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ABSTRACT The remarkable success of machine learning (ML) in a variety of research domains has inspired

academic and industrial communities to explore its potential to address hardware Trojan (HT) attacks. While

numerous works have been published over the past decade, few survey papers, to the best of our knowledge,

have systematically reviewed the achievements and analyzed the remaining challenges in this area. To fill

this gap, this article surveysML-based approaches against HT attacks available in the literature. In particular,

we first provide a classification of all possible HT attacks and then review recent developments from four

perspectives, i.e., HT detection, design-for-security (DFS), bus security, and secure architecture. Based on

the review, we further discuss the lessons learned in and challenges arising from previous studies. Despite

current work focusing more on chip-layer HT problems, it is notable that novel HT threats are constantly

emerging and have evolved beyond chips and to the component, device, and even behavior layers, therein

compromising the security and trustworthiness of the overall hardware ecosystem. Therefore, we divide

the HT threats into four layers and propose a hardware Trojan defense (HTD) reference model from the

perspective of the overall hardware ecosystem, therein categorizing the security threats and requirements in

each layer to provide a guideline for future research in this direction.

INDEX TERMS Machine learning, hardware Trojan detection, design-for-security, bus security, secure

architecture.

I. INTRODUCTION

The tremendous advancements in semiconductor technology

have resulted in a large number of participants coordinating

during the design and manufacturing process of integrated

circuits (ICs) [1], [2]. Particularly given the continuously

increasing complexity of ICs, increasingly greater numbers of

specialized teams and/or companies, typically dispersed geo-

graphically, are involved in this complex process to increase

efficiency and manufacturability. However, due to its highly

distributed nature, any stage of this complicated supply chain

can be compromised by an adversary (or attacker) by implant-

ing malicious circuits [2], [11]. Fig. 1 illustrates the stages

that could be exploited in a typical design-fabrication process

of modern ICs [3], [4]. Such malicious circuits, often referred

to as hardware Trojans (HTs), will endanger the security and
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trustworthiness of the underlying hardware by, e.g., disclos-

ing confidential information, impeding normal executions at

vital points, and even prompting irreversible and fatal damage

to the system [3], [11]. This fact also poses a serious threat to

semiconductor suppliers and end IC users, whichmay include

critical applications and cyber infrastructure such as mobile

communications, aerospace agencies, medical electronics,

military weapons, and nuclear reactors [4], [12]. Given this

situation, it is both critical and challenging to study defensive

strategies to alleviate the potential security threats posed by

the so-called HT attacks.

A. HT DEFINITION, TAXONOMY, AND PROTECTION

1) HT DEFINITION AND CLASSIFICATION

HTs are defined asmalicious, intentional inclusions/deletions/

alterations, or inadvertent design defects of ICs or intellectual

property (IP) cores that can be exploited by knowledgeable

adversaries to achieve the purpose of an attacker, which may
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FIGURE 1. Potential stages of modern IC supply chain that can be
exploited to implant Trojans [4].

result in vast economic losses and great harm to society [13],

[14], [16].

HT circuits can be categorized in a variety of forms accord-

ing to different features. Several studies have introduced

detailed taxonomies to cover a wide range of HT instances.

Early work can be traced back at least to Banga et al., who

classified HTs into two categories according to the logical

types, i.e., combinational and sequential [5]. However, this

classification failed to take the impacts of analog trigger

conditions and effective payload into account. Tehranipoor

et al. presented classifying HTs into three categories based on

their physical, activation, and action characteristics [6]–[8].

Although this HT taxonomy was more detailed than previous

approaches, it contained only a limited number of Trojan

examples, and its correlation with the IC development cycle

was not obvious. Zhang et al. classified HTs into two cat-

egories, namely, bug-based HTs and parasite-based HTs,

based on their impacts on the normal functionalities of the

circuits [9]. However, there was not much discussion about

their trigger conditions and implantation stage. Bhunia et al.

proposed classifying HTs as analog Trojans and digital Tro-

jans based on the trigger and payload mechanisms [4], [8],

wherein the digital Trojan also included both combinational

and sequential types.

Karri et al. integrated and extended the above classifica-

tion methods and introduced an attributed-based HT tax-

onomy [36], [37]. Based on the study of Wang et al., they

classified HTs based on five different attributes, adding con-

siderations of design phase, location, and abstraction level.

Subsequently, Moein et al. separated HTs based on eight dif-

ferent attributes and included threemore attributes, i.e., logic

type, physical layout, and functionality, to further improve

the HT classification [17], [38]. In particular, Table 1 lists

these typical studies on HT taxonomies. These previous tax-

onomies continue to evolve as newer attacks and Trojan types

are discovered.

Here, we present a new, systematic taxonomy based on

the relationship between the locations of HT circuits inserted

into a system-on-chip (SoC) and the targets affected by the

TABLE 1. Typical Studies on HT Taxonomies.

FIGURE 2. Typical representatives of the three types of Trojan threats
[18]. (a) IP-level HTs. (b) Bus-level HTs. (c) SoC-level HTs.

Trojan attacks when triggered. Thus, the HT circuits can be

categorized into three types: (1) IP-level HTs, (2) bus-level

HTs, and (3) SoC-level HTs, as shown in Fig. 2.

• IP-level Trojans – this type of HT is implanted into the

individual function IP cores of the SoCs (or into sim-

ple logic circuits) and triggered by internal conditions

such as rare nodes/nets. When activated, they can only

affect the specific IP cores in which they are implanted

(as shown in Fig. 2 (a)) [18].

• Bus-level Trojans – this type of HT is connected with

the network fabrics of buses (i.e., linkers [26], [27])

or embedded into themodules of the on-chip buses (such

as routing nodes [19], [108], control units, and network

interfaces [28]). They are mainly triggered by internal

rare signals or by data flowing through the on-chip

buses and can tamper with the integrity and reliability of

interconnection fabrics and routers in the SoC designs

(as shown in Fig. 2 (b)) [18]–[20].

• SoC-level Trojans – this type of HT is inserted into

the individual function IP cores of the SoCs and can

affect the behaviors of other IP cores. Alternatively,
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TABLE 2. Typical Studies on Broad Classifications of HT Countermeasures.

several untrusted third-party (3P) IP cores, which are

obtained from 3PIP vendors, may collaborate to perform

collusion attacks on other IP cores or even the SoCs.

Moreover, the trigger conditions of this type of HT vary,

e.g., rare conditions occurring within the implanted IP

cores, special instructions or external sequences, etc.

