
 35

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 3

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0033

A Survey on Job Scheduling in Big Data

M. Senthilkumar1, P. Ilango2
1School of Information Technology and Engineering, VIT University, Vellore, India
2School of Computer Science and Engineering, VIT University, Vellore, India

Emails: mosenkum@gmail.com, dr.p.ilango@gmail.com

Abstract: Big Data Applications with Scheduling becomes an active research area in

last three years. The Hadoop framework becomes very popular and most used

frameworks in a distributed data processing. Hadoop is also open source software

that allows the user to effectively utilize the hardware. Various scheduling algorithms

of the MapReduce model using Hadoop vary with design and behavior, and are used

for handling many issues like data locality, awareness with resource, energy and

time. This paper gives the outline of job scheduling, classification of the scheduler,

and comparison of different existing algorithms with advantages, drawbacks,

limitations. In this paper, we discussed various tools and frameworks used for

monitoring and the ways to improve the performance in MapReduce. This paper

helps the beginners and researchers in understanding the scheduling mechanisms

used in Big Data.

Keywords: Big Data, Hadoop, MapReduce, classification, HDFS (Hadoop

Distributed File System), scheduler.

1. Introduction

Big Data plays very important role in many industries like healthcare, automobiles,

IT etc. Effective utilization of energy, resource, time becomes challenging task

nowadays. Big Data has become more popular in IT sector, banking, finance,

healthcare online purchasing, engineering and many other areas. Big Data refers wide

range of datasets and hence it’s difficult to manage by existing applications. The data

sets are very complex and growing day by day in humongous volume. Raw data are

continuously generated from social media, online transactions, etc. Due to continuous

increase in volume, velocity and variety complexity increases; it induces lots of

difficulties and challenges in data processing. Big Data becomes a complex process

in terms of correctness, transform, match, relates, etc.

The main aim of scheduling in Big Data processing is to plan the processing and

completion of as many tasks as possible by handling and altering data in a proficient

way with a minimum number of changes. Different methods are preferred for the

allocation of resources, which have special architectural characteristics. Finding the

best scheduling method for a particular data processing and request leftovers is an

 36

important challenge. The Big Data processing as a large “batch” process that runs on

an HPC cluster by dividing a job into smaller tasks and distributing the work to the

cluster nodes. The Big Data processing models must be aware of data locality when

deciding to shift data to the computing nodes or to create new computing nodes near

data locations. Job scheduling is to allocate resources to jobs fairly. Large and small

jobs will be practically assigned to each node by analyzing the realistic situation of

resource utilization through the static and dynamic priority scheduling in MapReduce

clusters. Moreover, the job scheduling can predict the resource utilization of the jobs

which have not been performed by analyzing the performed jobs.

Big Data poses many research challenges like analyzing of Big Data, handling

the data volume, data privacy and security, storage, visualization, job scheduling,

fault tolerance and energy optimization. Analysis of Big Data becomes very difficult

due to the incomplete and heterogeneous nature of the data produced. The collected

data are available in different formats, structure and variety. Dynamic scheduling of

jobs with distributed computing demands even scheduling of resources across various

geographical areas [1, 7].

In grid base architecture, workflow generation, resource management and

scheduling are the major concerns. The architecture does not require any human

intervention for task execution. It provides flexibility and complexity gets reduced in

workflow generation of tasks, mainly it saves time and cost [9]. Grid scheduling

becomes very essential part to aggregate the power of distributed resources and it

provides a non-trivial solution to the user [12]. Resource scheduling and application

scheduling play major role in grid computing, scheduling, evaluation done by

simulation approaches and real time environment [27].

Real time scheduling with multiprocessor is proposed with different scheduling

methods and performance metrics used for comparing the scheduling methods.

Global, hybrid scheduling algorithm and various approaches for sharing and usage in

real time scheduling are discussed in [10]. To make decisions better Big Data need

to convert the data to an interactive format. In data visualization different forms are

used to represent the same data, which resolves the problems like perception based

issues and limited screen based issues [2]. Choosing the Big Data tools based on

understanding the requirements and data analytics is a very complex process,

selecting the tools and result analysis plays an important role. Tools are designed to

help the people to perform various tasks [3]. YARN is not following push based

scheduling and hence it reduces the major problem of lowering job latency. Facebook

uses Corona, in Corona job tracker and client runs at the same time, Facebook

invested large sum of money in Hadoop and made many changes in Hadoop

distribution. Corona performs time optimization for Facebook and applications [4].

MapReduce model is predicting the completion time of the map tasks based on

demand from CPU and disk by calculating MVA (Mean Value Analysis). MVA

introduced an analytical model with multiple classes of jobs and performs

comparison of a single node and multi node in Hadoop environments [5].

