However, these architectures
address a specific field of application. In view of this,
a framework that incorporates five major elements which
are I4.0 technologies, collaborators, environment, business
models, and applications in the O&G upstream sector is
needed and shown in Fig. 13.

The I4.0 framework can be used by service providers to
deliver I4.0 services either as PaaS, SaaS, or IaaS. This
framework needs to provide support for the different I4.0
technologies. This can be achieved by deploying archi-
tecture that allows the different technologies to interplay
while addressing the different O&G upstream applications.
Business models need to be incorporated into the framework
to allow for investors to simulate the return on investment

(ROI) and other business analyses such as the cost-benefit
ratio (CBR). Existing tools such as the MES and ERP
have been integrated for better decision making, however,
intelligent business models that can be used to manage the
volatility in O&G demands and prices and also target future
sustainable goals are needed. Economic analysis based on
original oil in place, capital investment, reserve and recovery
rate, reservoir performance, and market forecast can help
make wise business decisions using the framework. The
framework also needs to provide support for collaboration
from different entities such as vendors, suppliers, producers,
regulators, and customers. Another important element of
the framework is the environment. This involves the use of
I4.0 in the process of reclamation at the end of a project’s
life cycle and for CCS, environmental protection against
pollution [266], and detection and predictive maintenance
of oil spills [267].

VI. BENEFITS OF I4.0

Following the application of the I4.0 technologies in the
O&G upstream sector discussed in Section III, we highlight
the benefits of I4.0 technologies in this section to address
RQ4.

A. COST REDUCTION

There are several ways costs can be reduced in the upstream
sector. For instance, the use of UAV/droves can be used
instead of manned aircraft for geographical and topograph-
ical surveys and reconnaissance activities in the early stage
of hydrocarbon exploration [63]. Predictive analytic can be
employed in asset operations and maintenance in order to
reduce downtime and responding to early warnings of asset
failures [10], [178]. The application of AI can help in the
early identification of non-productive time (NPT) in drilling
operations which helps to improve return on investment.

B. RESOURCE MANAGEMENT

Special expertise and continuous supervision are required in
O&G operations to ensure its processes operate smoothly.
The workforce productivity, asset management, and opera-
tions schedule can be improved with the I4.0 technologies.
For instance, [15] proposed a trustworthy monitoring sys-
tem using IoT technology that can lead to a reduction in
production downtime as well as disruptions. As a result,
a safer working environment and better asset maintenance
can be achieved in the O&G industry. In addition, the
I4.0 technology can provide better management in terms of
scheduling, resource optimization, and project management
using intelligent coordination tools. The identification of hot
zones in shale reservoirs with few parameters has been made
possible with the use of the BD tool [268]. This makes it
possible to identify reservoirs with the potential to yield
highly productive wells at an early stage. BD has enabled
the visualization of hydrocarbon deposits in Russia and
worldwide which includes static and dynamic parameters
enabling comparative analytical studies [269].
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Figure 13. I4.0 Framework for O&G Upstream Sector

C. COMPETITIVE EDGE

The application of AI in geology, geophysics, historic and
reservoir project information helps to create knowledge-
graphs that make complex data used for O&G exploration
and production more accessible. The ability to link several
sources of data such as inventory, equipment, asset man-
agement, cost analysis, production, predictive maintenance
using AI will help generate new insights for companies to
stay ahead of the competition.

D. POLLUTION MANAGEMENT

One of the major drawbacks of the O&G sector is pollution.
The consequences of pollution could be devastating for the
environment and local communities. It disrupts wildlife, wa-
ter sources, human health, livelihood, and creative activities.
The use of I4.0 technologies such as the DT, IoT, AI enables
smart oil fields which can help minimize environmental
disasters from the hydrocarbon extraction process [270].

E. HEALTH AND SAFETY

Accidents have a considerable impact during the O&G
production which frequently leads to an increase in the
time and cost of drilling, construction, and operation work.
For example, in the upstream production phase, the support
engineers employed mud logging to detect accidents while
drilling. This can be less efficient due to the fact that the
engineers have to monitor several wells online and drilling
accident patterns are only considered after an accident has
occurred. Therefore, the adoption of the I4.0 technology

system for detection of early signals of failures can signif-
icantly minimize the accident rate to ensure safe, reliable,
and efficient operation at a low operational cost [271]. The
prediction of formation in the drilling process using AI can
improve safety [272]. Furthermore, the use of UAV/drones
for surveillance can reduce the risk in remote, contaminated
areas or areas that posses a threat to personnel. The use of
IoT aids the control and management of hazardous situations
in the O&G industry [273].