This type of HT is designed to affect the overall system

functions rather than the infected IP cores (as shown

in Fig. 2 (c)) [20].

2) CLASS OF MITIGATION STRATEGIES

Substantial research efforts, from both academia and industry,

have been devoted to the studies of HTs [11], [21], [22].

Table 2 lists several typical studies on the classification of

HT protections. The initial mitigation strategies were mainly

focused on HT detection approaches and design for secu-

rity (DFS) [6]–[8], [35], [39]. HT detection is a pre-/post-

silicon detection technique that is used to determine whether

the hardware is contaminated by malicious logic or by an

undesired functional unit [13], [14], [16], [23], whereas DFS1

methods mainly prevent the inclusion of malicious circuits at

hardware design time or facilitate detection at test time or run

time [21], [24].

Bhunia et al. attempted to classify the mitigation strategies

as HT detection, DFS, and runtime monitoring according to

the effective stage of each kind of technique [4]. The runtime

validation strategies were separated from DFS and employed

as a major class of online monitoring approaches to safe-

guard against potentially undetected HT threats at run time.

Xiao et al. categorized the defensive methods as HT detec-

tion, design for trust (DFT), and split manufacturing for trust

(SMFT) [16]. Similarly, the split manufacturing approaches

were used as a separate class of protections since these

approaches can prevent the insertion of HTs at fabrication

time. Furthermore, Li et al. also categorized the countermea-

sures for HTs into 3 classes: HT detection, HT diagnosis, and

HT prevention [13], [14]. Different from the works of Bhunia

and Xiao et al., they added a new class of protections to the

previous 2 categories, i.e., HT diagnosis. An HT diagnosis

approach is designed to identify the locations, types and

trigger conditions of the HT circuits in an IC or IP core [14].

However, research on the classification of HT protections

1In most of the survey articles on HTs, DFS, HT prevention, DFHT, and
DFT have similar meanings. Therefore, this paper will uniformly adopt DFS
in the following description.

still faces some challenges, especially with the emergence of

new HT countermeasures, and a new category of protection

strategies for HTs is still required.

Based on the HT taxonomy discussed in Section I.A.1,

we present that protections against HT threats can be cat-

egorized into 4 broad classes of solutions, namely, 1) HT

detection, 2) DFS, 3) bus security, and 4) secure architecture.

HT detection and DFS strategies are intended to defend

against IP-level HTs. Moreover, research on HT defense

techniques has also been expanded to bus security (e.g.,

network-on-chips, abbreviated as NoCs, [25]–[27], [108],

and advanced-high-performance [29], [30], etc.) and secure

architecture [18], [20], [31]–[34]. These countermeasures are

special DFS strategies and are meant to address the integrity

problems of on-chip buses incurred by bus-level HTs and

suspicious behaviors created by SoC-level HTs at runtime,

respectively. In particular, Table 3 lists the key distinctions

between IP-level HTs, bus-level HTs and SoC-level HTs,

as well as the corresponding mitigation countermeasures.

From Table 3, it can be concluded that IP-level HTs appear

to be a special case of SoC-level HTs since they have some

overlap in their locations and trigger mechanisms. However,

they have significant differences in the following respects.

(1) The design and attacker location are different. IP-level

HTs are relatively simple and are designed to be implanted in

an individual IP core (or simple logic circuit) by adversaries

during the design or manufacturing stage, whereas SoC-level

HTs come in many varieties and may exist in one or more

3PIP cores provided by untrusted IP vendors. (2) The impacts

are different. IP-level HTs only affect the specific IP cores

in which they are embedded, whereas SoC-level HTs more

strongly impact other IPs or even the general SoC functions,

rather than the implanted IP cores. (3) Most importantly,

the defense strategies against these two types of HT threats

are different. IP-level HTs are typically detected via circuit

features, such as functional or structural features, or para-

metric characteristics, e.g., power or path delay, whereas

SoC-level HTs are identified by using dynamic behavior

analysis of thewhole SoC design. (4) In addition, the effective

application stages of the respective defense strategies are also

different (see Table 3).

On the other hand, bus-level HTs are also clearly different

from SoC-level HTs, which can be embodied in the following

aspects. (1) The design and attacker location are different.

SoC-level HTs are implanted inside one or more IPs, while

bus-level HTs are embedded into the modules of the on-chip

buses or connected with the buses, not inside the IPs. (2) The

impacts are different. Bus-level HTs can only tamper with

the interconnection among cores, while SoC-level HTs affect

the function of other IPs and even the whole SoCs. (3) Most

importantly, the defense countermeasures to address these

two types of HT threats are also different. The defense strate-

gies for alleviating the bus-level HTs only concern the linker

and router behaviors, while the defense strategies for resisting

SoC-level HTs incorporate the behaviors of IP cores or the

overall system together.
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TABLE 3. Key Distinctions between IP-level, bus-level and SoC-level Trojans.

B. MOTIVATION AND CONTRIBUTIONS

Several excellent surveys have been devoted to designs, cat-

egorizations, and protections for HT problems [1], [4], [7],

[8], [13]–[17], [21], [35]–[39]. For example, Sumathi et al.

provided a comprehensive review of complex HT threats

and illustrated feasible countermeasures against HT attacks

for PLD and ASIC life cycles [1]. Zhang et al. high-

lighted the potential security and trust threats associated with

FPGA-based systems from a market perspective and dis-

cussed the relevant solutions available for each party [15].

In 2016, Bazzazi et al. explained the taxonomies of HT

threats and presented a new classification of HT detection and

counterattack techniques [8]. Li and Zhang et al. reviewed

the specific HT threats faced by the parties involved in the

IC development process and described up-to-date HT defense

solutions [13], [14], [35]. Subsequently, Xiao et al. summa-

rized the research advancements and lessons learned con-

cerning HT problems in recent years and explored possible

future trends [16]. In addition, Jacob et al. also elaborated

the feasibility of Trojan insertions and corresponding defense

strategies at each stage of the IC development and production

chain [39]. Table 4 summarizes the primary research contents

of several related surveys published in recent years.

Note that the aforementioned surveys primarily focus on

HT threats and corresponding HT detection (such as reverse

engineering [40]–[43], logic testing [44], [45], and side-

channel analysis [46]–[49]) and prevention (such as detection

assistance [50]–[52] and implantation prevention [53]–[55])

techniques. Compared with the existing surveys, this paper

intends to review the specific HT threats and defense solu-

tions from a different perspective of SoC life cycle. We iden-

tify the potential HT types at each stage of SoC development

and examine the state-of-the-art HT countermeasures related

to each stage. The recent success of machine learning (ML)

techniques in many research domains has inspired both aca-

demic and industrial communities to explore the potential

of applying ML to address various HT attacks [11], [56].