Hadoop++ is used to improve the performance of the Hadoop framework without

changing the environment. Hadoop injects the technology in the right place through

user defined functions. Hadoop++ is very useful in tasks like indexing and join

 37

processing [11]. MapReduce model with iterative processing is introduced in

HaLoop. HaLoop improves their efficiency by adding a loop aware scheduling and

cache mechanisms in Big Data Applications with iterative processing. HaLoop

extends the new novel programming model with many optimization methods like

loop aware scheduler, loop invariant in data caching and caching for efficient

verification with fix point [6]. iMapReduce is a user friendly environment and allows

the user to specify the iterative computation with MapReduce function. Performance

is getting improved in iterative implementations due to the reduction of overhead,

removal of static data shuffled and asynchronous tasks allowed in MapReduce.

iMapReduce delivers five times faster performance when compared to Hadoop [38].

The hybrid data base system Llama is introduced, columns are defined into

correlation groups and it will provide support for the tables to vertically partition.

MapReduce with the query engine supported by Llama also provides a new join

algorithm for fast join processing. The experiment is conducted with EC2 and shows

that excellent load and query performance is achieved, and MapReduce follows row

wise storage [26]. Manimal automatically analyzes and applies suitable data aware

optimizations in MapReduce program, so that no additional work is required from

the developer. It also detects optimization opportunities, and hence the speed is

increased [19]. SkewTune is introduced for user defined MapReduce programs. The

advantage of SkewTune is that it just extends Hadoop and reduces job run time. Many

applications become very effective by using SkewTune [22]. The Starfish is used for

the self-tuning system, however cost based optimizing for MapReduce programs are

complex in Starfish. From Starfish the user must be able to find out MapReduce

program’s behavior during execution of tasks; the ways of program’s behavior

change when changing parameters like resources and input data; it also optimizes the

program effectively [18]. MapReduce workflow needs comprehensive plan space for

generating the workflows. For that purpose Stubby is introduced as a cost based

optimizer, which is capable of searching the selective subspace through full plan

space. Stubby enumerates the plans and transfer the plan to efficient search algorithm

[27]. Twister supports MapReduce iterative operations and performs computations

effectively and efficiently [14]. Data analytics need key requirement scalability, and

MapReduce becomes popular because of its salient features like fault tolerance,

scalability, flexibility and ease of programming. Improving the performance of

MapReduce with classification is based on the specific problem [13].

FIFO algorithm is used for default scheduling in MapReduce and jobs are which

enters first into the ready queue grabs first priority [28]. This scheduling gives

disadvantages for some jobs which enter the queue later, and thus leads to the

starvation of jobs. Fair scheduler is designed to run small jobs quickly and thus

overcomes the drawback of FIFO scheduler. Fair scheduling assures the service for

all jobs [15]. Delay algorithm is introduced in Facebook, by applying some changes

in MapReduce with existing data locality; the performance is improved and the

lowest response time for map tasks is achieved [16]. Cost base optimizer for complex

MapReduce programs is introduced for optimization of large space configuration

parameters of the program. The profiler is used for collecting statistical details from

unmodified MapReduce programs; it also performs fine grained cost estimation [17].

 38

Hadoop uses round-robin scheduling algorithm; when the smaller weight jobs

are more and the larger weight jobs are less, the round-robin scheduling is used to

overcome the problem. The scheduler puts forward weight and updates rules based

on the situations. Task allocation becomes very effective by using this idea and only

job tracker is used in the Hadoop platform [34]. Hadoop scheduler causes

performance degradation in heterogeneous environments; to overcome the problem

LATE (Longest Approximate Time to End) is introduced and it is highly robust to

the heterogeneous environment. Hadoop response time is improved by using LATE

scheduler [40]. Delay scheduling is used in Hadoop to improve data locality in an

optimal way and throughput increased for different kinds of tasks. Fairness in job is

achieved by using this delay scheduling due to simplicity and policies for fair sharing

between the resources [39]. Hadoop and Dryad are introduced for efficient scheduling

and enhanced utilization in a shared environment. Scheduling with MapReduce holds

the issues, synchronization overhead and locality. Scheduling multiple jobs with

fairness, locality improvement and delay scheduling are achieved in Hadoop and

Quincy scheduler [38, 41]. Deadlines are very important requirement considered by

cloud based data processing platform such as Hadoop. By default Hadoop uses FIFO

scheduler with priority based option. Scheduling jobs with deadline constraints are

given by the user and ensure that deadlines are met properly, so that estimated

schedule is executed correctly [20]. COSHH (Classification and Optimization based

Scheduler for Heterogeneous Hadoop) scheduler is a combined FIFO and fair sharing

algorithm which supports hybrid solution [29]. ARIA is proposed for Service Level

Objective (SLO) with three components. SLO based scheduler determines the job

ordering and amount of resources used for meeting the job deadlines in Hadoop.

SLO’s job objectives are effectively implemented by the scheduler until job demands

exceeds the Hadoop cluster resources [33].

Spark streaming is one of the open source frameworks for more reliable, high-

throughput and low latency stream processing. It is a near real time stream processing

framework processing commodity hardware, so real time event processing is not

assured in its scheduling system. Profiling outcome indicates that the total delay time

of events with unstable inputs is more unstable and presents big fluctuations.

