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Abstract The heavy reliance on data is one of the major
reasons that currently limit the development of deep learning.
Data quality directly dominates the effect of deep learning
models, and the long-tailed distribution is one of the factors
affecting data quality. The long-tailed phenomenon is preva-
lent due to the prevalence of power law in nature. In this case,
the performance of deep learning models is often dominated
by the head classes while the learning of the tail classes is
severely underdeveloped. In order to learn adequately for
all classes, many researchers have studied and preliminarily
addressed the long-tailed problem. In this survey, we focus
on the problems caused by long-tailed data distribution, sort
out the representative long-tailed visual recognition datasets
and summarize some mainstream long-tailed studies. Specifi-
cally, we summarize these studies into ten categories from
the perspective of representation learning, and outline the
highlights and limitations of each category. Besides, we have
studied four quantitative metrics for evaluating the imbal-
ance, and suggest using the Gini coefficient to evaluate the
long-tailedness of a dataset. Based on the Gini coefficient,
we quantitatively study 20 widely-used and large-scale vi-
sual datasets proposed in the last decade, and find that the
long-tailed phenomenon is widespread and has not been fully
studied. Finally, we provide several future directions for the
development of long-tailed learning to provide more ideas
for readers.
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Fig. 1: Distribution of Long-tailed dataset. In nature, there
are cases where a few individuals make a large contribution
and data tend to show a long-tailed distribution. For example,
dog and budgie are common classes, while most other classes
such as alpine vulture, tetra are uncommon classes.
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1 Introduction

“From politics to public relations, from music scores to college
sports, the long tail is everywhere.”

– Chris Anderson, The Long Tail [5]

The advent of deep neural networks has led to remarkable
breakthroughs in many fields such as computer vision [47,
79, 97, 132, 159], natural language processing [35, 86, 87],
and reinforcement learning [141]. However, deep learning
models learn features from large amounts of data, and thus
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Fig. 2: Some common long-tailed distribution datasets as
well as their long-tailedness. Top: examples of LVIS [53],
which is a large-scale fine-grained vocabulary annotation
dataset for instance segmentation. Bottom: examples of
Places-LT [108], which is a scene-centric recognition dataset.

inevitably have a heavy dependence on it. Therefore, deep
learning faces the challenges brought by the existence of
problems in the data itself.

In real life, there exists a distribution of random variables
that is more extensive than the positive-terrestrial distribution,
i.e. the long-tailed distribution. It is mainly reflected in the
fact that a small number of individuals usually make a large
number of contributions, where a few classes occupy the
majority of the dataset (i.e. head classes), while the majority
of classes have very little data samples (i.e. tail classes), as
shown in Fig. 1. Long-tailed distribution can be reflected in
many cases. For example, in the field of economics where
the long-tailed theory first emerged, head and tail are used
to distinguish between red ocean markets and blue ocean
markets. In business sales, ”best-selling goods” have fewer
classes but high sales volume, which belonging to the head
classes, while the ”cold goods” have a huge variety, but
the sales volume of each class is low, which belonging to
the tail classes. In visual recognition, there are also many
subfields that involve long-tailed problems, such as instance
segmentation, scene classification, etc. as shown in Fig. 2.

Chris Anderson [5], who first proposed the long-tailed
theory, suggested that the future of business and culture lies
not in the popular products but in the infinitely long-tailed de-
mand curve, which shows the importance of the research for
the tail classes. From the perspective of machine learning re-

search objectives and application implications, we should not
only focus on the head classes but also give equal attention
to the tail classes in data research.

We must admit that the success of deep learning is insep-
arable from the large-scale well-annotated datasets, such as
ImageNet-1K [131], COCO [99], and Places365 [200], etc.
These large datasets are artificially balanced, and the classes
approximately obey a uniform distribution. In deep learning,
we need to be able to learn well for all classes, so artificially
balanced data will undoubtedly drive the development of
deep learning. Therefore, we should realize that some of the
progress made in the field of deep learning is partly driven
by this artificial balance by force. In reality, however, this
forced balancing of data is inappropriate. On the one hand,
forcing class balancing within the dataset by hand is not in
line with the natural conditions of data distribution. On the
other hand, making the data distribution as balanced as possi-
ble by collecting more tail examples is a notoriously difficult
task [41, 83, 99, 149], and the naturally existing power law
can be a huge challenge in constructing a balanced dataset.
Thus, the solution to the long-tailed problem is imperative.

1.1 Previous surveys and our contributions

To our knowledge, this work is not the first review to sum-
marize the long-tailed phenomenon in visual recognition.
Zhang et al. [191] summarized the technical guide for long-
tailed visual recognition earlier this year, aiming to improve
the performance of some long-tailed benchmarks through a
reasonable combination of existing tricks. Although Zhang
et al.’s work did not comprehensively introduce and ana-
lyze the long-tailed phenomenon in visual recognition, their
quantitative analysis of some methods can still be regarded
as an early overview of this field. In addition, Zhang et
al. [190] conducted a survey on the topic of deep long-tailed
learning in the same period of our work, which grouped
the existing deep long-tailed learning studies into three cat-
egories (class re-balancing, information augmentation and
module improvement), and proposed a new evaluation met-
ric (relative accuracy). In contrast, our work analyzes the
long-tailed visual recognition more deeply, divides the ex-
isting methods more finely, and quantitatively analyzes the
long-tailed phenomenon of mainstream large-scale visual
datasets. We recommend that readers also read the above
two works [190, 191] in order to have a more comprehensive
understanding of long-tailed visual recognition.

This review aims to comprehensively analyze the long-
tailed problem in visual recognition, summarize the high-
lights and limitations of mainstream methods, and provide
an outlook on future research directions. At the technical
level, we not only sort out some general long-tailed prob-
lem solving methods. We also recommend to use the Gini
coefficient [46] as a measure of the datasets’ long-tailedness.
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At the application level, through the general research on
the long-tailed phenomenon, we find that the long-tailed
problem is common in the mainstream large-scale visual
datasets [3, 52, 133, 166, 194, 196, 201], which reveals that
the research on the long-tailed phenomenon in many fields is
not enough. In general, the contribution of this survey can be
summarized as follows:

– We conduct a comprehensive review of the advanced
long-tailed studies, finely summarize them into ten cat-
egories from the perspective of representation learning,
and outline the highlights and limitations of each cate-
gory.

– We have studied four quantitative metrics to evaluate
imbalance, deeply compared their characteristics, and
proposed to use Gini coefficient to evaluate the long-
tailedness of a dataset.

– Beyond the existing research scope, we further study the
long-tailed phenomenon of 20 widely-used and large-
scale visual datasets proposed in the last decade, and
reveal that this problem has not been fully studied in
some fields.

– We elaborate on open problems and opportunities in this
field to facilitate future research.

1.2 Organization

The rest of this paper is organized as follows. In Sec. 2, we
provide the definition of the long-tailed problem and com-
pare the similarities and differences between it and related
research fields. In Sec. 3, we introduce some commonly
used long-tailed datasets as well as their evaluation metrics,
and use Gini coefficient to quantitatively evaluate the long-
tailedness of datasets. In Sec. 4, we give an overview of
approaches to solving the long-tailed problem and summa-
rize them based on the existing studies. In Sec. 5, we report
the performance of some popular studies on CIFAR-10/100-
LT, ImageNet-LT, Places-LT, iNaturalist 2017 & 2018 as
well as LVIS v0.5 & v1.0. In Sec. 6, we further study the
long-tailed phenomenon of mainstream large-scale visual
datasets proposed in the last decade. Future directions for the
long-tailed problem are given in Sec. 7, and Sec. 8 concludes
the whole paper.

2 Overview

To provide readers with the necessary background knowl-
edge, in Sec. 2.1, we formulate the task, and analyze the key
challenges as well as the driven factors of the long-tailed
distribution. And in Sec. 2.2, we establish linkages to other
relevant fields, and compare their similarities and differences.

2.1 Problem Definition

In nature or real life, there exists a distribution of random
variables that is more widespread than the positive-terminus
distribution, i.e. the long-tailed distribution. It is actually a
colloquial expression for the power laws and Pareto char-
acteristics in statistics. The protruding part in the curve is
called ”head”, and the class corresponding to this part is
called head class or frequent class. The relatively flat part
on the right is called ”tail”, and the corresponding class is
called tail class or rare class. Currently, some CNN-based
models [60,105,128,147] perform well on balanced datasets,
but these networks tend to perform poorly on long-tailed
datasets.

The long-tailed phenomenon is inherently present in
large vocabulary scenarios, making model learning with long-
tailed distributed data challenging in a number of ways:

From the perspective of model learning. First, since the
data in the tail classes is usually insufficient to represent
its true distribution, this poses a significant challenge for
classifiers: a good classifier aims to provide a good deci-
sion boundary for the model, yet when a class is severely
under-represented, it becomes more difficult to determine
the location of the decision boundary, which can affect the
performance of the model in the dataset. Besides, due to the
rich training samples of the head classes, the head classes
will be more adequately studied. Based on the case of tail
classes severely under-learned, the positive gradient gener-
ated by the tail classes will inevitably be overwhelmed by the
head classes, which makes it more difficult to learn effective
feature extractors and classifiers for the tail classes.

From the perspective of transfer learning, we take training
data as the source domain and inference-time data as the tar-
get domain. For the long-tailed data, the training set satisfies
the long-tailed distribution, while the test set usually satisfies
the uniform distribution as shown in Fig. 3. There is no guar-
antee of having similar data distributions between the source
and target tasks due to the large gap between the head and tail
item distributions [164, 189]. Using conventional methods
(e.g., Cross-Entropy loss, or simple fine-tuning, etc.) will
result in the poor performance of the tail classes. This is
because the traditional deep learning methods assume that
the training data and the test data satisfy the independently
and identically distributed condition. Therefore the quality
of knowledge transfer can also be greatly affected. And the
problem of target shift can arise because the features learned
on the training set are different from the features belonging
to the corresponding labels in the test set. As the number of
tail classes’ representative examples are insufficient, which
are susceptible to noise and other factors.

In addition to the challenges posed by the long-tailed in
the classification task described above, we also investigate
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Fig. 3: Differences in data distribution between the train-
ing and test sets. For long-tailed dataset, the training set
satisfies the long-tailed distribution, while the test set usually
conforms to a balanced distribution.

the challenges raised by the long-tailed in the object detection
task as well as in the instance segmentation task.

For the long-tailed object detection task, there is com-
petition for the category of the boxes between the tail and
head classes. In the long-tailed distribution, the data of the
tail class is often much smaller than that of the head class,
which makes it likely that the sampling of the tail class is
directly lost or the tail class is classified as background in
the box sampling phase. In addition, for the NMS phase, the
long-tailed distribution of data may cause a large number of
missed detection [28], which leads to poor detection results.

For the long-tailed instance segmentation task, the two-
stage method is widely used, such as Mask R-CNN, which
needs to execute the detection first, so it also faces the lim-
itations of the long-tailed object detection task. In addition,
the sparse tail samples make it difficult to go through the
learning to distinguish it well from the background, resulting
in the inaccurate masks of the tail classes [183].

2.2 Relevant Learning Problems

Among the research in machine learning, there are some
areas with strong relevance to long-tailed visual recognition,
such as imbalance learning and few-shot learning. In this
section, we compare long-tailed visual recognition with these
two domains (Sec. 2.2.1 and Sec. 2.2.2), respectively. And
we also illustrate the similarities and differences between the
three in Sec. 2.2.3.

2.2.1 Imbalanced Learning

Imbalance learning is a widespread problem in deep learn-
ing, and it does not only refer to the imbalance of training
data. Kemal et al. [118] proposed that imbalance problems
are divided into four types, namely class imbalance, scale
imbalance, spatial imbalance and objective imbalance. For
the long-tailed visual recognition, the current study is mainly
based on the image long-tailed distribution level. For the
imbalanced distribution of training data, Buda et al. [11]

define and investigate two types of imbalance namely step
imbalance and linear imbalance, which can represent most
of the real-world cases.

The long-tailed distribution has a strong correlation with
the imbalance problem. Specifically, the long-tailed distri-
bution is an extreme case of imbalance. As shown in Tab. 1,
generally speaking, it is considered that the imbalance learn-
ing is usually reflected in the situation where there are fewer
learning classes such as the two-classification problem, while
for the long-tailed visual recognition, the number of classes
is larger. When the number of classes increases to a certain
level, the dataset tends to favor the long-tailed distribution.
More importantly, for the long-tailed visual recognition, the
tail classes are likely to lack a comprehensive data distribu-
tion due to the sparse training examples, and thus the model
decision boundaries are more ambiguous, combined with
the fact that the number of tail classes occupies most of the
dataset, so the training of the model is more challenging,
making it difficult to solve the long-tailed problem.

2.2.2 Few-Shot Learning

In many application scenarios, it is very difficult to collect
labeled data, so people want to be able to learn a well-
performing model with only a small amount of data. In addi-
tion, humans have the ability to learn quickly from a small
number of samples, and machine learning was desired to give
such a property, which gave birth to few-shot learning (FSL).
Wang et al. [162] propose that FSL is a type of machine
learning problem, specified by experience E, task T , and
performance measure P , where E contains little supervised
information for the target T . For the C-way K-shot problem
in FSL, it simply means that we need to learn C classes with
only K training images (typically no more than 20) in each
class, i.e., we are required to learn how to distinguish these
C classes in these C ×K images.

The tail classes of long-tailed dataset have little supervi-
sory information, which is similar to FSL. But the difference
is that the base set of FSL is much more balanced, and head
classes of long-tailed datasets are rich in supervised informa-
tion. Although, generally speaking, the more data is available,
the more beneficial it is for deep model learning, but this will
inevitably inhibit or over-whelm the tail classes. Therefore,
how to balance the relationship between the head classes and
the tail classes is also an important point that needs additional
consideration in long-tailed learning.

2.2.3 Differences and similarities

Long-tailed visual recognition has a strong relationship with
imbalance learning and few-shot learning. The head and
body classes of the long-tailed dataset can be regarded as
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Table 1: Similarities and differences between Long-tailed Recognition, Imbalance Learning, and Few-shot Learning
in terms of their data and tasks. Part of the table is extracted from [108]. We compared these three areas in terms of the
training set (base set), the imbalance of the test set, the sample number of tail classes, the comparison of the class numbers,
and evaluation range, respectively.