TABLE 4. Primary Research Contents of Several Related Surveys.

Anumber of achievements utilizingML for HT defenses have

emerged in the last decade. However, this important progress

has not been systematically reviewed in previous surveys [4],

[13], [14], [16], [21], [35], [39]. Elnaggar et al. conducted

a survey on the applications of ML in the general area of

hardware security, including HT attacks, reverse engineering,

IC counterfeiting, side-channel attacks, and IC overbuilding

[56]. However, a dedicated survey on the applications of

ML to HT defenses is still not available in the literature.

In addition, most of the aforementioned surveys focused on

IP-level HT threats andmay overlook bus-level and SoC-level

HT attacks or corresponding mitigation strategies.

To fill this gap, we first investigate publications with

regard to the HT problems found in the IEEE Xplore
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FIGURE 3. Publication trends on HTs from IEEE, ACM, and Elsevier.

digital library,2 the ACM DL digital library,3 and Elsevier

ScienceDirect.4 Fig. 3 illustrates the number of articles on

HTs published in the digital libraries annually starting from

2007 to 2018. In particular, we have specifically reviewed

the recent progress in utilizing ML techniques against HT

threats and revealed the potential problems, challenges and

possible future research directions in this domain. Note

that the up-to-date bus-level and SoC-level HT attacks and

ML-related mitigation strategies have also been elaborated in

this paper. It is expected that this surveywill serve as a general

guidebook for those who want to contribute to the study

of HTs.

The main contributions of this article are summarized as

follows:

(1) This article, for the first time to the best of our knowl-

edge, systematically investigates the latest research

progress in applying ML technology in the fields of

HT detection and prevention.

(2) The explicit analysis highlights the new advances in

using ML-based techniques in HT defense domains to

address the IP-level, bus-level and SoC-level Trojan

threats from the perspectives of HT detection, DFS, bus

security, and secure architecture.

(3) We also analyze some important aspects related to the

application of ML algorithms in HT defense domains

and discuss its potential challenges facing the state-of-

the-art.

(4) In addition, we propose a reference model for rec-

ommending possible strategies that each layer should

be able to utilize along with future directions for HT

research based on the analysis of the above situations.

The remainder of this article is organized as follows.

In Section II, we present typical ML models used in HT

defense studies. A detailed discussion of theHT threatmodels

and the advancements in applyingML for HT defenses is pre-

sented in Section III. Section IV discusses the lessons learned

2http://ieeexplore.ieee.org/Xplore/home.jsp
3http://dl.acm.org/
4http:/www.sciencedirect.com/

FIGURE 4. The general flow of ML framework.

and challenges arising from the previous studies. Section V

gives a reference model of HTs from the perspective of the

overall hardware ecosystem and provides a discussion on

future research directions. Finally, we conclude this article

in Section VI.

II. ML MODELS USED IN HT DEFENSES

This section presents typical ML models that have been

widely utilized to solve HT problems. Section II.A depicts

the general procedure of applying ML, as well as commonly

exploited ML algorithms. Section II.B analyzes the current

publication trend of ML in the HT defense domain.

A. ML MODELS

ML is a class of algorithms that primarily focuses on generat-

ing the ‘‘models’’, namely, learning algorithms, from a large

amount of historical ‘‘data’’ and then utilizing these trained

models for prediction or classification [57]. As illustrated

in Fig. 4, the general procedure of applying ML algorithms

involves the following: (1) In the preprocessing phase, the rel-

evant features are first selected, and then, data with these

features are extracted from the raw data so that they can be uti-

lized to distinguish the different values of the target outputs.

After that, several data cleansing and feature engineering

operations, such as principal feature selection, scaling, and

dimensionality reduction, are executed to generate the sample

dataset for learning. (2) In the learning phase, the appropriate

learning algorithms are selected and executed to derive the

models from the training dataset. Such models correspond to

a certain underlying law about the data. Then, operations such

as cross-validation, result evaluation, and hyper-parameter

optimization are carried out to acquire the final models.

(3) In the evaluation phase, the final models are tested on

the test dataset to evaluate their performance. In practice,

evaluation criteria can be selected and customized according

to different scenarios. (4) In the prediction phase, the final

models are exploited to infer the predicted values of the target

output for the newly input data.

According to the nature of the data types processed byML,

there are two major categories of learning tasks that are

widely explored in HT defense domains: supervised learning

and unsupervised learning. The supervised learning tech-

nique utilizes the labeled data to perform model training
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and selects the final models to predict the target classes

of the newly input data; in contrast, unsupervised learning

techniques focus more on revealing the potential relations

characterizing the data by learning from them when the data

labels for all the target classes are unavailable. In particular,

the major difference between supervised learning and unsu-

pervised learning is whether the data labels are available.

Below, we present an overview of the most frequently

explored ML algorithms, feature selection and dimensional-

ity reduction methods, and several optimization and model

enhancement techniques in HT defense studies.

1) SUPERVISED LEARNING

- Artificial Neural Networks (ANNs) [58] are an

abstraction and simulation of the human brain. They can

be viewed as a mathematical model from an algorithmic

perspective and construct various networks according to

different connection patterns. ANNs have been success-

fully implemented in diverse applications for classifica-

tion, including HT detection.

- Support Vector Machine (SVM) [59] is a two-class

classification model with the largest interval in the fea-

ture space. SVM’s learning strategy is to maximize the

interval, which can ultimately be transformed into solv-

ing convex quadratic programming problems. SVM is

suitable for HT detection and has been widely applied

in this area.

- Bayesian Classifiers [63] are a type of classification

algorithm based on probability statistics and misjudg-

ment losses. Bayesian classifiers can achieve the mini-

mum error rate.

- One-class Classifiers are variants of supervisedmodels;

they are used when one wants to determine whether

the new training data belong to a particular class

(i.e., whether the data are normal or abnormal data).

Thus, one-class classifiers have been proposed for nov-

elty and anomaly detection, which can be regarded

as one-class classification problems. At this point,

the boundary of the training data needs to be learned

rather than the maximummargin.One-class ANNs [64]

and One-class SVM [65] are two representative one-

class classifiers.