VII. OPEN ISSUES AND CHALLENGES

The open issues and possible challenges relating to the
deployment of I4.0 in the exploration and production of
O&G are discussed in this section. While I4.0 in the O&G
industry offers real-time data collection, analysis, and trans-
parency across every aspect of a manufacturing operation,
there are several hurdles that need to be overcome which
are discussed as follows. The challenges are categorized into
technical, environmental, and business.

A. TECHNICAL CHALLENGES

Some of the technical issues faced in the adoption of I4.0
in the upstream sectors are discussed as follows.

1) Security

The amount of cyberattacks by hackers, criminals, and
governments continues to increase [274]. The sharing of
information via the internet requires the security of data
and information from the transmitting node, communication
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link, network, and receiving node with global identification
and end-to-end data encryption [275]. The expansion of the
O&G cyber environment to leverage the I4.0 technologies
may expose companies and their assets to a high risk of
cyberattack. The attacks could be on the connected comput-
ing devices, equipment infrastructure or through personnel
or applications deployed, or the telecommunication systems
or transmitted or stored information [274]. The attacks on
confidential material of the O&G companies by hackers can
lead to massive profit loss or legal disputes [276]. Several
incidents and attack patterns on the O&G sector occur at
different layers such as the hardware, firmware and software,
network, operation and security process, and IoT layers as
discussed in [245]. In the event of cyberattacks, accidents
and environmental pollution can occur. This could lead to
major loss and damage to the company’s reputation and
possible public outcry. Therefore, continual efforts to protect
every node of the network and implement cybersecurity
standards against external attacks and data misuse will
continue to be a major priority for every O&G company.

2) Interoperability

The integration of several I4.0 technologies for deployment
in the O&G is expected to face interoperability challenges.
Many devices and processes need to be tightly interweaved
between hardware and software between different organiza-
tions and entities. This includes integration between physical
and software systems, integration among different eco-
nomic sectors (finance, commerce, logistics), and integration
among different industries [81]. The exchange of quality
and timely information for collaborations is needed. This is
likely to pose challenges in managing a complex information
technology environment for the integration of IT and OT.
Some of the major issues are the lack of a common data
standard that allows for information processing [277] and
the handling of the exchange of real-time and non-real-time
data. To address some of these issues a multi-level models
for data interoperability in the O&G industry was presented
in [278].

3) Scalability

The deployment of I4.0 technologies needs to account for
scalability in terms of the number of sensors and actuators to
be managed, the amount of data to be processed and stored,
and the analytics needed. A scalable architecture that can
evolve rapidly with the market demand and technological
changes, scale with increasing numbers of participants, and
integration of additional tools [279] while minimizing cost
needs to be addressed.

4) Deployment Issues

Decisions on the choice of technology to adopt from the
I4.0 technologies while maintaining the business growth and
revenue can be a challenge to decision-makers. This is due
to the readiness of other players such as vendors, customers,
partners, employees, regulators, and logistics. The trade-off

between investment in the I4.0 technologies and managing
risk while lowering cost can be a difficult decision process.

5) Big data and Its Analytics

The major challenge in data collection is to determine which
data to be collected, identify the process of data collection
and how to formulate and analyze the data. This will require
considering what information provides the quality and ef-
ficiency of related factors to the physical assets or models
that need to be monitored. For instance, as the malfunction
of drilling equipment will reduce the drilling efficiency in
the production of the upstream sector, the equipment state
and its operation history should be monitored and analyzed
to predict problems so that people can respond in advance
[276]. In addition, the application of AI/ML algorithms may
require data to be labeled in order to be able to apply the
correct algorithms. To achieve this will require different
analysis to be carried out that requires several man-hours.

B. ENVIRONMENTAL CHALLENGES

There are several environmental pressures that can arise
in the deployment and adoption of I4.0 technologies. First
O&G companies may need to dispose of obsolete equipment
[280] which may lead to the demand for resources such
as land and other ecological services. The obsolescence of
machinery and equipment may lead to an increase in the
amount of waste in the environment. The development of
hardware for the digitization of the O&G equipment can
also lead to an increase in demand for raw materials such as
lithium and other heavy rare earth elements that are difficult
to extract, purify and recycle [281], [282].

