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Abstract: Big Data Applications with Scheduling becomes an active research area in 

last three years. The Hadoop framework   becomes very popular and most used 

frameworks in a distributed data processing. Hadoop is also open source software 

that allows the user to effectively utilize the hardware. Various scheduling algorithms 

of the MapReduce model using Hadoop vary with design and behavior, and are used 

for handling many issues like data locality, awareness with resource, energy and 

time. This paper gives the outline of job scheduling, classification of the scheduler, 

and comparison of different existing algorithms with advantages, drawbacks, 

limitations. In this paper, we discussed various tools and frameworks used for 

monitoring and the ways to improve the performance in MapReduce. This paper 

helps the beginners and researchers in understanding the scheduling mechanisms 

used in Big Data. 

Keywords: Big Data, Hadoop, MapReduce, classification, HDFS (Hadoop 

Distributed File System), scheduler. 

1. Introduction 

Big Data plays very important role in many industries like healthcare, automobiles, 

IT etc. Effective utilization of energy, resource, time becomes challenging task 

nowadays. Big Data has become more popular in IT sector, banking, finance, 

healthcare online purchasing, engineering and many other areas. Big Data refers wide 

range of datasets and hence it’s difficult to manage by existing applications. The data 

sets are very complex and growing day by day in humongous volume. Raw data are 

continuously generated from social media, online transactions, etc. Due to continuous 

increase in volume, velocity and variety complexity increases; it induces lots of 

difficulties and challenges in data processing. Big Data becomes a complex process 

in terms of correctness, transform, match, relates, etc. 

The main aim of scheduling in Big Data processing is to plan the processing and 

completion of as many tasks as possible by handling and altering data in a proficient 

way with a minimum number of changes. Different methods are preferred for the 

allocation of resources, which have special architectural characteristics. Finding the 

best scheduling method for a particular data processing and request leftovers is an 
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important challenge. The Big Data processing as a large “batch” process that runs on 

an HPC cluster by dividing a job into smaller tasks and distributing the work to the 

cluster nodes. The Big Data processing models must be aware of data locality when 

deciding to shift data to the computing nodes or to create new computing nodes near 

data locations. Job scheduling is to allocate resources to jobs fairly. Large and small 

jobs will be practically assigned to each node by analyzing the realistic situation of 

resource utilization through the static and dynamic priority scheduling in MapReduce 

clusters. Moreover, the job scheduling can predict the resource utilization of the jobs 

which have not been performed by analyzing the performed jobs. 

Big Data poses many research challenges like analyzing of Big Data, handling 

the data volume, data privacy and security, storage, visualization, job scheduling, 

fault tolerance and energy optimization. Analysis of Big Data becomes very difficult 

due to the incomplete and heterogeneous nature of the data produced. The collected 

data are available in different formats, structure and variety. Dynamic scheduling of 

jobs with distributed computing demands even scheduling of resources across various 

geographical areas [1, 7].  

In grid base architecture, workflow generation, resource management and 

scheduling are the major concerns. The architecture does not require any human 

intervention for task execution. It provides flexibility and complexity gets reduced in 

workflow generation of tasks, mainly it saves time and cost [9]. Grid scheduling 

becomes very essential part to aggregate the power of distributed resources and it 

provides a non-trivial solution to the user [12]. Resource scheduling and application 

scheduling play major role in grid computing, scheduling, evaluation done by 

simulation approaches and real time environment [27]. 

Real time scheduling with multiprocessor is proposed with different scheduling 

methods and performance metrics used for comparing the scheduling methods. 

Global, hybrid scheduling algorithm and various approaches for sharing and usage in 

real time scheduling are discussed in [10]. To make decisions better Big Data need 

to convert the data to an interactive format. In data visualization different forms are 

used to represent the same data, which resolves the problems like perception based 

issues and limited screen based issues [2]. Choosing the Big Data tools based on 

understanding the requirements and data analytics is a very complex process, 

selecting the tools and result analysis plays an important role. Tools are designed to 

help the people to perform various tasks [3]. YARN is not following push based 

scheduling and hence it reduces the major problem of lowering job latency. Facebook 

uses Corona, in Corona job tracker and client runs at the same time, Facebook 

invested large sum of money in Hadoop and made many changes in Hadoop 

distribution. Corona performs time optimization for Facebook and applications [4]. 