- Back-propagation NNs (BPNNs) [66], [67] are a kind

of feed-forward ANN that may contain multiple hid-

den layers. BPNNs can adjust the network weights and

thresholds during training to achieve a nonlinear map-

ping of the input and output as well as better generaliza-

tion ability.

- Extreme Learning Machine (ELM) [68] is a single-

hidden-layer feed-forward ANN (SLFN) that can ran-

domly initialize the input weight and bias and obtain

the corresponding output weight. ELM has been widely

used in many fields due to its high learning speed and

good generalization ability.

- Decision Tree (DT) [88] is a tree-structure-based learn-

ing model that contains a root node, several internal

nodes, and several leaf nodes. The leaf nodes correspond

to the decision results, while the other nodes correspond

to an attribute test. The decision-learning process of the

DT method is similar to the method humans use to make

choices. In this process, each judgment question raised

is a ‘‘test’’ of a certain attribute, and the final conclusion

corresponds to the decision result that we expect. Clas-

sification tree and regression tree are commonly used

DT models.

- K-Nearest Neighbors (K-NN) [89] classify the train-

ing dataset by measuring the distance between different

eigenvalues. The general idea is that if the majority of

the k most similar samples (i.e., the nearest neighbor in

the feature space) in a feature space belong to a certain

category, then the sample also belongs to this category,

where k is usually an integer less than 20. In K-NN,

the selected neighbors are all objects that have been

correctly classified.

2) UNSUPERVISED LEARNING

- Clustering Algorithms (CAs) [72] intend to group

unlabeled data into different clusters. CAs do not require

priori experience as input. One major reason for using

CAs in the HT protection field is the unobtainable fea-

tures of golden designs/ICs, as CAs will be unaffected

by this issue.

- K-means Clustering [69] is a variant of prototype-

based CAs that attempts to discover a user-defined num-

ber (k) of clusters and partitions a set of n data points into

k clusters in such a way that the resulting intra-cluster

similarity is high but where the inter-cluster similarity is

low.

- Density-Based Spatial Clustering (DBSCAN) [71]

andOrdering Points to Identify the Clustering Struc-

ture (OPTICS) [85] are typical density-based CAs.

They can find points with higher density starting from

the estimated density of the corresponding nodes, and

then gradually connect the high-density points into one

block to generate various clusters. The advantage of

density-based CAs is that clusters of various shapes and

sizes can be revealed in data possessing noise.

3) FEATURE SELECTION AND DIMENSIONALITY REDUCTION

- Genetic Algorithms (GAs) [72] are popular heuristic

algorithms. AGA can be applied for the feature selection

of classification problems whose goal is to find a small

subset of variables from the dataset that provides the

highest classification accuracy.

- Principal Component Analysis (PCA) [73] is a widely

used data dimensionality reduction technique in which

n-dimensional features are mapped to a k-dimensional

space. The newly reconstructed k-dimensional features,

also known as principal components, are orthogonal.

Each of the principal components can reflect most of the

original variables, and the information contained therein

is not repeated. In this process, the dimension k of the
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low-dimensional space is usually specified by the users

in advance and is much lower than n.

- 2-Dimensional PCA (2DPCA) [71] is a variant of the

PCA technique in which the covariance matrix can be

constructed directly based on 2D matrices rather than

being transformed previously into 1D vectors. 2DPCA

can overcome the deficiencies of PCA such as high

computational complexity and time consumption.

4) DESIGN OPTIMIZATION AND MODEL ENHANCEMENT

- Adaptive Iterative Optimization Algorithm (AIOA)

[74] is a model-enhancing technique in which a specific

classifier is iteratively improved using the input training

data weighted by a weight vector to reduce the errors.

- Multi-Objective Evolutionary Algorithm (MOEA)

[75] is an enhanced optimization algorithm that

starts from randomly generated populations and then

increasingly approaches the Pareto-optimal solutions by

applying multiple-generation continuous optimization

operations with adaptability.

- Particle Swarm Optimization (PSO) Algorithm

[104], [125] is an optimizer that attempts to find the

optimal solution through the cooperation and informa-

tion sharing among individuals in a group. PSO is simple

and easy to implement, and it does not require complex

parameter adjustments. The quality of the optimal solu-

tion can be evaluated by the fitness.

Table 5 illustrates the advantages and disadvantages of

each type of ML algorithm. As shown in Table 5, supervised

learning is effective in addressing cases with few features and

can achieve relatively better classification results. Especially

for HT detection, a definitive output can be presented for

each input. However, supervised learning requires golden

designs/ICs, i.e., data with labels, as a reference and is also

unsuitable for training on large datasets. Unsupervised learn-

ing can overcome these deficiencies. However, unsupervised

learning is sensitive to noise and readily falls into local

optima. In particular, the output results for each training

process cannot be determined clearly. On the other hand,

feature selection and dimensionality reduction methods can

reduce the related features and decrease the data dimensions;

however, the HT features might be deleted as redundant infor-

mation because they have little impact on circuits, and the

threshold values need to be determined manually. In addition,

some DFS strategies can be improved by design optimization

algorithms. However, this process is time consuming and

takes multiple iterations to achieve the optimal solution.

B. PUBLICATION TREND OF ML APPLIED IN HT DEFENSES

Fig. 5 shows publications on ML-based techniques exploited

for HT defense in the IEEE Xplore digital library, which can

be used to represent the research trends in HT defense studies

to a certain extent (as shown in Fig. 3). In particular, the mit-

igation strategies that are tackled using ML primarily involve

HT detection, DFS, bus security, and secure architecture.

TABLE 5. Advantages and Disadvantages of each Type of ML in HT
Defense Studies.

FIGURE 5. Overall publication trend of ML in HT defenses.

As can be seen from Fig. 5, approximately 80 articles

were published on the studies of ML-based HT defense from

2007 to 2018. Early work in this area can be traced back

at least to Jin et al., who proposed in 2012 that a one-class

ANN model could be used to determine whether chips have

been infected by Trojan circuits [76]. The publication count

was scarce and remained basically stable from 2012 to 2014.

Since 2014, the research achievements in this area have been

expanding rapidly each year. As a result, it is expected that

increasingly more articles on ML-based solutions will be

published in this regard.
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TABLE 6. HT Threat Models at Chip Layer.

III. THREAT MODELS AND ML-BASED

COUNTERMEASURES

This section introduces the major advances of ML techniques

applied in HT defenses. Section III.A reviews the HT threat

models in the modern IC supply chain from the perspective of

the chip layer. Section III.B details the advances in ML-based

countermeasures from the aspects of HT detection, DFS, bus

security and secure architecture.

