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Abstract Information visualization (InfoVis), the study of

transforming data, information, and knowledge into interac-

tive visual representations, is very important to users because

it provides mental models of information. The boom in big

data analytics has triggered broad use of InfoVis in a vari-

ety of domains, ranging from finance to sports to politics.

In this paper, we present a comprehensive survey and key

insights into this fast-rising area. The research on InfoVis

is organized into a taxonomy that contains four main cate-

gories, namely empirical methodologies, user interactions,

visualization frameworks, and applications, which are each

described in terms of their major goals, fundamental prin-

ciples, recent trends, and state-of-the-art approaches. At the

conclusion of this survey, we identify existing technical chal-

lenges and propose directions for future research.

Keywords Information visualization · Interactive

techniques · Large datasets

1 Introduction

Information visualization (InfoVis) is a research area that

aims to aid users in exploring, understanding, and analyzing

data through progressive, iterative visual exploration [124].
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With the boom in big data analytics, InfoVis is being widely

used in a variety of data analysis applications [22,31,97].

Examples include visual analysis of business data [22,31,

80,90,92,93,123,152], scientific data [38,97], student histo-

ries [137], sports data [111], ballot data [155], images and

videos [26,114,132], auction data [63], and search results

[106,121]. Accordingly, from researchers to brand strate-

gists, financial analysts and human resource managers, better

understanding and analysis of data/information is becoming

an increasingly powerful way for further growth, productiv-

ity, and innovation. Moreover, we see average users, includ-

ing consumers, citizens, and patients, examine public data

such as product specifications, blogs, and online communi-

ties to choose products to buy [39], decide issues to vote

on [163], and seek health-related information [23]. Recent

advances in InfoVis technologies provide an effective avenue

to address the current and future “glut” of information faced

by today’s users.

For all these reasons, we believe InfoVis techniques are

valuable and, therefore, worth studying, especially the recent

research trends. Existing surveys were either conducted sev-

eral years ago [47,143] or focus on a specific topic of visu-

alization such as graph visualization [145], software visu-

alization [24], or visualization of network security events

[124]. In this paper, we have conducted a systematic analy-

sis of recent InfoVis techniques, approaches, and applica-

tions, aiming to provide a better understanding of the major

research trends and mainstream visualization work, along

with their strengths and weaknesses. The objective of this

survey is twofold:

– We provide researchers who work on InfoVis or related

fields a comprehensive summary and analysis of the

state-of-the-art approaches. As a result, this survey can

123



S. Liu et al.

be regarded as a brief introductory course that leads

researchers to frontier research and development.

– We provide the general InfoVis audience a global picture

of the area. We try to bridge the gap between the most

cutting-edge research and real-world applications.

The paper is organized as follows: we first present an

overview of InfoVis techniques, including the pipeline and

classification schemes. We then introduce mainstream work

in each of the four major categories—empirical methodolo-

gies, interactions, frameworks, and applications—in Sects.

3, 4, 5, and 6. Section 7 presents an aspiration for future

research by summarizing the major challenges in this filed.

Finally, in Sect. 8, we conclude our work.

2 Overview

In this section, we briefly introduce InfoVis and its recent

research trends organized by novel classification schemes.

2.1 Visualization pipeline

Figure 1 provides an overview of the InfoVis pipeline. It has

five main modules: data transformation and analysis, filter-

ing, mapping, rendering, and UI controls. The input is a col-

lection of data that can be structured or unstructured. The data

transformation and analysis module is tasked with extracting

structured data from the input data. If the input data collec-

tion is too large to fit into computer memory, a data reduction

technique is applied first. For unstructured data, some data

mining techniques such as clustering or categorization can

be adopted to extract related structure data for visualization.

With the structured data, this module then removes noise by

applying a smoothing filter, interpolating missing values, or

correcting erroneous measurements. The output of this mod-

ule is then sent to the filtering module, which automatically

or semi-automatically selects data portions to be visualized

(focus data). Given the results produced by the filtering mod-

ule, the mapping module maps the focus data to geometric

primitives (e.g., points, lines) and their attributes (e.g., color,

position, size). With the rendering module, geometric data are

transformed into image data. Users can then interact with the

generated image data through various UI controls to explore

and understand the data from multiple perspectives.

2.2 InfoVis classification schemes

Application is a strong driving force behind InfoVis research.

As a result, research in this field is usually motivated by real-

world data, user requirements, and tasks. In this context, a

wide range of models, methodologies, and techniques have

been proposed by researchers for a large number of appli-

Fig. 1 Visualization pipeline

cations. Table 1 lists representative work of recent InfoVis

research, classified into four categories.

The first category, empirical methodologies, consists of

dozens of visualization models and theories, as well as var-

ious evaluation studies. The major goal of the proposed

visualization models and theories is to provide a theoreti-

cal foundation for large numbers of applications from differ-

ent domains, while the evaluations can be used to bridge the

gap between research and real-world applications. Most of

the existing methods employ usability studies and controlled

experiments to understand how real users carry out a task and

interact with the designed visualization toolkit/technique.

Visualization designers/developers can then evaluate the

potential and limitations of their tools/techniques.

Techniques in the interactions category can be further cat-

egorized into two groups: WIMP (windows, icons, mouse,

pointer) interactions and post-WIMP interactions. WIMP

interaction techniques mainly focus on studying how users

interact with visualization tools by the use of a mouse and a

keyboard. Post-WIMP interaction techniques aim to explore

how users leverage pen or touch interactions to interact with

devices that attempt to go beyond the paradigm of windows,

icons, menus and pointer devices, such as touch-enabled

devices.