MapReduce model is predicting the completion time of the map tasks based on 

demand from CPU and disk by calculating MVA (Mean Value Analysis). MVA 

introduced an analytical model with multiple classes of jobs and performs 

comparison of a single node and multi node in Hadoop environments [5]. 

Hadoop++ is used to improve the performance of the Hadoop framework without 

changing the environment. Hadoop injects the technology in the right place through 

user defined functions. Hadoop++ is very useful in tasks like indexing and join 
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processing [11]. MapReduce model with iterative processing is introduced in 

HaLoop. HaLoop improves their efficiency by adding a loop aware scheduling and 

cache mechanisms in Big Data Applications with iterative processing. HaLoop 

extends the new novel programming model with many optimization methods like 

loop aware scheduler, loop invariant in data caching and caching for efficient 

verification with fix point [6]. iMapReduce is a user friendly environment and allows 

the user to specify the iterative computation with MapReduce function. Performance 

is getting improved in iterative implementations due to the reduction of overhead, 

removal of static data shuffled and asynchronous tasks allowed in MapReduce. 

iMapReduce delivers five times faster performance when compared to Hadoop [38]. 

The hybrid data base system Llama is introduced, columns are defined into 

correlation groups and it will provide support for the tables to vertically partition. 

MapReduce with the query engine supported by Llama also provides a new join 

algorithm for fast join processing. The experiment is conducted with EC2 and shows 

that excellent load and query performance is achieved, and MapReduce follows row 

wise storage [26]. Manimal automatically analyzes and applies suitable data aware 

optimizations in MapReduce program, so that no additional work is required from 

the developer. It also detects optimization opportunities, and hence the speed is 

increased [19]. SkewTune is introduced for user defined MapReduce programs. The 

advantage of SkewTune is that it just extends Hadoop and reduces job run time. Many 

applications become very effective by using SkewTune [22]. The Starfish is used for 

the self-tuning system, however cost based optimizing for MapReduce programs are 

complex in Starfish. From Starfish the user must be able to find out MapReduce 

program’s behavior during execution of tasks; the ways of program’s behavior 

change when changing parameters like resources and input data; it also optimizes the 

program effectively [18]. MapReduce workflow needs comprehensive plan space for 

generating the workflows. For that purpose Stubby is introduced as a cost based 

optimizer, which is capable of searching the selective subspace through full plan 

space. Stubby enumerates the plans and transfer the plan to efficient search algorithm 

[27]. Twister supports MapReduce iterative operations and performs computations 

effectively and efficiently [14]. Data analytics need key requirement scalability, and 

MapReduce becomes popular because of its salient features like fault tolerance, 

scalability, flexibility and ease of programming. Improving the performance of 

MapReduce with classification is based on the specific problem [13].  

FIFO algorithm is used for default scheduling in MapReduce and jobs are which 

enters first   into the ready queue grabs first priority [28]. This scheduling gives 

disadvantages for some jobs which enter the queue later, and thus leads to the 

starvation of jobs. Fair scheduler is designed to run small jobs quickly and thus 

overcomes the drawback of FIFO scheduler. Fair scheduling assures the service for 

all jobs [15]. Delay algorithm is introduced in Facebook, by applying some changes 

in MapReduce with existing data locality; the performance is improved and the 

lowest response time for map tasks is achieved [16]. Cost base optimizer for complex 