Task Setting Imbalanced Train / Base Set Balanced Test Set Samples in Tail Classes Number of Classes Evaluation: Accuracy Over?

Imbalanced Learning X x 20 ∼ 50 less all classes
Few-Shot Learning x X 1 ∼ 20 – novel classes

Long-Tailed Recognition X X 1 ∼ 20 much all classes

the traditional imbalance problem [108]. Besides, long-tailed
data has the characteristics of ”long” tails, and each tail class
has very little data. Therefore, long-tailed data has a few-shot
problem that cannot be ignored. In general, the long-tailed
phenomenon is an extreme case of the imbalance problem,
and it is also a combination of data imbalance and few-shot
learning. Tab. 1 summarizes their differences according to
[108].

3 Long-tailed Datasets and Metrics

Over time, several researchers have proposed some main-
stream long-tailed datasets which facilitate the development
of long-tailed studies. In this section, we focus our analy-
sis around the long-tailed datasets, starting with introducing
some generic long-tailed datasets in Sec. 3.1, and then we
constructively analyze four quantitative metrics to measure
the long-tailedness of datasets in Sec. 3.2. Finally, we list the
performance evaluation metrics of some long-tailed bench-
marks in Sec. 3.3.

3.1 Long-tailed Benchmark

To better study the long-tailed problem, several long-tailed
datasets have been proposed over the past decades. We sum-
marize the commonly used long-tailed datasets in Tab. 2,
depicts their category-instances distribution curves in Fig. 4,
and give detailed review below.

• CIFAR-10/100-LT [27]. CIFAR-10-LT and CIFAR-100-
LT are the long-tailed versions of the CIFAR-10 and CIFAR-
100 [84]. Both CIFAR-10 and CIFAR-100 contain 60,000
images, 50,000 for training and 10,000 for validation with
class number of 10 and 100, respectively.

• ImageNet-LT [108]. ImageNet-LT is a long-tailed version
of ImageNet-1K [32], created by Liu et al. [108], including
115.8K images from 1,000 classes, with maximally 1,280
images and minimally 5 images per class.

• Places-LT [108]. Places-LT is a long-tailed version of
Places365 [200], which contains 184.5K images from 365
classes, with maximum of 4,980 images and minimum of 5
images per class.

• iNaturalist 2017 & 2018 [148]. iNaturalist (iNat) is a
real-world fine-grained species classification and detection
dataset, covering several domains such as birds, dogs, air-
planes, flowers, leaves, food, trees, cars, etc. iNat 2017 [148]
contains 579,184 training images of 5,089 classes, and its
2018 version [1] has 437,513 training samples in 8,142
classes.

• LVIS v0.5 & v1.0. LVIS is proposed by Gupta et al. [53],
which is a large-scale fine-grained vocabulary instance seg-
mentation dataset that is based on the COCO dataset and is
annotated with instances for over 1,000 classes of objects.

•MS1M-LT [108]. MS1M-LT is a face recognition dataset,
a long-tailed version of MS1M-ArcFace dataset [33, 52].
In MS1M-LT, each identity is sampled with a probability
proportional to its number of images, which lead MS1M-LT
to a long-tailed distribution with 887,530 images and 74,532
identities.

3.2 Long-tailedness Metrics

Accurate and objective measurement of the long-tailedness
of data is an important prerequisite to solve the long-tailed
visual recognition problem. Therefore, in this section, we
compare four commonly used quantitative metrics in statis-
tics, and critically analyze their advantages and disadvantages
in measuring the long-tailedness.

3.2.1 Four Quantitative Metrics in Statistics

• Imbalance Factor. In [27], Cui et al. defined the imbal-
ance factor (denoted as β) of a dataset as the number of
training samples in the largest class divided by the smallest:

β = max {n1, n2, ..., nk} /min {n1, n2, ..., nk} (1)

where n1, n2, ..., nk represents the number of samples in
different classes. Although the imbalance factor is widely-
used as a measurement of the long-tailedness [27, 108, 148],
it is easily affected by extreme classes and can not reflect the
overall characteristics of the dataset.

• Standard Deviation. Standard deviation (denoted as σ) is
frequently used in probability statistics as a measurement of
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Table 2: Statistics of representative long-tailed visual recognition datasets. See Sec. 3.1 for more detailed descriptions.

Dataset Venue Fields Annotation Types Training Samples Classes Max Size Min Size Imba. Factor β

CIFAR-10-LT [27] CVPR 2019 Object-centric Classification 50,000 - 11,203 10 5,000 500 - 25 10 - 200
CIFAR-100-LT [27] CVPR 2019 Object-centric Classification 50,000 - 9,502 100 500 500 - 2 1 - 250
ImageNet-LT [108] CVPR 2019 Object-centric Classification 115,846 1,000 1,280 5 256

Places-LT [108] CVPR 2019 Scene-centric Classification 62,500 365 4,980 5 996

iNaturalist 2017 [148] CVPR 2018 Species-centric
Classification
Bounding-box

579,184 5,089 3,919 9 435

iNaturalist 2018 [1] - Species-centric
Classification
Bounding-box

437,513 8,142 1,000 2 500

MS1M-LT [108] CVPR 2019 Face-centric Classification 887,530 74,532 598 1 598

LVIS v0.5 [53] CVPR 2019 Object-centric
Bounding-box
Instance-mask

56,740 1,230 26,148 1 26,148

LVIS v1.0 - Object-centric
Bounding-box
Instance-mask

99,388 1,203 50,552 1 50,552
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Fig. 4: Distributions of common long-tailed datasets. Figure (a)-(e) show the long-tailed distributions of ImageNet-LT,
Places-LT, iNaturalist 2017 & 2018, MS1M-LT and LVIS v0.5 & v1.0, respectively.

Table 3: Different metrics are used to quantify the long-
tailedness.The upper part of the table lists four common
balanced visual datasets, and the lower part is the long-tailed
datasets. The Gini coefficient is recommended in this review.

Dataset Imba. Factor β Std. σ
mean

median
γ Gini Coef. δ

CIFAR [84] 1.0 0.0 1.0 0.0
ImageNet-1K [32] 1.77 70 0.98 0.013
Places365 [200] 1.62 259 0.98 0.011

COCO [99] 1,325 29,360 1.76 0.564
ImageNet-LT 256 139 1.58 0.524

Places-LT 996 382 2.37 0.671
iNaturalist 2017 435 241 2.77 0.634
iNaturalist 2018 500 117 2.44 0.620

MS1M-LT 598 18 1.32 0.473
LVIS v0.5 26,148 1,516 11.7 0.825
LVIS v1.0 50,552 2,789 11.1 0.820

statistical dispersion [29, 31], and can also reflect the uncer-
tainty of sampling in some cases [15,30], it can be expressed
as:

σ =

√√√√1

k

k∑
i=1

(ni − µ)2 (2)

where k represents the number of classes; ni represents the
instance number of class i, and µ represents the average
number of instances. Although standard deviation quantifies
the dispersion degree between the number of classes within a
dataset, it is also affected by the absolute number of samples,

so it is difficult to objectively express the long-tailedness
of data. In the third column of the Tab. 3, we counted the
standard deviations of some balanced datasets as well as long-
tailed datasets, and it can be found that the balanced dataset,
COCO (σ=29,360), has the largest standard deviation, and
the long-tailed dataset, MS1M-LT (σ=18) has the smallest
one, which shows that the standard deviation can not well
identify the long-tailedness.

• Mean / Median. Median is a proper term in statistics
and is widely used in economics [44], sociology [43] and
medicine [36]. Compared with the mean, the median is not
affected by the maximum or minimum of data, and can better
represent the distribution of data to a certain extent. There-
fore, the ratio of mean to median (denoted as γ) can also
reflect the skew distribution of data, which can be expressed
by:

γ =
mean(n1, n2, ...nk)

median(n1, n2, ...nk)
(3)

When γ is closed to 1, it indicates that the dataset is uni-
formly distributed, and when γ is significantly greater than 1,
it indicates that the dataset is of imbalance, including a large
gap between the instance number in head and tail classes. As
shown in Tab. 3, although γ accurately distinguishes between
balance datasets and long-tailed datasets. However, like im-
balance factor, it is easily affected by individual cases and
cannot reflect the overall distribution. And the value range
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Fig. 5: Calculation of the Gini coefficient. The horizontal
axis is the cumulative distribution of the class proportion and
the vertical axis is the cumulative distribution of the instance
number proportion.

of γ is an open interval (no upper limit), which is not a good
characteristic for a measure.

• Gini Coefficient. Gini coefficient (denoted as δ) was origi-
nally proposed by the Italian economist Gini in 1912 [46] as
an indicator to judge the degree of distribution equality based
on Lorentz curve. It is always used to represent income in-
equality or wealth inequality [76, 178]. Since long-tailedness
is similar to inequality between each category, Gini coeffi-
cient can serve as a long-tailed metric. As shown in Tab. 3,
Gini coefficient can effectively distinguish balanced datasets
and long-tailed datasets.

The calculating process of Gini coefficient consists of
three steps. First, we suppose that the set of number samples
of k classes dataset ni, (i = 1, 2, ..., k) is in ascending order,
we calculate the normalized cumulative distribution {Ci} by:

Ci =
1

k

i∑
j=1

nj (4)

Intuitively, Ci indicates the probability of the is smallest
categories. By defining C0 = 0, we can normalize the x-axis
to the share of total categories and interpolate linearly to
obtain continuous Lorentz curve L(x), x ∈ [0, 1] (as shown
in Fig. 5). The Lorentz curve L(x) follows:

L(x) =


Ci, x =

i

k

Ci + (Ci+1 − Ci)(kx− i),
i

k
< x <

i+ 1

k
(5)

where i = 1, 2, . . . , k. B represents the area to the lower
right of the actual instance number distribution curve. Since
Lorentz curve is linearly interpolated by {Ci}, we can calcu-

late the area by trapezoids:

B =

∫ 1

0

L(x)dx =

k∑
i=1

Ci + Ci−1
2

· 1
k

(6)

For balanced dataset, Lorentz curve is an identity line and
A presents the area between the identity line and the Lorentz
curve of an actual dataset. Thanks to the normalization of
Lorentz curve, A can be simply calculated by: A = 0.5−B
. Finally, the Gini coefficient can be expressed as:

δ =
A

A+B
(7)

The Gini coefficient conforms to the closed interval dis-
tribution of (0,1), so it can better quantify the degree of
imbalance and make the datasets more comparable with each
other. Usually, the smaller the Gini coefficient δ of a dataset
is, the more imbalanced the dataset is, and vice versa.

3.2.2 Long-tailedness Analysis

Since the Gini coefficient δ is not affected by extreme sam-
ples, is not affected by the absolute number of data, and has
a bounded distribution, we recommend using the Gini co-
efficient to measure the long-tailedness of data. Based on
Gini coefficient, we quantify the long-tailedness of some
commonly used balanced datasets [32, 99] and long-tailed
datasets [27, 53, 108, 148], as shown in Tab. 3.

As the most widely used visual dataset, CIFAR [84] has
a perfect manual balance, and the number of instance in each
class is equal, so its Gini coefficient is 0. Another widely used
visual dataset, ImageNet-1K [32] contains 1,000 classes, and
the instances in each category are also manually balanced.
The Gini coefficient of ImageNet-1K is 0.013. In contrast, the
Gini coefficients of long-tailed datasets are generally above
0.5, and some can even reach 0.8. It can be seen that using
Gini coefficient to measure the long-tailedness of data is
reasonable and effective, and there are great differences in
the long-tailedness of existing long-tailed datasets.

On the other hand, COCO [99] is the most common
dataset to evaluate the performance of object detection and
instance segmentation methods, and it is considered to be
balanced. The Gini coefficient of COCO is 0.564, which is
much larger than the balanced datasets CIFAR, ImageNet-1K
and Places365 [200], and even larger than the long-tailed
datasets ImageNet-LT and MS1M-LT. However, the annota-
tion of these datasets is image-level, and it is much simpler
to manually control the data distribution than the instance-
level annotation datasets. As long-tailed object detection /
instance segmentation datasets, LVIS v0.5 and LVIS v1.0,
their Gini coefficients are 0.825 and 0.820 respectively, which
are still much larger than COCO. Therefore, for different vi-
sual tasks, different standards should be used to measure the
long-tailedness of data distribution.
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With the above analysis, we can quantitatively analyze
the long-tailedness of most visual datasets. This provides
guidance for long-tailed visual recognition, that is, different
solutions are adopted through the long-tailedness of data. In
Sec. 6, we will also use this standard to study 20 mainstream
large-scale long-tailed visual recognition datasets, so as to
deeply reveal the research status and future direction of this
field.

3.3 Performance Evaluation Metrics

Presently, there are several general metrics that are widely-
used to measure how long-tailed methods perform on clas-
sification and detection tasks. In this section, we provide
a review of the major performance evaluation metrics for
long-tailed recognition.

In terms of evaluation metric for classification, the top-1
accuracy is frequently adopted in the research community.
For ImageNet-LT, Places-LT, and iNaturalist 2018 datasets,
the accuracy can be split into four types based on the set of
classes followed Liu et al. [108]: Many-shot (classes each
with over training 100 images), Medium-shot (classes each
with 20∼100 training images), Few-shot (classes under 20
training images) and the Overall accuracy. In CIFAR-10/100-
LT, datasets with different long-tailedness is be sampled ac-
cording to the imbalance factor β ∈ {200, 100, 50, 20, 10, 1},
and their evaluation metric is to measure the top-1 accuracy
of the datasets under different imbalance factors respectively.
To make a full comparison between different methods, we
report benchmarks on CIFAR-10/100-LT (Tab. 5), ImageNet-
LT and Places-LT (Tab. 6), as well as iNaturalist (Tab. 7), in
Sec. 5, respectively.

For object detection and instance segmentation tasks,
there are several evaluation metrics that are used in LVIS v0.5
and v1.0, such as APr(mask AP for rare classes), APc(mask
AP for common classes) and APf (mask AP for frequent
classes). To make a full comparison, we keep the common
evaluation metrics in detection and instance segmentation
tasks, like mask AP for {AP, AP50, AP75}, {APr, APc, APf}
and bounding-box AP, on LVIS v0.5 and v1.0 benchmark in
Sec. 5 (see Tab. 8 and Tab. 9).