A. THREAT MODELS

HTs can be implanted at any stage of the design and fab-

rication process, which leads to diverse threat models [16].

From the perspective of the chip layer, the overall design-

fabrication process of an SoC design can be divided into three

stages: IP core development, SoC development, and fabrica-

tion [77]. Therefore, five types of participants in this process,

i.e., 3P design houses or employees, commercial electronics

design automation (EDA) tools, 3PIP vendors, SoC devel-

opers, and foundries, have opportunities to implant HTs.

Table 6 systematically summarizes five typical scenarios of

the chip-layer HT attacks that have appeared in the literature.

Each scenario is explained as follows:

- Scenario A (i.e., untrusted foundry):An attacker at the

foundry could implant an HT instance into the design by

manipulating the lithographic masks. These HTs appear

in the forms of modification to the transistors, gates, and

interconnects into the original layout.

- Scenario B (i.e., untrusted EDA tool, employee, or 3P

design house): Because increasingly more special-

ized IC designers and tools have become involved in

the design-fabrication process, HTs might be inserted

by untrusted 3P commercial EDA tools or rogue

designers within the in-house team (also called insider

threats) [16]. Moreover, customers may also outsource

their specifications to offshore 3P design houses, and

these untrusted design houses may add additional mod-

ules or functions to the original design.

- Scenario C (i.e., untrusted 3PIP vendor): SoC devel-

opers may purchase and employ 3PIP cores to com-

plete their SoC designs. These IP cores provided by

untrusted 3PIP vendors to customers may contain mali-

cious logic or backdoors.

- Scenario D (i.e., untrusted routers or links in on-chip

bus):An adversary may compromise the integrity of the

on-chip buses using malicious routing nodes or traffic

links that have been infected with HTs. Such malicious

bus fabrics would then be integrated into the SoCs.

- Scenario E (i.e., untrusted SoC developer): This

attack scenario assumes that an untrusted SoC

developer may develop SoC designs infected with

SoC-level HTs or integrate the soft/firm/hard IP cores

from untrusted 3PIP vendors containing such HT cir-

cuits that can separately or jointly impact other IP

cores or the functions of the overall SoC functions.

B. ML-BASED COUNTERMEASURES

ML has been extensively exploited in a variety of

HT defenses. Here, we consider the four primary types

of countermeasures that can be applied to one or more

attack scenario: 1) HT detection that utilizes available cir-

cuit features, e.g., structures, functionalities, and param-

eters, to reveal the HTs (i.e., Scenarios A, B, and C);

2) DFS that exploits security design strategies to enhance

the trustworthiness of IC designs or intends to facilitate HT

detection, prevention, and monitoring via on-chip modules

(i.e., Scenarios B and C); 3) bus security that aims to identity

malicious on-chip traffic behaviors created by bus-level HTs

(i.e., Scenario D); and 4) secure architecture that is designed

to resist SoC-level HT threats and secure the original IC

designs from an architectural point of view (i.e., Scenario E).

1) HT DETECTION

HT detection techniques are typically used to verify whether

any unwanted circuit is implanted in designed or fabricated

ICs. Thus, ML-based techniques have seen progress in terms

of (1) reverse engineering, (2) circuit feature analysis, and (3)

side-channel analysis. Fig. 6 shows a summary of ML tech-

niques applied in these aspects. In particular, Table 7 briefly

elaborates the primary research contributions and innovations

ofML algorithms applied in HT detection according to Fig. 6.
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TABLE 7. Main Research Contributions and Innovations of ML in HT Detection.

FIGURE 6. Summary of ML in HT detection.

As shown in Table 7, the main application of ML methods

in these aspects is to classify or cluster IC-related features

to improve the HT detection accuracy. Next, we present the

main elements of each ML-based approach, as well as the

advantages and disadvantages between ML-based and non-

ML-based methods in detail.

- Reverse Engineering

A reverse engineering (RE) technique is utilized to repack-

age the ICs and obtain microscopic images of each layer to

reconstruct the original design of the end products [4]. This

technique has the potential to achieve very high accuracy in

identifying any modifications to the ICs. However, such an

irreversible approach might require several weeks or even

months to apply this intrusive process to a complex IC, mak-

ing its application usually limited to the testing of a limited

number of IC samples [78].

However, it is still attractive to perform destructive reverse

engineering on a limited number of IC samples to obtain

the characteristics of a golden batch of ICs [79], [80].

FIGURE 7. Block diagram of ML-based HT detection methods.
(a) SVM-based Trojan Detection Method [65]. (b) K-means-based Trojan
Detection Method [69].

For instance, Bao et al. presented an efficient and robust

reverse engineering-based method to identify HT-free ICs

via ML [65], [69]. By using the one-class SVM and

K-means technique successively, a classifier was devel-

oped to automatically learn how to distinguish between

the expected and suspicious structures in an IC, as shown

in Fig. 7. Such procedures can simplify traditional 5-step

reverse engineering to 3 steps and avoid the need to generate

and manually enter the gate-level netlists extracted from the

image-based IC designs in the last 2 steps. Moreover, the per-

formance of K-means clustering does not depend on the

choice of parameters, making it easier to train and adjust than

SVM. However, this intrusive process still requires golden

designs, i.e., Trojan-free designs.

Moreover, non-destructive reverse engineering, which

attempts to reverse the gate-level netlist of an IC design into

a high-level description of the control logic, such as finite

state machines [42], [43], [81], has also been investigated. For

instance, Li et al. proposed reversing the unknown ICs into the
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FIGURE 8. LTS-based directed graph caused by HTs [70].

input-output track model via behavioral pattern mining and

discovering the Trojan circuitry through behavioral pattern

matching [82]. Though non-intrusive, such a process only

outlines an approximate functional model of the original

design and cannot fully represent its actual function design.

In particular, non-destructive reverse engineering still suffers

the same deficiencies as destructive engineering, e.g., only

being valid for simple logic circuits and being costly and time

consuming.

- Circuit Feature Analysis

An adversary may create a HT instance that is activated

under rare conditions or implanted into IC designs as a redun-

dancy module. Due to their stealthy nature, such Trojans

cannot be detected during traditional formal testing [84], [85].

Therefore, circuit features, e.g., functional or structural fea-

tures, extracted from the gate-level netlists can be quantified

and analyzed to potentially identify whether a net or gate

is suspicious, wherein the switching activity and net feature

are two quantitative metrics that are commonly utilized for

HT detection [83].