MapReduce programs is introduced for optimization of large space configuration 

parameters of the program. The profiler is used for collecting statistical details from 

unmodified MapReduce programs; it also performs fine grained cost estimation [17]. 
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Hadoop uses round-robin scheduling algorithm; when the smaller weight jobs 

are more and the larger weight jobs are less, the round-robin scheduling is used to 

overcome the problem. The scheduler puts forward weight and updates rules based 

on the situations. Task allocation becomes very effective by using this idea and only 

job tracker is used in the Hadoop platform [34]. Hadoop scheduler causes 

performance degradation in heterogeneous environments; to overcome the problem 

LATE (Longest Approximate Time to End) is introduced and it is highly robust to 

the heterogeneous environment. Hadoop response time is improved by using LATE 

scheduler [40]. Delay scheduling is used in Hadoop to improve data locality in an 

optimal way and throughput increased for different kinds of tasks. Fairness in job is 

achieved by using this delay scheduling due to simplicity and policies for fair sharing 

between the resources [39]. Hadoop and Dryad are introduced for efficient scheduling 

and enhanced utilization in a shared environment. Scheduling with MapReduce holds 

the issues, synchronization overhead and locality. Scheduling multiple jobs with 

fairness, locality improvement and delay scheduling are achieved in Hadoop and 

Quincy scheduler [38, 41]. Deadlines are very important requirement considered by 

cloud based data processing platform such as Hadoop. By default Hadoop uses FIFO 

scheduler with priority based option. Scheduling jobs with deadline constraints are 

given by the user and ensure that deadlines are met properly, so that estimated 

schedule is executed correctly [20]. COSHH (Classification and Optimization based 

Scheduler for Heterogeneous Hadoop) scheduler is a combined FIFO and fair sharing 

algorithm which supports hybrid solution [29]. ARIA is proposed for Service Level 

Objective (SLO) with three components. SLO based scheduler determines the job 

ordering and amount of resources used for meeting the job deadlines in Hadoop. 

SLO’s job objectives are effectively implemented by the scheduler until job demands 

exceeds the Hadoop cluster resources [33].  

Spark streaming is one of the open source frameworks for more reliable, high-

throughput and low latency stream processing. It is a near real time stream processing 

framework processing commodity hardware, so real time event processing is not 

assured in its scheduling system. Profiling outcome indicates that the total delay time 

of events with unstable inputs is more unstable and presents big fluctuations. 

Effective scheduling approach reduces the worst case event processing time by 

dynamically adjusting the time window of batch intervals. It is a real time 

enhancement to Spark Streaming based on Spark’s framework [24]. Spark is a 

category of efficient Big Data processing platform based on memory and alike to 

Hadoop MapReduce. But the Spark default task scheduling plan does not take the 

different capacity of node into account for heterogeneous Spark cluster, thus leading 

to lower the system performance. An adaptive task scheduling strategy for the 

heterogeneous Spark cluster, which analyzes parameters from surveillance to 

dynamically adjust the task allocation, weights nodes through monitoring the load 

and resource utilization of nodes. Experimental results validate that this strategy for 

heterogeneous nodes is superior to the default task scheduling strategy in aspects like 

task completion time, nodes working state and resource utilization [36]. 

The structure of this paper is as follows. Section 2 presents Hadoop MapReduce 

architecture, features, working principles and issues in Hadoop. Section 3 is about 
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the Hadoop job schedulers. Section 4 discusses MapReduce optimization techniques. 

Finally, Section 5 gives the conclusion. 

2. Hadoop MapReduce: Architecture, features, working principles and 

issues 

Hadoop Distributed File System (HDFS) is storing huge files in a distributed manner 

in various HDFS nodes. The data are divided into 64MB /128 MB blocks. HDFS 

maintains three copies of every block in unique machines. HDFS maintain the 

metadata in name node and data are kept in separated nodes are called as data nodes. 

In this section we discuss the architecture of MapReduce, scheduling of job, Hadoop 

features and issues. 

2.1. Hadoop MapReduce architecture 

Hadoop includes MapReduce, a distributed data processing model that runs on large 

clusters of machines. A Hadoop MapReduce job mainly has two user-defined 

functions, map and reduce function. The Hadoop job takes the input of key-value 

pairs (k, v) and map function is called for each of these pairs. Job tracker and task 

tracker have two types of nodes that control the execution process. The job tracker 

coordinates and schedules all tasks to run on task trackers. Task trackers in turn send 

progress reports to the job tracker. If a task fails, the job tracker can reschedule it on 

a different task tracker. The essence of Hadoop MapReduce is that the users just 

define map and reduce functions. The Hadoop framework takes care of everything 

and Hadoop MapReduce uses the Hadoop Distributed file system to perform I/O 

performance. 