C. BUSINESS CHALLENGES

The I4.0 is expected to introduce disruption to the O&G
industry. There are many business-related issues that need
to be addressed in the implementation of I4.0 and some of
these issues are highlighted as follows.

1) Skill Set

The O&G companies are facing a shortage of skilled field
experts and workers due to the emergence of new technolo-
gies and in some cases the retirement of skilled workforce
in the industry [23]. Studies found in [283] showed O&G
organizations lack staff with the technical know-how of
BD analysis and had to rely on consultants. Some of the
important technical skills needed are cybersecurity, devel-
opers and software engineering, data science, networking,
programming, and IoT. In addition, inadequate innovative
technologies to bring together, promote, reuse and man-
age knowledge due to the scattered nature of information
presents a challenge to the O&G industry [284].

2) Transparency

The lack of transparency and accountability regarding fi-
nancial data and other information considered confidential
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among the O&G industry partners poses a challenge to the
adoption of I4.0 in the O&G industry [10]. This also can be
associated with the risk in the adoption of new technologies.

3) Business Models

New business models that bring people, systems and part-
ners across the extended value chains are required for
the successful implementation of the I4.0. New business
models that adapts fast to changes in technology and propels
growth and investment decision-making while minimizing
cost and risk are needed. Also, quantitative life cycle profit
analysis that accounts for return on investment of the I4.0
technologies is crucial to overcome the barriers of early
adoption.

4) Future Investment

The high market volatility faced by the O&G industry
and the change of government policies by major countries
towards greener energy could be a major hurdle for at-
tracting investment for the I4.0 technologies. The lack of
funds for research and development in the O&G industry
is a major challenge in the development of innovative
technology [285].

VIII. FUTURE TRENDS

In this section, we identify the key areas that are expected to
attract research interest from academia and the industry. The
implementation of I4.0 technology is not limited to improv-
ing the operations of O&G companies, but it is also able to
transform the business model of the companies. Therefore,
it is crucial to examine how I4.0 aligns with the future aims,
culture, strengths, and strategy of an organization.

A. I4.0 FRAMEWORKS AND PROTOCOLS

Although there are existing architectures and protocols that
govern some of the I4.0 technologies [265]. Some of these
architectures are targeted for general-purpose applications.
A framework that allows for the integration of the I4.0
technologies and is tailored to the O&G sector is expected
to attract research interest. The implementation of the I4.0
framework will require collaboration from various standard-
ization bodies.

B. SOFTWARE DEVELOPMENT

The development of software for implementation of the
I4.0 is expected to attract more research interest. Timely
development, implementation, and commercialization using
commercial tools are expected to drive the implementation
of software [286].

C. EDGE COMPUTING

Edge computing offers a distributed approach for processing
of data, control functions, and storage of high bandwidth
content closer to devices rather than a remote network
[287]–[289]. This helps to mitigate network delays and

low latency associated with centralized cloud computing.
The edge computing devices can either be a local device,
localized data center, or regional data center. As a result of
the low fault-tolerant process involved in the oil extractions,
the need to process data collected from smart oil fields
in real-time makes edge computing a suitable candidate
[270]. However, some of the challenges that need to be
overcome in the deployment of edge computing are the
resource-constrained nature of edge nodes, the difficulty of
configuration and maintenance in remote areas, and security
[270]. This opens up research opportunities such as robust
resource allocation [270], [288], [290]–[292].

D. SECURITY AND PRIVACY

Due to the importance of security and privacy, more re-
search is needed in ensuring seamless communication in
the deployment of I4.0 in the O&G industry. Implementing
increased security and privacy will open up several research
opportunities such as predictive and analytical software
tools for detecting cyberattacks. In addition, more software
tools to simulate cyberattacks on the O&G infrastructure
are vital and expected to attract future research interest.
The simulation tools that can identify vulnerabilities, plan
recovery time, and indicate risk analysis among the I4.0
technologies will continue to be researched and developed.
Global policies that ensure collaborative efforts towards
minimizing cyberattacks among governments, industry, and
academia remain crucial.

