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Abstract: Both the unmanned aerial vehicle (UAV) and intelligent reflecting surface (IRS) are at-
tracting growing attention as enabling technologies for future wireless networks. In particular,
IRS-assisted UAV communication, which incorporates IRSs into UAV communications, is emerg-
ing to overcome the limitations and problems of UAV communications and improve the system
performance. This article aims to provide a comprehensive survey on IRS-assisted UAV commu-
nications. We first present six representative scenarios that integrate IRSs and UAVs according to
the installation point of IRSs and the role of UAVs. Then, we introduce and discuss the technical
features of the state-of-the-art relevant works on IRS-assisted UAV communications systems from
the perspective of the main performance criteria, i.e., spectral efficiency, energy efficiency, security,
etc. We also introduce machine learning algorithms adopted in the previous works. Finally, we
highlight technical issues and research challenges that need to be addressed to realize IRS-assisted
UAV communications systems.

Keywords: intelligent reflecting surface (IRS); unmanned aerial vehicle (UAV); spectral efficiency;
energy efficiency; optimization

1. Introduction

Commercialization of Fifth-Generation (5G) mobile communications has led to a
tremendous increase in the number of users and Internet of Things (IoT) devices, which
require next-generation communication technologies. Furthermore, Sixth-Generation (6G)
communications are emerging to be commercialized by 2030. Various studies have been
conducted on its vision and research and development issues. According to these studies,
future 6G communications is expected to target more advanced network performance
than 5G, with the advent of challenging applications, such as extended reality, industrial
automation, and tactile Internet. Non-terrestrial networks (NTNs) are being considered as
one of the key elements of revitalizing 5G communications, expanding related industries,
and developing future 6G networks [1].

NTNs can provide wireless services in a cost-effective manner in areas where 5G ter-
restrial networks are not available (such as isolated/remote areas, aboard aircraft, or ships)
and vulnerable areas (out-of-town or rural areas) because of the extensive service coverage
and reduced physical attacks on space/air platforms. They also provide service continuity
to IoT devices or passengers on mobile platforms (such as aircraft, ships, high-speed trains,
and buses) and enable reliable service for future communications for railways, sea, and avi-
ation. In addition, NTNs can extend the availability of 5G networks by providing efficient
multicast and broadcast resources for data delivery to network edges (or user terminals).
These benefits can be obtained by a standalone NTN or an integrated terrestrial and non-
terrestrial network. Furthermore, the benefits are expected to have a significant impact
on various domains, including transportation, public safety, media and entertainment,
e-health, energy, agriculture, finance, and automobiles. Unmanned aerial vehicles (UAVs),
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a part of aerial communication platforms, are emerging as important entities in future
wireless networks. UAV-enabled communication networks are expected to improve the
spectral efficiency, extend the coverage, and increase the flexibility of wireless networks [2].
In addition, UAVs can be effectively used for data dissemination to diverse IoT devices
and for emergency communications in disaster scenarios [3]. From the perspective of
wireless communications, the UAV has unique characteristics, such as high degrees of
freedom in positioning and trajectories in three-dimensional (3D) space, low deployment
and maintenance costs, and the ability to establish clear line-of-sight (LoS) links with other
nodes. In particular, the mobility of UAVs will provide new opportunities for adaptive
communications in aerial networks. UAVs can flexibly adjust their placement/trace over
time based on the location and local wireless environments. If an LoS link can be built by
the careful selection of the hovering position or trajectory of the UAV, communication qual-
ity can be improved [4]. Fixed UAVs can also find the best location for coverage extension.
If the mobility of UAVs can be fully utilized, it is easier to meet the quality of service (QoS)
requirements of wireless networks by optimizing UAV trajectories dynamically, depending
on user location and surroundings [5]. Therefore, many works have been conducted to
improve the performance of wireless networks using UAVs. The role of UAVs in such
networks can be classified into mobile relays [4,6], aerial base stations [5,7], and information
distributors and collectors [2,8]. On the other hand, a UAV–UAV link is more likely to have
a better channel condition than a UAV–ground link, due to higher LoS probability [6].

Owing to the high flexibility and low deployment cost, UAV-enabled communications
provide promising solutions to a variety of problems [3,9]. For example, the world’s leading
industrial companies, such as Facebook, Google, and Qualcomm, are investing in develop-
ing services that can provide high-speed Internet in the air through UAVs [2]. Furthermore,
UAVs can be integrated with various technologies in wireless networks [10]. Recently,
advanced technologies, such as non-orthogonal multiple access (NOMA), millimeter-wave
(mmWave), and terahertz (THz), have been applied to UAV-enabled communications under
various scenarios. The basic idea of the NOMA technique is to allocate non-orthogonal
resources among the users at the cost of increased receiver complexity, which is required
for separating the non-orthogonal signals [11–13]. We can support massive devices more
over the UAV by the UAV-enabled communications scenarios adopting NOMA. More
devices can be served by adopting NOMA in UAV-enabled communications systems [14].
Both the mmWave and THz bands provide a wide bandwidth to support a high data
rate in UAV-enabled communications [15]. However, UAV systems typically have strict
size, weight, and power constraints [6]. These constraints affect the flight time, durability,
and communication performance. In particular, UAVs consume propulsion energy to
support mobility, which is typically several times higher than the communication energy,
in addition to transceiver power consumption. A UAV at high altitude typically forms
LoS links to ground nodes; however, UAV–ground channels are occasionally blocked by
trees and skyscrapers in urban areas, which may degrade the communication performance.
Due to size and power limitations, UAVs have also faced limitations in adopting advanced
technologies that can support high data rates and an ever-growing number of devices [9].
Those problems can be alleviated if wireless channels become more reliable and less power-
consuming. This necessitates a new communication paradigm, that is controllable or
reconfigurable wireless environments.