 

 
Fig. 1. Hadoop MapReduce architecture 

2.2. Hadoop features 

i. Hadoop has the power to add new nodes without need to change the clusters (data).  

Hadoop cluster can accommodate more than one node without any difficulty. 
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ii. Since Hadoop is used to store large TB’s of data it’s more affordable when 

compared to any other servers. 

iii. Hadoop doesn’t follow the norms for structuring data, hence it is flexible to 

work. Another important feature is that multiple data can be combined in Hadoop. 

No matter is the data structured or not, Hadoop can perform map and reduce jobs 

very effectively. 

iv. Hadoop can redirect the data into another location when there is a fault in the 

given primary node. When one of the nodes in a cluster fails, the job can be redirected 

to other node and hence Hadoop is highly a fault tolerant system. 

v. Since Hadoop does parallel computing, system is more effective and efficient 

in terms of deriving the results. 

vi. Hadoop offers a large cluster of local servers to store large amount of data. 

2.3. Issues 

Managing Hadoop cluster with multiple MapReduce tasks on multiple nodes needs 

effective and efficient scheduling policies to achieve the performance and resource 

utilization. Performance is affected by some issues like energy, fairness, data locality 

and synchronization. 

2.3.1. Energy   

In Big Data applications large scale of data operations are held out by data centers 

with MapReduce. Hadoop requires large amounts of energy in processing the data 

within data center and energy becomes problematic. Overall cost of energy increases 

in the data center, so minimizing the energy consumption becomes a big challenge in 

data centers.  

2.3.2. Fairness 

The resources are shared among the users and fair measures are required in 

scheduling the all jobs without starvation. MapReduce with heavy workload uses the 

entire resource in terms of the cluster. Jobs with short computation may not have 

desired response time. Workload must be fairly shared or distributed among the jobs 

in the cluster. Fairness deals with locality and MapReduce phases. Performance 

degradation of throughput and response time are reduced if the MapReduce jobs are 

equally shared and the input files are distributed in clusters.  

2.3.3. Data locality 

The distance between the data node which holds the input and the task node is called 

locality. The data transfer rate depends on the distance between the input data and 

computation node, if the input data node is very near then data transfer rate becomes 

low. Many times Hadoop cluster is not able to achieve locality; in such attempts rack 

locality is achieved. 

2.3.4. Synchronization 

The process of transferring intermediate outputs of the mapping process to the input 

of reduce process is called synchronization. This is an important issue in MapReduce 
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of scheduling jobs. After the completion of map phase only reduce phase will take 

place and reduce tasks are fully dependent on the map task. If any one of the map 

nodes becomes slow, then the entire process performance becomes slow. In a 

heterogeneous environment synchronization becomes a problem; each node in the 

Hadoop cluster has unique computation facility, hardware and bandwidth and this 

leads to decreased performance of Hadoop cluster. 

3. Hadoop job schedulers  

3.1. Classification of  schedulers used in Big Data 

Classification of scheduler is based on various parameters like priority, time, strategy, 

environment, energy, resource awareness (CPU, IO, disk, memory, and free slots). 

Classification of scheduling in Hadoop is achieved based on using available resources 

effective and efficient, scheduling strategy and time. This classification of different 

scheduler is shown in Fig. 2. 
 

 
Fig. 2. Classification Hadoop scheduler 

3.1.1. Static scheduling strategy 

In static scheduling strategy to job allocation in processors, it is achieved before the 

program to begin the job execution time, in completion time. Processing resources 

are known only at the compile time. The objective of static strategy is to minimize 

execution time of processors. In static scheduling Capacity scheduler, Delay 

scheduler, FIFO scheduler, Fair scheduler, and Matchmaking scheduler are available. 

3.1.2. Dynamic scheduling strategy 

In dynamic scheduling strategy job allocation is performed during execution time. 