The research in the third category, frameworks, aims to

design either a generic visualization framework for wide-

spread deployment of visualization related techniques or

applications [17,57], or a system for a certain set of applica-

tions in a specific domain such as multivariate data [28] or

inhomogeneous data [89].
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Table 1 A taxonomy of InfoVis

techniques and representative

work in recent years

InfoVis techniques Examples

Empirical methodologies

Model [11,34,35,52,65,66,84,95,119,128,146,153]

Evaluation [4,12,14,15,18,49,60,69,78,82,98,100,101,103,104,115,116,

131,156]

Interactions

WIMP interactions [37,55,135]

Post-WIMP interactions [13,70,147]

Frameworks

Systems and frameworks [2,17,28,57,89,153]

Applications

Graph visualization [3,8,9,13,19,20,30,36,40,42,59,62,85,91,118,120,51,133,162,167,

164,170]

Text visualization [1,5,22,32,31,83,92–94,154,159,163,169]

Map visualization [1,44,71,102,106,117,125,136,144,148]

Multivariate data visualization [21,48,68,72,108,112,134,139,140]

Since InfoVis research is actively driven by real-world

applications, a taxonomy of the field cannot be formulated

without including practical and characteristic applications.

In the fourth category, applications, we aim to introduce the

various applications in this field, including graph visualiza-

tion, text visualization, map visualization, and multivariate

data visualization.

As shown in Table 1, most of the recent InfoVis papers

focus on empirical methodologies and applications (cate-

gories 1 and 4). This indicates that InfoVis is gradually

becoming mature and an increasing number of researchers

and practitioners have studied empirical methodologies to

steadily reach users, and have actively applied the exciting

research outputs to various real-world applications.

3 Empirical methodologies

To put InfoVis research into practice, researchers in this field

have developed many empirical methodologies for better

supporting the design and implementation of novel and useful

visualizations. Empirical evaluation methods are generally

based on usability studies and controlled experiments [113].

According to the generality of the empirical methodologies,

we divide them into two categories: model and evaluation. If

an empirical method can be applied to a wide range of appli-

cations/domains, it falls into the former category; otherwise,

it belongs to the second category. In this section, we briefly

review each of the categories.

3.1 Model

Models are the foundation of empirical studies. In the past

years, various models have been developed to help design

effective visualizations. Roughly, they can be classified into

the following categories: visual representation models, data-

driven models, and generic models.

Visual representation models are particularly important

for putting a wide range of research outputs into practice.

Researchers have introduced many models to handle differ-

ent perception problems in InfoVis. For example, Steinberger

et al. [128] proposed context-preserving visual links to facil-

itate the comparison and interpretation of related elements

in different views. A visual difficulties model [65] is devel-

oped to help users understand important information in a

visualization. The visual difficulties evidence emphasizes a

trade-off design between efficiency and beneficial obstruc-

tions. Furthermore, the privacy-preserving model [35] and

uncertainty model [34,160,161] are also studied to adap-

tively protect sensitive information and well illustrate the

uncertainty information embedded in the data and/or caused

by the visualization process.

The development of visualization is driven by real-world

applications and related data. As a result, several data-driven

models have been studied and applied to a variety of data,

such as high-dimensional data [2,11], heterogeneous data

[89,129], geographic data [95], narrative data [66], and tables

of counts, proportions, and probabilities [153].

Recently, some generic theories and models have also

been developed to guide the deployment of InfoVis tech-

niques and tools [52,84,119,147]. For example, Lam et al.

[84] proposed a scenario-based method to study evaluation

in InfoVis. Through an extensive study of over 800 visualiza-

tion publications, the authors divided the existing evaluation

methods into seven scenarios: evaluating visual data analy-

sis and reasoning, evaluating user performance, evaluating

user experience, evaluating environments and work practices,

evaluating communication through visualization, evaluating

visualization algorithms, and evaluating collaborative data

analysis. To help visualization designers/developers better
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conduct design study research, Sedlmair et al. [119] system-

atically reviewed related methods in HCI, social science, and

visualization. They proposed a nine-stage framework for bet-

ter conducting design studies by reflecting their own expe-

riences and other related papers on InfoVis. The nine stages

are learn, winnow, cast, discover, design, implement, deploy,

reflect, and write. Practical guidance and potential disadvan-

tages are provided for each stage.

3.2 Evaluation

User studies are the most commonly used evaluation method

used in InfoVis and offer a scientifically sound method to

measure visualization performance. As a result, they are

an important means to translate laboratory InfoVis research

into practical applications. User studies usually involve

techniques ranging from informal surveys, to crowdsourc-

ing user studies [78,103] and rigorous laboratory studies

[4,15,60,69,98,116] that invite a small number of partici-

pants. Here we briefly introduce the rigorous laboratory stud-

ies and crowdsourcing user studies.

Recent work involving rigorous laboratory studies can

be further classified into two categories: controlled exper-

iments to compare design elements and controlled experi-

ments to compare tools with similar functions. In the first

category, researchers have compared and evaluated specific

widgets or visual mappings ranging from artery visualization

design [15] to visual semiotics and sketchiness evaluation

in uncertainty visualization [18,98], aesthetics and memo-

rability of visual features in graph drawing [101,115], and

ambient and artistic visualization design related to residen-

tial energy use feedback [116], as well as rhetorical illustra-

tions and visual features such as embellishments [14], style

[104], glyph design [100], graphical overlays [82], visual

variables on tiled wall-sized displays [12], strokes [49], and

slope ratio [131]. In the second category, researchers and

practitioners have evaluated many visualization tools such

as different ways to represent dual-scale data charts [69] and

an effective way to visualize set data [4].