Mobile communications systems are usually designed and optimized in the transmitter
and receiver, which constitutes the termination nodes of a communication link. The primary
goal of the system design is to compensate for the wireless channel between the transmitter
and receiver, on the premise that artificial control of the wireless channel is impossible. If we
are able to control the wireless channel, however, we can expect a significant performance
improvement in the communications system. Recently, numerous studies have been
conducted to optimize the wireless channel, as well as the transmitter and receiver. Wireless
environments created using this approach are called smart radio environments (SREs) or
intelligent radio environments to emphasize the fundamental differences from historical
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designs and optimization criteria [16–23]. Intelligent reflecting surfaces (IRSs) [24], also
known as reconfigurable metasurfaces [22], smart large intelligent surfaces [23], large
intelligent surfaces [25–27], or reconfigurable intelligent surfaces [28], are accepted as a
promising technology that realizes SREs. In this study, the term “IRS” will be used as a
representative of these terminologies.

The IRS has recently attracted attention as a core technology for next-generation
wireless communications [29,30], as it can control the wireless propagation environment.
The IRS can be viewed as a continuous surface of reflective elements with successively
induce phase shifts and individual reflection coefficients. The reflective elements can be
controlled using mechanical operations, special materials (e.g., graphene), and electronic
devices (e.g., positive–intrinsic–negative diodes) [31]. The capability of the IRS that reflects
and controls incident signals enables shaping the wireless propagation environment. This
contrasts with the traditional approach that mitigates the harmful effects of the wireless
channel at the transmitter and receiver sides instead of changing it. The IRS uses passive
elements and serves as an artificial two-dimensional metasurface. It does not require
analog–digital converters and power amplifiers. From the perspective of electromagnetic
theory, the IRS can control the amplitude and phase of the electromagnetic waves that
collide with a planar array, thereby changing the direction and intensity of the reflective
waves. Consequently, the IRS can perform anomalous reflection/diffraction, absorption,
polarization manipulation, beam focusing, beam splitting, and multi-beam collimation.
From the perspective of communication technology, space modulation, encoding, and multi-
stream transmission can be realized by the IRS [16–22]. In particular, the IRS can generate
additional signal paths with a desired direction, amplitude, and phase with low noise
amplification. Accordingly, the IRS can convert non-LoS (NLoS) channels to LoS channels
and alleviate strong interference channels. As a result, the use of the IRS is expected to
support highly efficient (in terms of spectrum and energy), secure, reliable, and flexible
designs for future wireless networks [27,32].

The use of the IRS will improve the performance of existing wireless communications
systems by enabling a greater degree of freedom in the control of wireless channels. More
specifically, the IRS can be used to increase coverage, increase the data rate, suppress
interference, facilitate beamforming, and step up physical-layer security (PLS) in response
to randomly fluctuating wireless channels in real-time. A real-time-adjustable IRS can
be used to mitigate and eliminate the multipath and Doppler effects caused by a mobile
transmitter/receiver [33]. IRS-enabled systems provide a more energy-efficient alternative
than conventional multi-antenna amplification and delivery relay systems [34]. Actually,
the operation of the IRS is similar to that of a half-duplex relay, in that it is based on
a manual beamforming at an intermediate point of the channel [35–37]. Unlike active
relays based on signal regeneration and amplification, however, the IRS is more energy-
efficient and cost-efficient, because it operates passively without requiring radio frequency
chains comprising amplifiers, filters, mixers, tuners, and detectors. Therefore, the IRS can
primarily change the phase of the received signals, although it can also adjust the amplitude
of the received signal at the cost of higher complexity.

Recently, there have been many studies on IRS technology. In [38], the authors in-
vestigated the use of IRSs for SREs, wherein key applications, advantages over existing
technologies, hardware architectures, and signal models for IRS-enabled systems were pre-
sented. Reference [29] discussed the implementation issues of the IRS, highlighted future
research direction of the IRS and its role in 6G communications, and classified research
works related to the technology. In [22], the authors presented the potential needs and
applications of machine learning (ML) to IRS tasks. The authors of [17] pointed out the
main problems in the design and implementation of IRS-enabled communication systems.

IRS-assisted UAV communications, which incorporate IRSs into UAV communications,
is expected to overcome the aforementioned limitations and problems of UAV communica-
tions and further provide energy-efficient communications to IoT networks [39]. First of all,
the easy installation of an IRS and a conformal geometry allow the IRS to be installed on
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the front of buildings. An IRS coated on a high-rise building is likely to establish an LoS
link with a UAV and with ground users owing to its high altitude and shorter distance.
Accordingly, the reflective LoS links created by the IRS help signals bypass propagation
obstacles between the UAV and ground users. The IRS can also be installed on indoor walls
or ceilings to serve users in blocked regions [40]. Another application can deploy an IRS
on an aerial platform, i.e., UAVs, to help create bypassing LoS links between the ground
base station (BS) and users. Figure 1 illustrates a terrestrial communications system with
UAV-mounted IRSs, which is one of the application scenarios of IRS-enabled UAV com-
munications. To provide a reliable power supply and stable control of the UAV-mounted
IRSs, UAVs can be connected to other mobile platforms, such as ground BSs or vehicles
with stable power supplies. The IRS on the UAV provides 360-degree panoramic reflective
links toward the ground to the users and, thus, can support communications between the
BS and users on the ground.

Figure 1. A terrestrial communications system with UAV-mounted IRSs.

IRS-assisted UAV communications can generally increase the data rates of nearby
users and expand network coverage, thereby reducing the the number of cellular BSs and
enabling energy-efficient communications systems. More specifically, the benefits and
the main design considerations of IRS-assisted UAV communications can be summarized
as follows:

• In the case of link interrupt or performance degradation due to blockage of the LoS, it
is possible to establish another LoS link bypassing the IRS. Therefore, the UAV-IRS sys-
tems can extend the coverage and improve the communication performance of users.