Zhou et al. presented a structural feature matching method

to detect sequential HTs in 3PIP cores [70]. By analyzing

the structural features of less-toggled signals (LTS) in the

gate-level circuits of IP cores, this method first abstracts

the LTS caused by HTs into a directed graph (as illustrated

in Fig. 8) and then utilizes dynamic CAs for structural feature

matching. On the other hand, n features extracted from each

net can be utilized to differentiate Trojan-infected nets from

normal nets. For example, Kasegawa et al. extracted five

HT-net feature values from each net in gate-level netlists and

learned them using a classifier such as SVM or ANNs [59].

After that, the trained classifier can be used to classify a set

of features from an unknown gate-level netlist. This method

can increase the true positive rate (TPR) of detecting an HT

circuit; however, there are deficiencies in terms of the true

negative rate (TNR) and average accuracy [61]. Additionally,

they applied RF to select the best set of Trojan features and

reduce the original 51 features to the most effective 11 fea-

tures, which are then utilized to classify the target nets [60].

In addition, Hoque et al. proposed a systematic learning-

based approach to verify the trustworthiness of untrusted

hardware 3PIPs [62]. Unlike existing learning models that

rely only on structural features, they incorporated both func-

tional and structural features to create a robust training set

and used an average probability voting ensemble combined

with multiple learning models to improve the HT detection

efficiency.

- Side-channel Analysis

Side-channel analysis refers to measuring circuit parame-

ters, such as power, path delay, temperature, and electromag-

netic (EM) radiation profiles, to isolate a Trojan-infected IC

from the golden ICs. This analysis fully utilizes the advan-

tage of the parametric variations in side-channel information

created by extra circuitry and/or the activities from HTs.

However, the effectiveness of HT detection through side-

channel analysis largely relies on the signal-to-noise ratio

(SNR) and the Trojan-to-circuit ratio (TCR) [4] because the

side-channel features could be affected by process variations

(PVs) and noise.

ML is expected to overcome the deficiencies when incor-

porated with side-channel analysis, thereby improving the

SNR [65], [86], and research along this direction has drawn

increased attention in recent years.

Some researchers have attempted to apply ANNs to side-

channel analysis. For example, Wang et al. presented an HT

detection method to indicate whether the ICs are Trojan-

infected by sampling and classifying the current features

using an ELM [68]. Li et al. extracted the nonlinear features

from the power-consumption through the HT detectionmodel

established by the BPNN [66], [67]. The ELM and BPNN

can be used for feature extraction and inference because they

can better retain and extract useful information for analy-

sis, thereby avoiding the inaccuracy of manual modeling.

However, there is a lack of preprocessing of the sampled

side-channel features and the results of each training may be

slightly volatile.

SVMcan overcome the instability of ANNs during training

and theoretically enhance the HT detection capability and

classification accuracy. SVM is also a relatively general clas-

sification algorithm employed in side-channel analysis. For

instance, Dimanto et al. proposed that HT detection can be

modeled as an outlier detection problem, and the effects of an

HT instance on EM traces can be directly identified through

one-class SVM with the RBF kernel [86]. However, this pro-

cess only contains a simple feature selection and fails to sub-

stantially improve the SNR. In contrast, Liu et al. presented

a combined PCA and SVM approach (i.e., PCA+SVM) to

detect the covert communication-type Trojans by utilizing the

transmission power waveform [73]. Iwase et al. suggested

converting the power waveform data from the time domain

to the frequency domain through a discrete Fourier transform

(DFT) and then conducting HT detection using SVM [87].

The PCA+SVM and DFT+SVM methods first preprocess

the sample features and extract the effective part, which is

more conducive to detecting and classifying HT instances.

In addition, the PCA+SVM method is more accurate than

the combined PCA and minimum volume enclosing ellipsoid

(MVEE) method (i.e., PCA+MVEE) [73].

Furthermore, Lodhi et al. developed a runtime HT detec-

tion approach based on an online adaptive ML model [88].

The power profiling of a given micro-controller instruction

set is first extracted and then classified by K-NN, DT, naive

Bayesian (NBC), and deep learning (DL). This approach is
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TABLE 8. Comparisons of Positives and Negatives between ML-based and non-ML-based Approaches in HT Detection.

able to compare and analyze various ML models and choose

the most suitable model [89]. However, such a process is very

time consuming, and the selection of the most appropriate

ML algorithm heavily relies on the detection cases and the

number of attributes required.

Most of the aforementioned classification algorithms for

side-channel analysis assume that there are available golden

ICs (i.e. Trojan-free fabricated ICs) to refer to during training.

However, such an assumption is difficult to realize in practice.

To this end, researchers have also attempted to apply CAs to

side-channel analysis because they do not need priori expe-

rience as input and can eliminate the dependence on golden

designs/ICs to a certain degree [91].

Nowroz et al. introduced a post-silicon multi-model

approach that utilizes runtime thermal radiation and power

maps for HT detection [71]. Multiple scenarios are consid-

ered there. If trusted data from known chips are available for

training, a supervised thresholding method can be applied to

classify the chips under detection by the Euclidean distance of

the feature matrix and the golden design. Otherwise, 2DPCA

can be performed to address the high-dimensional power

maps converted from thermal radiation data; then DBSCAN

can be exploited to detect and locate the HTs. Cui et al. devel-

oped an HT detection method with the Markov distance as

the clustering center [90]. The collected power-consumption

is first analyzed by PCA, and then, the clustering operation

is completed with the Mahalanobis distance as the class

center. Multi-mode-based HT detection takes both supervised

learning and unsupervised learning into account to combine

their advantages. Moreover, CA based on the Mahalanobis

distance performs better than the Euclidean distance in that

it is designed to optimize the detection process and can

overcome the shortcomings of the Euclidean distance so that

it can achieve lower computational complexity and higher

accuracy.

Table 8 illustrates the advantages and disadvantages

betweenML-based and non-ML-based methods in HT detec-

tion. For reverse engineering, conventional solutions, includ-

ing physical-level and design-level reverse engineering, can

achieve 100% accuracy in detecting Trojans. However, these

schemes are costly, time consuming, and only effective for

simple logic circuits. They are also difficult to apply in

practice. In contrast, ML can overcome some of the above-

mentioned deficiencies. For example, ML can simplify the

reverse engineering process and learn to identify suspicious

circuits automatically. However, the performance depends on

the selection of learning models and corresponding parame-

ters, and the golden designs are still required as references.