Effective scheduling approach reduces the worst case event processing time by

dynamically adjusting the time window of batch intervals. It is a real time

enhancement to Spark Streaming based on Spark’s framework [24]. Spark is a

category of efficient Big Data processing platform based on memory and alike to

Hadoop MapReduce. But the Spark default task scheduling plan does not take the

different capacity of node into account for heterogeneous Spark cluster, thus leading

to lower the system performance. An adaptive task scheduling strategy for the

heterogeneous Spark cluster, which analyzes parameters from surveillance to

dynamically adjust the task allocation, weights nodes through monitoring the load

and resource utilization of nodes. Experimental results validate that this strategy for

heterogeneous nodes is superior to the default task scheduling strategy in aspects like

task completion time, nodes working state and resource utilization [36].

The structure of this paper is as follows. Section 2 presents Hadoop MapReduce

architecture, features, working principles and issues in Hadoop. Section 3 is about

 39

the Hadoop job schedulers. Section 4 discusses MapReduce optimization techniques.

Finally, Section 5 gives the conclusion.

2. Hadoop MapReduce: Architecture, features, working principles and

issues

Hadoop Distributed File System (HDFS) is storing huge files in a distributed manner

in various HDFS nodes. The data are divided into 64MB /128 MB blocks. HDFS

maintains three copies of every block in unique machines. HDFS maintain the

metadata in name node and data are kept in separated nodes are called as data nodes.

In this section we discuss the architecture of MapReduce, scheduling of job, Hadoop

features and issues.

2.1. Hadoop MapReduce architecture

Hadoop includes MapReduce, a distributed data processing model that runs on large

clusters of machines. A Hadoop MapReduce job mainly has two user-defined

functions, map and reduce function. The Hadoop job takes the input of key-value

pairs (k, v) and map function is called for each of these pairs. Job tracker and task

tracker have two types of nodes that control the execution process. The job tracker

coordinates and schedules all tasks to run on task trackers. Task trackers in turn send

progress reports to the job tracker. If a task fails, the job tracker can reschedule it on

a different task tracker. The essence of Hadoop MapReduce is that the users just

define map and reduce functions. The Hadoop framework takes care of everything

and Hadoop MapReduce uses the Hadoop Distributed file system to perform I/O

performance.

Fig. 1. Hadoop MapReduce architecture

2.2. Hadoop features

i. Hadoop has the power to add new nodes without need to change the clusters (data).

Hadoop cluster can accommodate more than one node without any difficulty.

 40

ii. Since Hadoop is used to store large TB’s of data it’s more affordable when

compared to any other servers.

iii. Hadoop doesn’t follow the norms for structuring data, hence it is flexible to

work. Another important feature is that multiple data can be combined in Hadoop.

No matter is the data structured or not, Hadoop can perform map and reduce jobs

very effectively.

iv. Hadoop can redirect the data into another location when there is a fault in the

given primary node. When one of the nodes in a cluster fails, the job can be redirected

to other node and hence Hadoop is highly a fault tolerant system.

v. Since Hadoop does parallel computing, system is more effective and efficient

in terms of deriving the results.

vi. Hadoop offers a large cluster of local servers to store large amount of data.

2.3. Issues

Managing Hadoop cluster with multiple MapReduce tasks on multiple nodes needs

effective and efficient scheduling policies to achieve the performance and resource

utilization. Performance is affected by some issues like energy, fairness, data locality

and synchronization.

2.3.1. Energy

In Big Data applications large scale of data operations are held out by data centers

with MapReduce. Hadoop requires large amounts of energy in processing the data

within data center and energy becomes problematic. Overall cost of energy increases

in the data center, so minimizing the energy consumption becomes a big challenge in

data centers.

2.3.2. Fairness

The resources are shared among the users and fair measures are required in

scheduling the all jobs without starvation. MapReduce with heavy workload uses the

entire resource in terms of the cluster. Jobs with short computation may not have

desired response time. Workload must be fairly shared or distributed among the jobs

in the cluster. Fairness deals with locality and MapReduce phases. Performance

degradation of throughput and response time are reduced if the MapReduce jobs are

equally shared and the input files are distributed in clusters.

2.3.3. Data locality

The distance between the data node which holds the input and the task node is called

locality. The data transfer rate depends on the distance between the input data and

computation node, if the input data node is very near then data transfer rate becomes

low. Many times Hadoop cluster is not able to achieve locality; in such attempts rack

locality is achieved.

2.3.4. Synchronization

The process of transferring intermediate outputs of the mapping process to the input

of reduce process is called synchronization. This is an important issue in MapReduce

 41

of scheduling jobs. After the completion of map phase only reduce phase will take

place and reduce tasks are fully dependent on the map task. If any one of the map

nodes becomes slow, then the entire process performance becomes slow. In a

heterogeneous environment synchronization becomes a problem; each node in the

Hadoop cluster has unique computation facility, hardware and bandwidth and this

leads to decreased performance of Hadoop cluster.

3. Hadoop job schedulers

3.1. Classification of schedulers used in Big Data

Classification of scheduler is based on various parameters like priority, time, strategy,

environment, energy, resource awareness (CPU, IO, disk, memory, and free slots).

Classification of scheduling in Hadoop is achieved based on using available resources

effective and efficient, scheduling strategy and time. This classification of different

scheduler is shown in Fig. 2.