• When the IRS is mounted on a UAV, its position can be dynamically changed according
to the movement of the UAV. Compared with the ground IRS on a fixed surface,
the mobility of UAVs provides a degree of freedom in the IRS placement.

• When an IRS is mounted on a UAV, both the transmitter and receiver can establish an
LoS link, thereby achieving full-angle reflection and extending the wireless coverage.

• The IRS-assisted UAV communications provides improved security, as well as cover-
age expansion. In particular, the UAV can create a hot zone by generating artificial
noise to protect legitimate users from eavesdroppers and external jamming attack-
ers [41].

• IRS-assisted communications can operate in the mmWave or THz band, thereby
enabling extremely wideband services. mmWave and THz links are very vulnerable
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to path blocking and loss [42]. However, the detrimental effect can be effectively
compensated for by the reconfigurability of the IRS and the mobility of the UAV.

• Optimization of the IRS-assisted UAV communications system enables energy effi-
ciency management [43], for which various factors can be considered. The main factors
for energy efficiency management include phase control of the IRS, the number of
planar array components, and the trajectory and altitude of the UAV.

Both the UAV and IRS described above are accepted as key enablers for next-generation
communications systems, and they can be effectively combined to realize various services
with innovative spatial configurations and further improve the communication perfor-
mance [43,44]. At the same time, there are still many issues arising from the integration and
constraints to be overcome, and various studies are being performed. Technical surveys on
the IRS and UAV can be found in [45,46], respectively. In this article, we aim to present a
comprehensive survey of IRS-assisted UAV communications systems, including research
trends, important issues, technical challenges, and promising applications in future wireless
networks. The remainder of this article is organized as follows. Section 2 describes various
scenarios of IRS-assisted UAV communications. In Section 3, we provide an overview of
relevant studies from the perspective of several performance criteria. Section 4 discusses
the optimization methodologies used for developing IRS-assisted UAV communications
systems. Section 5 highlights some technical challenges to be investigated in the future.
Finally, conclusions are drawn in Section 6.

2. Scenarios of IRS-Assisted UAV Communications

Research on IRS-assisted UAV communications systems is being conducted from vari-
ous perspectives. References [10,16,18,31,40,47–55] described the implementation issues of
IRS technology under various scenarios that integrate IRSs and UAVs to realize IRS-assisted
UAV communications. In this section, we classify these scenarios into five representative
ones according to the installation point of IRSs and the the role of UAVs. IRSs can be
installed on the outer wall of a building on the ground to improve the performance of
terrestrial and/or aerial communications. If no LoS link is secured in UAV communications,
it is possible to build a bypassing LoS using the IRS. The IRS can also be mounted on a
UAV, which allows the IRS to be intelligently and dynamically adjusted according to the
movement of the UAV. This will also increase the probability of establishing an LoS link
between the transmitter and receiver, thereby expanding wireless coverage. UAVs can
perform various functions in communications systems. The UAV may serve as a moving BS
or relay for supporting terrestrial and aerial communications. In multi-UAV environments,
the UAV can also be a user that is served by a terrestrial or aerial BS.

Figure 2 illustrates the five representative scenarios of IRS-assisted UAV communi-
cations. The scenarios are first classified according to the installation location of the IRS,
and then, each class is divided into specific scenarios according to the role of the UAV.
Scenarios (a)–(c) correspond to the case where IRSs are installed on the outer walls of
buildings on the ground, whereas Scenarios (d)–(e) correspond to the case where IRSs are
mounted on UAVs. In Scenario (a), UAVs function as aerial BSs, which will be effective
when terrestrial BSs are not available (e.g., disaster areas, remote areas, and shadowed
areas). The IRS installed on the wall of a building can establish a reflective LoS link between
the aerial BS and users on the ground. The control of the reflection at the IRS can be
carried out with a very low power consumption through phase adjustment of the signals
incident to the IRS [56]. In Scenarios (b) and (d), UAVs act as moving relays for supporting
communications between a BS and users (ground users or other UAVs). Both the UAV with
the IRS and the UAV without the IRS can serve as a relay in these scenarios, and the IRS
either attached to the wall of a building or mounted on a UAV can be used to facilitate the
relaying functionality. In particular, relaying with the UAV-mounted IRS does not incur
any additional noise, and thus, it is energy efficient. Furthermore, due to the nature of
reflective surfaces, the connected LoS links that pass through one or more reflectors are
allowed to share the same frequency band, thereby improving the spectral efficiency [48].
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In Scenarios (c) and (e), UAVs without IRSs are users served by a BS, and IRSs support
communications between the BS and users. The IRS either attached to the wall of a building
or mounted on a UAV helps communications between the BS and users. The UAV equipped
with the IRS will be used to enhance various communication performance, such as signal
amplification and coverage extension. The network configurations required for various
scenarios are different, and various studies are in progress to optimize the system for each
scenario. Furthermore, multiple scenarios can be combined together according to various
applications of IRS-assisted UAV communications.
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Figure 2. Five representative scenarios of IRS-assisted UAV communications.

3. Overview of Previous Studies on IRS-Assisted UAV Communications

In this section, we provide an overview of previous studies relevant to IRS-aided UAV
communications. Most of the works focused on the optimization of various parameters,
such as UAV altitude and speed, IRS location, IRS phase shift, and beamforming weights,
to achieve a certain goal. Primary performance criteria include spectral efficiency, energy
efficiency, and security. We categorized the previous works according to the main perfor-
mance criteria and provide technical features of each work in the following subsections.