Rigorous laboratory studies have succeeded in evaluating

Infovis designs/applications. However, collecting the evalu-

ation results from only a small number of participants may be

problematic in many design situations since the results often

lead to a lack of statistical reliability [79]. To solve this prob-

lem, crowdsourcing user studies [78,103,156] have attracted

recent attention. For example, Micallef et al. [103] leveraged

crowdsourcing to assess the effect of six visualization tech-

niques on Bayesian reasoning. Through a crowdsourcing-

based study, Kim et al. [78] systematically examined whether

an eye tracker is always a useful tool to evaluate InfoVis

techniques. With this empirical study, the authors found a

limitation of the eye tracking method: its inability to capture

peripheral vision.

4 Interactions

In InfoVis, user interactions are as important as presenta-

tion for effective information understanding and analysis.

In 2007, Yi et al. [166] provided a comprehensive survey to

study the role of interaction techniques in InfoVis. They clas-

sified the interaction techniques into seven categories: select,

explore, reconfigure, encode, abstract/elaborate, filter, and

connect. We recognize this survey by providing an update of

state-of-the-art interaction techniques, which are classified

into two categories: WIMP (windows, icons, mouse, pointer)

interactions and post-WIMP interactions.

4.1 WIMP interactions

Recently, a set of WIMP interactions were developed to facil-

itate visual analysis. Typical examples include basic interac-

tions such as selection, filtering, brushing, and highlighting

[92,160], as well as advanced interactions like visual com-

parison [135], interest-driven navigation [55], focus-based

navigation [105,138], and faceted navigation [37].

To help users better understand summarization results of

a text corpus and perform deeper analysis, TIARA [93] aims

to allow users to interact with the generated visual summary

and examine relevant data from multiple perspectives. To this

end, TIARA provides a set of interactions, for example, inter-

active topic ordering, topic details on demand, and strength

comparison.

Inspired by real-world user comparison behaviors such

as side-by-side, shine-through, and folding, Tominski et al.

[135] developed a novel interaction technique coupled with

several complementary visual cues. The major feature of this

interaction technique is that allowing a user to freely select

the visual information to be compared, which is represented

by views. Then the user can arrange the views according to the

analysis task. Typically, s/he can place them side-by-side or

overlap them. Two interaction techniques, shine-through and

folding, are provided to compare overlapping views. Figure 2

illustrates the basic idea of the folding interaction. Fur-

thermore, supplementary visual clues, such as a hierarchy

overview, an origin ghost, and difference LEDs, have also

been developed to help users perform the comparison task.

4.2 Post-WIMP interactions

In addition to the classical WIMP interaction techniques that

use a mouse and a keyboard, post-WIMP interaction tech-

niques employing touch interfaces are now very common in

applications ranging from visualization design [147] to co-

located collaborative visual analytics [70] and science learn-

ing [13]. For example, to explore how pen and touch interac-

tions are applied to create an InfoVis design as well as their

influence on each other, Walny et al. [147] conducted a Wiz-
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Fig. 2 Folding interaction to

reveal and relate information

shown in overlapping node-link

diagrams [135]

ard of Oz study. In this study, an unseen human (the “wizard”)

partially controlled how the computer system responded to

a subject’s actions. The authors reported several interesting

findings, including that the subjects could smoothly switch

to the new interaction paradigms and were clearly aware of

the use scenario of pen-and-touch interactions. Furthermore,

integrated interaction helped users a great deal.

5 Systems and frameworks

The research into systems and frameworks for InfoVis has

attracted a great deal of attention and developed rapidly.

Researchers have introduced a number of new visualization

systems [16,17,41,57,150] and frameworks [28,45,89,153,

158,161] to facilitate development and deployment of Info-

Vis applications. In this section, systems refer to building

libraries or toolkits for developing visualizations. Frame-

works represent modeling different aspects of visualization

techniques.

5.1 Systems

Implementing interactive visualization applications from

scratch is difficult [41,57]. Towards this end, researchers have

proposed a variety of visualization systems such as Impro-

vise [150], the InfoVis Toolkit [41], and Prefuse [57] to sup-

port the creation and customization of visualization applica-

tions. Improvise is a visualization system that allows users

to interactively create multiple, highly linked views of rela-

tional data. A sophisticated coordination mechanism based

on shared objects and expressions is employed by Impro-

vise. The InfoVis Toolkit is a Java-based InfoVis library with

unified, generic data structures and visualization algorithms

to simplify the development of visualization applications.

Prefuse [57], based on the classic visualization pipeline (Fig.

1), is a widely used visualization toolkit that features a library

of visualization-oriented data structures, layout algorithms,

and interaction and animation techniques.

These traditional systems have been applied to build-

ing successful InfoVis applications. However, extending or

tailoring the visualizations of the systems may be expen-

sive and difficult [16]. Protovis [16] has emerged as a

new visualization system to overcome the problem of the

traditional systems using declarative, domain-specific lan-

guages. It strikes a balance among expressiveness, acces-

sibility, and efficiency and employs JavaScript and Scalable

Vector Graphics (SVG) to create interactive web-based visu-

alizations [16]. Protovis has been further extended to sup-

port the Java programming language [56] to achieve bet-

ter performance. More recently, a new web-based library

called Document-Driven Documents (D3) [17] has become a

very popular toolkit to construct interactive visualizations on

the web (Fig. 3). As opposed to other visualization toolkits

[57,16], D3 does not use tailored scenegraph abstractions.