For circuit feature analysis, current studies mainly perform

coverage analysis for the gate-level netlists of circuits under

detection to identify suspicious statements or modules. Then,

quantitative metrics are utilized to mark the signals or gates

suspected of being a Trojan. Circuit feature analysis is a

typical heuristic detection method and is effective in prac-

tice. However, the limitations are that such methods are

only suitable for simple logic circuits. Even when the struc-

tural or functional attributes of the circuit under detection

fully pass the coverage test, there is no guarantee that Tro-

jans are not present. Manual post-processing is still needed

to further analyze suspicious signals or gates to determine

whether they were HTs (or part of a Trojan circuit). On the

other hand, ML-based approaches can extract and identify

Trojan-infected features automatically and screen out the

most effective features for classification. This can not only

enhance the TPR but also reduce the size of the sample

feature vectors, thereby increasing the efficiency of the circuit
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TABLE 9. Main Research Contributions and Innovations of ML in DFS.

feature analysis methods. However, there are still several

potential challenges that remain to be addressed. First, golden

designs are needed to establish the training dataset for the

structural or functional attributes of the gate-level netlists.

Second, these solutions are only valid for identifying explicit

Trojans and are not effective at detecting implicit Trojans.

Third, the TNR and average accuracy of HT detection need

to be further improved. In addition, the execution time and

reliability of ML-based approaches depend on the circuit

scale, i.e., the number of nets within the circuits, and the

quantization metrics selected. They are less effective when

analyzing larger circuits.

Side-channel analysis is a non-invasive method. Because

this solution can easily generate test vectors and does not

need to fully activate the HTs, it is easy to implement and

widely used in practice. Especially for large Trojans, it is

possible to effectively identify and achieve high detection

accuracy. However, this method is susceptible to PVs and

noise and performs poorly in the detection of small Trojans.

In particular, the main limitation of such a method is to

assume that there are golden ICs available as a reference.

The requirement for the precision of the equipment is high.

For some methods that attempt to sidestep the dependence

of golden ICs, the results are less satisfactory in terms of

accuracy. ML can effectively preprocess relevant features,

such as extracting relevant features and reducing the data

dimensionality, to effectively reduce the impact of PVs and

noise and improve the accuracy and TPR. However, in this

procedure, since Trojans have negligible effects on circuits,

they may be removed as unrelated features or noise, thus

affecting the HT detection accuracy. Furthermore, the per-

formance of ML-based methods is highly dependent on the

selection of relevant features, learning models, and param-

eters, which may increase the time overhead. In addition,

ML methods, such as unsupervised learning, can partially

reduce their reliance on golden ICs but still require golden

designs to build a training dataset. This, however, remains a

limitation in practical applications.

2) DESIGN FOR SECURITY

Another important application of ML in HT defense domains

is DFS. Several ML-based countermeasures have been

FIGURE 9. Summary of ML applied in DFS.

proposed for (1) Trojan detection assistance, (2) implanta-

tion prevention, and (3) trusted library. Fig. 9 summarizes

the existing progress in DFS. In particular, Table 9 briefly

summarizes the primary research contributions and innova-

tions of ML applied in DFS based on Fig. 9. From Table 9,

it can be concluded that ML, especially optimization algo-

rithms, can be incorporated with design-time mechanisms

to increase the accuracy of HT detection, the efficiency of

design protection strategies and the performance of learning

models. Below, we introduce the primary elements of each

ML-based approach, as well as the advantages and disad-

vantages between ML-based and non-ML-based methods in

detail.

- Trojan Detection Assistance

HT detection can benefit dedicated on-chip modules. Such

embedded solutions can improve the sensitivity of HT detec-

tion at design and test time or be used to identify the abnormal

behaviors caused by HTs at runtime [92], [93]. In particular,

ML can be incorporated with on-chip modules to enhance the

accuracy of HT detection at the expense of extra silicon areas

in the ICs.

For instance, Karimian et al. proposed exploiting the power

ring oscillator network (RON) structure to assist in HT detec-

tion [72]. They first utilized the GA to select an optimal set

of RO measurements from the power RON and then applied

one-class SVM to classify the measurements to identify

HT-infected designs. This method can achieve a higher accu-

racy but requires substantially more training time than the

PCA+convex hull and pure SVM-based methods and has
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a high area overhead [72]. Dong et al. introduced a scan-

chain feature-based analysis method to identify gate-level

Trojans [95]. They first converted the gate-level HTs to scan-

chain netlists and then utilized a lightweight gradient lift-

ing algorithm called lightGBM to extract the key features

for training. LightGBM can reduce the feature dimensions,

thereby improving the HT detection accuracy and optimizing

the training speed. However, certain HTs with special struc-

tures and trigger modules cannot be effectively classified.

On the other hand, it is extremely difficult to trigger HTs

of various types and sizes during the test phase. Hence,

runtime monitoring provides the last line of defense against

Trojan attacks, and ML can be incorporated into ICs as ded-

icated security primitives to enable dynamic verification at

runtime [47], [94]. Liu et al. proposed an HT online mon-

itoring and parallel detection approach [58]. This approach

combined the normal behavioral operations of ICs with con-

tinuously transient currents and employed a one-class ANN

classifier to concurrently distinguish Trojan-free and Trojan-

infected ICs. However, such a one-class ANN classifier can

only perform partial monitoring and cannot validate the ICs

in a comprehensive manner. For certain complex large-scale

designs, this method might be somewhat ineffective. The

circuit parameter values measured by on-chip sensors are

susceptible to PVs and noise, whichmaymask the HT effects.

One way to solve this problem is to select the appropri-

ate features and then input them into ML methods, thereby

eliminating the impact of PVs and noise in circuit parameters.

For instance, Shanyour et al. constructed a regression model

between multiple PV-related parameters obtained from the

transient current waveform and the circuit lines to predict the

PV changes [96]. For each targeted circuit line L, all mea-

sured values extracted from the sensors are provided to the

regression models, and any small deviation from the expected

value will indicate the presence of the HTs. In addition,

Chen et al. introduced a Bayesian inference-based technique

to calibrate the PV distribution for each individual chip using

the maximum-a-posteriori (MAP) estimation to enhance the

accuracy of HT detection through leakage current analy-

sis [63]. The proposed framework can reduce the measure-

ment cost and achieve a high HT detection rate even under

large measurement errors. However, the golden designs are

still required as a reference in the pre-silicon simulation, and

the accuracy of calibratedHT-free scaling factorsmay depend

on the number and location of PV monitors and the batches

of chips measured.