Fig. 2. Classification Hadoop scheduler

3.1.1. Static scheduling strategy

In static scheduling strategy to job allocation in processors, it is achieved before the

program to begin the job execution time, in completion time. Processing resources

are known only at the compile time. The objective of static strategy is to minimize

execution time of processors. In static scheduling Capacity scheduler, Delay

scheduler, FIFO scheduler, Fair scheduler, and Matchmaking scheduler are available.

3.1.2. Dynamic scheduling strategy

In dynamic scheduling strategy job allocation is performed during execution time.

The resources have little knowledge about jobs. The environment is unknown for the

jobs, but jobs will execute during their lifespan. Whenever a job is executed, a

decision is made and dynamic environment is applied to the processors. Deadline

Aware scheduler, Resource aware scheduler and Energy aware scheduler are used in

dynamic scheduling strategy.

 42

3.1.3. Based on time

In this scheme scheduling of the job is based on time and job scheduling is achieved

on the base of deadline provided by the cluster. Every job must complete the job

within the specified time and deadline is given by the user to check whether the

executed job is within the deadline or not. Delay scheduler and Deadline constraint

scheduler are used in time based scheduling.

3.1.4. Based on available resource

Scheduling is based on the requirements of the resources. In this scheme, job

performance and resource utilization is improved, various resources and their usage

are also compared. Resources are memory, disk storage, CPU time, IO, etc. Delay

scheduler, Matchmaking scheduler, Resource aware scheduler and Energy aware

scheduler are used in resource based scheduling.

3.2. Description of schedulers used in Big Data

Hadoop jobs are sharing the resources with scheduling policy based on the scheduling

mechanisms when and where jobs have to be executed. The main objective of

scheduling is to maximize the throughput, minimize the completion time; overhead

and available resources must be balanced parallel by allocating jobs to processors.

Schedulers used in Hadoop are:

3.2.1. Default FIFO scheduler

Hadoop uses default scheduling policy FIFO; this scheduling prefers the earlier

submitted jobs over later submitted jobs. Whenever the new job arrives, job tracker

is initialized. It places the job in the queue. When running multiple jobs with priority,

not supported jobs are strict with data locality and completion of previous job, only

next jobs are allowed and the job must wait for completion of previous task. FIFO

scheduler is mostly used when the user feels that the execution order of jobs has no

importance.

3.2.2. Fair scheduler

Fair scheduler is introduced by Facebook and the core idea of this scheduler is to

assign the resources to every job, so that every job will get equally shared resources.

By using pools in Fair Scheduler the jobs are grouped and perform fairness in sharing

between pools. Job configuration properties are controlled by pools. Every user has

his/her own pool and minimum resources shared with assigned pool. By default, all

pools must contain equal sharing of resources with MapReduce task.

3.2.3. Capacity scheduler

Capacity scheduler is produced by Yahoo; this scheduler is used when multiple

organizations want to share the large cluster with minimum capacity and sharing

excess capacity among the users. Instead of pools several queues are created; each

queue is configurable with MapReduce slots. The queue has priority with FIFO and

 43

is achieved in capacity scheduler. Jobs high priority must access resources, compared

to the less priority jobs. Scheduled tasks are understood by memory consumption of

each task; the scheduler has ability to control and allocate memory based on the

physical available resources. Based on the organization needs resources are shared,

available resources are partitioned with MapReduce cluster among many

organizations.

3.2.4. Delay scheduler

This approach is used by Facebook and locality is achieved by waiting approach in

the Hadoop cluster. In this scheme, if the data for the task is not present, then a task

tracker waits for a particular amount of time. If there is any request from the local

node for task assigning, then the scheduler will check the size of the job; if the job is

too short, then the scheduler will skip that job and look for any subsequent jobs

available to run. If this job, skipping persists for long time duration, then it will launch

nonlocal task to avoid starvation. This scheduler resolves the locality problem like

sticky slot and head of line scheduling. Fairness with locality is achieved by this

scheduler and strict jobs order relaxes with task assignment.

3.2.5. Matchmaking scheduler

Data localities of map tasks are enhanced by the matchmaking scheduling. Before

assigning non local tasks, scheduler ensures that every local task grabs a slave node

to assign job first. Scheduler keeps on trying to find matches with a slave node with

some input data for unassigned tasks. A locality marker will mark the node and

guarantees that each node gets chance to grab the tasks. This scheduler leads to

highest data locality and less response time for tasks (map). Unlike FIFO, this

scheduler relaxes strict job order for task assignment.

3.2.6. LATE (Longest Approximate Time to End) scheduler

Tentative tasks will progress very slowly due to various issues like CPU load,

background process running slowly, resource contention and large number of

background process. It will detect slow running task in the cluster and launch

equivalent task as a backup; this process is called speculative execution of tasks. The

main goal is to minimize a job response time as much as possible. When the user is

running short jobs, answers must be very quick and response time is important. By

default, this scheduler supports homogeneous clusters and is highly robust to

heterogeneity. It is mainly used for optimizing the performance of jobs, but it doesn’t

provide the guarantees of reliability.