4 Long-tailed Visual Recognition

In the past few years, a growing number of research has in-
vestigated the long-tailed distribution of data as shown in
Fig. 6. In this section, we review deep learning based meth-
ods for long-tailed visual recognition from 2016 to present
and introduce the related earlier work in context. Although
many studies have mixed a variety of methods to solve the
long-tailed problem, in order to highlight the contribution of

each study, we mainly reviewed their core methods, finely
summarized them into ten categories from the perspective
of representation learning, and outlined the highlights and
limitations of each category (Tab. 4).

In order to make it easier for readers to understand the
characteristics and differences of various methods, we use
color scatter diagram to express the principle of each cate-
gory (Fig. 7 - Fig. 9, Fig. 11 - Fig. 17). Among them, dots
of different colors represent different classes, gray dots rep-
resent unlabeled data, and the number of dots represents the
instance number in that category. The circle outside the dot
indicates that this data is sampled multiple times.

4.1 Data Processing

For dataset’s long-tailed distribution, an intuitive idea is to
make the model learn relatively balanced classes from the
perspective of data. There are three ways to handle the data,
namely over-sampling, under-sampling and data augmenta-
tion.

4.1.1 Over-sampling

Over-sampling is one of the most common methods in deep
learning [55,70,88]. As shown in Fig. 7 (a), the over-sampling
method emphasizes the tail classes and increases the instance
number of the tail classes [11, 12, 134] to reduce the imbal-
ance between the head classes and the tail classes.

Shen et al. [134] propose a sampling strategy Class-
Aware Sampling (CAS) to ensure that each class has the same
probability of occurrence in each batch as much as possible.
We denote the CAS probability of the i− th class as Pa(i),
i.e., for a total of C classes, following the definition of [121],
the sampling probability for each class is:

Pa(i) =
1

C
(8)

Dhruv et al. [110] compute a replication factor for each image
based on the distribution of labels and repeated the images
several times based on the replication factor. Inspired by this,
the work of Gupta et al. [53] propose Repeat Factor Sampling
(RFS) to perform rebalancing operations on training data by
increasing the sampling frequency of images containing tail
instances. Soft-balance Sampling with Hybrid Training [121]
combined the conventional sampling scheme and CAS, which
first trains the detector using the conventional strategy, and
then introducing hyper-parameters to control the degree of
ordinary sampling with Po(i) =

ni
N

, where ni represents
the instance number of class i and N is the total number of
instances.
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2016 2017 2019 2020

（ECCV2016）
Peng et al.

CAS
（NeurIPS 2017）

Wang et al.

LMT
（ICML 2018）

Ren et al.

L2RW

（CVPR 2017）
Dong et al.

Long-tailed classification

Long-tailed detection / instance segmentation

Both

CRL

（CVPR2019）
Liu et al.

OLTR
（CVPR2019）
Cui et al. 2019

CB Loss

（CVPR 2019）
Zhong et al.

UDFR

（ICLR 2020）
Kang et al.

Decoupling

（ACCV 2020）
Sinha et al.

CDB loss

（ACM MM 2020）
Wu et al.

Forest R-CNN

（CVPR 2020）
Zhou et al.

BBN

（CVPR 2020）
Cao et al.

Domain 
Balancing

（CVPR 2020）
Tan et al.

EQL

（CVPR 2020）
Hu et al.

LST

（CVPR 2020）
Liu et al.

ALEAP

（CVPR 2020）
Jamal et al.

RCBM

(CVPR 2020)
Peng et al.

LSOD

（CVPR 2020）
Li et al.

BAGS

（ICLR 2021）
Menon et al.

Logit
Adjustment

（CVPR 2021）
Wei et al.

CReST

（arxiv 2021）
Zang et al.

FASA

（CVPR 2021）
Deng et al.

PML

(CVPR 2021)
Tan et al.

EQL v2

（CVPR 2021）
Zhong et al.

MiSLAS

（arxiv 2021）
Hsieh et al.

Drop Loss

（arxiv 2021）
Zhou et al.

Fed Loss

(CVPR 2021)
Wang et al.

Seesaw loss

(arxiv 2021)
Liu et al.

GistNet

(arxiv 2021)
Cui et al.

ResLT

（CVPR 2016）
Ouyang et al.

FiFDM
（ICCV 2017）

Zhang et al.

Range Loss
（CVPR2018）

Cui et al.

LSFC
（NIPS 2019）

Shu et al.

MW-Net
（ICCV 2019）

Wang et al.

DCL
（ECCV2020）

Chu et al.

FSA
（ECCV 2020）

Wu et al.

Deep-RTC
arxiv 2020
Hong et al.

LADE
(CVPR 2021)
Zhang et al.

（CVPR 2021）
Wang et al.

Hybrid-SC/PSC
(AAAI 2021)
Zhangi et al.

Bag of Tricks

（NIPS 2019）
Cao et al.

LDAM
（CVPR 2019）

Yin et al.

FTLFR
（ECCV 2020）

Wang et al.

SimCal
（NeurIPS 2020）

Tang et al.

De-confound-TDE
arxiv 2020
Wang et al.

MFM
(arxiv 2021)
Wang et al.

（CVPR 2021）
Wu et al.

RoBal
(arxiv 2021)

Zhang, Pan et al.

MOSAICOS

（ECCV 2020）
Xiang et al.

LFME
（NeurIPS 2020）

Ren et al.

BALMS

（NeurIPS 2020）
Yang et al.

SSP

(CVPR 2021)
Li et al.

（CVPR 2021）
Wang et al.

ACSL

DisAlign

RIDE

MetaSAug

DiVE

BKD

(ECCV 2020)
Wu et al.

DB loss
(arXiv 2021)

He et al.

(ECCV 2020)
Chou et al.

Remix
(arxiv 2021)
Zhang et al.

(arxiv 2021)
Liu et al.

Breadcrumbs

(arxiv 2021)
Zhao et al.

ALA Loss

(arxiv 2021)
Samuel et al.

DRO-LT

2018 2021

Fig. 6: A chronological overview of recent representative work in long-tailed recognition. Visual recognition study on
long-tailed distribution started with [120] in 2016 and has become more and more abundant since then. Work marked in green
represents long-tailed classification, marked in orange represents long-tailed object detection / instance segmentation, marked
in red represents both. We abbreviate some studies for ease of presentation.

Over-sampling

Sample Rate

(a) Over-sampling

(b) Under-sampling

(c) Data Augmentation

Under-sampling

Sample Rate

Data
Augmentation

Fig. 7: Data processing methods for long-tailed prob-
lem. Data points with the same color represent the same
class. (a) and (b) represent data over-sampling and under-
sampling, respectively. i.e., assigning different sampling rates
for head/tail classes. (c) represents data synthesis, i.e., syn-
thesizing new data for tail classes to increase their weighting.

In addition to the above-mentioned works that perform
re-sampling at the image level, some works perform instance-
level re-sampling to prevent unnecessary duplication of cer-
tain non-tail class instances in the oversampled images. Hu
et al. [65] presente Instance-level Data Balanced Replay
strategy. At stage t, for each class, a certain number of im-
ages containing that class are randomly sampled, and among
these images, only annotations belonging to that class are
considered valid during the training process. NMS Resam-
pling [169] adaptively adjusts the non-maximum suppression
(NMS) threshold for different classes according to their label
frequencies, so as to balance the data distribution by retain-
ing more proposal candidates from the tail classes while
suppressing those from the head classes.

4.1.2 Under-sampling

In contrast to the over-sampling method, the under-sampling
method reduces the imbalance between the head classes and
the tail classes by reducing the sample times of the head
classes [11, 55, 58, 71], as shown in Fig. 7 (b).

Random under-sampling is performed by randomly delet-
ing the head classes data until it has the same number of
instances as the other classes [11]. EasyEnsemble [106]
divides the frequent classes into several subsets, each with
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the same number of instances as the rare classes, and com-
bines them separately with the rare classes to train multiple
classifiers and eventually combine the outputs of multiple
classifiers in an ensemble fashion, thus dealing with the infor-
mation loss problem in traditional random under-sampling.
BalanceCascade trains the classifiers sequentially, where in
each step, the majority class examples that are correctly clas-
sified by the current trained learners are removed from further
consideration. NearMiss [111] is another method to allevi-
ate the information loss problem in random under-sampling,
which is essentially a prototype selection method that uses
KNN to select the most representative samples from frequent
class samples for training.

There are also some data cleaning methods, which mainly
clean overlapping data to achieve the purpose of under-sampling.
In Edited Nearest Neighbours (ENN) [168], for a sample be-
longing to a frequent class, if more than half of its K nearest
neighbors do not belong to the frequent class, this sample is
eliminated. Modified Tomek Link method [34] performs data
cleaning by finding pairs of samples whose nearest neighbors
are each other and belong to different classes, and removing
the one that belongs to the frequent class.

Over / under-sampling is one of the most common and
easily considered operations. However, there are some draw-
backs involved. For example, in the case of over-sampling
the tail classes, it may lead to over-fitting [17, 154] the tail
classes [25,27,139,144] and if there are errors or noise in the
samples of the tail classes, then over-sampling may aggravate
these problems. Under-sampling may lead to under-learning
of the head classes [27, 139], and may potentially missing
valuable data in the head classes. For extremely long-tailed
data, the under-sampling method usually loses a lot of infor-
mation because of the large difference in the amount of data
between the head class and the tail class [144].

4.1.3 Data Augmentation

Data augmentation is another way of data processing to solve
the problem of long-tailed distribution, as shown in Fig. 7
(c). Due to the small sample size of the tail classes, it is
difficult to learn the complete features. Therefore the tail
classes can be compensated by data augmentation methods
such as generating and synthesizing new samples with the
help of similar samples [17] or other data sources [45, 57].
There are some common ways of data augmentation such as
random image flipping, scaling, rotating and cropping and so
on. But these naive methods are not good enough for the tail
classes where samples and features are extremely sparse. In
order to reduce the over-fitting risk of the tail classes and to
improve the generalization ability, some methods expand the
tail classes by data synthesis, which can be divided into two
approaches: image space and feature space.

For image space, some data augmentation methods help
to improve the performance for tail classes. Zhang et al. [184]
proposed that although Empirical Risk Minimization (ERM)
allows large-scale neural networks to memorize (rather than
generalize) training data, validation on samples outside the
training distribution (adversarial samples) can dramatically
change the prediction results, i.e., when the distribution of the
test set are different from the training set, the ERM method
no longer has good interpretation and generalization perfor-
mance. In contrast, data augmentation methods can improve
the generalization of the model to the training data [138].
Mixup is a data-independent data augmentation approach that
performs data augmentation by constructing a virtual training
sample, expressed by the formula:

x̃ = λxi + (1− λ)xj ,
ỹ = λyi + (1− λ)yj .

(9)

where (xi, yi) and (xj , yj) are two samples randomly se-
lected from the training data and λ ∈ [0, 1]. Recently, Chou
et al. [21] improved the mixup method and proposed a new
data augmentation method Remix. It assigns the label in favor
of the minority class by providing a distributed higher weight
to the minority class, which makes the classifier push the
decision boundary to the majority class and balance the gen-
eralization error between the majority class and the minority
class. The formulation of Remix is:

x̃RM = λxxi + (1− λx)xj ,
ỹRM = λyyi + (1− λy)yj .

(10)

where λx is sampled from the beta distribution and λy takes
the form of:

λy =


0, ni/nj ≥ κ and λ < τ ;

1, ni/nj ≤ 1/κ and 1− λ < τ ;

λ, otherwise

(11)

where the hyper-parameters κ and τ are used to set synthetic
labels by comparing the number relationship between sam-
ples and to control the degree of synthetic labels, respectively.

Some studies are based on the feature level for feature
synthesis, which can enrich the features of the tail classes and
create clearer decision boundaries. At the beginning of this
century, some classic data synthesis work provided ideas for
some current advanced research.SMOTE [17] is an effective
method for data synthesis. For each minority class sample,
a sample is randomly selected from its nearest neighbors,
and then a point on the line between these two samples is
randomly selected as the newly synthesized minority class
sample. However, SMOTE method has some drawbacks, it
has some blindness in the selection of nearest neighbors, and
it is also prone to the problem of distribution marginaliza-
tion due to the imbalance of the data. Therefore there are
many works to improve it. Borderline-SMOTE [56] judges
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the boundary samples for the minority class samples and gen-
erates new samples for the boundary samples, and the rule for
judging the boundary samples is that more than half of the
K-nearest neighbors of the sample are majority class samples.
Another classical approach is ADASYN [57], which can adap-
tively decide how many synthetic samples to generate for
each minority class based on the distribution of the samples.
First the degree of imbalance as well as the number of new
synthetic samples to be generated are calculated, then the
distribution of each minority class sample is calculated and
the distribution is used to determine the number of synthetic
samples for each class.

In recent years, some studies use data synthesis and
feature synthesis to solve the long-tailed problem. Over-
sampling the tail classes is a very common strategy. However,
this can easily lead to tail classes over-fitting. Towards this
question, Kim et al. [80] utilize an optimization phase so
that the head class samples are modified into tail class sam-
ples and then added to the original dataset for the purpose of
balancing the dataset. Chu et al. [22] decompose the class
activation map into class-generic features and class-specific
features. In order to make up for the missing information
of the tail classes, the specific features of the tail classes
are fused with the common features of the head classes,
which can expand the feature space and generate augmented
samples to recover the base distribution of the tail classes.
Finally, the online generated augmented samples are used
to fine-tune the network trained in the first stage to improve
the performance of the tail classes. FASA [180] generates
virtual features by obtaining the mean and standard devia-
tion of the corresponding class features. And the number
of generated virtual features is dynamically decided by an
adaptive feature sampling scheme, thus effectively avoiding
over-fitting and under-fitting triggered by feature augmen-
tation. Breadcrumbs [101] proposes a new feature augmen-
tation strategy that tracks features backwards to access the
large number of feature vectors available for each training
image from previous epochs, in a way that is more diverse
than the features obtained by simply copying and pasting.
To overcome the lack of discriminative information in ex-
isting re-sampling methods, Zhang et al. propose a novel
data augmentation approach based on Class Activation Maps
(CAM) [199], which is tailored for two-stage training and
generates discriminative images by transferring foregrounds
while keeping backgrounds unchanged.