On the contrary, it supports direct manipulation of document

elements (namely, webpage elements) by binding data to doc-

ument elements.

5.2 Frameworks

In recent years, we have witnessed a growing interest in

research into InfoVis frameworks. A number of frameworks

[25,45,158,161] have been proposed to characterize InfoVis

from different perspectives such as uncertainty [161] and

information theory [25].

Chen and Jänicke [25] described a framework based on

information theory to evaluate the relationship between visu-

alization and information theory. Their findings suggested

that the information-theoretic framework should be able to

characterize the visualization process. Adding new visualiza-

tions with existing toolkits [57] to an application is not easy

as this often requires significant changes, such as to the data

structures or scene graphs. WebCharts [45] is a framework

that provides a strategy for incorporating visualizations into

existing JavaScript applications without the need for such

changes.
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Fig. 3 Interactive visualizations created by D3 [17]

Opinion Mining Brushing in Items Space Correlation Analysis Combined Analysis

(a)

(b)

(c)

(d)

Positive ScoreNegative Score

Female Male

Positive ScoreNegative Score

Female Male

Fig. 4 Visualization of uncertainty variations in a visual analysis process using the uncertainty framework [161]

Uncertainty information can frequently show up in a

visualization process [29]. When uncertainty arises, the

uncertainty information may increase, decrease, split, or

merge through the entire process [161]. The complexity and

dynamic characteristics of uncertainty play an important role

in creating trustworthy visualizations. Wu et al. [161] intro-

duced a comprehensive framework for quantitatively charac-

terizing and intuitively visualizing complex, dynamic uncer-

tainty information through visual analysis processes. The

framework uses error ellipsoids to model multidimensional

uncertainty and the dynamic variation of the uncertainty. A

flow-style visual metaphor is employed to visualize the evo-

lution of uncertainty in the analysis process, as illustrated in

Fig. 4.

6 Applications

Visualization design highly depends on the underlying data

and the specific application. Different types of data have dif-

ferent characteristics and patterns of interest that require spe-

cialized tool sets to visualize.

For graph-like data, analysts are usually interested in pat-

terns related to topological structures. For example, friend

relationships among a group of people can be represented

as a graph. When exploring the relations, analysts often use

visualization to keep them aware of the structure context [57].

To visualize textual data, the semantic meanings in the con-

tent attract the most attention. For example, various visual-

ization techniques [23,58,110] have been developed to help

analysts understand the theme or major topics in a large col-

lection of documents. When dealing with geographic data,

understanding the spatial distribution of information is usu-

ally the key to solving many problems. For example, to reveal

patterns in trajectory data, one common approach is directly

visualize them on the map [120]. Multivariate data, as a gen-

eral data type, exists in a variety of fields, but one com-

mon goal is to explore the inter-relationships between dif-

ferent dimensions. Targeting the inter-relationships, various

visualization techniques [151] have emerged to help ana-

lysts identify, locate, distinguish, categorize, cluster, rank,
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Fig. 5 Divided edge bundling

[120]: the view shows the

European follower graph for

GitHub. Colors indicate edge

directions (from blue to red)

compare, associate, or correlate the underlying multivariate

data.

Accordingly, in this section, we categorize recent visu-

alization work into four groups based on the characteristics

of their target data. For each category, we discuss several

recent examples and introduce the visualization techniques

employed by each example.

6.1 Graph visualization

A graph is a powerful abstraction of data that consist of ele-

ments and connections between elements. Social contacts

[57], trajectories on maps [120], and electronic communi-

cations [118] can all be modeled as graphs. According to

Landesberger et al. [145], graphs can be classified into two

categories: static and dynamic, based on their time depen-

dence.

6.1.1 Static graph visualization

In this section, we briefly introduce node-link-diagram-based

graph visualization techniques and other alternatives such as

matrix visualization.

Node-link diagrams For centuries, node-link diagrams

have been the most used visual representation for graphs.

Researchers are still fascinated by their intuitiveness and

power, and they have introduced various technologies tak-

ing advantage of this representation. However, recent visu-

alization work indicates that researchers have gradually

shifted their attention from finding new layout algorithms

[73,77,122,130] to studying the usability in various applica-

tions.

For example, Burch et al. [20] conducted a user study

to compare the readability of node-link diagram and space-

filling representations. They found that space-filling results

are more space-efficient but more difficult to interpret. In

particular, orthogonal tree layouts significantly outperform

radial tree layouts for some tasks, such as finding the least

common ancestor of a set of marked leaf nodes. Yuan et al.

[167] argued that a good layout cannot be achieved simply

by automatic algorithms but need user inputs. Thus they pro-

posed a framework that automatically stitches and maintains

the layouts of individual subgraphs submitted by multiple

users.

Another hot topic with regard to improving usability is

clutter reduction. Among all the solutions to reduce visual

clutter, edge bundling is still the most popular one [33,67,

120]. Recently, Selassie et al. [120] proposed a bundling tech-

nique for directed graphs. In their system, edges are bun-

dled into different groups to enhance directional patterns of

connectivity and symmetry (Fig. 5), which are unfortunately

obscured in previous methods. At the same time, skeleton-

based edge bundling was introduced by Ersoy et al. [40].