3.1. Improvement of Spectral Efficiency

In this subsection, we describe the system models, specific technologies adopted in
the system, and optimization algorithms proposed in previous studies for improving the
performance related to the spectral efficiency. In particular, it is important to incorporate
appropriate communication technologies, such as mmWave, THz, NOMA, and simultane-
ous wireless information and power transfer (SWIPT), into IRS-assisted communications
systems to maximize the spectral efficiency. NOMA transmission is distinguished from
conventional orthogonal multiple access in that devices can be allocated to the same
time/frequency resources. The key feature of the NOMA technique is based on interference
management to share the resources, which enables enhancing the spectral efficiency. SWIPT,
which exploits the same radio signals to transfer both information and energy using time
switching or power splitting of signals, can prolong UAVs’ battery lifetime and improve
the spectral efficiency [57]. Table 1 briefly summarizes the main features of the previous
works that will be introduced in this subsection. A scenario, in Figure 2, associated with
each work is also indicated in the table.
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Table 1. Summary of previous works relevant to improvement of spectral efficiency.

Reference Objective Design Variables Scenario

[58] Maximize sum rate
UAV trajectory,
IRS configuration,
uploading power control

(c)

[59] Maximize sum rate
3D placement,
transmit power of UAVs,
decoding orders among users

(a)

[60]
Maximize the rate of the strong
user while guaranteeing the
target rate of the weak user

Transmit beamforming,
IRS phase shift (e)

[56] Maximize the average sum rate
IRS passive beamforming,
UAV trajectory (a)

[61] Maximize the average sum rate
UAV trajectory,
IRS phase shift (a)

[62] Maximize the average
achievable rate

Power splitting ratio,
transmit beamforming,
phase shift,
UAV trajectory

(a)

[63] Maximize the minimum average
achievable rate of all users

UAV trajectory,
IRS phase shift,
power control,
sub-band allocation

(a)

[64] Maximize the sum rate
UAV trajectory,
IRS scheduling,
resource allocation

(a)

[65]
Maximize the minimum
throughput of information
decoding receivers

Hover position,
beamforming vector of UAV,
IRS phase shift,
transmit power of UAV

(a)

[66] Maximize the total throughput
Master UAV’s trajectory,
master UAV’s transmit power (e)

[67] Maximize channel capacity IRS phase shift (e)

The authors of [58,59] aimed to maximize the sum rate by applying the NOMA
technique to IRS-assisted UAV communications systems. Numerical results verified the
effect of IRS on the performance of UAV communications, as well as on the performance of
NOMA algorithms. In [58], NOMA decoding scheduling was considered for different user
groups to maximize the sum rate, and an interference elimination algorithm was proposed.
Reference [59] adopted deep reinforcement learning (DRL) to optimize the UAV trajectory
while avoiding environmental obstacles. Reference [60] attempted to maximize the data
rate of strong users while ensuring a target rate of weak users by optimizing the IRS phase
shift and horizontal position of the UAV in a multiple-input single-output NOMA system.
References [56,61] aimed to improve the average rate of an IRS-assisted UAV system in an
urban environment. Both the LoS and NLoS channel models were considered for each link.
In particular, ref. [56] considered an NLoS channel between the UAV and a user, and [61]
considered multiple channels between the UAV and users.
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The authors of [62] attempted to maximize the average achievable rate in a SWIPT
system, wherein the intrinsic tradeoff between the spectral efficiency and energy efficiency
was treated by considering the power-splitting ratio. Reference [63] aimed to maximize
the minimum of the average achievable rates of all user equipment (UE) in an IRS-assisted
UAV system operating in the THz spectrum. To achieve the goal, the authors proposed
the optimization of the UAV trajectory, IRS phase shift, power control, and sub-band
allocation of the THz spectrum. The proposed algorithm was shown to reduce the energy
consumption of the UAVs, as well as improve the minimum achievable rate. Orthogonal
frequency division multiple access (OFDMA) technology was applied to the IRS-assisted
UAV system in [64]. The proposed approach achieved the maximum sum rate by jointly
optimizing the trajectory of the UAVs and resource allocation in the IRS. The results
confirmed that the size of the IRS affects the UAV trajectories and the achievable rates of
users in the network.

The authors of [65] proposed a method to minimize system throughput while satisfy-
ing the QoS of users. The system considered multi-antenna UAVs and ensured the energy
requirements of energy-harvesting receivers. The IRS was used as a relay to help improve
the communication performance. Reference [66] proposed a dual-UAV structure with a
master UAV and a slave UAV to maximize the cumulative system throughput. Specifically,
the slave UAV equipped with an IRS was adopted to strengthen the signals for the master
UAV. The authors of [67] examined the channel capacity maximization and showed that the
change in channel capacity due to phase error depends on the number of element antennas
in the IRS.

3.2. Improvement of Energy Efficiency

Energy efficiency is a crucial factor for the implementation of all systems. For wireless
communications systems, in particular, the energy efficiency exerts a significant effect
on the system performance and device size. Therefore, the energy efficiency is accepted
as one of the most fundamental and important performance criteria, together with the
spectral efficiency. In this subsection, we introduce the research trends of the IRS-assisted
UAV communications systems from the perspective of energy efficiency. Table 2 briefly
summarizes the main features of the previous works relevant to the improvement of energy
efficiency. Reference [68] investigated how to maximize the received power of the ground
users using a single UAV and multiple IRSs. It was shown that the energy efficiency of
such systems is highly dependent on the number of elements in the IRS. Reference [69]
aimed to minimize UAV power consumption using a decaying deep Q-network (D-DQN),
which was devised based on the deep Q-network (DQN) algorithm with the concept of
a decaying learning rate. Furthermore, the proposed algorithm was used to compare the
performance of orthogonal multiple access and NOMA systems.