3.2.7. Deadline constraint scheduler

The user specifies deadline constraints while scheduling the jobs, ensures that jobs

met deadline and are scheduled for execution. This scheduler improves system

utilization dealing with deadline constraint and data processing. It is achieved by cost

model for job execution and Hadoop scheduler with constraint. Cost model with job

execution considers various parameters like MapReduce task with runtime, the input

 44

size of data and data distribution. A Hadoop scheduler with user constraints has

deadline as part of the input; when the job is submitted for testing, it checks whether

the job can be finished within the time specified by the deadline or not.

3.2.8. Resource aware scheduler

In Hadoop, resource utilization is minimized by this scheduler. The schedulers like

Fair scheduler, FIFO, Capacity scheduler the admin must assign job to a queue and

manually makes sure that specific resources are shared. These schemes focus on how

effectively resource utilization has been done with various types of utilization like IO

utilization, memory utilization, disk utilization, CPU utilization, network utilization.

This scheduler makes use of the two metrics: “dynamic free slot advertisement” and

“free slot filtering/priorities”. Instead of having a fixed number of computation slots

configured with each task tracker node, the free slots are dynamically used according

to the demand by Dynamic Free Slot Advertisement. In “free slot filtering/priorities”

maximum number of slots is fixed per node. Free slots are identified by task tracker

by adverting based on the resource availability.

Table 1. Comparison various schedulers used in Big Data with Hadoop

Scheduler
Job

alloca-

tion

Environment Priority
in job

queue

Resources

sharing
Features Drawbacks

Homoge-
neous

Heteroge-
neous

FIFO Static ✓ ✗ No No

Easy to

implement
efficient

Data locality

job starvation

Fair Static ✓ ✗ Yes Yes

Fast response

time mixing
small with

large job

possible

Configuration
problems

unbalanced
performance

Capacity Static ✓ ✗ No Yes

Potential to
reuse unused

jobs in the

queue

Complexity

choosing
scheduler

Delay Static ✓ ✗ Yes No
Simple

No overhead

No effective.

Slots are

limited

Match-

making
Static ✓ ✗ Yes Yes

High data
locality.

Utilization

level is high

--

LATE Static ✓ ✓ Yes Yes
Heterogeneity

more robust
Reliability

Deadline

constraint
Dynamic ✓ ✓ Yes Yes

Supports

optimization

Node must

uniform

Resource
aware

Dynamic ✓ ✓ Yes Yes

Performance

resource

utilization

Monitoring
bottlenecks

Energy

aware
Dynamic ✓ ✓ Yes Yes

Energy

optimized

Multiple
MapReduce

jobs

From Table 1 is visible that Capacity scheduler and Fairness scheduler

are used for resolving fairness issues in short jobs and production jobs. The

 45

data locality issue is solved by Matchmaking Scheduler and high utilization

of resources is achieved. Any real time work is designed with deadline

constraint scheduler. Job deadline is provided by the user and job

completion is achieved in real time cluster. Hadoop uses static job

allocation policy and the number of Map/Reduce slots is fixed. Hadoop

cluster with resource aware cluster provides cluster utilization, minimizing

resource consumption. Job scheduling algorithm is an important research direction

in Big Data processing.

4. MapReduce optimization techniques

4.1. Iterative processing

MapReduce framework is not supporting iterative processing. HaLoop is

designed for users who want to perform iterative operations like caching,

looping, incremental iterations and recursive queries in MapReduce model.

HDFS is used for storing each input and output data. HaLoop made changes

to existing MapReduce environment: i) Hadoop has interface to the user,

master node contains the new loop control module; ii) Hadoop works with

data locality for new task scheduler and caches; Hadoop indices application

data on slave nodes and invariant data is cached, so doesn’t need not be

reloaded. Twister is another technique used to achieve the iterative

processing. After reduce stage is completed, Twister adds an extra phase

called “combine stage”. A daemon process is initiated on each node for

managing locally running MapReduce tasks with status, they communicate

with other nodes. In this model the data are read from the local disks and

intermediate data is handled by worker node with distributed memory.

Repeated instantiation of workers are avoided by a twister. It also supports

static / dynamic variable with configurable MapReduce tasks. A worker

node with intermediate data improves the performance of the cluster.

Twister is not supporting the drawback loop control.

iMapReduce supports iterative processing. iMapReduce has achieved:

i) to avoid repeated task scheduling, persistent map/reduce tasks is used;

ii) only one time the input data are loaded into local file system,

synchronization barrier is controlled using iMapReduce by providing

asynchronous execution. During iterative processing the MapReduce tasks

stay alive until the process gets completed. iMapReduce is implemented ot

the base of Hadoop and Online prototype. Jobs can be terminated during

processing by one of the two ways: defining a fixed number of iterations or

bounding the distance between consecutive iteration. MapReduce online

has problems like shuffling with intermediate result limit, pipeline

processing and frequent check pointing. To overcome the problems some

modifications are done in MapReduce Online: the mappers push data

temporally to reducers in the same MapReduce job, there is pipelining

support for continuous queries. This was not possible earlier in MapReduce

and is achieved now.