Data augmentation aims at applying enhancement tech-
niques in the image space or feature space to synthesize
new samples, thus expanding the data in knowledge-poor
tail classes [180]. We need to acknowledge that the data pro-
duced by the data synthesis approach is more economical and
efficient in many cases, especially when the data is difficult
to obtain, and can also complement the real-world data. How-
ever, this artificial way of creating data does not come from

real scenarios, and its impact on the model lacks theoretical
guidance, and the synthesis of data close to real scenarios is
a highly complex operation, such as VAE [81,119] and GAN
etc. [9, 48, 78]. At the same time, the simple data synthesis
method cannot accurately avoid the adverse effects of noise
and other undesirable factors from the original dataset.

4.2 Cost Sensitive Weighting

Cost sensitive learning can be traced back to a classical
approach in statistics that considers the cost of misclassi-
fied samples, some studies refer to this as importance sam-
pling [27, 75]. It is shown that there is a strong link between
cost sensitive learning and imbalance learning [58], so this
approach can be naturally used to deal with extremely un-
balanced data like long-tailed data. As shown in Fig. 8(a),
cost sensitive weighting assigns different weights to different
classes in an explicit or implicit way, so that the influence
of the tail samples can be improved. Cost sensitive weight-
ing can also assign weights at the sample level for more
fine-grained control, as shown in Fig. 8(b). This strategy can
be applied in many directions besides long-tailed learning,
such as the classification of foreground and background for
detection task.

Re-weighting

Class-level

(a) Class-level Weighting

(b) Instance-level Weighting

Re-weighting

Instance-level

Fig. 8: Cost sensitive weighting methods for long-tailed
problem. We use a ring to represent increasing the learning
weight of data points. (a) Represents class-level re-weighting,
i.e., assigning different learning weights to different classes
so that the model enhances the learning of the tail classes.
(b) represents instance-level re-weighting, i.e., adjusting the
sample weights by controlling at a more fine-grained level to
make model focus more on learning hard samples.

4.2.1 Class-level Re-weighting

For cost-sensitive weighting, one of the most intuitive ap-
proaches is to re-weight classes proportionally by the inverse
of their frequencies [66, 164]. But this naive method tends
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to perform poorly, some works tend to use a “smoothed”
version of weights that are empirically set to be inversely
proportional to the square root of label frequency [110, 115].

However, it is often inefficient to set weights directly
based on the instances number of the classes for class-level
re-weighting methods, and it is difficult to find an appropri-
ate weight that is valid. Therefore, some methods implicitly
distinguish between head and tail classes, and turn their at-
tention to other factors such as effective number of samples,
contribution gradient, sample difficulty, etc.

Cui et al. [27] argue that there is information overlap
among data, as the number of samples increases, the marginal
benefit a model can extract from the data diminishes. Based
on this view the concept of effective number of samples was
proposed. Where Effective Number En is defined as

En = (1− βn)/(1− β), where β = (V − 1)/V, (12)

n is sample number, V is the total volume of all possible data
in the class. Class-Balanced Loss solves the training problem
for unbalanced data by adding a class-balanced weighting
term αi ∝ 1/Eni

to the loss function for class i that is
inversely proportional to the number of valid samples, where
ni is the number of samples for class i.

Tan et al. [144] argue that negative gradients from the
head classes severely inhibit the learning of tail classes dur-
ing training. For the tail classes, the gradients from negative
samples are larger than those from positive samples. There-
fore, Equalization Loss (EQL) sets a weight term w for class
j:

wj = 1− E(r)Tτ (fj)(1− yj). (13)

For a region proposal r, E(r) outputs 1 means r is a fore-
ground region proposal and otherwise 0. fj means frequency
of class j, and Tτ (x) is a threshold function. y is the ground
truth distribution with one-hot representation. It aims to ig-
nore the gradients from frequent classes on rare classes while
preserving the gradients from background samples, thus en-
suring a fair training for each class. However, DropLoss [64]
observes that most of the gradients that inhibit the tail class
actually come from correct background classification rather
than incorrect foreground prediction, and therefore DropLoss
is proposed to adaptively rebalance the ratio of background
prediction loss between the rare/common class and the fre-
quent class. Tan et al. [143] propose EQL v2 from the gradient
perspective. It chooses the gradient statistic as an indicator
to indicate whether a task is in balanced training. The ratio
of accumulated positive gradients to negative gradients for
each classifier is used to independently increase the weight
of positive gradients and reduce the weight of negative gra-
dients for each classifier. Li et al. [90] extend the idea of
equalization loss to the single-stage object detector [98], in-
dependently rebalances the loss contribution of positive and
negative samples of different categories according to their

imbalance degrees, and effectively solve the long-tailed prob-
lem under the imbalance of positive and negative samples.

Wu et al. [170] propose that for the multi-label recog-
nition problem under long-tailed distribution, the general
re-sampling scheme leads to undesirable effects due to the
presence of label co-occurrence. Therefore, Distribution-
Balanced Loss is proposed to address the undesirable effects
caused by label co-occurrence, while over-suppression of
negative labels is overcome by regularization to mitigate the
tail classes over-fitting problem. Peng et al. [121] address the
case where multiple labels explicitly exist for an object. In
order to avoid the traditional softmax function suppressing
coexisting classes, concurrent softmax is proposed to avoid
unnecessarily large losses due to the multi-label problem,
and the gradient could focus on more valuable knowledge.

Sinha et al. [139] propose Class-Wise Difficulty-Balanced
Loss (CDB loss) to assign loss weights by measuring the
learning difficulty for each class. Seesaw Loss [153] sets a
mitigation factor, and the penalty for the class with fewer
instances is dynamically adjusted according to the ratio of the
number of instances in the tail class to the instance number in
the head classes. Federated loss [202] is proposed for solving
the federal annotation of LVIS. It selects a subset of classes
for each training image, including all positive annotations as
well as a random negative subset. A binary Cross-Entropy
loss is used for all classes in this subset during training, and
classes outside are ignored. Wang et al. [158] propose to treat
all object classes as tail classes regardless of the instance
number of each class. In addition, Adaptive Class Suppres-
sion Loss (ACSL) is introduced to adaptively balance the
negative gradients between different classes, which can effec-
tively improve the discriminative power for the tail classifier.
ResLT [25] is rebalanced from a parameter space perspective.
The shared part of the model parameters is used to learn the
classes’ common features. The dedicated part retains the spe-
cific capacities of the head, middle, and tail classes through
three branches, where the main branch learns to recognize
images from all classes, and then augments images from
the middle+tail and tail classes through two other residual
branches to progressively augment the classification results
on the tail classes, respectively. Finally, the branches are ag-
gregated into a final result by additive shortcuts, which is an
adaptive, incremental learning method.

4.2.2 Instance-level Re-weighting

Models have difficulty in learning on hard examples as well
as their features, so some studies have identified these hard
samples for targeted treatment. Although hard example min-
ing are not specifically designed for the long-tailed prob-
lem, some studies [27, 37, 69] illustrate the effectiveness of
instance-level re-weighting for long-tailed learning. For long-
tailed data, the extreme imbalance of the data can lead to the
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tail classes learning fewer iterations and gradually becoming
a kind of hard-to-score sample, so the instance-level reweight-
ing methods can be effective in improving the performance
of the tails.

In OHEM [135], each example is scored by its loss, non-
maximum suppression (NMS) is then applied, and a mini-
batch is constructed with the highest-loss examples. Positive
and negative samples are taken as 3:1 to calculate the loss,
and the other negative sample weights are set to 0. Although
the OHEM algorithm increases the weights of hard samples,
it ignores the samples that are easy to classify. Lin et al. [98]
propose Focal Loss to solve the problem of severe imbalance
in the ratio of positive and negative samples in one-stage
object detection. It improves on the Cross-Entropy loss by
adding a modulating factor, which distinguishes between
simple and hard samples. The weight of the simple samples
is reduced, while paying more focus on the hard samples.
As hard samples are mostly composed of tail classes for the
long-tailed data, so Focal Loss can effectively improve the
learning of tail classes.

The essential effect of sample imbalance from the per-
spective of gradient distribution is explored by Gradient
Harmonizing Mechanism (GHM) [89], which points out that
in one-stage detectors, the number of simple samples is very
large, so they tend to dominate the model update, and since
they are already well discriminated by themselves, the param-
eter update caused by this part does not improve the model
much and the gradients generated by the samples are small.
The class imbalance can thus be attributed to an imbalance
in the degree of difficulty, and the imbalance in the degree of
difficulty can be attributed to an imbalance in the distribution
of the gradient parametrization. Specifically, by counting the
gradients of the samples and designing GHM based on this
distribution, the gradients generated by different samples are
weighted so as to change the amount of their contributions
and eliminate the negative effects of outliers. Zhao et al. de-
signe an adaptive logic adjustment (ALA) loss [195], which
contains an instance-specific adjustment term that adapts
to the logic of each sample and can make the model more
focused on hard samples.

The re-weighting approach is an important strategy to
solve the long-tailed problem by giving different learning
weights to different categories or samples. However, it is not
feasible to set simple learning weights, such as the inverse of
the category frequency or a smoothed version, based only on
the size of the category data. Therefore finding a loss weight
that fits the model and the data takes effort. Some work
assigns weights at the instance level for more fine-grained
control. However, some researchers [139] point out that this
training strategy still results in a focus on learning the head
classes because the absolute number of head data is dominant
so that the number of hard samples in the head classes is still
more than the number of hard samples in the tail classes.

For large-scale real-world data, re-weighting tends to make
the deep model difficult to optimize during training [66, 67].
Moreover, re-weighting methods are susceptible to sensitive
hyper-parameters, and the optimal settings may vary widely
from dataset to dataset [143].

4.3 Decoupling Methods

Representation
Learning

Classifier
Learning

Fig. 9: Decoupling methods for long-tailed problem. Be-
cause the rebalancing approach can severely damage the
learned representations, some studies decouple representa-
tion learning and classifier learning. In the first stage, ordinary
learning is used for representation learning. In the second
stage, the network parameters of the representation learner
are frozen and using a rebalancing approach to learn a good
classifier.

Some studies found that although rebalancing strategies
are important for long-tailed data, manipulating the data
by re-sampling or re-weighting methods can harm the fea-
ture representation during the representation learning phase,
while regular sampling tends to give more general represen-
tations. Therefore, uniform sampling is used to train the deep
learning model to obtain the features of the data, and then
class-balanced sampling is performed on the classifier to
balance the head and tail classes, as shown in Fig. 9.

Kang et al. [77] propose that unbalanced data would not
be a problem in learning high-quality feature representation,
while strong long-tailed recognition could be achieved by tun-
ing the classifier only. The learning process is decoupled into
representation learning and classifier learning. The former
is learned by standard instance-balanced sampling, class-
balanced sampling, or a mixture of the two, the results shows
that instance-balanced sampling yields better results, which
shows that the rebalance methods can impair the learned rep-
resentations. The latter learns the classifier by three methods,
namely Classifier Re-training (cRT), Nearest Class Mean
classifier (NCM), τ -normalized classifier (τ -normalized).

Inspired by [77], BAGS [96] also decouple the represen-
tation learner and classifier. The balanced group softmax
module is introduced in the classification head of the detec-
tion framework. Grouping according to the instance number
of the classes, and respectively executing softmax operation.
The group-by-group training is used to separate the classes
with disparate numbers of instances, thus balancing the clas-
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sifiers in the detection framework and effectively reducing
the control of the head classes over the tail classes.

BBN [198] designed a conventional learning branch as
well as a re-balancing branch, where the former learns the
generic pattern of the original distribution from the original
long-tailed data, while the latter models the tail data in a
back-sampling manner. Finally, the weights of the feature
vectors of the two branches fc and fr are controlled by the
adaptive trade-off parameter ϕ and input to the two classifiers
Wc and Wr, respectively, and combined to obtain the final
logits results z:

z = ϕWc
>fc + (1− ϕ)Wr

>fr. (14)

SimCal [157] corrects for biases in the classification head
through a decoupled learning scheme. The model is first
trained normally. A bi-level sampling scheme combining
image-level and instance-level sampling is then used to col-
lect class-balanced training instances. These samples are then
used to calibrate the classification head to improve the tail
classes performance. To mitigate the adverse effects of the
above calibration on the head classes, SimCal also proposes
a Dual Head Inference architecture that selects predictions
for the tail and head classes directly from the new balanced
classifier head and the original head.

DisAlign [187] believes that existing two-stage learning
methods usually rely on heuristic design to adjust the initially
learned classifier, which requires lengthy hyper-parameter
tuning. At the same time, the bias of the decision boundary
in the feature space can become a bottleneck. To this end,
an adaptive method is designed to calibrate the output of
the classifier, and a generalized weighting method is used to
balance the class prior, so that the classifier output is matched
to the reference distribution of the class that is beneficial to
balance the prediction to calibrate the output of the classifier.

MiSLAS [197] proposes label-aware smoothing to deal
with different degrees of class over-confidence in order to
solve the mis-calibration problem of the two-stage method.
Shifted batch in the decoupling framework is further pro-
posed for the deviation of the dataset between the two stages
due to different samplers normalization.

LADC [150] suppose that tail classes can be enriched by
similar head classes and proposes a novel distribution cali-
bration approach, which transfers the statistics from relevant
head classes to infer the distribution of tail classes in the
second stage.

Recently, decoupling representation learner and classi-
fiers method has been shown to be effective in long-tailed
data distributions, and it has become one of the mainstream
research directions of long-tailed recognition. Moreover, de-
coupling method is relatively convenient to use in combina-
tion with data processing and cost sensitive weighting meth-
ods, which can obtain better model learning effect [96, 191].
But the two-stage learning strategy defies the expectation

of end-to-end training sought in deep learning. At the same
time, the resampling or re-weighting method adopted in the
second stage still has the limitations mentioned above.

4.4 Other Long-tailed Visual Recognition Methods

In addition to the above methods, many studies use one
or mixed multiple machine learning methods (metric learn-
ing, transfer learning, meta learning, knowledge distilling,
mixture-of-experts, etc.) to solve the long-tailed problem, as
shown in Fig. 10.
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Fig. 10: Domain relevance of some long-tailed methods.
To illustrate the domain relevance of the long-tailed approach,
we list some of the mainstream studies, which draw on knowl-
edge from multiple research domains.

4.4.1 Metric Learning

Metric learning

inter intra

Fig. 11: Metric learning for long-tailed problem. The
method aims to clarify the decision boundary between classes
while expanding the inter-class distance and reducing the
intra-class distance.