The authors of [70] maximized the energy efficiency of a multicell uplink system
with the help of an aerial BS, i.e., a UAV-mounted IRS. The proposed system was shown
to significantly improve the energy efficiency compared to a conventional system with
amplify-and-forward relays in UAVs, especially when the optimal transmit power and a
large number of reflective elements were implemented. Similarly, Refs. [70–72] aimed to
maximize the energy efficiency of the IRS-assisted UAV communications systems. The sys-
tem proposed in [71] provides communication and computing services to the ground
terminals by operating UAVs as mobile edge computing (MEC) servers in the air. However,
UAVs should operate in an adverse environment where UAV-to-ground links are frequently
blocked by ground obstacles, which may result in the long latency of tasks. To address
this issue, it is essential to configure the IRS so that the propagation channels between
the UAV and ground terminals are improved. As a result, Reference [71] showed that
IRS-assisted UAVs have great potential for improving the performance of MEC, as well as
pure wireless communications.
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Table 2. Summary of previous works relevant to improvement of energy efficiency.

Reference Objective Design Variables Scenario

[68] Maximize the received
power at the ground users

UAV active beamforming,
IRS passive beamforming,
UAV trajectory

(a)

[69] Minimize the energy
consumption of UAV

Movement of UAV,
IRS phase shift,
power allocation policy

(a)

[70] Maximize the
energy efficiency

Transmit power of users,
BS active beamforming,
IRS passive beamforming

(d) + (e)

[71] Maximize the
energy efficiency

UAV trajectory,
task offloading,
cache with the phase shift,
design of IRS

(a)

[72] Maximize the secrecy
energy efficiency

UAV trajectory,
IRS phase shift,
user allocation,
transmit power control

(e)

[73]
Minimize the average
total power consumption
of the system

Resource allocation strategy,
UAV trajectory,
UAV velocity,
IRS phase shift

(a)

[74] Maximize the number
of available devices

UAV trajectory,
IRS phase shift,
user allocation and transmit power

(a)

[75] Minimize the weighted
total energy consumption

Transmit power,
time slot scheduling,
task allocation

(c)

[76] Minimize the energy
consumption of the UAVs

UAV deployment,
IRS phase shift,
user association,
IRS association

(a)

[77] Minimize the total
transmit power

UAV trajectory and velocity,
IRS phase shift,
subcarrier allocation

(d) + (e)

[47]
Improve the coverage
and reliability of UAV
communications

Outage probability,
average bit error rate (BER),
average capacity

(b)

To improve the secrecy energy efficiency in an IRS-assisted UAV system with eaves-
droppers, the authors of [72] argued for the need for the optimization of the IRS phase
shift, UAV trajectory, user association, and transmit power. The authors of [73] considered
a resource allocation strategy and the UAV trajectory and velocity in an alternating algo-
rithm that was proposed to minimize the average total power consumption of the system.
Reference [74] aimed to improve UAV connectivity and energy efficiency by maximizing
the number of available devices during the activation period and verified the possibil-
ity of maximizing service performance with large-sized IRSs. An optimization approach
that minimizes the weighted total energy consumption of vehicles with transmit power
constraints and aerial road side units was proposed in [75]. Specifically, an IRS network
was devised, and the efficiency of the optimized dual-IRS-enabled radio transmission
was boosted by using time-slot scheduling and task allocation. Reference [76] aimed to
minimize the transmit power of UAVs through UAV placement, IRS phase shift, user
association, and IRS association adjustment. To reduce the total power consumption of all
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UAVs, a novel framework of visible-light-communication-enabled UAV multicell networks
was proposed, leveraging widespread IRSs. The results showed that the proposed system
efficiently reduces energy consumption as compared to a counterpart without IRSs.

The work in [77] presented a novel approach of heterogeneous networks (HetNets)
supporting dual connectivity, by adopting multiple UAVs as manual relays with IRSs.
The authors of [47] investigated how to improve the coverage and reliability of UAV
communications systems using IRS-assisted UAVs. To model the statistical distribution
of IRS-enabled ground-to-air links, an approximation method was developed for the
probability density function of the instantaneous signal-to-noise ratio (SNR).

3.3. Improvement of Security

Security is an important issue of wireless communications systems due to the broad-
casting nature of wireless signals. Although UAVs have many potentials, their capabilities
raise concerns regarding system security at the same time. Previous studies showed that
generating random radio channels enables UAVs to protect data transmission [78] and that
with more IRS element antennas, a higher security can be achieved [79]. In this subsection,
we introduce the research trends of the IRS-assisted UAV communications systems from
the perspective of security. The secrecy rate, which is one of the most fundamental metrics
to measure the security performance, is defined as the difference between the rate of the
legitimate channel and the maximum rate of the eavesdropping channel [80]. Table 3
briefly summarizes the main features of the previous works relevant to the improvement
of security.

Table 3. Summary of previous works relevant to improvement of security.

Reference Objective Design Variables Scenario

[81] Maximize the secrecy rate UAV-BS and IRS positions,
UAV-BS and IRS beamforming (a)

[82] Maximize the secrecy rate UAV location,
IRS phase shift (e)

[83] Maximize the average
secrecy rate

IRS phase shift,
UAV trajectory,
transmit power of UAV

(a)

[84] Maximize the sum secrecy
rate of all legitimate users

UAV trajectory,
coefficients of the IRS elements,
UAV active beamforming

(a)

[85] Maximize the worst-case
secrecy rate

UAV trajectory,
IRS passive beamforming,
transmit power of the
legitimate transmitters

(a)

In [81,82], the authors examined how to overcome obstacles through proper placement
of UAV BSs and IRSs in the presence of authorized users and illegal eavesdroppers. The au-
thors aimed to maximize the secrecy rate through the optimal placement and design of the
beamforming weight matrix. The results were extended in [83] by additionally considering
the power control of the UAV to maximize the average secrecy rate. Unlike other studies,
Reference [81] analyzed the probability of LoS link generation depending on the existence
of an IRS in UAV communication systems.