E. COMMUNICATION TECHNOLOGIES

A reliable communication that supports different require-
ments with respect to bandwidth, latency, and availability
is crucial for the reliable exchange of information in the
implementation of I4.0 in the O&G industry. Several of
the upstream operations are located in remote locations or
offshore where there is limited cellular coverage. Satellite
communication has been employed for data transfers in
remote areas, however, there are certain limitations asso-
ciated with it. The satellite communication suffers from
high latency which makes it unsuitable for time-sensitive
operations/tasks, prone to weather and sunspots effects
which affect operations. Hence there is need for deploy-
ment of complementary communication technologies that
offers long-range and high data rate to support the I4.0
technology deployment. The deployment of LPWA commu-
nication technology [293] can extend the cellular coverage
and application of fifth-generation (5G) network solutions
such as the massive multiple-input multiple-output (MIMO)
base stations would provide better latency, higher reliability,
and high data rate communication. The deployment of IoT
in the upstream sector requires communication technology
that supports long-range and remote communication. The
LPWA communication technologies have been developed to
support the IoT or IIoT. Examples of the LPWA are LoRa,
Sigfox, Narrow Band-LTE [21], [294]. This LPWA enables
long-range communication, low power consumption, higher
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penetration powers, and design for low transmission packet
sizes [295]. This is vital in I4.0 to aid automation and access
to machines remotely. The use of LPWA technology for
O&G has been demonstrated in [296]. Other communication
technologies such as the internet of underwater things,
optical wireless communications are expected to play a
major role in the O&G production [297].

F. QUANTUM COMPUTING

The low cost of data storage, increase in processing and
computing speed, enhanced algorithms for data processing,
and various open cloud platforms will continue to drive BD
in the O&G industry [298]. The conventional computation
may not be efficient in handling such BD and hence the
application of quantum computing is attracting research
interest. Quantum computing is expected to offer a more
efficient solution to problem-solving compared to classical
computational methods and systems [299]. The use of quan-
tum computers, quantum algorithms, and quantum devices
[299], [300] is expected to accelerate the deployment of I4.0
technologies such as DT and CPS.

G. DIGITAL-TWIN

The implementation of DT spans from early design to de-
commissioning, hence there is a need for collaboration from
contractors, vendors, standard organizations/bodies, and pro-
fessionals in order to ensure a trusted system. This opens
up research areas in different modeling techniques such as
mathematical models, analytical models for structures and
hydrodynamics, time-domain models for components and
systems, and algorithms for software-driven systems [93].
More research work is expected in the application of DT
in simulations of hydraulic fracturing and rock properties
of unconventional reservoirs by linking many aspects of the
physical mechanism, theoretical models, and algorithms.

H. ADDITIVE MANUFACTURING

More research efforts are expected in the adoption of AM in
the O&G industry like the adoption of new AM techniques
such as bender jetting, metal powder bed metal AM pro-
cessing, and qualification and materials characteristic testing
requirements [246].

I. STANDARDIZATION

The intellectualization, digitization, and automation using
I4.0 technologies are there to help minimize loss, increase
efficiency and drive towards sustainable goals. However,
there is a need for standardization in measurement methods
in order to quantify and analyze improvements made by
deploying the I4.0 technologies. For example, methods for
measurement of the carbon footprint reduced by automating
and digitizing some of the O&G operations need to be
standardized. This will help operators perform historical
comparisons and identify areas to focus on, thereby reducing
waste and maximizing resources.

J. I4.0 INNOVATIVE AREAS

The application of the I4.0 technologies is expected to play
important role in new innovations and open up new research
in the O&G industry. This includes the application of AI
in improving the accuracy, providing a non-destructive and
more economic method in the prospecting and predicting
the distribution of oil reservoirs [301]. The use of I4.0 tech-
nologies can be used to enhance the control performance of
multi-functional oil-injection equipment that was developed
to absorb oil, remove impurities and fill oil in deep-sea
hydraulic systems [302]. The application of I4.0 is expected
to drive down the current cost of deployment of carbon
capture and storage. Hence, more research is needed in the
deployment of I4.0 technologies for monitoring and control
of depleted oil and gas fields used for the storage of CO2.
The I4.0 is expected to drive the advancement in reservoir
engineering by addressing the challenges faced in reservoirs
with deeper burial depths [303] and exploration of 3D digital
core technology based on micro/nano CT in the exploration
and development of tight reservoirs [304].