They calculated the skeleton of edge distributions and used

it to bundle the edges. Other ways to reduce clutter include

density estimation, node aggregation, and level-of-detail ren-

dering. Zinsmaier et al. [170] presented a novel approach that

combines these techniques and achieves a better time per-

formance than other state-of-art methods while generating

appealing layouts (Fig. 6).

Alternative representations The traditional matrix repre-

sentation is suitable for visualizing dense graphs due to its

non-overlapping visual encoding of edges. However, it may

be ineffective for sparse graphs. Recently, Dinkla et al. [36]

designed “compressed adjacency matrices”, which aim to

visualize sparse graphs, such as gene regulatory networks.

In their representation, each weakly connected component is

treated as a separate network and placed together to generate

a neat and compact visualization (Fig. 7). Similar to matrix

representations, PIWI [164] uses vertex plots that show ver-

tices as colored dots without overlap, to display the neighbor-

hood information of communities in a large graph. Together

with rich and informative interactions, PIWI enables users

to conduct community-related tasks efficiently. TreeNetViz,

a compound graph representation, was recently proposed by

Guo and Zhang [50] to visualize hierarchical information

in graphs. It combines a radial, space-filling visualization

(tree structure) with a circle layout (aggregated network)

to help analysts understand multiple levels of aggregated

information.
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Fig. 6 Level-of-detail rendering of a large graph [170]: the visualization shows a zooming interaction: from overview (left) to a local region (right)

Fig. 7 Compressed adjacency matrices [36]: the visualization shows the gene regulatory network of Bacillus subtilis (approximately 700 genes

and 1,000 regulations)

Fig. 8 Storyline visualization

of the movie The Matrix [133]

6.1.2 Dynamic graph visualization

Animation is a natural way to illustrate changes over time

since it can effectively preserve a mental map [10]. Sev-

eral attempts have already been made to visualize dynamic

graphs by leveraging animation techniques [10,165]. How-

ever, Archambault et al. [8] have shown that preserving a

mental map does not help much in gaining insights into ani-

mated dynamic graphs. As a result, recent methods focus

more on showing dynamic graphs statically [20,91,133]. To

encode the time dimension in a static way, a timeline and

small multiples are two popular choices.

Timeline-based approaches encode time as one axis and

then draw and align the graph at each time point on the

timeline. Thus, graphs that are preferably represented as 2D

node-link diagrams need to be visually compressed into a

1D space, which dramatically reduces the readability and

increases visual clutter. To address this issue, Burch et al.

[20] developed parallel edge splatting for scalable dynamic

graph visualization. In their system, temporal changes of the

graph are encoded into textures that are synthesized from

edge distributions.

To show entity clustering information over time, Tana-

hashi and Ma [133] used a generic algorithm to generate a

legible and esthetic storyline visualization (Fig. 8). However,

their approach is too slow to support real-time interactions.

To solve this problem, StoryFlow [91] was developed to cre-

ate better storyline layouts while also supporting real-time
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Fig. 9 DAViewer [169]: the interface shows detailed discourse trees, similarity statistics, rhetorical structures, and text content

interactions. To improve efficiency, it modeled the problem

as a hybrid optimization framework that combines discrete

and continuous optimizations.

Based on small multiples, Hadlak et al. [51] proposed in-

situ visualization, which allows users to interactively select

multiple focused regions and choose suitable layouts for the

selected data. They argued that a single visualization tech-

nique may not be enough due to the complexity of large

dynamic graphs. With their approach, a user can freely switch

between different visualizations to adapt the analysis focus

or the characteristics of regions of interest.

6.2 Text visualization

Text documents are now widely available in digital format

and have received more and more attention as an emerging

visualization topic. In this sub-section, we summarize and

categorize recent text visualization techniques based on their

target data (such as individual documents or document col-

lections) and their target tasks (such as showing static content

distributions or tracking temporal evolutions).

6.2.1 Visualization of static textual information

The visualization work on static text information can be clas-

sified into two categories: feature-based text visualization

and topic-based text visualization.

In feature-based text visualization, a feature indicates a

non-overlapping text chunk (e.g., keywords or phrases) or

a grammatical structure (e.g., infinitives or clauses), inside

a document. Word clouds, a fundamental visual metaphor,

visualize a single document or a set of documents by display-

ing the important keywords with font sizes that indicate their

frequency of occurrence. In the past few years, researchers

have introduced a variety of techniques to improve esthetic

appearance [32], interactivity [81], and expressiveness [32,

159]. With the aim of revealing various relationships among

terms, Word Tree [149] and Phrase Nets [142] take it a step

further. They build trees and graphs to visually convey occur-

rence relationships among terms.

Recently, many researchers have focused their attention

on visualizing narrative patterns, which are more complex

features that characterize text content. For example, Keim

and Oelke [76,107] used a pixel-based technique, which

they call “literature fingerprinting,” to understand and visu-

alize document signatures, such as vocabulary richness and

sentence length. They have proven that a simple visualiza-

tion can greatly help analysts characterize documents and

identify authorship. The latest work on visualizing narra-

tive patterns, including recurrence patterns [7] and discourse

trees [169], has also proven helpful to analysts and linguists

when analyzing the semantic and grammatical structures in

text documents or human discourse. For example, DAViewer

[169] integrates a dendrogram icicle into a tree-based visu-

alization to help discourse analysis. Their system visually

exposes grammatical structures inside a document, so that

linguists can easily explore, compare, and evaluate the dis-

course parsers (Fig. 9).