In [84], a secure transmission problem was investigated in an IRS-assisted UAV
mmWave communications system. The authors utilized a deep deterministic policy gra-
dient (DDPG) framework to maximize the sum secrecy rate of all legitimate users and
proposed a novel and effective paired DRL algorithm. The author of [85] considered the
joint and channel-state-information (CSI)-robust design of the UAV trajectory, IRS pas-
sive beamforming, and legitimate transmit power to maximize the average worst-case
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secrecy rate of the communications system. The authors showed that the use of IRS helps
substantially improve the performance of the secrecy rate.

3.4. Improvement of Other Performance

In addition to the above-mentioned performance improvements, various aspects of
the performance the the IRS-assisted UAV system can be improved, including reliability
enhancement and latency reduction. This subsection introduces a few such works, and
Table 4 briefly summarizes the main features of the works.

Table 4. Summary of previous works relevant to improvement of other performance.

Reference Objective Design Variables Scenario

[86] Optimize resource allocation

UAV deployment,
IRS phase shift,
transmit block length,
MBS power

(e)

[40]
Minimize the total decoding
error rate

UAV position,
block length (a) + (b)

[87] Maximize the signal gain
IRS location,
IRS altitude,
IRS to BS distance

(c)

[88] Minimize the weighted sum BER
UAV trajectory,
IRS phase shift,
IRS scheduling (for fairness)

(a)

[89] Minimizing the expected sum AoI
UAV altitude,
scheduling,
IRS phases shift

(d)

[90]

Extend the network
coverage and improve the
communication reliability,
as well as spectral efficiency

Ergodic capacity,
SER,
average SNR

(e)

The studies in [40,86] considered scenarios where an IRS-assisted UAV system sup-
ports strict constraints of ultra-reliable low-latency communications (URLLC), which is one
of the 5G use cases. URLLC requires high reliability when transmitting short data packets
between devices [91]. To overcome the interference of dense networks, the authors of [86]
proposed using the zero-forcing and time division multiple access methods, where each
UAV can serve multiple users in its own cluster. The authors proposed and validated an
optimization framework (in terms of UAV deployment), power allocation in the macro
BS (MBS), phase shift in the IRS, and block length for URLLC [40]. To minimize decoding
errors for short packets, the author considered manual beamforming, which optimizes the
block length and UAV location. It was shown that the reliability improves as the number
of IRS elements increases and that the location of the UAVs is important to achieve high
reliability for short data packets. Reference [87] analyzed how signal gain varies according
to the IRS tilt angle in the IRS-assisted UAV communications system. It was shown that
the IRS gain is maximized when the tilt angle, IRS altitude, and distance from the BS are
optimally selected. Reference [88] presented an algorithm for minimizing the weighted
sum BER and the corresponding improvement in the signal accuracy in the IRS-assisted
UAV system. In [89], the phase shift matrix of UAVs, transmission scheduling, and IRS
elements were optimized to minimize the expected sum of the age of information (AoI).
In this study, a novel relay system for remote IoT wireless networks was proposed by
integrating UAVs and IRSs. Reference [90] investigated the symbol error rate (SER) and
ergodic capacity in a system designed to maximize the SNR. The authors verified that the
asymptotic SNR is within the region between the derived boundaries and approaches the
boundaries as the number of reflective elements increases.
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4. Optimization Algorithms Used for IRS-Assisted UAV Communications

Most of the previous works introduced in Section 3 involve optimization to maximize
the gains from using UAVs and IRSs. In this section, we introduce methods used to op-
timize the IRS-assisted UAV communications systems. The approaches for optimization
are largely divided into traditional optimization algorithms and ML algorithms. Both the
traditional optimization and ML are sophisticated technologies that are used to analyze and
draw meaningful inference from data. Basically, both methods are tools to solve complex
problems using mathematics with data and computers. However, there are some differ-
ences between traditional optimization and ML. The traditional optimization approach
leverages mathematical models and resorts to algorithms to find optimal or suboptimal
solutions for given problems. ML fundamentally gives a complex and interconnected set of
decisions, although the predictions resulting from ML can be used to guide specific deci-
sions. Therefore, when establishing a model based on limited data, traditional optimization
can provide the best solution and can easily be adapted to changes in the problem. The
ML approach can be more efficient when prediction is needed for outcomes outside the
data range [92]. When ML learns based on insufficient or inaccurate data, its performance
should always be evaluated using the loss function due to the deterioration of prediction
accuracy or overfitting [93].

4.1. Traditional Optimization Algorithms

It is important to optimize suitable parameters for UAVs and IRSs to improve the
system performance. Previous studies showed that crucial factors for UAVs are placement,
trajectory, and moving speed, and those for IRSs are the number of elements and phase shift.
The detailed description of the various parameters and traditional optimization algorithms
for IRS-assisted UAV communications systems can be found in [94].

4.2. ML Algorithms

ML is a promising technology that learns from huge data sets and plays an important
role in automating systems and devices in response to external conditions. Both deep learn-
ing (DL) and reinforcement learning (RL) belong to ML, in that they learn autonomously
and enable a computer to develop rules on its own to solve problems. In particular, DL
is a hierarchical learning process that learns from vast amounts of raw data and applies
the progressed learning to new data [95]. It learns an algorithm to find a specific pattern
in raw data through an artificial neural network that mimics the neuron structure of the
human brain. The pattern is narrowed by learning through successive cycles, and the
prediction is improved in each cycle. On the other hand, RL continues to dynamically learn
and coordinate the behavior for the best reward [96]. It receives feedback on the results of
various state changes and learns to obtain the best reward. It always revises, transforms,
and reinforces the algorithm through much learning until it gives the best result. DL based
on complicated raw data tends to result in the wrong classification [97], whereas RL is
not adequate when the data dimension is large and the environment is anomalous [98].
To make up for the weak points of DL and RL, deep reinforcement learning (DRL) was
proposed by incorporating a deep neural network (DNN) into RL. Recently, various studies
have been conducted to apply ML techniques to improve the performance of wireless
communications systems with UAVs or IRSs. However, only a few studies considered
IRS-assisted UAV communications systems. This subsection describes research works for
solving complex optimization problems in IRS-assisted UAV communications systems from
the viewpoint of the adopted ML techniques, which can be divided into DL with neural
networks and RL.