Long-tailed data can be further clarified by performing
feature similarity metrics in feature space with the help of
metric learning to specify the boundaries between classes.
Metric learning [117, 140], also known as Distance Metric
Learning (DML), which aims to learn an embedding function
that can embed data to a feature space where the inter-data re-
lationships are preserved [139]. Specifically, metric learning
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is a spatial mapping method. By learning to an embedding
space in which all data converted to feature vectors are mea-
sured for similarity and distances are reduced for similar
samples and expanded for dis-similar samples, as shown in
Fig. 11. This is helpful for classifiers to classify certain tail
classes where the decision boundary is not clear enough.

Zhang et al. [188] propose Range Loss, the intra-class
compactness constraint minimizes the two maximum intra-
class distances for each class. The inter-class separation con-
straint calculates the centers of each class and makes the
two classes with the smallest class center distances greater
than a set margin. Class Rectification Loss (CRL) [38] argued
that the traditional Cross-Entropy loss is not applicable to
data with high imbalance and can cause model suffers from
generalizing inductive decision boundaries biased towards
majority classes. Therefore, CRL is proposed to gradually
enhance the decision boundaries of minority classes. Specifi-
cally, the triplet ranking loss [104] is considered to model the
relative relationship constraints within and between classes.
In order to fully learn and exploit the minority classes, each
minority class sample is considered as an ”anchor” in the
triplet structure to compute the batch loss balance regulariza-
tion. Dynamic Curriculum Learning (DCL) [161] argues that
this way of setting anchors tends to cause feature push-pull
confusion.Therefore only simple samples of minority classes
are set as anchors, instead of all samples of minority classes.
Thus, the problem of sample feature push and pull confusion
can be avoided to a certain extent when the decision boundary
is blurred.

Cao et al. [14] believe that encouraging a large margin
can be viewed as regularization, and propose to regularize
the minority classes more strongly than the frequent classes.
Therefore, minority classes are encouraged to obtain higher
margins. Assume that γi is the margin of class i and ni is
the number of samples of class i. LDAM designs a label-
distribution-aware loss function that finds the best trade-off
between the margins of the classes:

γi ∝ ni−1/4 (15)

and forces it to be a multi-class class-dependent margin.
Hybrid SC/PSC [155] is designed to include a supervised

contrastive learning (SCL)-based feature learning branch and
a Cross-Entropy loss based classifier learning branch. The
hybrid network structure progressively adjusts the weight of
the two branches in the learning process, and jointly performs
feature learning and classifier learning. Prototypical super-
vised contrastive loss is designed to learn the prototype of
each class for comparative learning and to force the different
augmented views of each sample to be close to the prototype
of their class and away from the prototype of the remaining
classes.

Wang et al. [163] study the relationship between the
margins and logits (classification scores) and empirically ob-

serve the biased margins and the biased logits are positively
correlated. Based on this observation, they propose Margin
Calibration (MARC), a simple yet effective margin calibra-
tion function to dynamically calibrate the biased margins for
unbiased logits.

Cui et al. [26] observe supervised contrastive loss tends
to bias on high-frequency classes and thus increases the dif-
ficulty of imbalance learning. Therefore, Parametric Con-
trastive Learning (PaCo) is proposed to solve the problem of
long-tailed recognition. PaCo introduces a set of parametric
class-wise learnable centers to rebalance from an optimiza-
tion perspective. When more samples are pulled together
with their corresponding centers, PaCo can adaptively en-
hance the intensity of pushing the same class of samples
closer, and is conducive to hard example learning. In addi-
tion, this study also found that RandAugment [24] and longer
training epochs can further improve the effect of long-tailed
learning, and achieved very competitive accuracy on multiple
benchmarks combined with PaCo.

The basic purpose of metric learning is to make the sam-
ple features of similar classes closer together and those of
different classes farther apart. Metric-based learning methods
are usually based on loss functions to perform metrics be-
tween features, so it is necessary to consider the appropriate
way for the combination of training samples as well as to
choose the appropriate loss function. And for the head classes
with large absolute numbers, it is still necessary to consider
how to avoid the bias of the model for the head classes [155].

4.4.2 Transfer Learning

Knowledge
Transfer

head classes tail classes

Fig. 12: Transfer learning for long-tailed problem. The
method aims to make full use of the sufficient head classes
and to transfer the knowledge acquired from the head classes
to the tail classes.

Due to the large absolute amount of data in the head
classes of the dataset, it has a richer and more complete
training resource compared to the tail classes. Therefore
some studies hope the head knowledge can be fully utilized
to guide the learning of feature under-represented tail classes,
as shown in Fig. 12.

Wang et al. [164] emphasis the strong correlation be-
tween meta-networks and model parameters. The basic as-
sumption is proposed that model parameters share similar
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dynamics across classes, laying the foundation for transfer-
ring model parameters between classes. Specifically, this
research constructs a meta-network with a deep residual net-
work as the basic unit to learn the head classes on the model
parameter space and gradually transfer the meta-knowledge
to the tail classes.

Hu et al. [65] divide the LVIS dataset of more than one
thousand classes into sections according to the number of
instances within the classes. The learning and merging of
each part was performed by a divide-and-conquer strategy. A
knowledge distillation strategy is used in order to retain the
knowledge learned from the head classes. And a Meta Weight
Generator (MWG) is designed to dynamically generate the
weight matrix of the current stage using the fundamental
knowledge learned and inherited from the head classes.

Due to the small spatial span of the tail classes and the
large spatial span of the head classes, in order to compensate
for the intra-class diversity of the tail classes, Liu et al. [102]
construct to a feature cloud for each feature, transferring from
the head classes to extend the distribution of the tail classes.
The ideas of CosFace [151] and ArcFace [33] are borrowed
to learn corner features. The overall variance of the head
classes is obtained by computing the angle distributions and
means between the head class features and their correspond-
ing class centers. And the angular variance of the head classes
is passed to the tail classes by constructing additional distri-
butions, thus constructing feature clouds for each tail instance
and expanding the space of the tail classes. GistNet [100]
implements geometric structure transfer by implementing
constellations of classification parameters, transferring the
geometric structure of the head classes to the tail classes.

In order to make full use of the knowledge in the head
classes and compensate for the lack of knowledge in the
tail classes, some work uses transfer learning to transfer
knowledge from the head classes to the tail classes. How to
improve the performance of the tail classes without damaging
the performance of the head classes is one of the issues to be
considered. Meanwhile, some works usually carry out com-
plex model and module design for knowledge transfer [164],
which is not conducive to the training of the model and the
convergence of the network.

4.4.3 Meta Learning

Meta Learning, also called Learning to Learn, is another
important branch of research after Reinforcement Learn-
ing [74, 142]. It aims to learn a model that acquires general
knowledge from different tasks and equips the model with the
ability to learn in order to quickly adapt to new tasks. In long-
tailed problem, meta-learning can guide the model to train,
construct metamaps from head classes to tail classes, learn
model parameters adaptively, assign sample weights, adjust
classification network features, etc., as shown in Fig. 13. The

Meta Learning

guiding

Fig. 13: Meta Learning for long-tailed problem. Deep
models are trained adaptively by constructing a small amount
of balanced meta-data, building meta-models, or setting adap-
tive parameters.

difficulty and uncertainty of human intervention to guide the
model to learn are alleviated.

Ren et al. [127] propose that there is a tendency to se-
lect samples with small training losses in noisy images, and
a tendency to select examples with large training losses in
data imbalance problems. To address these two conflicting
views, L2RW guides the updating of the weights of train-
ing losses by constructing a small unbiased validation set
(i.e., meta-data). To reduce the computational cost, an online
approximation method is used to adjust the weights of the
training losses online in a mini batch in an approach similar
to SGD. Shu et al. [136] argued that the possible way of learn-
ing weights implicitly in L2RW leads to unstable weighting
behavior and non-generalizability during the training pro-
cess, and therefore adopted the meta-network mechanism of
learning weights explicitly, and proposed an adaptive sample
weighting strategy for setting up sample loss. Specifically,
a simple meta-network, MW-Net, is set up so that it adap-
tively learns the weights of the i− th sample loss and uses
meta-data to guide all parameters.

Jamal et al. [69] propose that the conditional distribu-
tion Ps(x|y) = Pt(x|y) may not hold, which can result in
target-shift. For this reason, this research proposes to relax
the assumption that the source and target domains share
the same conditional distribution Ps(x|y) and Pt(x|y) to
enhance class-balanced learning. Specifically, this research
relates the expected error in the target domain to the error in
the source domain, and sets a balanced meta-data set to guide
the meta-framework in estimating the conditional weights
which is set for the target-shift part. Also, Ren et al. [126]
find that in the long-tailed case, according to Bayes theorem,
the regular softmax regression is affected by the label distri-
bution shift, which will make the classifier more inclined to
consider the samples as belonging to the head class. For this
purpose, the work explicitly considers the label distribution
shift, and re-derive the softmax function. The final Balanced
Softmax φ̂j can be expressed as:

φ̂j =
nje

ηj∑k
i=1 nie

ηi
, (16)
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where ni denotes the number of class i, and η denotes model
output.

Meta feature modulator (MFM) [156] is proposed to
model the difference between long-tailed data and balanced
meta-data from a representational learning perspective. Specif-
ically, modulation parameters are introduced to channel-
wisely scale or shift the intermediate features of the classifi-
cation network. The modulation parameters and the classifi-
cation network parameters are gradually optimized under the
guidance of the balanced meta-data. Eventually, the model is
made to have similar preferences for all classes.

MetaSAug [92] performs data augmentation with the help
of Implicit Semantic Data Augmentation (ISDA) technique
to obtain more semantically informative features. For tail
classes, a reasonable covariance matrix cannot be obtained.
Therefore, MetaSAug validates a small balanced validation
set in each training iteration, minimizing the validation loss
to update and learn the appropriate class-level covariance to
achieve more meaningful augmentation results.

The meta-learning based approach allows the model to be
more automated for adaptive learning. Some work guides the
training of models for balance by employing meta-data [92],
or employs meta-models to learn model parameters adap-
tively [136]. However, the guidance of meta-data is weak,
and the model will inevitably be more inclined to learn head
data. At the same time, the design of some meta-models or
modules is complicated.

4.4.4 Mixture-of-Experts

Expert Models
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Fig. 14: Mixture-of-Experts for long-tailed problem.
Training multiple expert networks with a routing network.
Each expert network in MoE has a data region in which it
excels and on which it performs better than the other experts.

Some studies use Mixture-of-Experts (MoE) [68, 73]
model to train multiple neural networks (i.e., multiple ex-
perts), each of which is specialized to be applied to a different
part of the dataset. Based on the divide-and-conquer prin-
ciple, and training multiple expert networks with a routing
network [112]. Each neural network in MoE (i.e., each ex-
pert) will have a data region in which it excels and on which
it performs better than the other experts. Thus, it precisely

solves the problem that needing to treat the head and tail
classes differently under large-scale long-tailed datasets.

RIDE [160] analyzes the prediction of long-tailed classi-
fiers in terms of bias and variance, proposing that model bias
measures the prediction accuracy relative to the true value;
variance measures the stability of the prediction. Routing
diverse experts is proposed to reduce the model variance of
the long-tailed classifier by employing multiple experts, and
a distributed perceptual diversity loss is set to reduce the
model bias. The accuracy of both the head classes and the
tail classes can be improved. Similarly, Mixture-of-Experts
(MoE) [195] uses multiple experts to learn diverse results,
and then the routing module dynamically integrates the re-
sults of multiple experts based on each input instance and
trains them jointly with the expert network in an end-to-end
manner.

MoE strategies usually requires reliable expert models
for better learning of long-tailed data by means of model
ensemble strategies. MoE can often achieve very high accu-
racy, but it always implicitly or explicitly integrates multiple
models [160], which brings specific computational load and
is a problem that needs to be improved in the follow-up work.

4.4.5 Knowledge Distilling
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Fig. 15: Knowledge distilling for long-tailed problem.
With the guidance of the teacher model, the student model
can learn a more balanced sample.

Hinton [62] first propose the concept of knowledge dis-
tillation. By introducing a teacher network with superior
inference performance, a streamlined and low-complexity
student model is continuously induced for training, allowing
the student model to continuously approach the predictions
of the accurate network. For the long-tailed data distribu-
tion, knowledge distillation is always used to balance the
predictions of head and tail classes.

In [173], LFME framework is proposed as a self-paced
knowledge distillation method. The long-tailed dataset is
split into several balanced subsets, and trained with expert
models to guide the learning of the student models. A weight-
ing scheme with automatic speed is introduced to train the
training data in an easy-to-hard way, which eventually makes
the student models outperform the expert models.
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DiVE [61] uses the output of the teacher model as virtual
examples to share knowledge among different classes by
knowledge distillation, and proposes that DiVE can explicitly
adjust the virtual example distribution to become flatter, thus
improving the under-represented tail classes.

Balanced knowledge distillation (BKD) [186] first uses
Cross-Entropy loss to train a common teacher model. The
student model is then trained by minimizing the combination
of instance-balanced classification loss and class-balanced
distillation loss.

Knowledge distillation strategies also require reliable ex-
pert models for better learning of long-tailed data by means
of expert-student model knowledge transfer. Moreover, for
knowledge distillation strategies, existing long-tailed approaches
usually no longer choose large models as teacher models, but
learn better representation by teacher models [173] or bal-
ance data by adding virtual data [61], but this approach needs
to choose appropriate knowledge distillation strategies with
reasonable hyper-parameters.

4.4.6 Grouping

Grouping

Grouping Strategy

Fig. 16: Grouping method for long-tailed problem. Group
the data according to certain strategy and make the model
learn separately for each group of data. The figure shows the
group assignment according to the number of instances.

Some studies group vocabularies according to their re-
lations, in addition to the most general grouping based on
the number of instances of the class (e.g., [96], [173], [65],
etc.), Forest R-CNN [169] uses a priori knowledge of lexical,
visual, and geometric relationships to construct classification
trees, each of which will contribute to fine-grained classi-
fication. For example, when considering lexical relations,
”school bus” and ”car” have the same parent class ”vehicle”,
while when considering geometric relations, ”steering wheel”
and ”basketball” have the same parent class ”roundness”. The
Forest R-CNN is designed to reduce the confidence scores of
those classes misclassified by the fine-grained classifier, thus
making the model more fault-tolerant in terms of the noise
logarithm of the fine-grained classifier.

The grouping strategy requires to group the long-tailed
data, and some researchers divide the categories according to
the instance number, but this approach is likely to block the

knowledge interaction between groups. Forest R-CNN [169]
divides the categories based on some semantic relations, but
this requires the help of additional knowledge learning. There-
fore, the automatic learning grouping strategy based on data
itself is a problem worthy of research.