To provide an overview of a document collection, static

topic-based text visualization aims to detect and explore top-

ics (or clusters) hidden inside. Topic modeling or text cluster-

ing has a long history in the data mining field [87,126,127,

168]. Traditional methods include naive Bayes, maximum

entropy, and support vector machine. The basic idea behind

these methods is to convert each document into a vector inside

the hyperspace and then use the distance between the vectors

to represent the dissimilarity value between two documents.

In this way, clustering text documents can be transformed

into mathematically grouping vectors in the hyperspace.

To visually represent the clustering results to users, pro-

jections are a popular metaphor. A projection is considered,

in general, a technique that spatially arranges graphical ele-

ments on a 2D space to reflect the relationships among text

documents.
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Fig. 10 Whisper [22]: information diffusion on Twitter regarding a 6.8 magnitude earthquake in Japan. Twitter activities are arranged in a radial

layout, with the positions indicting their time stamps and geographic locations

Fig. 11 ThemeRiver [54]: keywords in a document collection are shown as colored “stripes” with width indicating the occurrence frequency of

keywords at different times

Based on different spatial encodings, different visualiza-

tion techniques have been developed. One common projec-

tion metaphor is a “galaxy system” [110], in which the dis-

tances between graphical elements indicate the dissimilari-

ties between documents. The major advantage is its appeal,

since it mimics cartographic maps, which are intuitive to most

people. For example, Heimerl et al. [58] used the Principal

Components Analysis (PCA) technique to visualize super-

vised classification results, enabling non-experts to interac-

tively train classifiers.

Some of the latest research into spatial encodings focuses

more on document attributes. For example, FacetAtlas [23]

classifies documents into clusters and draws density maps

based on the facets of the document. Thus, multi-faceted

relationships of documents within or across clusters can be

revealed. To emphasize the spatio-temporal diffusion process

in social media, Whisper [22] uses locations of graphical ele-

ments to reflect the geographic and time attributes of docu-

ments (Fig. 10).

6.2.2 Visualization of dynamic textual information

The time attribute poses special and exciting challenges to

text visualization, since it is critical for understanding con-

tent evolution patterns in time-varying document collections.

Recent research [27] has shown that temporal visualization

can help analysts with additional memory aids to filter irrel-

evant information, view complex event sequences, and build

correct storylines and solutions.
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Fig. 12 TextFlow [31]:

selected topic flows of VisWeek

publication data with thread

weaving patterns related to

primary keywords GraphG and

GocumentG

Fig. 13 EventRiver [96]: each

event is represented by a bubble,

whose shape encodes the

number of documents and

duration of that event

Fig. 14 Typographical maps

[1]: the visual representation of

several blocks in Chicago, IL.

Text alone forms the graphical

elements representing map

features

Several attempts [6,32,86] have been made to extend

existing visualization techniques to handle temporal docu-

ment collections. For example, SparkClouds [86] combines

well-accepted word clouds with sparklines to show the fre-

quency change over time.

Another category of topic-based text visualization is based

on the well-known “river” metaphor. ThemeRiver [54] was

originally designed to display temporal thematic changes of

selected words in a document collection (Fig. 11). In the

“river” metaphor, the X-axis denotes time, while individual

words are visually represented as colored “stripes” within the

river. The stripe width at a specific time point indicates the

occurrence frequency of the associated word.

Recent research has extended the basic “river” metaphor

to depict topic evolution [31,93] (Fig. 12) and event occur-

rences [96]. For example, TextFlow [31,46] was developed

to illustrate topic merging/splitting relationships and their

evolution in a text stream. EventRiver [96] models news cor-

pora as a consequence of relevant events occurrence. Thus,

it applies a temporal-locality clustering technique to group

news based on content and time-stamps, and maps them to

real-life events. In the proposed visualization (Fig. 13), each
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Fig. 15 BirdVis [43]: the interface shows occurrence maps for the Indigo Bunting

event is visualized as a bubble, the shape of which encodes

the document number and event duration. In addition, events

are connected and placed together to build a long-term story.

6.3 Map visualization

For thousands of years, paper maps and statistics were the

most prominent tools for studying geo-spatial data. In the

1990s, Geographic Information Systems (GIS) changed the

whole game by providing experts with the power of interac-

tive computerized tools, such as spreadsheets, databases, and

graphic tools. The ability to interact and see prompt changes

in maps not only provides a quantitative difference in the

number of results users can see, but also, more importantly, a

qualitative change in the way they think and make decisions

[157]. Maps have become a visualization interface for geo-

graphic data that supports information access and exploratory

activities.

Cartography has greatly influenced and benefited the

development of geographic visualization through its long

history of visual language design and its knowledge of geo-

graphic information. Accordingly, many geographic visual-

ization techniques are directly related to fundamental prob-

lems in cartography such as map projection [71], map label-

ing [1,44], and map generalization [53,148]. For example,

Afzel et al. [1] developed typographical maps that merge

text and spatial data (e.g., streets and parks) into a visual rep-

resentation. The major feature of this representation is that

text labels are directly used to form the graphical elements

(Fig. 14).

On the other hand, the development of interactive com-

puter tools, interface design, and related technologies has also

posed a new set of challenges and introduced new opportu-

nities to geographic visualization. Choropleth maps, a tradi-

tional tool in cartography, now take advantage of animation

and interaction to provide users with richer information in

support of sophisticated tasks, such as forecasting hot spots

[99] and validating spatio-temporal distribution models of

birds [43]. BirdVis [43] (Fig. 15) combines choropleth maps

with different visual components to allow analysts to explore

and correlate high-dimensional bird population data: space,

time, species, probability occurrences, and predicator impor-

tance. The flexible system demonstrates the capability to con-

firm existing hypotheses, as well as to formulate new ones.