IX. CONCLUSION

In this paper, an overview of the I4.0 technologies in the
upstream O&G sector has been presented. The various
operations of the upstream sector were discussed and the
various applicable I4.0 technologies were identified. The
study focused on the following research questions RQ1:
What is the state-of-the-art of I4.0 in the O&G upstream
sector in the last 10 years? RQ2: What are the applications
of the I4.0 in the O&G upstream sector? RQ3: What is the
framework for the implementation of I4.0 in the upstream
sector? RQ4: What are the benefits and challenges faced
in the adoption of I4.0 technologies in the O&G upstream
sector? RQ5: What are the future trends in the application
of I4.0 in the upstream sector? To answer this RQ1-RQ5,
a systematic literature review of adopted I4.0 technologies
in the O&G upstream sector from published work was
presented under the following categories: exploration and
development, drilling and well completion, production and
optimization, reservoir engineering, control operations, and
equipment and operational parts. A systematic approach
comprised of several phases was used to select relevant
papers reviewed in this article. A total of 223 documents
were reviewed from the year 2012 - 2021. While efforts
have been made to select relevant papers in this study,
there are some publications that might have been omitted
due to the few databases used, search terms, and methods
of inclusion. The findings from this study show that I4.0
technologies have been explored in various operations in the
upstream sector. The use of AI has been largely deployed
while the application of AM and AR are still emerging areas
of research and deployment.

Several benefits and challenges in the adoption of I4.0
technologies in the O&G industry upstream sector were
identified. Benefits include cost reduction, health and safety,
a competitive edge that drives profit-making, pollution man-
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agement, and environmental protection. However, technical,
environmental and business challenges need to be overcome.
Some of the future trends and research opportunities in
the area of security, communications technology, quantum
computing, frameworks and protocols, DT, standardization,
and innovative areas envisaged are discussed.

A framework that incorporates five major elements which
are I4.0 technologies, collaborators, environment, business
models, and applications in the O&G upstream sector is pro-
posed. Digital efforts towards the O&G industry are growing
and will continue to actualize cutting-edge I4.0 technologies
to cultivate growth and success. Some of the I4.0 have been
adopted in different sectors of the upstream O&G industry.
However, more efforts are needed for seamless integration
of the components of the I4.0 technologies in order to
provide an ecosystem that shares insights, heterogeneous
datasets more fluidly and achieves sustainable goals. The
O&G industry personnel and research community from
multidisciplinary backgrounds will find this survey helpful
in understanding the application of the I4.0 technologies in
the upstream sector.

ACRONYMS and TERMS

1D - One dimensional
2D - Two dimensional
3D - Three dimensional
5G - Fifth generation
AI - Artificial intelligence
ALS - Artificial lift system
AD - Additive manufacturing
AEORS - Advanced EOR screening
ANFIS - Adaptive-network-based fuzzy inference system
AR - Augmented reality
ARGOS - Autonomous robot for gas & oil site
BP - British Petroleum
CBR - Cost-benefit ratio
CEORS - Conventional EOR screening
CPS - Cyber-physical system
CCS - Carbon capture and storage
CO2 - Carbon dioxide
DA - Data analytics
DAS - Distributed acoustic sensors
DNN - Deep neural network
DT - Digital-twin
DTS - Distributed temperature sensors

EOR - Enhanced oil recovery
ERP - Enterprise resource planning
FWI - Full wavefield inversion
GPR - Ground penetrating radar
HDD - Horizontal directional drilling
IaaS - Infrastructure-as-a-service
IoT - Internet of things
IIoT - Industrial internet of things
I4.0 - Industry 4.0
IR 1.0 - Industry revolution 1.0
IR 2.0 - Industry revolution 2.0
IR 3.0 - Industry revolution 3.0
IR 4.0 - Industry revolution 4.0
IT - Information technology
LoRa - Long range
LPWA - Low power wide area
LWD - Logging while drilling
M2M - Machine-to-machine
MES - Manufacturing execution systems
ML - Machine learning
MWD - Measurement while drilling
NPT - Non-productive time
M2M - Machine-to-machine
MES - Manufacturing execution systems
ML - Machine learning
MWD - Measurement while drilling
NPT - Non-productive time
O&G - Oil and gas
OT - Operational technology
P2P - Peer-to-peer
PaaS - Platform-as-a-service
PDG - Permanent downhole gauges
ROVs - Remotely operated vehicles
S.A. - Societe Anonyme
SaaS - Software-as-a-service
SCADA - Supervisory control and data acquisition
UAS - Unmanned aerial system
UAV - Unmanned aerial vehicle
VR - Virtual reality
WAZ - Wide azimuth
WSN - Wireless sensor network
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