 46

4.2. Join operations

The join condition is used after map and reduce tasks are completed.

MapReduce is processing single input, but joins need two inputs with

MapReduce, which leads to problems. The limitation of MapReduce

joining multiple dataset into one task needs additional processing to

perform join operations. This model enables heterogeneous datasets with

processing data multiple times. Map function is transformed with a

key/value pair of the input to intermediate key/value pair. The difference

between the MapReduce model with map join reduce model is the

production of key/value lists of the reduce function. Merge function needs

the input datasets to be organized by keys and keys are passed to function

to be merged. Map-Join-Reduce model is used to perform aggregation in

Big Data. After standard Map and Reduce one new operation “Join” is

performed and multiple data sets are joined with aggregation in the

framework. The user specifies join O function to perform joins between the

data sets. During runtime the system automatically perform joins with

multiple datasets based on the join order. Too many shuffling is achieved

in this model by shuffling each intermediate result of key/value pair to

many joiners in the same time. In this model two kinds of processes follow:

map/reduce tasks and joiners to invoke reduce tasks.

4.3. Data access

Hadoop++ improves the performance of query processing by User Defined

Functions (UDF) added to Hadoop which becomes Hadoop++. It

implements indexing functionality called “trojan indexes”. The trojan

indexes are added with HDFS input and splits at load time. Trojan join new

technique is introduced for data partitioning for map tasks with join

operations. Llama scheme uses column-wise format called CFile and

suppors multiway join in a single MapReduce job. Llama is implemented

with column wise storage for MapReduce in column wise format known as

CFile. Data is split into vertical group and stored in HDFS with particular

column. Grouping and partitioning of data enables selective access of the

column.

4.4. Load balancing

Load imbalance takes place during map or reduce phase. The imbalance in

MapReduce is known as skew. Skew arises when there is a huge difference

in size and cost of the task. Two types of skew introduce input data with

uneven distribution, some data parts take longer time to process. Skew

dynamically divides large partition into smaller partitions during the

runtime. Skew contains three phases: detect, scan and plan.

 47

4.5. Short job optimization

During data analysis, processing of data takes much time to complete.

MANIMAL is used for automatic optimization of single MapReduce job.

The analyzer tests the MapReduce program code before execution without

using any runtime details. In data analysis some rules lead to creating of

pre-computed B+ tree index.

Fig. 3. Hadoop optimization techniques

4.6. Data flow optimization

Stubby is introduced in MapReduce for job workflow to perform cost based

optimizing. In large dataset complexity of dataset gets multiplied with the

increase in data in MapReduce jobs. Stubby searches for optimization in

the subspace with a full plan of workflow and identifies the opportunity to

improve the performance. An annotated MapReduce workflow is given as

an input for stubby and produces optimized plan as an output.

4.7. Configurable parameters tuning

Starfish is introduced for cost based optimization and determining values

for configurable parameters of MapReduce jobs. Starfish improves the

performance of MapReduce with configurable parameters by tuning, but

this job becomes tedious. Profiler is introduced to estimate the size of the

processed data, the amount of resources usage and execution of each job.

What-if engine is introduced to estimate the advantages from tuning the

configuration parameter using simulation. The cost based optimizer is used

to find the potential settings to be configured and makes sure that good

performance is achieved.

 48

Table 2. Comparison of MapReduce optimization techniques

Techniques Application Features Drawbacks

EMRSA

I & II

TeraSort, Page rank,

and K-means clustering

Energy optimized nearly

40%

Multiple

MapReduce

jobs

Hadoop++
Relational query like

projections and joins

MapReduce interface

remains same.

Runtime improved

without using a local dbms

Fault tolerance

is very less

HaLoop
Data mining, web

ranking

Loop are of task scheduler

is available.

Checking termination

supports the extra devoted

jobs

Not providing

support

abstractions

iMapReduce

Data mining, web

ranking, online social

network analysis,

graph analysis

Static graph shuffling.

Avoid shuffling of static

data between tasks

Optimization

limited

Llama

High level workload

management, Data

warehousing

Good load performance

Fair data locality

Overheads in

CFile

Manimal

Static code analysis

data centric

MapReduce

programs

Optimizations without

code change,

semantic compression for

reducing IO

Rule based

optimization.

Not

performing

cost based

optimization

with profiling

Map-Join-

Reduce

Query processing,

processing N way

operations

Join multiple datasets
Join is not

optimal

MapReduce

online

Event monitoring

stream processing

Pipelining of intermediate

data

Lacking in

cache data

SkewTune

Query optimization

in web search, page

ranking

No need to input

minimizes the side effects

Very slow and

performance

degrade

Starfish

Query optimization

with job profiling

and optimization

Finds automatically good

configuration

No support for

logical

decisions

Stubby

Log analysis,

reporting, business

analytics,

information

processing with

retrieval

Cost based optimization

automated

Transforma-

tion not

supported

Twister

Graph search, matrix

multiplication, page

ranking, dimension

reduction

Long running, avoiding

unnecessary data to be

read

Need large

dataset with

multiple files

 49

5. Conclusion

Hadoop with job scheduling plays a vital role to achieve the performance in Big Data.