4.4.7 Semi-supervised

Semi-/Self
-supervised

external data

Fig. 17: Semi-supervised for long-tailed problem. Adding
external data through semi-supervised strategy, thus increas-
ing the weight of the tail classes in the overall training data.

There are also some studies [175] that use the strategy
of generating pseudo labels to expand the data in semi-
supervised manner [203]. Yang et al. [175] investigate a
self-training semi-supervised learning method on long-tailed
data by acquiring a certain amount of unlabeled data and
generating pseudo-label for it, which is combined with la-
beled data to learn the final model. Wei et al. [165] perform
data expansion of tail classes by predicting pseudo-labels for
the tail classes of unlabelled data, thereby mitigating model
over-fitting and alleviating data imbalance.

For object detection tasks, object-centered images may
have richer data for tail classes. To make full use of these
weakly labeled data and improve the tail classes performance,
Ramanathan et al. [125] use a combination of weak super-
vision and full supervision. Weakly labeled images from
YFCC100M [146] are used to perform enhancement for rare
classes.

Also the scene-centric images have the potential to make
it difficult for the detector to detect the tail objects, while the
object-centric images make the detector give more attention
to the target objects. Thus, Zhang et al. [182] use object-
centric images to generate pseudo-scene-centric images to
adjust the detector, thus eliminating the domain gap between
the two image sources and also solving the problem of lack-
ing bounding box labels for object-centric images. Finally,
the scene centered images are combined to train and adjust
the detector.

Semi-supervised learning generates pseudo-labels by learn-
ing from unlabeled data in order to expand the tail classes [175].
This approach compensates for the problem of insufficient
learning of tail representation, but requires additional train-
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Table 4: Highlights of the main methods for solving the long-tailed problem as well as their limitations. For summary
purposes, some methods are not covered in this table.

Methods Strategies Representative Work Highlights Limitations

Data Processing
Methods

Over-sampling [53, 80, 100, 110, 121, 134]
Increase the number of samples for

tail data.

a) Causes over-fitting of the tail class.
b) Easy to amplify errors or noise present

in the tail class.

Under-sampling [34, 106, 168] Deletion of head data.
a) Causes under-fitting of the head class.
b) It is possible to delete valuable data of

head class by mistake.

Data Augmentation
[17, 21, 22, 56, 57]

[92, 180]
The tail data / feature is extended by data

augmentation.
Inability to introduce new effective

samples.

Cost Sensitive
Weighting

Class-level
Re-weighting

[27, 63, 66, 115, 143]
[90, 144, 153, 170, 197]

Assigning weights to different classes and
aggravating the learning of tail class.

a) It is difficult to choose appropriate
weights for each class.

b) Susceptible to the influence of sensitive
hyper-parameters.

c) There may be big differences for
different data sets.

Instance-level
Re-weighting

[64, 89, 98, 135, 195]
Assign learning weights to examples

based on their difficulty.

There is a high probability that the
number of hard samples in the

head class will exceed the tail class. So in
essence, more emphasis will still be

given to the head class.

Decoupling – [16, 77, 150, 157, 187, 197]
Decoupling representation learning

and classifier learning.

a) Two-stage learning defies the end-to-end
pursuit of deep learning.

b) In the rebalancing phase, the same problems
are faced as in other rebalancing methods.

Metric
Learning

–
[38, 102, 104, 161, 188]

[26, 93, 163]

Learn an embedding space in which
to measure the similarity of embedded

features or force a larger margin
for the tail classes.

a) Select the appropriate distance function
and measurement method.

b) The learned embedding function still
has the risk of biasing towards the

head classes.

Transfer
Learning

– [65, 100, 108, 164]
Transferring the knowledge of head

class to tail class.

Requiring a more complex model or
module design, which can make the

model difficult to train.

Meta
Learning

– [92, 126, 127, 136, 156]
Learn adaptive solutions from data
or modules to make learning more

automated.

a) The guidance of meta-data is weak.
b) More complex model or module design

is required.

Mixture-of-Experts – [160, 195, 198] Multi-expert model ensemblling .
Expert model ensemble requires more

computational resources,

Knowledge Distilling – [61, 173, 186]
Guided by the expert model, the
student model is able to learn the

data in a balanced manner.

a) Requires reliable expert models for better
earning.

b) Knowledge distillation needs to control the
parameters of student model learning.

Grouping – [96, 169]
The data are trained in groups

according to certain relationships.

A suitable grouping method needs to be
found to ensure as much knowledge

interaction between the groups as possible
during training.

Semi-supervised – [125, 165, 175, 182]
Semi-supervised learning on long-tailed
data by introducing other data sources.

Additional data sources are required.

ing, and it is difficult to play a role when the unlabeled data
is not easy to obtain.

4.4.8 More Methods

In addition, there are several approaches that employ Causal
Inference [145], Adversarial Training [171], Distributional
Robust Optimization (DRO) [40] etc. to solve the long-tailed
problem.

Tang et al. [145] propose that the momentum in the SGD
optimizer is a confounder of the sample features and the
classification logits, which may lead to spurious correlation
between them. Therefore, causal intervention is used for de-
confounding training to cut off backdoor confounding path
and retain mediation path.

Wu et al. [171] find that long-tailed data have a negative
impact on adversarial robustness and that the natural accu-
racy loss of the tail classes is further magnified in adversarial
training. Meanwhile, they argue that suitable features as well
as classifier embedding help to reduce the boundary error,
and the combination of long-tailed recognition methods with
the adversarial training framework helps to improve the nat-
ural accuracy. Therefore, the RoBal framework is designed
with scale-invariant classifiers and a two-stage rebalancing
method, respectively, which are thus used to improve the
adversarial robustness.

DRO-LT [40] aims to improve the representation learn-
ing layer, and in order not to compromise the original data
representation, a new loss based on robustness theory is pro-
posed, which encourages the model to learn high quality
representations of both head and tail classes.
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Table 5: Performance (%) summarization of some representative methods on CIFAR-10/100-LT benchmarks. The
summation of values in Epoch is meant to be a two-stage training strategy. Most methods adopt ResNet-32 as backbone. (In
the 2020 and 2021 studies, the three best scores of β = 100 and β = 10 are marked in red, blue, and green, respectively.)

CIFAR-10-LT (top-1) CIFAR-100-LT (top-1)
Imbalance Factor β Imbalance Factor βYear Method Pub.

200 100 50 20 10 1 200 100 50 20 10 1

Softmax Loss [60] CVPR 65.6 70.3 74.8 82.2 86.3 92.8 34.8 38.2 43.8 51.1 55.7 70.5
Focal Loss [98] ICCV 65.2 70.3 76.7 82.7 86.6 93.0 35.6 38.4 44.3 51.9 55.7 70.5

L2RW [127] ICML 66.5 74.1 78.9 82.1 85.1 89.2 33.3 40.2 44.4 51.6 53.7 64.1

2019
CB Loss [27] CVPR 68.8 74.5 79.2 84.3 87.4 92.8 36.2 39.6 45.3 52.9 57.9 70.5
MWNet [136] NeurIPS 68.9 75.2 80.0 84.9 87.8 92.6 37.9 42.0 46.7 54.3 58.4 70.3

2020

CDB Loss [139] ACCV - - - - - - 37.4 42.5 46.7 54.2 58.7 -
RCBM-CE [69] CVPR 70.6 76.4 80.5 86.4 88.8 92.7 39.3 43.3 48.5 55.6 59.5 71.8

EQL [144] CVPR - - - - - - 43.3 - - - - -
BBN [198] CVPR - 79.8 82.1 - 88.3 - - 42.5 47.0 - 59.1 -

De-c-TDE [145] NeurIPS - 80.6 83.6 - 88.5 - - 44.1 50.3 - 59.6 -
BALMS [126] NeurIPS 81.5 84.9 - - 91.3 - 45.5 50.8 - - 63.0 -

FSA [22] ECCV 75.5 82.0 84.4 89.2 91.2 - 41.4 48.5 52.1 59.7 65.3 -
Remix-DRW [21] ECCV - 79.7 - - 89.0 - - 46.7 - - 61.2 -

LFME [173] ECCV - - - - - - 37.4 42.5 46.7 54.2 58.7 -
MBJ [103] ArXiv - 81.0 87.2 - 88.8 - - 45.8 57.5 - 60.7 -

2021

RIDE(4 experts) [160] ICLR - - - - - - - 49.1 - - - -
LADE [63] CVPR - - - - - - - 45.4 50.5 - 61.7 -

MetaSAug-CE [92] CVPR 76.8 80.5 84.0 87.6 89.4 - 39.9 46.8 51.9 57.8 61.7 -
Hybrid-SC [155] CVPR - 81.4 85.3 - 91.1 - - 46.7 51.8 - 63.0 -

Hybrid-PSC [155] CVPR - 78.8 83.8 - 90.0 - - 44.9 48.9 - 62.3 -
MiSLAS [197] CVPR - 82.1 85.7 - 90.0 - - 47.0 52.3 - 63.2 -

Bag of Tricks [191] AAAI - 80.0 83.5 - - - - 47.8 51.6 - - -
LDA [122] ACM MM - - - - - - - 50.6 54.6 - 61.9 -
TSC [93] ArXiv - 79.7 82.9 - 88.7 - - 43.8 47.4 - 59.0 -

BKD [186] ArXiv - 81.7 83.8 - 89.2 - - 45.0 49.6 - 61.3 -
DRO-LT [40] ArXiv - - - - - - - 47.3 57.5 - 63.4 -

DiVE [61] ArXiv - - - - - - - 45.3 51.1 - 62.0 -
LADC [150] ArXiv 81.5 84.6 87.0 - 90.8 - 46.6 50.7 54.9 - 64.6 -
MARC [163] ArXiv 81.1 85.3 - - - - 47.4 50.8 - - - -

On the whole, long-tailed learning continues to learn from
other machine learning sub-fields, and more combinatorial
methods will appear one after another.

4.5 Summary

We summarize the above long-tailed visual recognition ap-
proaches in this section. Highlights and limitations of these
methods are shown in Tab. 4. On the whole, the character-
istics of these methods are very distinct, focusing on data
processing, loss function, model architecture, training meth-
ods and so on. However, there is no method that can greatly
solve the long-tailed problem. In practical application, it
is often a combination of multiple methods, such as using
semi-supervised learning to expand the tail data, using over-
sampling to improve the sampling frequency of tail data,
using class-level re-weighting to balance the gradient during
training, and finally using decoupling strategy to enhance
the representation ability of the model. Therefore, it can be
predicted that the research on solving the long-tailed problem
will still be in full bloom in the future.

5 Performance Comparison

To provide readers with a straightforward statistic, we com-
pare the performance of some mainstream long-tailed stud-
ies in this section. For classification task, we report some
popular long-tailed studies via ImageNet-LT and Places-LT,
CIFAR-10/100-LT, and iNaturalist 2017 & 2018 benchmarks,
respectively. For object detection and instance segmentation
tasks, we report some popular long-tailed studies via LVIS
benchmarks. It should be noted that the experimental set-
tings of each study are not completely consistent. We try to
eliminate these effects when comparing, but we still can’t be
absolutely fair. Therefore, we hope that readers can only take
the comparison in this section as a reference, and the specific
performance comparison still needs to be analyzed based on
the implementation details of the original article.

5.1 CIFAR-10/100-LT Performance Benchmarking

The performance of some representative methods on CIFAR-
10/100-LT benchmark is shown in Tab. 5. In the 2020 and
2021 studies, we select two cases with imbalance factors of
100 and 10 on CIFAR-10/100-LT, respectively. The three best
scores of each year are marked in red, blue, and green. In the
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Table 6: Performance (%) summarization of some representative methods on ImageNet-LT and Places-LT bench-
marks. For Places-LT dataset, we follow the experimental setup of most of the current work as a statistical benchmark,
where ResNet-152 is uniformly selected as the backbone. (In the 2020 and 2021 studies, the three best scores of overall top-1
accuracy are marked in red, blue, and green, respectively.) PaCo [26]† models are trained with RandAugment [24] in 400
epochs.

ImageNet-LT (top-1) Places-LT (top-1)
Year Method Pub. Backbone >100

Many-shot
6 100 & >20
Medium-shot

<20
Few-shot

Overall
>100

Many-shot
6 100 & >20
Medium-shot

<20
Few-shot

Overall

Softmax Loss [60] CVPR ResNet-10 40.9 10.7 0.4 20.9 45.9 22.4 0.36 27.2
Focal Loss [98] ICCV ResNet-10 36.4 29.9 16.0 30.5 41.1 34.8 22.4 34.6

Range Loss [188] ICCV ResNet-10 35.8 30.3 17.6 30.7 41.1 35.4 23.2 35.1
2019 OLTR [108] CVPR ResNet-10 43.2 35.1 18.5 35.6 44.7 37.0 25.3 35.9

2020

CDB Loss [139] ACCV ResNet-10 - - - 38.4 - - - -
EQL [144] CVPR ResNet-10 - - - 36.4 - - - -

BALMS [126] NeurIPS ResNet-10 50.3 39.5 25.3 41.8 41.2 39.8 31.6 38.7
De-c-TDE [145] NeurIPS ResNeXt-50 62.7 48.8 31.6 51.8 - - - -

FSA [22] ECCV ResNet-10 47.3 31.6 14.7 35.2 42.8 37.5 22.7 36.4
LFME [173] ECCV ResNet-10 47.1 35.0 17.5 37.2 38.4 39.1 21.7 35.2

Joint [77] ArXiv ResNeXt-50 - - - 44.4 - - - -
NCM [77] ArXiv ResNeXt-50 - - - 47.3 - - - -
cRT [77] ArXiv ResNeXt-50 - - - 49.5 - - - -

τ -normalized [77] ArXiv ResNeXt-50 - - - 49.5 - - - -
LWS [77] ArXiv ResNeXt-50 - - - 49.9 - - - -
MBJ [103] ArXiv ResNeXt-50 61.6 48.4 39.0 52.1 39.5 38.2 35.5 38.1

2021

RIDE(4 experts) [160] ICLR ResNet-50 66.2 52.3 36.5 55.4 - - - -
Logit adjustment [113] ICLR ResNet-50 - - - 51.1 - - - -