In addition to extending existing cartography techniques,

new geographic visualization techniques are emerging. For

example, Scheepens et al. [117] presented an interactive

framework to composite density maps for multivariate trajec-

tories. Through six pre-defined operations, users can flexibly

create, compose, and enhance trajectories or density fields

to freely explore the trajectory data from different aspects

(Fig. 16). With the support of 3D rendering capabilities,

researchers have also built geographic visualization into the

3D space, instead of traditional 2D maps. Tominski et al.

[136] used two of the dimensions to represent the geographic

map and the third to stack trajectories and detailed attribute

data (Fig. 17).

6.4 Multivariate data visualization

Multivariate data, as a general type of data, are encountered in

numerous situations faced by researchers, engineers, finan-

cial managers, etc. Although they have a common goal to

understand the data distributions and investigate the inter-

relationships between different data attributes, specific tasks

vary from application to application. Targeted at different

tasks, various visualization techniques have emerged to help
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Fig. 16 Trajectory visualization [117]: the representation shows the accident risk map of passenger vessels (turquoise), cargo vessels (orange),

and tanker vessels (green). The diagram at the bottom shows how the map was created

Fig. 17 Stacking-based trajectory visualization [136]: the interface shows radiation values along the Tokio-Fukushima highway

analysts identify, locate, distinguish, categorize, cluster, rank,

compare, associate, or correlate the underlying data [151].

In 1996, Keim and Kriegel [74] provided an excellent cat-

egorization of visualization techniques for multivariate data:

geometric, icon-based, pixel-oriented, hierarchical, graph-

based, and hybrid. In this sub-section, we follow this tax-

onomy and review the latest developments of visual analytic

techniques for multivariate data.

In the past few years, the geometric category has cov-

ered most innovations in multivariate data visualization,

such as projections [72,88,112,140] and Parallel Coordinate

Plots (PCPs) [28,48]. Recent research into geometry-based

approaches focuses on exploring new projection techniques

[72,140] to reveal unexpected data distributions or integrat-

ing multiple geometric approaches to avoid limitations of

using them individually [28,88].

For example, Lee et al. [88] argued that the results of

common Multidimensional Scaling (MDS) projection can-

not characterize inter-cluster distances. Therefore, they inte-

grated a structure-based distance metric into the projection

pipeline to overcome the shortcomings.

Moreover, new aspects of multivariate data have been

exploited to improve analysis results. Turkay et al. [139]

divided the input data into two spaces: the items space and the

dimensions space. By interactively and iteratively operating

on both spaces, the authors argued that the joint analysis of

both spaces could greatly help users understand the relation-

ships between different data dimensions (Fig. 18).

Recently, Claessen and Van Wijk [28] visually connected

various geometry-based techniques, such as PCPs, scatter-

plot matrices, radar charts, and Hyperboxes, together with

“Flexible Linked Axes”. By allowing users to draw and drag

axes freely, the technique supports defining a wide range

of different visualizations (Fig. 19) to aid in various analy-

sis tasks. The authors argued that, through the highly cus-

tomizable and space-efficient interface, their versatile and

powerful technique can greatly benefit users in a variety of

ways.
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Fig. 18 The dual analysis pipeline proposed by Turkay et al. [139]

In addition to introducing new visual representations, clut-

ter reduction still remains a hot topic in PCP visualization. In

contrast to traditional transparency and bundling approaches,

Geng et al. [48] proposed angular histograms and attribute

curves. Their technique allows users to explore and reveal

correlation patterns by investigating the density and slopes

of the drawn histograms and curves (Fig. 20).

Compared with the development of the dominant geo-

metric category, the remaining categories have received rel-

atively less attention, yet there are several pieces of work

that need to be highlighted. For example, as an icon-based

approach, DICON [21], which is a treemap-style icon tech-

nique, was introduced to help compare and interpret clusters

of multivariate data. Compared with previous work, DICON

can additionally encode derived statistical information and

be easily embedded into various existing visualization tech-

niques.

The similarity tree technique was developed as a graph-

based approach by Paiva et al. [109] for visual analysis of

multivariate data. Compared with previous work, it adds hier-

archy to the concept of similarity by intuitively represent-

ing the levels of similarity as different depths in the tree. In

their paper, the authors applied the technique to three image

datasets and demonstrated its adaptability for visual data clas-

sification tasks.

7 Technical challenges

It is not easy to design and develop a perfect visualization.

There are five major technical challenges:

– Usability The development of InfoVis has been driven

by real-world applications and user requirements. Gener-

ally, a user is heavily involved with a visualization system

or toolkit to accomplish his/her analysis tasks. To help

visualization designers and developers design an effec-

tive visualization system/toolkit, researchers have devel-

oped a set of advanced empirical evaluation methods and

design study methods [12,49,52,60,78,84,119], as well

as several design theories [11,65,66]. These methods and

theories have achieved some success in designing effec-

tive and useful visualizations and moving research outputs

into practice. However, most of them were designed for a

specific application or a specific aspect of a visualization

technique. Visualization designers and developers have a

dire need to find effective usability evaluation methods

that are both specific to the visualization field and generic

enough for a wide range of visualization related applica-

tions or domains.