In this paper, we discussed various issues in scheduling related to locality, fairness,

performance, throughput, load balancing, etc. To overcome the scheduling issues

many job scheduling algorithms are presented: FIFO scheduler, Fair scheduler, Delay

scheduler, Capacity scheduler. The advantages and disadvantages of respective

algorithms are discussed. Various tools are preferred in node allocation, load

balancing and optimization of jobs. Comparative study of different tools along with

their merits and demerits are discussed. Various optimization techniques are used to

efficiently utilize the resources within the constraints of time, energy and memory.

Comparison of all those optimization techniques was discussed.

R e f e r e n c e s

1. A b r a h a m, A., R. B u y y a, B. N a t h. Nature’s Heuristics for Scheduling Jobs on Computational

Grids. – In: Proc. of IEEE International Conference on Advanced Computing and

Communications, 2000, pp. 1-8.

2. A d a, R., R. K a u r. – International Journal of Advanced Research in ComputerScience and

SoftwareEngineering. – Ijarcsse, Vol. 3, 2013, No 3, pp. 665-668.

3. A s s u n ç ã o, M. D., R. N. C a l h e i r o s, S. B i a n c h i, M. A. S. N e t t o, R. B u y y a. Big Data

Computing and Clouds: Trends and Future Directions. – Journal of Parallel and Distributed

Computing, 2015, 79-80, pp. 3-15.

4. B a r d h a n, S., D. M e n a s c. The Anatomy of Mapreduce Jobs, Scheduling, and Performance

Challenges. – In: Proc. of Computer Measurement Group, 2013.

5. B a r d h a n, S., D. M e n a s c é. Queuing Network Models to Predict the Completion Time of the

Map Phase of MapReduce Jobs, 2012.

6. B u, Y., B. H o w e, M. D. E r n s t. HaLoop : Efficient Iterative Data Processing on Large Clusters.

– Proceedings of the VLDB Endowment, Vol. 3, 2010, No 1-2, pp. 285-296.

7. C a s a v a n t, T. L., J. G. K u h l. A Taxonomy of Scheduling in General-Purpose Distributed

Computing Systems. – IEEE Transactions on Software Engineering, Vol. 14, 1988, No 2,

pp. 141-154.

8. C o u l o u r i s, G., J. D o l l i m o r e, T. K i n d b e r g. Distributed Systems: Concepts and Design.

– Computer, Vol. 4, 2012.

9. D a b h i, V. K., H. B. P r a j a p a t i. Soft Computing Based Intelligent Grid Architecture. – In: Proc.

of International Conference on Computer and Communication Engineering (ICCCE’08),

Global Links for Human Development, 13-15 May 2008, pp. 574-577.

10. D a v i s, R. I., A. B u r n s. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems. –

ACM Computing Surveys, Vol. 43, 2011, No 4, pp. 1-44.

11. D i t t r i c h, J., J.-A. Q u i a n é-R u i z, A. J i n d a l, Y. K a r g i n, V. S e t t y, J. S c h a d.

Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without it Even Noticing). –

Proceedings of the VLDB Endowment, Vol. 3, 2010, No 1-2, pp. 515-529.

12. D o n g, F., S. G. A k l. Scheduling Algorithms for Grid Computing : State of the Art and Open

Problems. – Components, Vol. 202, 2006, No 4, pp. 1-55.

13. D o u l k e r i d i s, C., K. N ø r v å g. A Survey of Large-Scale Analytical Query Processing in

MapReduce. – VLDB Journal, Vol. 23, 2014, No 3, pp. 355-380.

14. E k a n a y a k e, J., H. L i, B. Z h a n g, T. G u n a r a t h n e, S. B a e, J. Q i u, G. F o x. Twister : A

Runtime for Iterative MapReduce. – In: Proc. of 19th ACM International Symposium on High

Performance Distributed Computing, HPDC’10, 2010, pp. 810-818.

15. Hadoop Fair Scheduler Design Document, 2010, pp. 1-11.

 50

16. H e, C., Y. L u, D. S w a n s o n. Matchmaking: A New MapReduce Scheduling Technique. –

In: Proc. of 3rd IEEE International Conference on Cloud Computing Technology and Science,

CloudCom’2011, 2011, pp. 40-47.

17. H e r o d o t o u, H., S. B a b u. Profiling, What-if Analysis, and Cost-Based Optimization of

MapReduce Programs. – PVLDB: Proceedings of the VLDB Endowment, Vol. 4, 2011,

No 11, pp. 1111-1122.

18. H e r o d o t o u, H., F. D o n g, S. B a b u. Mapreduce Programming and Costbased Optimization?

Crossing this Chasm with Starfish. – Proceedings of the VLDB Endowment, Vol. 4, 2011,

No 12, pp. 1446-1449.

19. J a h a n i, E., M. J. C a f a r e l l a, C. R é. Automatic Optimization for MapReduce Programs. –

Proceedings of the VLDB Endowment, Vol. 4, 2011, No 6, pp. 385-396.