LADE [63] CVPR ResNeXt-50 62.3 49.3 31.2 51.9 42.8 39.0 31.2 38.8
Seesaw Loss [153] CVPR ResNeXt-50 67.1 45.2 21.4 50.4 - - - -
MetaSAug-CE [92] CVPR ResNet-50 - - - 47.3 - - - -

MiSLAS [197] CVPR ResNet-50 61.7 51.3 35.8 52.7 39.6 43.3 36.1 40.4
DisAlign [187] CVPR ResNet-50 59.9 49.9 31.8 52.9 40.4 42.4 30.1 39.3

Bag of Tricks [191] AAAI ResNet-10 - - - 43.1 - - - -
LDA [122] ACM MM ResNeXt-50 64.5 50.9 31.5 53.4 32.1 40.7 41.0 39.1
PaCo [26]† ICCV ResNeXt-50 - - - 58.2 36.1 47.9 35.3 41.2
TSC [93] ArXiv ResNet-50 63.5 49.7 30.4 52.4 - - - -

GistNet [100] ArXiv ResNet-10 52.8 39.8 21.7 42.2 42.5 40.8 32.1 39.6
BKD [186] ArXiv ResNet-10 54.6 37.2 20.4 41.6 41.9 39.1 30.0 38.4

DRO-LT [40] ArXiv ResNet-50 64.0 49.8 33.1 53.5 - - - -
ResLT [25] ArXiv ResNeXt-50 63.0 50.5 35.5 52.9 39.8 43.6 31.4 39.8
DiVE [61] ArXiv ResNeXt-50 64.0 50.4 31.4 53.1 - - - -

Breadcrumbs [101] ArXiv ResNeXt-50 62.9 47.2 30.9 51.0 40.6 41.0 33.4 39.3
ALA Loss [195] ArXiv ResNeXt-50 64.1 49.1 34.0 52.8 - - - -

MARC [163] ArXiv ResNeXt-50 60.4 50.3 36.6 52.3 39.9 39.8 32.6 38.4

2020 studies, BALMS [126] achieve the highest performance
in three metrics. In addition, FSA [22] and Remix-DRW [21]
are also competitive methods in that year. In the next year,
MARC [163], LADC [150] and MiSLAS [197] rank in the top
three of the comprehensive performance.

Through the results, we can clearly observe that the per-
formance of the method in 2021 is slightly improved com-
pared with that in 2020. The 2021 best method MARC is
only 0.4 points higher (85.3% vs 84.9%) than the 2020 best
method BALMS in 2020 at β = 100 of CIFAR-10-LT, and
MARC has not even improved in the other three metrics. This
shows that CIFAR-LT datasets have become saturated, and
future research should focus on more difficult benchmarks.

5.2 ImageNet-LT & Places-LT Performance Benchmarking

Tab. 6 shows the performance of some representative methods
on ImageNet-LT and Places-LT benchmarks. The three best
scores of overall top-1 accuracy on 2020 and 2021 are marked
in red, blue, and green, respectively.

For ImageNet-LT, the 2021 best method PaCo [26] achieves
58.2% overall top-1 accuracy, which is 6.1 points higher than

the 2020 best method MBJ [103]. Although PaCo adopts Ran-
dAugment and longer training epochs, this improvement is
still very significant. In addition, Tab. 6 records 19 studies on
ImageNet-LT in 2021, which has almost doubled compared
with 2020. More researchers have joined the community and
greatly promoted the development of long-tailed recognition.
Of course, compared with the best result of ResNeXt-50 on
balanced ImageNet-1K (80.5% [167]), there are still many
problems to be solved in the research of long-tailed recogni-
tion.

For Places-LT, PaCo is still the best method in 2021, with
an overall top-1 accuracy of 41.2%, which is 2.5 points higher
than the 2020 best method BALMS [126]. Although the meth-
ods in 2021 are better than those in 2020 on the whole, the im-
provement is still relatively small compared with ImageNet-
LT. We consider that most of the current long-tailed recog-
nition methods are mainly designed for object-centric data,
while the scene-centric long-tailed problem needs specific
solutions.
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Table 7: Performance (%) summarization of some representative methods on iNaturalist 2017 & 2018 benchmarks.
All the methods adopt ResNet-50 as backbone. (In the 2020 and 2021 studies, the three best scores of overall top-1 accuracy
on iNaturalist 2018 are marked in red, blue, and green, respectively.) PaCo [26]† is trained with RandAugment [24].

iNat 2017 (top-1) iNat 2018 (top-1)
Year Method Pub. Epoch

Overall
>100

Many-shot
6 100 & >20
Medium-shot

<20
Few-shot

Overall

Softmax Loss [60] CVPR - 54.6 - - - 57.1

2019
CB Loss [27] CVPR - 58.0 - - - 61.1
LDAM [14] NeurIPS 60+30 - - - - 68.0

2020

BBN [198] CVPR 180 65.7 - - - 69.6
RCBM-CE [69] CVPR - 59.3 - - - 67.3

FSA [22] ECCV 100 61.9 - - - 65.9
Remix-DRW [21] ECCV 200 - - - - 70.4

Joint [77] ArXiv 90 / 200 - 72.2 / 75.7 63.0 / 66.9 57.2 / 61.7 61.7 / 65.8
NCM [27] ArXiv 90 / 200 - 55.5 / 61.0 57.9 / 63.5 59.3 / 63.3 58.2 / 63.1
cRT [77] ArXiv 90 / 200 - 69.0 / 73.2 66.0 / 68.8 63.2 / 66.1 65.2 / 68.2

τ -normalized [77] ArXiv 90 / 200 - 65.6 / 71.1 65.3 / 68.9 65.9 / 69.3 65.6 / 69.3
LWS [27] ArXiv 90 / 200 - 65.0 / 71.0 66.3 / 69.8 65.5 / 68.8 65.9 / 69.5
MBJ [103] ArXiv 90 / 200 - - - - 66.9 / 70.0

2021

RIDE(4 experts) [160] ICLR 100 - 70.9 72.4 73.1 72.6
Logit adjustment [113] ICLR 90 - - - - 68.4

Bag of Tricks [191] AAAI 90 - - - - 70.8
LADE [63] CVPR 200 - - - - 70.0

MetaSAug-CE [92] CVPR - 63.2 - - - 68.7
Hybrid-SC [155] CVPR 100 - - - - 66.7

Hybrid-PSC [155] CVPR 100 / 200 - - - - 68.1 / 70.3
MiSLAS [197] CVPR 200 - 73.2 72.4 70.4 71.6
DisAlign [187] CVPR 90 / 200 - 61.6 / 68.0 70.8 / 71.3 69.9 / 69.4 69.5 / 70.2

PaCo [26]† ICCV 400 - - - - 73.2
TSC [93] ArXiv - - 72.6 70.6 67.8 69.7

GistNet [100] ArXiv 200 - - - - 70.8
BKD [186] ArXiv 90 - 67.1 66.1 67.6 66.8

DRO-LT [40] ArXiv - - - - - 69.7
ResLT [25] ArXiv 200 - - - - 70.2
DiVE [61] ArXiv 90 - 70.6 70.0 67.5 69.1

Breadcrumbs [101] ArXiv 200 - - - - 70.3
ALA Loss [195] ArXiv 200 - 71.3 70.8 70.4 70.7

MARC [163] ArXiv 200 - - - - 70.4

5.3 iNaturalist 2017 & 2018 Performance Benchmarking

iNaturalist is a large species dataset, and the relevant research
results of the 2017 and 2018 versions are given in Tab. 7.
Since there is less research on iNaturalist 2017, we mainly
analyze the studies on iNaturalist 2018. Same as Tab. 6, three
best scores of overall top-1 accuracy on 2020 and 2021 are
marked in red, blue, and green, respectively.

Among 2020 studies, Remix-DRW [21], MBJ [103] and
BBN [198] rank in the best three on the overall top-1 accuracy,
achieve 70.4%, 70.0% and 69.6% respectively. PaCo [26]
still stand out in 19 studies in 2021, with 73.2% overall
top-1 accuracy, an increase of 2.8 points compared with
the best method in 2020. On the whole, iNaturalist 2018
is still not saturated, and its importance in the long-tailed
research community is basically equal to ImageNet-LT. This
domain-specific long-tailed benchmark enriches the diversity
of research objectives and has great potential in industrial
vision, retail, medical, etc.

5.4 LVIS v0.5 & v1.0 Performance Benchmarking

Tab. 8 and Tab. 9 summarize the performance of some repre-
sentative work on the LVIS v0.5 & v1.0 benchmark. Due to
the small number of studies, we will not discuss the studies
in 2020 and 2021 separately. And as LVIS v1.0 gradually
becomes the mainstream long-tailed instance segmentation
benchmark, some new research does not conduct experiments
on LVIS v0.5, so here we only analyze and discuss the for-
mer benchmark. The three best scores of APmask, APmask

r and
APbbox are marked in red, blue, and green.

Overall, the performance of EOD [90], Seesaw Loss [153],
LDA [122] and EQL v2 [143] is in the leading position in
LVIS v1.0 benchmark, and the gap between them is not
large. Most of these studies belong to class-level re-weighting
method, which can be seen as the mainstream solution to
the long-tailed object detection and instance segmentation
problems. These methods also use RFS [53] to increase the
sampling frequency of tail classes, and have achieved good
results. In addition, the regularly held challenge competi-
tions [2] also significantly promoted community develop-
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Table 8: Performance (%) summarization of some representative methods on LVIS v0.5 benchmark. All the methods
adopt Mask R-CNN with ResNet-50-FPN. In the ’Epoch’ column, values making additive operations represents the two-stage
training strategy. (In the 2020 and 2021 studies, the three best scores of APmask, APmask

r and APbbox are marked in red, blue,
and green, respectively.)

LVIS v0.5 (mAP)
APmaskYear Method Pub. Epoch

AP AP50 AP75 APr APc APf
APbbox

Softmax Loss [60] CVPR 25 20.2 32.6 21.3 4.5 20.8 25.6 20.7
Sigmoid Loss - 25 20.1 32.7 21.2 7.2 19.9 25.4 20.5

CAS [134] ECCV 25 18.5 31.1 18.9 7.3 19.3 21.9 18.4
Focal Loss [98] ICCV 25 21.0 34.2 22.1 9.3 21.0 25.8 21.9

2019
RFS [53] CVPR 25 24.4 - - 14.5 24.3 28.4 -

CB Loss [27] CVPR 25 20.9 33.8 22.2 8.2 21.2 25.7 21.0
LDAM [14] NeurIPS 25 24.1 - - 14.6 25.3 26.3 24.5

2020

EQL [144] CVPR 25 22.8 36.0 24.4 11.3 24.7 25.1 23.3
LST [65] CVPR 10 + 10 23.0 36.7 24.8 - - - 22.6

BAGS [96] CVPR 12 + 12 26.2 - - 17.9 26.9 28.7 25.7
Forest R-CNN [169] ACM MM 25 25.6 40.3 27.1 18.3 26.4 27.6 25.9

TFA-cos [96] ICML - - - - - - - 22.7
BALMS [126] NeurIPS 25 27.0 - - 19.6 28.9 27.5 27.6
SimCal [157] ECCV - 23.4 - - 16.4 22.5 27.2 -

LWS [27] ArXiv 25 23.8 - - 14.4 24.4 26.8 24.5

2021

DisAlign [187] CVPR 25 + 2.5 26.3 - - 14.9 27.6 29.2 25.6
EQL v2 [143] CVPR 24 27.1 - - 18.6 27.6 29.9 27.0
ACSL [158] CVPR 12 + 12 26.4 42.3 28.6 18.6 26.4 29.3 -

Drop Loss [64] CVPR 25 25.5 38.7 27.2 13.2 27.9 27.3 25.1
Simp-Effe [182] ArXiv 25 - - - - - - 24.5

Table 9: Performance (%) summarization of some representative methods on LVIS v1.0 benchmark. All the methods
adopt Mask R-CNN with ResNet-50-FPN. † denotes that the result is reproduced by us. s(In the 2020 and 2021 studies, the
three best scores of APmask, APmask

r and APbbox are marked in red, blue, and green, respectively.)

LVIS v1.0 (mAP)
APmaskYear Method Pub. Epoch

AP AP50 AP75 APr APc APf
APbbox

Softmax Loss [60]† CVPR 25 18.2 28.6 19.1 1.2 15.3 28.9 18.6
Focal Loss [98] ICCV 24 - - - - - - 18.5

RFS [53]† CVPR 25 22.2 34.9 23.5 11.1 20.8 28.6 22.9

2020
EQL [143, 144] CVPR 24 21.6 - - 3.8 21.7 29.2 22.5

BAGS [96]† CVPR 25 23.7 37.7 25.1 15.4 22.8 28.3 23.4

2021

Drop Loss [64] AAAI 25 22.3 34.5 23.6 12.4 22.3 26.5 22.9
EQL v2 [143] CVPR 24 25.5 - - 17.7 24.3 30.2 26.1

Seesaw Loss [153] CVPR 24 25.7 - - 19.1 25.0 29.4 26.8
LDA [122] ACM MM 24 25.7 - - - - - 26.6
FASA [180] ArXiv 24 22.6 - - 10.2 21.6 29.2 22.6

Fed Loss [202]† ArXiv 25 21.4 33.4 22.6 4.5 20.5 29.7 22.2
2022 EOD [90] ArXiv 24 - - - - - - 27.5

ment. EQL [143, 144], Seesaw Loss and Fed Loss [202] have
all won good rankings. However, most of these studies are
the extension of image-level long-tailed recognition methods,
and there is still less research on the instance-level long-tailed
problem. Especially for the long-tailed instance segmentation
problem, the use of mask information is very small, which is
a problem that researchers need to pay attention to.

6 Analysis of Long-tailed Phenomenon

Although the long-tailed phenomenon is prevalent in visual
recognition, the scope of current research is very limited.

To solve long-tailed problems, recent research pays much
attention to some long-tailed benchmark datasets which we
collated in Sec. 3, but in other tasks, the solution of the
long-tailed phenomenon is not sufficient. To investigate this,
we analyze some widely-used datasets in visual recognition,
and quantitatively evaluate the impact of the long-tailed phe-
nomenon.

6.1 Long-tailed Phenomenon in Widely-used Datasets

Long-tailed distribution is a common phenomenon. Datasets
without artificial balance will basically follow this distribu-
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Table 10: Analysis of long-tailed phenomenon of 20 mainstream datasets. Light purple indicates which has a general
long-tailed distribution (0.6 ≤ δ < 0.8), and dark purple indicates which has a severe long-tailed distribution (0.8 ≤ δ). †
denotes few-shots datasets.