The resources have little knowledge about jobs. The environment is unknown for the 

jobs, but jobs will execute during their lifespan. Whenever a job is executed, a 

decision is made and dynamic environment is applied to the processors. Deadline 

Aware scheduler, Resource aware scheduler and Energy aware scheduler are used in 

dynamic scheduling strategy. 
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3.1.3. Based on time 

In this scheme scheduling of the job is based on time and job scheduling is achieved 

on the base of deadline provided by the cluster. Every job must complete the job 

within the specified time and deadline is given by the user to check whether the 

executed job is within the deadline or not. Delay scheduler and Deadline constraint 

scheduler are used in time based scheduling. 

3.1.4. Based on available resource 

Scheduling is based on the requirements of the resources. In this scheme, job 

performance and resource utilization is improved, various resources and their usage 

are also compared. Resources are memory, disk storage, CPU time, IO, etc. Delay 

scheduler, Matchmaking scheduler, Resource aware scheduler and Energy aware 

scheduler are used in resource based scheduling. 

3.2. Description of schedulers used in Big Data 

Hadoop jobs are sharing the resources with scheduling policy based on the scheduling 

mechanisms when and where jobs have to be executed. The main objective of 

scheduling is to maximize the throughput, minimize the completion time; overhead 

and available resources must be balanced parallel by allocating jobs to processors. 

Schedulers used in Hadoop are: 

3.2.1. Default FIFO scheduler 

Hadoop uses default scheduling policy FIFO; this scheduling prefers the earlier 

submitted jobs over later submitted jobs. Whenever the new job arrives, job tracker 

is initialized. It places the job in the queue. When running multiple jobs with priority, 

not supported jobs are strict with data locality and completion of previous job, only 

next jobs are allowed and the job must wait for completion of previous task. FIFO 

scheduler is mostly used when the user feels that the execution order of jobs has no 

importance.  

3.2.2. Fair scheduler 

Fair scheduler is introduced by Facebook and the core idea of this scheduler is to 

assign the resources to every job, so that every job will get equally shared resources. 

By using pools in Fair Scheduler the jobs are grouped and perform fairness in sharing 

between pools. Job configuration properties are controlled by pools. Every user has 

his/her own pool and minimum resources shared with assigned pool. By default, all 

pools must contain equal sharing of resources with MapReduce task. 

3.2.3. Capacity scheduler 

Capacity scheduler is produced by Yahoo; this scheduler is used when multiple 

organizations want to share the large cluster with minimum capacity and sharing 

excess capacity among the users. Instead of pools several queues are created; each 

queue is configurable with MapReduce slots. The queue has priority with FIFO and 
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is achieved in capacity scheduler. Jobs high priority must access resources, compared 

to the less priority jobs. Scheduled tasks are understood by memory consumption of 

each task; the scheduler has ability to control and allocate memory based on the 

physical available resources. Based on the organization needs resources are shared, 

available resources are partitioned with MapReduce cluster among many 

organizations.  

3.2.4. Delay scheduler 

This approach is used by Facebook and locality is achieved by waiting approach in 

the Hadoop cluster. In this scheme, if the data for the task is not present, then a task 

tracker  waits for a particular amount of time. If there is any request from the local 

node for task assigning, then the scheduler will check the size of the job; if the job is 

too short, then the scheduler will skip that job and look for any subsequent jobs 

available to run. If this job, skipping persists for long time duration, then it will launch 

nonlocal task to avoid starvation. This scheduler resolves the locality problem like 

sticky slot and head of line scheduling. Fairness with locality is achieved by this 

scheduler and strict jobs order relaxes with task assignment. 

3.2.5. Matchmaking scheduler 

Data localities of map tasks are enhanced by the matchmaking scheduling. Before 

assigning non local tasks, scheduler ensures that every local task grabs a slave node 

to assign job first. Scheduler keeps on trying to find matches with a slave node with 

some input data for unassigned tasks. A locality marker will mark the node and 

guarantees that each node gets chance to grab the tasks. This scheduler leads to 

highest data locality and less response time for tasks (map). Unlike FIFO, this 

scheduler relaxes strict job order for task assignment. 