20. G a u t a m, J. V., H. B. P r a j a p a t i, V. K. D a b h i, S. C h a u d h a r y. A Survey on Job

Scheduling Algorithms in Big Data Processing. – In: Proc. of IEEE International Conference

on Electrical, Computer and Communication Technologies (ICECCT’15), Coimbatore, 2015,

pp. 1-11.

21. K c, K., K. A n y a n w u. Scheduling Hadoop Jobs to Meet Deadlines. – In: Proc. of 2nd IEEE

International Conference on Cloud Computing Technology and Science (CloudCom’10),

2010, pp. 388-392.

22. K w o n, Y., M. B a l a z i n s k a, B. H o w e, J. R o l i a. SkewTune: Mitigating Skew in Mapreduce

Applications. – In: Proc. of 2012 ACM SIGMOD International Conference on Management

of Data, 2012, pp. 25-36.

23. L e e, K. H., Y. J. L e e, H. C h o i, Y. D. C h u n g, B. M o o n. Parallel Data Processing with

MapReduce: A Survey. – SIGMOD Record, Vol. 40, 2011, No 4, pp. 11-20.

24. L i a o, X i n y i, et al. An Enforcement of Real Time Scheduling in Spark Streaming. – In: Proc. of

Green Computing Conference and Sustainable Computing Conference IEEE, 2015, pp. 1-6.
25. L i m, H., H. H e r o d o t o u, S. B a b u. Stubby: A Transformation-Based Optimizer for MapReduce

Workflows. – Proceedings of the VLDB Endowment, Vol. 5, 2012, No 11, pp. 1196-1207.

26. L i n, Y., D. A g r a w a l, C. C h e n, B. C. O o i, S. W u. Llama: Leveraging Columnar Storage for

Scalable Join Processing in the MapReduce Framework. – In: Proc. of 2011 International

Conference on Management of Data (SIGMOD’11), 2011, pp. 961-972.

27. P r a j a p a t i, H. B., V. A. S h a h. Scheduling in Grid Computing Environment. – In: Proc. of 4th

International Conference on Advanced Computing & Communication Technologies, 2014,

pp. 315-324.

28. R a o, B. T., L. S. S. R e d d y. Survey on Improved Scheduling in Hadoop MapReduce in Cloud

Environments. – International Journal of Computer Applications, Vol. 34, 2012, No 9,

pp. 29-33.

29. R a s o o l i, A., D. G. D o w n. A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop

Systems. – In: Proc. of 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis (SCC’2012), 2012, pp. 1284-1291.

30. S a k r, S., A. L i u, A. G. F a y o u m i. The Family of MapReduce and Large-Scale Data Processing

Systems. – ACM Computing Surveys, Vol. 46, 2013, No 1, pp. 1-44.

31. International Journal of Advanced Research, Vol. 3, 2013, No 5, pp. 875-878.

32. S u t h a h a r a n, S. Big Data Classification: Problems and Challenges in Network Intrusion

Prediction with Machine Learning. – Performance Evaluation Review, Vol. 41, 2014, No 4,

pp. 70-73.

33. V e r m a, A., L. C h e r k a s o v a, R. C a m p b e l l. ARIA: Automatic Resource Inference and

Allocation for MapReduce Environments. – In: Proc. of 8th ACM International Conference on

Autonomic Computing, 2011, pp. 235-244.

34. W a n g, C. Journal of Computers, Vol. 8, 2013, No 3.

35. W o l f, J., A. B a l m i n, D. R a j a n, K. H i l d r u m, R. K h a n d e k a r, S. P a r e k h,

R. V e r n i c a. CIRCUMFLEX: A Scheduling Optimizer for MapReduce Workloads with

Shared Scans. – ACM SIGOPS Operating Systems Review, Vol. 46, 2012, No 1.

36. Y a n g, Z h i w E i, et al. Adaptive Task Scheduling Strategy for Heterogeneous Spark Cluster. –

Computer Engineering, 2016.

37. Y o n g, M., N. G a r e g r a t, S. M o h a n. Towards a Resource Aware Scheduler in hadoop. –

In: Proc. of ICWS, 2009, pp. 1-10.

 51

38. Y o o, D., K. M. S i m. A Comparative Review of Job Scheduling for MapReduce. – In: IEEE

International Conference on Cloud Computing and Intelligence Systems, 2011, pp. 353-358.

39. Z a h a r i a, M., D. B o r t h a k u r, J. S e n S a r m a, K. E l m e l e e g y, S. S h e n k e r, I. S t o i c a.

Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster

Scheduling. – In: Proc. of 5th European Conference on Computer Systems, 2010, pp. 265-278.

40. Z a h a r i a, M., A. K o n w i n s k i, A. J o s e p h, R. K a t z, I. S t o i c a. Improving MapReduce

Performance in Heterogeneous Environments. – Osdi, 2008, pp. 29-42.

41. Z h a n g, Y., Q. G a o, L. G a o, C. W a n g. iMapReduce: A Distributed Computing Framework for

Iterative Computation. – Journal of Grid Computing, Vol. 10, 2012, No 1, pp. 47-68.