– Visual scalability Visual scalability is defined as the capa-

bility of visualization tools to effectively display large

data sets in terms of either the number or the dimension

of individual data elements [75]. Scalability is a funda-

mental challenge for InfoVis, especially with the boom

in big data analytics. In many applications, the amount

of data to be visualized is very large, often exceeding the

display capability of a screen by several orders of mag-

nitude. To solve this issue, researchers have developed

many data reduction techniques such as sampling, filter-

ing, clustering, PCA, and multidimensional scaling [75].

Although these techniques have achieved some success in

handling large amounts of data, none of them are perfect

and suitable for all applications. For example, with the

dramatic increase of data and a relatively constant dis-

play resolution, the data reduction rate in big data visu-

alization techniques continually needs to increase. As a

result, researchers continue looking for novel data reduc-

tion techniques that can balance a high-level overview and

low-level details. One interesting research topic is how to

involve users in the data reduction process, allowing users

to easily convey their information needs and contribute

their domain knowledge to this process. Furthermore, it

is worth studying the combinations of several data reduc-

tion techniques that complement each other in real-world

applications.

– Integrated analysis of heterogeneous data Heterogeneous

data are data from multiple sources and in varying for-

mats. Integration and analysis of heterogeneous data is

one of the greatest challenges for versatile applications.

With the rise of big data analytics, this task is more impor-

tant than ever in many functions of a business, such as

customer care, human resource management, and mar-

keting. For example, healthcare providers analyze large

collections of patient records in conjunction with data

on public health forums to deliver personalized patient

care and manage care resources. For areas such as man-

ufacturing, education, retail, healthcare, and the public

sector, heterogeneous text data from several sources are
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Fig. 19 FlinaPlots [28]: the representations show composited visualizations of PCPs, scatterplots, and histograms

Fig. 20 Angular histograms [48]: colors indicate the data density (red indicates the largest and light blue indicates the smallest)

increasingly at the center of economic activity and play

a crucial role in further growth, productivity, and innova-

tion. A number of use cases have emerged, each hoping

to answer a different set of questions by analyzing het-

erogonous textual data. How can a government improve

the happiness of its citizens by analyzing their posts on

various social media outlets, as well as survey data? How

can a company understand issues related to a high rate

of churn by examining customer feedback or call center

conversations in conjunction with customer transaction

data? How can a company hire their best employees by

evaluating thousands of resumes submitted on the com-

pany website and correlate them with internal employee

performance data? These are not simple problems and

today there are not sufficient interactive visual analytic

techniques and tools that can deal with heterogeneous

data.

– In-situ visualization In-situ visualization incrementally

generates visual representations when new data arrive.

It is an effective way to understand and analyze stream-

ing data. Streaming data is defined as data with a regular

rate of flow through hardware. Typical examples include

log data such as search logs and sensor logs, stock data,

and periodically updated social media data (e.g., tweets).

Due to the rapid rate of incoming data and the huge size of

data sets in the stream model, analysis of such streaming

data poses a great challenge in the field of InfoVis. For

example, over 340 million tweets are generated daily on

Twitter (according to 2013 statistics of [141]).

A variety of breaking news such as the series of protests

that erupted across the Middle East, the news of bin

Laden’s death, and the reactions to potentially disastrous

situations like earthquakes, first come from such noisy

streaming tweets [61,64]. Accordingly, a natural ques-

123



S. Liu et al.

tion is how to quickly detect breaking news events from

huge amounts of streaming tweets and better understand

information diffusion patterns in them.

To answer a question like this, it is necessary to study the

evolving patterns of streaming data by leveraging in-situ

visualizations. For example, for a breaking news event

in Twitter, government officers or sociologists aim to use

in-situ visualizations for better understanding how var-

ious topics compete for public attention when they are

spread through social media, what roles opinion leaders

play in the rise and fall of competitiveness of various top-

ics, and who are the key people spreading news of the

event [163].

However, it is not easy to design and develop in-situ visu-

alizations. The major challenges are to effectively share

the same processor and memory space, synchronize the

data processing and visualization tasks, and smooth com-

munication between the data processing module and the

visualization module.

– Errors and uncertainty Real-world data sets often con-

tain errors and/or uncertainties [98,161], for example,

noisy and inconsistent social media data published by

users every day, imprecise data from sensors, or imper-

fect object recognition in video streams. On the other

hand, uncertainty can arise at any stage of the visualiza-

tion process. For example, data sampling, data transfor-

mation, or data filtering may introduce errors and incon-

sistencies into the visualization, which is another major

source of uncertainty [161]. In order to strengthen the

truthfulness of visualization, it is important to properly

convey the potential errors and uncertainty to end-users.

Accordingly, it is necessary for visualization researchers

and developers to understand when and why one uncer-

tainty visualization method is more suitable for an appli-

cation than another [98].

8 Conclusions

In this paper, we have presented a survey on state-of-the-art

InfoVis techniques, with a focus on empirical methodolo-

gies, interactions, frameworks, and applications. A taxonomy

was built based on a detailed review of the literature under

the aforementioned four categories. With the taxonomy, we

noticed that most recent research has focused on empirical

methodologies and applications. This implies that more and

more InfoVis research outputs are deployed to real-world

applications with the boom of practical empirical method-

ologies.

As shown, many advanced InfoVis techniques have been

developed in the four major categories. These techniques

were applied to various applications ranging from network

visualization and text visualization, to map visualization and

multivariate data visualization. We also elaborated on the

major advantages and limitations of the methods under each

major category and shed light on future directions of research

by summarizing a set of technical challenges.
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