3.2.6. LATE (Longest Approximate Time to End) scheduler 

Tentative tasks will progress very slowly due to various issues like CPU load, 

background process running slowly, resource contention and large number of 

background process. It will detect slow running task in the cluster and launch 

equivalent task as a backup; this process is called speculative execution of tasks. The 

main goal is to minimize a job response time as much as possible. When the user is 

running short jobs, answers must be very quick and response time is important. By 

default, this scheduler supports homogeneous clusters and is highly robust to 

heterogeneity. It is mainly used for optimizing the performance of jobs, but it doesn’t 

provide the guarantees of reliability. 

3.2.7. Deadline constraint scheduler 

The user specifies deadline constraints while scheduling the jobs, ensures that jobs 

met deadline and are scheduled for execution. This scheduler improves system 

utilization dealing with deadline constraint and data processing. It is achieved by cost 

model for job execution and Hadoop scheduler with constraint. Cost model with job 

execution considers various parameters like MapReduce task with runtime, the input 
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size of data and data distribution. A Hadoop scheduler with user constraints has 

deadline as part of the input; when the job  is submitted  for testing, it checks  whether 

the  job  can be  finished within the time specified by the  deadline or not.  

3.2.8. Resource aware scheduler 

In Hadoop, resource utilization is minimized by this scheduler. The schedulers like 

Fair scheduler, FIFO, Capacity scheduler the admin must assign job to a queue and 

manually makes sure that specific resources are shared. These schemes focus on how 

effectively resource utilization has been done with various types of utilization like IO 

utilization, memory utilization, disk utilization, CPU utilization, network utilization. 

This scheduler makes use of the two metrics: “dynamic free slot advertisement” and 

“free slot filtering/priorities”. Instead of having a fixed number of computation slots 

configured with each task tracker node, the free slots are dynamically used according 

to the demand by Dynamic Free Slot Advertisement. In “free slot filtering/priorities” 

maximum number of slots is fixed per node. Free slots are identified by task tracker 

by adverting based on the resource availability. 

Table 1. Comparison various schedulers used in Big Data with Hadoop 

Scheduler 
Job  

alloca-

tion  

Environment Priority 
in job 

queue 

Resources 

sharing  
Features Drawbacks 

Homoge-
neous 

Heteroge-
neous 

FIFO Static ✓ ✗ No No 

Easy to 

implement 
efficient 

Data locality 

job starvation 

Fair Static ✓ ✗ Yes Yes 

Fast response 

time mixing 
small with  

large job 

possible 

Configuration 
problems 

unbalanced 
performance 

Capacity Static ✓ ✗ No Yes 

Potential to 
reuse unused 

jobs in the 

queue 

Complexity 

choosing 
scheduler 

Delay Static ✓ ✗ Yes No 
Simple 

No overhead 

No effective. 

Slots are 

limited 

Match-

making 
Static ✓ ✗ Yes Yes 

High data 
locality. 

Utilization 

level is high  

-- 

LATE Static ✓ ✓ Yes Yes 
Heterogeneity 

more robust 
Reliability 

Deadline 

constraint 
Dynamic ✓ ✓ Yes Yes 

Supports 

optimization 

Node must 

uniform 

Resource 
aware 

Dynamic ✓ ✓ Yes Yes 

Performance 

resource 

utilization 

Monitoring 
bottlenecks 

Energy 

aware 
Dynamic ✓ ✓ Yes Yes 

Energy  

optimized 

Multiple 
MapReduce 

jobs 

From Table 1 is visible that Capacity scheduler and Fairness scheduler 

are used for resolving fairness issues in short jobs and production jobs. The 
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data locality issue is solved by Matchmaking Scheduler and high utilization 

of resources is achieved. Any real time work is designed with deadline 

constraint scheduler. Job deadline is provided by the user and job 

completion is achieved in real time cluster. Hadoop uses static job 

allocation policy and the number of Map/Reduce slots is fixed. Hadoop 

cluster with resource aware cluster provides cluster utilization, minimizing 

resource consumption. Job scheduling algorithm is an important research direction 

in Big Data processing. 