The authors of [69] considered an integration of NOMA and IRS-assisted UAV com-
munications systems. They aimed to minimize the power consumption of the system by
optimizing the UAV movement, IRS phase shift, and power allocation for data transmis-
sion between UAVs and users. To achieve the goal, the authors developed and proposed
ML algorithms based on a D-DQN. Unlike the conventional DQNs, which do not jointly
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solve the non-convex problem, the proposed D-DQN technique was found to optimize
minor constraints, resulting in reduced power consumption. Reference [58] considered
an uplink NOMA with IRSs for air-to-ground communications. The formulated problem
was to maximize the network sum rate, while ensuring the combat safety of UAVs and
satisfying minimum data rate requirements for both UAVs and ground users. The authors
proposed sample-efficient DRL algorithms to simultaneously optimize the UAV trajectory
IRS configuration and power control. In addition, they proposed a DRL algorithm robust to
uncertainties to guarantee the worst-case performance. The two proposed DRL algorithms
were shown to outperform the existing algorithms in terms of learning efficiency and
robustness. In [65], the authors considered a UAV-mounted IRS system to support the strict
constraints of URLLC. In this study, UAVs equipped with IRS panels serve as relays that
reflect signals from MBSs to all users of the network. Due to the highly nonconvex and
complex nature of the formulated optimization problem, they adopted a DNN to solve the
optimal UAV deployment.

A UAV-based IoT network supporting an IRS was proposed in [66], wherein the
throughput was aimed to be maximized by jointly optimizing the UAV trajectory and
transmit power under battery capacity, same-side distance constraint, and other practical
constraints. To solve the established optimization problem in an accurate and efficient
manner, a modified multi-agent DRL (MADRL)-based algorithm called the pre-activation
penalty multi-agent deep deterministic policy gradient was proposed. Reference [84] aimed
to deliver robust and secure IRS-assisted UAV communications with incomplete CSI. In par-
ticular, UAV active beamforming, coefficients of IRS elements, and UAV trajectories were
jointly optimized to maximize the sum secrecy rate of all legitimate users in the presence
of multiple eavesdroppers. A deep deterministic policy gradient (DDPG) framework was
adopted to solve the accurate CSI estimation problem. In [89], the authors considered a
UAV-mounted IRS system with a single BS that communicates with various IoT devices on
the ground. The authors focused on optimizing the UAV altitude and phase shift of the IRS
to minimize the AoI, which indicates the latency of the state-update system and application.
Because it is difficult to analyze the activation pattern of IoT devices, the authors devised a
DRL-based proximal policy optimization (PPO) algorithm to understand the randomness
of IoT devices’ behavior. In [77], the authors considered multiple UAV-mounted IRSs for a
HetNet supported by dual connectivity. The authors developed a DQN-based distributed
algorithm to optimize the trajectory and speed of UAVs, phase shift of IRS, subcarrier
allocation, and active beamforming at BSs. The authors of [99] proposed a DL-based
channel-tracking mechanism to track the time-varying channel. The proposed algorithm
consists of two modules: channel pre-estimation and channel tracking. The pre-estimation
was achieved by using a DNN with offline training on a pre-collected training dataset.
The tracking module was designed using a stacked bidirectional long short-term memory
that can track the CSI over a time-varying channel in a data-driven manner. The proposed
channel-tracking algorithm was shown to provide fast convergence during the offline
training phase. The author of [100] proposed a resource allocation model for the aerial IRS
based on a cooperative DNN rather than a universal DNN. As the proposed collaborative
and distributed learning framework makes decisions by considering the information on
the entire environment, it provides better performance and reliability.

In summary, research on the application of ML techniques in IRS-assisted UAV com-
munications systems is still in its early stage. Nevertheless, the previous works introduced
above confirmed that ML is promising to optimize various parameters of the complex
IRS-assisted UAV communications systems. Table 5 summarizes the main features of the
previous studies based on ML for IRS-assisted UAV communication systems.
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Table 5. Main features of the previous works based on ML.

Reference Objective Concerned Variables Machine Learning
Technique

[65]

Minimum decoding error
probability of the worst-case
user and optimize the
resource allocation

UAVs deployment DNN

[99] Improvement of channel
estimation performance

UAV trajectory and speed,
IRS phase shift,
movement of users,
propagation delay,
time delay

DNN

[100] Dynamic resource block
allocation

UAV location,
IRS phase shift,
RB allocation

Cooperative DNN

[69] Minimize the energy
consumption of UAV

UAV trajectory,
IRS phase shift,
power allocation policy

D-DQN

[58] Maximize the average sum-rate
UAV trajectory,
IRS configuration,
power control

DRL

[66] Maximize the total throughput UAV trajectory,
transmit power control MADRL

[84] Maximize the sum secrecy rate
of all legitimate users

UAV trajectory,
UAV active beamforming,
coefficients of the IRS elements

Twin-DDPG DRL

[89] Minimizing the expected
sum AoI

UAV altitude,
IRS phase shift,
communication patterns

DRL-based PPO

[77] Minimize the total
transmit power

UAV trajectory,
UAV velocity,
IRS phase shift,
subcarrier allocation for MBS

Dueling deep
Q-network

5. Research Challenges of IRS-Assisted UAV Communications

As introduced in the previous section, there have been many studies on IRS-assisted
UAV communications systems, and the results confirmed the potential of the technique
in future wireless communications. However, there are practical issues and research chal-
lenges that need to be addressed to realize and advance IRS-assisted UAV communications
systems. This section presents some of them.