Dataset Venue Fields Anno. Types Training Samples Classes Max Size Min Size Gini Coef. δ

ImageNet-1K [32]
CVPR 2009
IJCV 2015

Object-centric Classification 1,281,167 1,000 1,300 732 0.013

Sports1M [7] CVPR 2014 Human-centric Classification 958,827 487 2,385 694 0.09

COCO [99] ECCV 2014 Object-centric
Bounding-box
Instance-mask

118,287 80 262,465 198 0.564

Market1501 [196] ICCV 2015 Human-centric Person-identity 12,937 752 72 1 0.329
MS1M [52] ECCV 2016 Face-centric Face-identity 5,822,653 85,742 602 2 0.314

DukeMTMC [130] ECCV 2016 Human-centric Person-identity 16,522 702 426 6 0.268
YouTube8M [3] ArXiv 2016 Human-centric Classification 5,786,881 3,862 788,288 123 0.839
Place365 [200] PAMI 2017 Scene-centric Classification 1,803,460 365 5,000 3,068 0.011
ADE20K [201] CVPR 2017 Scene-centric Segmentation 20,210 150 3014.9 3.84 0.801
Sth-Sth v2 [49] ICCV 2017 Human-centric Classification 168,913 174 3,284 91 0.352

COCO-stuff [13] CVPR 2018 Scene-centric Segmentation 118,287 171 10,021.1 3.81 0.653
MHP v2 [194] ACM MM 2018 Human-centric Human-parsing 15,403 59 840.7 0.823 0.747

OID v4 [85]
ArXiv 2018
IJCV 2020

Object-centric Bounding-box 1,743,042 500 1,395,645 4 0.902

Object365 [133] ICCV 2019 Object-centric Bounding-box 608,606 365 2,120,895 28 0.845
GLD v2 [166] CVPR 2020 Scene-centric Classification 4,132,914 203,094 10,247 1 0.655
FSOD† [42] CVPR 2020 Object-centric Bounding-box 52,350 800 2,114 26 0.361

FSS-1000† [95] CVPR 2020 Object-centric Segmentation 20,006 1,000 21 20 0.00029
Glint360K [4] ArXiv 2020 Face-centric Face-identity 17,091,657 360,232 1,868 3 0.647
VSPW [114] CVPR 2021 Scene-centric Segmentation 197,253 124 17,191.6 13.5 0.742
LaST [137] ArXiv 2021 Human-centric Person-identity 71,248 5,000 140 5 0.427

tion. In order to study the long-tailedness in visual recog-
nition, we compiled and analyzed other 20 widely-used
large-scale datasets covering the fields of image classifica-
tion [32,166,200], object detection [42,85,99,133], semantic
segmentation [13, 95, 114, 201], person re-identification [130,
137,196], face recognition [4,52], human parsing [194], video
/ action recognition [3,7,49], etc. as shown in Tab. 10. Based
on the Gini coefficient proposed in Sec. 3, we measure the
long-tailedness in these datasets and mark each of them with
general long-tailed distribution in light purple and those with
severe long-tailed distribution in dark purple. From the per-
spective of both release time and annotation type, we can
observe the trend of the long-tailed phenomenon in visual
recognition approximately.

In terms of release time, a number of datasets showing
long-tailed phenomenons have emerged since 2016, and the
proportion of long-tailed datasets has gradually increased
with each year. People are almost no longer controlling
the balance of datasets artificially as CIFAR, ImageNet-1K,
Places365 and COCO did.

In terms of annotation type, although we have improved
the long-tailed criteria of the classification datasets, the classi-
fication task has a larger proportion of balanced datasets than
the object detection and segmentation tasks in our statistics.
It can be seen that for the classification task, the balance of
datasets is easier to control compared to object detection and
segmentation task. Such as ImageNet-1K [32], Sport1M [7],
Sth-Sth v2 [49], Market1501 [196], DukeMTMC [130], MS1M [52],

and Places365 [200], many datasets in classification task
demonstrate balance for which Gini coefficients are less
than 0.4 and are considered as balanced datasets. Never-
theless, there are still many long-tailed datasets for clas-
sification tasks without adding artificial control over the
balance, such as scene classification dataset GLD v2 [166]
(δ=0.655), face recognition dataset Glint360K [4] (δ = 0.647)
and person re-identification dataset LaST [137](δ=0.427)
which are considered as general long-tailed datasets. The
large video understanding dataset YouTube8M [3] (δ=0.839)
is a severe long-tailed dataset. In the field of object detection
and segmentation, there are fewer balanced datasets. Ex-
cept COCO [99], only few-shot learning datasets FSOD [42]
and FSS-1000 [95] show to be balanced, which also reflects
the difference between few-shot learning and long-tailed
problems. Moreover, from the perspective of the Gini co-
efficient, the Gini coefficient for the object detection and
segmentation task is generally higher than that for the classi-
fication tasks and is generally higher than 0.7. For example,
for object detection task, OID v4 [85] (δ=0.902) and Ob-
ject365 [133] (δ=0.845) both have Gini coefficients greater
than 0.8, which belong to severe long-tailed datasets. And
for segmentation task, human body parsing dataset MHP
v2 [194] (δ=0.747) and video semantic segmentation dataset
VSPW [114] (δ=0.742) are general long-tailed datasets. The
scene parsing dataset ADE20K [201] (δ=0.801) is a severe
long-tailed dataset. This indicates that the long-tailed phe-
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nomenon is much more serious for object detection task and
segmentation task, which requires more attention.

We find that the long-tailed phenomenon of the dataset
is prevalent in the statistical process. Tab. 10 shows that
the Gini coefficient of the dataset is gradually increasing
in recent years, accompanied by a more severe long-tailed
phenomenon in the dataset. We attribute this phenomenon
to the fact that as people’s research is more and more in-
vested in large-scale datasets, it is increasingly difficult for
researchers to control the balance of datasets, so the long-
tailed phenomenon will inevitably become more and more
serious, which leads to more and more long-tailed datasets
in recent years.

6.2 Analysis of Performance

We select two severe long-tailed datasets in Tab. 10 (Ob-
ject365 [133] and ADE20K [201]), and evaluate their per-
formance to investigate whether the long-tailed problem is
practically shown in visual recognition. In order to evaluate
the impact of the long-tailed phenomenon, we split classes
in descending order into three groups: the first 20% as head
classes, the middle 60% as body classes, and the last 20% as
tail classes. We collect some mainstream solutions without
long-tailed methods on these three datasets and analyze their
performance on head, body and tail classes, respectively.

Table 11: Long-tailed performance analysis of object de-
tection on Object365 [133]. All the methods adopt ResNet-
50-FPN as backbone and are trained by us on Detec-
tron2 [172].

Method AP APtail APbody APhead

Faster R-CNN [128] 19.8 3.7 21.5 31.0
RetinaNet [98] 18.5 3.5 19.9 29.4

FCOS [147] 20.6 4.8 22.2 31.7

For object detection task, we investigate the generic ob-
ject detection dataset Object365 and evaluate the perfor-
mance of Faster R-CNN [128], RetinaNet [98] and FCOS [147]
on the head, body and tail classes. We adopt ResNet-50-FPN
as backbone based on Detectron2 [172], and take APbox as
the evaluation metric, the performance results are shown in
Tab. 11. For Faster R-CNN, RetinaNet and FCOS, the head
classes accuracy is 1.44×, 1.48× and 1.43× higher than the
body classes, and 8.38×, 8.40× and 6.60× higher than the
tail classes.

For semantic segmentation task, we investigate the per-
formance of mainstream models on the large scene parsing
dataset ADE20K [201]. We take mIoU as the evaluation
metric, with the backbone of ResNet-50, the performance
of SemSegFPN [82], PSPNet [193], and MaskFormer [20]

Table 12: Long-tailed performance analysis of semantic
segmentation on ADE20K [201]. All the methods adopt
ResNet-50 as backbone, the SemSegFPN and PSPNet models
are taken from mmsegmentation [23], the MaskFormer model
is taken from the officially published.

Method mIoU mIoUtail mIoUbody mIoUhead

SemSegFPN [82] 37.48 24.03 35.33 57.40
PSPNet [193] 42.47 29.16 40.96 60.32

MaskFormer [20] 44.50 33.19 41.96 61.96

is shown in Tab. 12. For SemSegFPN, PSPNet, and Mask-
Former, their head classes accuracy exceeds the body classes
by 1.62×, 1.47×, and 1.47×, and exceeds the tail classes by
2.39×, 2.06×, and 1.87×.

From the performance of the above model on the head,
body and tail classes, it can be found that the accuracy of
model is strongly related to the instance number of classes,
and their performance becomes worse as the instance number
decreases, which indicates that the long-tailed problem of
these datasets needs to be solved. There is no doubt that the
long-tailed phenomenon is prevalent, and as people increas-
ingly analyze large-scale datasets, people should realize the
importance of solving it. Although some studies are aware
of the datasets’ long-tailed distribution, this problem has
not been widely studied. For example, for the pixel-level
semantic segmentation task, only few studies [187] have ad-
dressed the long-tailed phenomenon. Even for many other
fields, none of their mainstream approaches has a targeted
design for the long-tailed problem, so we believe that more
effort needs to be devoted to the analysis of the long-tailed
phenomenon.

7 Future Directions

As a contemporary survey for long-tailed visual recognition
using deep learning, this paper has discussed the problems
caused by the long-tailed distribution, summarized existing
popular long-tailed datasets, provided some structural taxon-
omy for various methods as well as analyzed their advantages
and limitations, we also find that the long-tailed phenomenon
is widespread, and pointed out some valuable research ar-
eas of the long-tailed problem. Despite great progress, there
are still many unsolved problems. Thus in this section, we
will point out these problems and introduce some promis-
ing trends for future research. We hope that this survey not
only provides a better understanding of long-tailed visual
recognition for researchers but also stimulates future research
activities.

Large model with Large-scale Data. Large-scale Pre-trained
Language Models (PLMs) have become the new paradigm
for Natural Language Processing (NLP) [10, 35, 176]. Large
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model with large-scale data has demonstrated strong perfor-
mances on natural language understanding and generation
with zero-shot and few-shot learning. In the field of visual
recognition, model parameters and data scale are limited by
the characteristics of visual tasks, which is relatively small
compared with NLP, but some recent studies have begun
to work in this direction [39, 107, 129]. Compared with the
existing methods, large models and big data do not need to
explicitly model the label frequency, but learn the general
representation of images through a large amount of data, so
as to solve the long-tailed problem.

Long-tailed Adversarial Learning. Adversarial learning
aims to deceive the model by providing deceptive input, the
main research work can be simply divided into two parts:
attack [51, 109, 174] and defense [152, 177]. The research of
adversarial learning has greatly promoted the safety and stan-
dardization of machine learning. However, with the blowout
development of the defense mode and attack mode of the
model, it also gradually presents a long-tailed distribution.
Therefore, it seems to be a problem worth exploring to solve
the tail classed in adversarial learning through the idea of
long-tailed learning.

Self-supervised Long-tailed Learning. Self-supervised learn-
ing methods regard each sample as an individual class, which
can alleviate the label shifts problems and learn a relatively
complete feature representation for all classes [18, 19, 59].
However, there is less work that draws on self-supervised
learning with long-tailed datasets, such as [175] uses self-
supervised learning to improve the performance on long-
tailed datasets by considering ignoring the value of labels.
SSD [94] uses the self-supervision guide feature learning
method to improve the ability of the feature extractor. As
work in the field of self-supervised has matured, there is
great hope that self-supervision learning can surpass tradi-
tional supervised learning methods, thus making the learning
of models more intelligent and automated. On this basis, the
label bias problem for long-tailed datasets will hopefully be
greatly improved.

Vision-Language Long-tailed Learning. Vision-Language
tasks require a model to understand the visual world and
to ground natural language to the visual observations [6, 8,
72, 185]. Vision-Language dataset contains two modes of
annotation, and its long-tailed phenomenon is difficult to
avoid [83, 146]. Recently, CLIP [124] proposes visual rep-
resentation learning via natural language supervision in a
similar contrastive learning setting [54], and shows amaz-
ing results on zero-shot and few-shot image classification.
ViLD [50] extends CLIP to zero-shot object detection task
through knowledge distillation and prompt, and goes be-
yond the supervised learning method in the novel class of
LVIS. These studies show that Vision-Language model can
learn knowledge from multiple modes and improve the rep-

resentation ability of few samples, which may be the next
breakthrough of the long-tailed problem.

More Task Settings. In addition to the well-known long-
tailed tasks and some research directions proposed in this
section, there are more long-tailed visual recognition tasks
waiting to be mined. As analyzed in Sec. 6.1, data naturally
satisfy the long-tailed distribution in many fields, so solving
the long-tailed problem may be able to improve the perfor-
mance of models in these fields. However, according to the
available research results, only a few work have studied from
the perspective of the long-tailed distribution in their research
field, such as long-tailed distribution of object classes in UAV
images [179], long-tailed distribution of driving behavior in
autonomous driving [116] , and topic in the field of visual
story telling [91], content-related words for video captioning
tasks [192], pose inclusion in datasets for 3D human pose es-
timation [181], dermatological categories in dermatological
diagnosis [123], etc. We believe that for many research fields,
the existing work to analyze and solve the long-tailed dis-
tribution problem is still not enough. For future researchers,
the long-tailed problem can be taken into account to solve
the problem of extreme data imbalance and thus improve the
performance of the task.

8 Conclusions

In this survey, we comprehensively reviewed the long-tailed
visual recognition according to the datasets, methods, long-
tailed phenomenon and future directions. We provided the
necessary background knowledge for readers, summarize the
long-tailed studies into ten categories from the perspective
of representational learning, and summarized the highlights
and limitations of each category. We also compiled some
generalized long-tailed datasets and benchmarked the results
on 8 datasets. To study the long-tailed phenomenon exten-
sively, we also conducted a structured survey of 20 widely-
used datasets and found that the long-tailed phenomenon is
widespread and that many areas’ mainstream studies are not
aware of it. Based on the analysis of the universality of the
long-tailed phenomenon, we also gave the potential innova-
tion and future research direction. We expect this survey to
provide an effective way to understand current state-of-the-
arts and speed up the development of this research field.
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