4. MapReduce optimization techniques 

4.1. Iterative processing 

MapReduce framework is not supporting iterative processing. HaLoop is 

designed for users who want to perform iterative operations like caching, 

looping, incremental iterations and recursive queries in MapReduce model. 

HDFS is used for storing each input and output data. HaLoop made changes 

to existing MapReduce environment: i) Hadoop has interface to the user, 

master node contains the new loop control module; ii) Hadoop works with 

data locality for new task scheduler and caches; Hadoop indices application 

data on slave nodes and invariant data is cached, so doesn’t need not be 

reloaded. Twister is another technique used to achieve the iterative 

processing. After reduce stage is completed, Twister adds an extra phase 

called “combine stage”. A daemon process is initiated on each node for 

managing locally running MapReduce tasks with status, they communicate 

with other nodes. In this model the data are read from the local disks and 

intermediate data is handled by worker node with distributed memory. 

Repeated instantiation of workers are avoided by a twister. It also supports 

static / dynamic variable with configurable MapReduce tasks. A worker 

node with intermediate data improves the performance of the cluster. 

Twister is not supporting the drawback loop control. 

iMapReduce supports iterative processing. iMapReduce has achieved:  

i) to avoid repeated task scheduling, persistent map/reduce tasks is used;  

ii) only one time the input data are loaded into local file system, 

synchronization barrier is controlled using iMapReduce by providing 

asynchronous execution. During iterative processing the MapReduce tasks 

stay alive until the process gets completed. iMapReduce is implemented ot 

the base of Hadoop and Online prototype. Jobs can be terminated during 

processing by one of the two ways: defining a fixed number of iterations or 

bounding the distance between consecutive iteration. MapReduce online 

has problems like shuffling with intermediate result limit, pipeline 

processing and frequent check pointing. To overcome the problems some 

modifications are done in MapReduce Online: the mappers push data 

temporally to reducers in the same MapReduce job, there is pipelining 

support for continuous queries. This was not possible earlier in MapReduce 

and is achieved now.  
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4.2. Join operations 

The join condition is used after map and reduce tasks are completed. 

MapReduce is processing single input, but joins need two inputs with 

MapReduce, which leads to problems. The limitation of MapReduce 

joining multiple dataset into one task needs additional processing to 

perform join operations. This model enables heterogeneous datasets with 

processing data multiple times. Map function is transformed with a 

key/value pair of the input to intermediate key/value pair. The difference 

between the MapReduce model with map join reduce model is the 

production of key/value lists of the reduce function. Merge function needs 

the input datasets to be organized by keys and keys are passed to function 

to be merged. Map-Join-Reduce model is used to perform aggregation in 

Big Data. After standard Map and Reduce one new operation “Join” is 

performed and multiple data sets are joined with aggregation in the 

framework. The user specifies join O function to perform joins between the 

data sets. During runtime the system automatically perform joins with 

multiple datasets based on the join order. Too many shuffling is achieved 

in this model by shuffling each intermediate result of key/value pair to 

many joiners in the same time. In this model two kinds of processes follow: 

map/reduce tasks and joiners to invoke reduce tasks. 

4.3. Data access 

Hadoop++ improves the performance of query processing by User Defined 

Functions (UDF) added to Hadoop which becomes Hadoop++. It 

implements indexing functionality called “trojan indexes”. The trojan 

indexes are added with HDFS input and splits at load time. Trojan join new 

technique is introduced for data partitioning for map tasks with join 

operations. Llama scheme uses column-wise format called CFile and 

suppors multiway join in a single MapReduce job. Llama is implemented 

with column wise storage for MapReduce in column wise format known as 

CFile. Data is split into vertical group and stored in HDFS with particular 

column. Grouping and partitioning of data enables selective access of the 

column. 

4.4. Load balancing 

Load imbalance takes place during map or reduce phase. The imbalance in 

MapReduce is known as skew. Skew arises when there is a huge difference 

in size and cost of the task. Two types of skew introduce input data with 

uneven distribution, some data parts take longer time to process. Skew 

dynamically divides large partition into smaller partitions during the 

runtime. Skew contains three phases: detect, scan and plan. 
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4.5. Short job optimization  

During data analysis, processing of data takes much time to complete. 