5.1. Channel Estimation

First of all, accurate CSI estimation is of paramount importance to realize performance
gain with joint designs of UAVs and IRSs [18,22,30,42]. In general, the accuracy of the
channel estimation can be improved at the cost of increased training overhead and power
consumption, especially when the IRS is large [101]. Therefore, it is worth pursuing ways
to improve the accuracy of channel estimation, while minimizing the training overhead
and power consumption at the same time.

Wireless channels are affected by many factors, such as fading, scattering, and shad-
owing. In IRS-assisted UAV communications systems, various external parameters will
also affect the channel because UAVs fly in the air [102]. Typically, the direct link between
the UAV and the user, the number of elements in the IRS, the location of the IRS, and the
material on the metasurface affect the effective wireless channel [22]. Furthermore, UAV
mobility in real-world scenarios complicates channel modeling. Jittering, as well as the
movement of UAVs can cause errors in location estimation and channel estimation [103].
Therefore, a thorough evaluation and study of the channel model should precede to identify
and understand the effect of various factors in various application scenarios. Furthermore,
studies on channel estimation algorithms robust to external factors will be necessary.
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5.2. IRS Phase Shift

The computation of optimal phase shift is essential for IRSs, which are either attached
on a fixed wall or mounted on a moving UAV. Since the IRS does not have computing capa-
bility, a separate computing node is required for computing the phase shift. This implies
that data transfer between the IRS and the computing node is necessary [67]. The channel
between the IRS and the computing node will experience fading and delay, especially when
the IRS is mounted on a UAV [104,105]. Therefore, studies on countermeasures against the
channel fading and delay are important to establish a stable link between the IRS and the
computing node.

5.3. Reflection Efficiency

Securing the high reflection efficiency of IRSs is another important issue for practical
implementation [106,107]. The location and orientation of the IRS are main factors that
determine the reflection efficiency, and thus, they should be carefully designed [108].
On the other hand, to compensate for long-distance path loss, it is necessary to improve the
reception performance by using large IRSs. However, the use of large IRSs will increase the
cost and cause several difficulties, such as size and weight [109]. Therefore, it is necessary
to study an appropriate tradeoff between the number of elements in the IRS and the
reception performance.

5.4. UAV Energy Consumption

Energy consumption plays an important role in the design of the entire system. How-
ever, in most studies on IRS-assisted UAV communications systems, the battery capacity of
UAVs was not considered. Even when it was considered, practical scenarios and constraints
were not reflected. The authors of [110] pointed out that UAV implementation requires
realistic assumptions, such as payload weight, velocity, weather conditions, and UAV
temperature after a certain period of working [111]. It is required to establish practical
energy models for UAVs. In addition, there is a need for efficient charging techniques, as
well as efficient energy usage. In particular, wireless power transfer for UAV charging is a
promising area under development [112]. Wireless charging can work in a contact or non-
contact manner by attaching a separate charging unit to the UAV. A charging technology
based on laser forming is also a promising research topic to secure flight time [113,114].
Hence, it is necessary to study various models of UAV energy consumption and charging
technologies to ensure complete automation and flight time [115].

5.5. Security Vulnerabilities

UAVs can easily be detected by visual or radar scanning, which makes them suscepti-
ble to jamming attacks. Therefore, research on safe transmission technologies is required
to enhance the security of the IRS-assisted UAV communications system [116]. As anti-
jamming techniques, cooperative jamming, as well as conventional beamforming will be
effective to degrade the quality of eavesdropping channels [117,118]. In addition, it is
required to make the CSI estimation protected from and robust to the jamming attacks and
reflect incomplete CSI on the eavesdropping channel in the design of the PLS system [119].

5.6. Environmental Factors

Most studies assumed stable UAV flight and a fixed user location. However, in practice,
UAVs typically experience channel estimation errors and unstable transmissions, which
should not be ignored because of inevitable jitters caused by airflow and vibration [120].
Consequently, the benefits from beamforming design cannot be fully utilized. Environmen-
tal factors, such as rain and wind, can change the speed and trajectory of UAVs, which may
result in safety issues and performance degradation [121]. Research on these environmental
factors remains a challenge.
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6. Conclusions

The article provided an overview of the current status of advanced technologies
for IRS-assisted UAV communications, which is important to realize NTNs for future
wireless communications systems. We first identified several scenarios for which IRSs can
be incorporated into UAV communications systems. The high degree of freedom in the
system configuration makes the IRS-assisted UAV communications systems a promising
solution to enable advanced services in future wireless systems. We then investigated
recent advances in IRS-assisted UAV communications in terms of the design goal, such as
spectral efficiency, energy efficiency, and security. Through the investigation, we confirmed
the benefits and performance improvement resulting from the combination of the UAV
and IRS, as compared to the advantages that each of the IRS and UAV can bring. It was
also shown that optimization of various parameters, such as UAV altitude and speed, IRS
location, IRS phase shift, and beamforming weights, is essential to maximize the gain.
We also discussed optimization approaches adopted in the previous works, particularly
focusing on ML algorithms. Because a wide variety of variables are usually involved in
IRS-assisted UAV communications systems, it is important to optimize them to improve
the system performance. As methodologies to solve the problems, traditional optimization
and ML were introduced together. The ML algorithm, which was judged to be more
suitable for solving complex problems, was especially elaborated. Although the previous
studies showed great potential of IRS-assisted UAV communications, there are still many
technical issues and research challenges. We highlighted channel estimation, IRS phase shift,
reflection efficiency, UAV energy consumption, security vulnerabilities, and environmental
factors as future research challenges. In particular, to realize performance gain with joint
designs of UAVs and IRSs, it is of paramount importance to improve the accuracy of
channel estimation, while minimizing training overhead and power consumption at the
same time. The channel estimation should also be designed to be robust to external factors,
such as UAV mobility and jittering.
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