MANIMAL is used for automatic optimization of single MapReduce job. 

The analyzer tests the MapReduce program code before execution without 

using any runtime details. In data analysis some rules lead to creating of 

pre-computed B+ tree index. 

 
Fig. 3. Hadoop optimization techniques 

4.6. Data flow optimization 

Stubby is introduced in MapReduce for job workflow to perform cost based 

optimizing. In large dataset complexity of dataset gets multiplied with the 

increase in data in MapReduce jobs. Stubby searches for optimization in 

the subspace with a full plan of workflow and identifies the opportunity to 

improve the performance. An annotated MapReduce workflow is given as 

an input for stubby and produces optimized plan as an output. 

4.7. Configurable parameters tuning 

Starfish is introduced for cost based optimization and determining values 

for configurable parameters of MapReduce jobs. Starfish improves the 

performance of MapReduce with configurable parameters by tuning, but 

this job becomes tedious. Profiler is introduced to estimate the size of the 

processed data, the amount of resources usage and execution of each job. 

What-if engine is introduced to estimate the advantages from tuning the 

configuration parameter using simulation. The cost based optimizer is used 

to find the potential settings to be configured and makes sure that good 

performance is achieved.   
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Table 2. Comparison of MapReduce optimization techniques 

Techniques Application Features Drawbacks 

EMRSA  

I & II 

TeraSort, Page rank, 

and K-means clustering 

Energy optimized nearly 

40%  

Multiple 

MapReduce 

jobs 

Hadoop++ 
Relational query like 

projections and joins 

MapReduce interface 

remains same. 

Runtime improved 

without using a local dbms  

Fault tolerance 

is very less 

HaLoop 
Data mining, web 

ranking  

Loop are of task scheduler 

is available. 

Checking termination 

supports the extra devoted 

jobs 

Not providing 

support 

abstractions 

iMapReduce 

Data mining, web 

ranking, online social 

network analysis, 

graph analysis  

Static graph shuffling. 

Avoid shuffling of static 

data between tasks 

Optimization 

limited 

Llama 

High level workload 

management, Data 

warehousing 

Good load performance 

Fair data locality 

Overheads in 

CFile 

Manimal 

Static code analysis  

data centric 

MapReduce 

programs 

Optimizations without 

code change, 

semantic compression for 

reducing IO 

Rule based 

optimization. 

Not 

performing 

cost based 

optimization 

with profiling 

Map-Join-

Reduce 

Query processing,  

processing N way 

operations 

Join multiple datasets 
Join is not 

optimal 

MapReduce 

online 

Event monitoring   

stream processing 

Pipelining of intermediate 

data 

Lacking in  

cache data 

SkewTune 

Query optimization 

in web search, page 

ranking 

No need to input  

minimizes the side effects 

Very slow and 

performance 

degrade 

Starfish 

Query optimization 

with job profiling 

and optimization 

Finds automatically good  

configuration  

No support for 

logical 

decisions 

Stubby 

Log analysis, 

reporting, business 

analytics, 

information 

processing with 

retrieval 

Cost based optimization 

automated 

Transforma-

tion not 

supported 

Twister 

Graph search, matrix 

multiplication, page 

ranking, dimension 

reduction 

Long running, avoiding 

unnecessary data to be 

read 

Need large 

dataset with 

multiple files 
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5. Conclusion 

Hadoop with job scheduling plays a vital role to achieve the performance in Big Data. 

In this paper, we discussed various issues in scheduling related to locality, fairness, 

performance, throughput, load balancing, etc. To overcome the scheduling issues 

many job scheduling algorithms are presented: FIFO scheduler, Fair scheduler, Delay 

scheduler, Capacity scheduler. The advantages and disadvantages of respective 

algorithms are discussed. Various tools are preferred in node allocation, load 

balancing and optimization of jobs. Comparative study of different tools along with 

their merits and demerits are discussed. Various optimization techniques are used to 

efficiently utilize the resources within the constraints of time, energy and memory. 

Comparison of all those optimization techniques was discussed.  
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