- Implantation Prevention

Implantation prevention aims to utilize design obfus-

cation or layout-filler approaches to protect ICs/IPs from

HT insertion and activation, reverse engineering, or

theft [97], [98]. ML has been applied in the EDA design and

testing domains, and there have also been several advances in

HT prevention [99], [100].

Built-in locking mechanisms, such as logic encryption,

are usually exploited to hide the real functionalities of the

FIGURE 10. Block diagram of Logic Encryption [102].

original designs [101], [102], as shown in Fig. 10. To this end,

Andrea et al. introduced a MOEA-based obfuscation design

strategy that can explicitly reduce the rare signals and maxi-

mize the efficiency of logic encryption to effectively mitigate

the threats of HT attacks and overproduction [75]. However,

such a technique is only suitable for small combinational

circuits. With increasing VLSI circuit scales, MOEA may

require greater execution times to obtain the local optimal

solutions.

- Trusted Library

A trusted library refers to providing a golden reference

library, such as trusted datasets that contain the golden side-

channel fingerprints and circuit features, or enhanced training

models for HT detection. Current research usually assumes

that golden designs/ICs are available for reference. This,

however, severely restricts the practical feasibility of current

defense techniques.

There has been significant progress in the construction

of golden reference libraries when incorporated with ML.

Several studies have attempted to utilize Monte Carlo (MC)

to simulate golden designs to obtain golden data at design

time. For example, Liu et al. incorporated process control

monitor (PCM) units into ICs to sample and measure the MC

simulation-based features of side-channel information [103].

After that, the classification boundary of these statistical side-

channel fingerprints could be learned via one-class SVM

during the pre-manufacturing stage. This procedure can offset

the requirements for golden ICs and utilize simulation-based

data to represent them; however, this technique still needs

golden designs as a reference. Moreover, researchers have

attempted to exploit CAs to build trusted reference libraries to

shift the demands for trusted ICs [71], [90], [91]. However, all

the aforementioned approaches are still in the experimental

simulation stage, and there is still a long way to go before

practical applications are realized.

Researchers have also attempted to explore design opti-

mization algorithms to enhance the training models. For

instance, Xue et al. presented an enhanced training model

for HT detection, in which the higher weights were assigned

to incorrectly classified instances after each iteration [74].

Wang et al. used PSO to find the global optimal extremum

matrix of a NN after multiple iterations of the NN weights

and bias values tominimize the squared error of theNN [104].

Compared to the BPNN, PSO+NN can increase the accuracy

of HT detection but at the cost of greater time consumption.

Table 10 illustrates the advantages and disadvantages

between ML-based and non-ML-based approaches in DFS.
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TABLE 10. Comparisons of Positives and Negatives between ML-based and non-ML-based Approaches in DFS.

As shown in Table 10, DFS is a design-time consideration

mechanism that uses a series of security design strategies to

enhance HT detection or prevent HT implantation/activation.

For Trojan detection assistance, existing research is similar

to HT detection; however, there are differences which we

describe as follows. (1) It is possible to reduce the number

of rare nodes/signals inside the circuit by implanting addi-

tional logic units, such as dummy scan flip-flop (DSFF) to

increase the controllability and observability of the inter-

nal nodes. However, this scheme introduces additional hard-

ware resource overhead. Moreover, the toggle rate of the

internal nodes inside a circuit is related to the test vectors

applied and the topology of the circuit itself, which may

result in a difference in the location and number of logic

units implanted. (2) It is also possible to employ the on-

chip sensors/logic modules/probe points implanted at design

time to collect circuit parameters or to convert the influ-

ences of Trojans on the circuit parameters into an observable

format to amplify the impacts of HTs on the side-channel

parameters. Therefore, such solutions can enhance the accu-

racy and reliability of HT detection. However, in addition

to increasing the hardware overhead, these approaches may

also require golden designs/ICs as a reference. As intrusive

means, the added logic modules/sensors/probe points could

also be exploited by attackers, resulting in information leak-

age. ML-based methods can select the most effective HT

features from the features extracted from the added logic

modules/sensors/probe points or eliminate the influences of

the PVs and noise, thereby effectively improving the accu-

racy and reducing the measurement cost. However, the fea-

ture extraction and training processes will take more time,

which may impact the performance of the ICs. In addition,

ML can also be incorporated as on-chip modules into a

circuit to provide runtime monitoring for the target cir-

cuits. However, it can only perform partial inspection and

will fail to provide protection in a comprehensive manner.

Simultaneously, the security of ML itself cannot be guar-

anteed. An attacker may also embed the Trojan cir-

cuit into the ML module, thereby affecting the detection

performance.

For implantation prevention, the current study mainly

exploited design obfuscation, camouflage technology, and

functional cell filling strategies to prevent Trojan implanta-

tion or activation. Such schemes can confuse opponents and

mitigate the threats of Trojan attacks. However, they will

cause large-area circuit redundancy, as well as high resource

requirements and costs. Moreover, they may also have seri-

ous influences on the performance of target circuits, such

as readily producing crosstalk. In particular, such methods

cannot protect against opponents who are highly familiar with

the entire design. Similar concerns also appear in reverse

engineering and parametric Trojans. On the other hand,

ML-based approaches can gain the effects of design obfus-

cation on target circuits and reduce the number of rare

nodes/signals, thus preventing the activation of Trojans. How-

ever, such approaches are appropriate for small combina-

tional circuits. In regard to large ICs, they may spend more

time iteratively obtaining the optimal solutions.

Regarding trusted library, most work has applied reverse

engineering to acquire the trusted circuit feature dataset. The

drawbacks here are obvious. On the one hand, the ‘‘trusted’’

IC dies are difficult to obtain; on the other hand, they are

relevant to the limitations of the reverse engineering tech-

nique itself (see Table 8). ML-based approaches are intended

to perform MC simulation on the golden designs, and then

obtain the trusted circuit feature datasets through classifica-

tion or clustering algorithms. However, the obtained simula-

tion data are different from the actual measurement results

and still need further improvement in practice. In terms

of training model enhancements, design optimization algo-

rithms could improve the performance of learning mod-

els; however, multiple iterations are required to achieve
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TABLE 11. Main Research Contributions and Innovations of ML in Bus Security.

FIGURE 11. Summary of ML applied in Bus Security.

the optimal performance. Additionally, this process is time

consuming.

3) BUS SECURITY

Bus security precautions intend to provide effective coun-

termeasures against malicious on-chip traffic behaviors to

ensure the security of communication and the reliability of

data transmission between multiple cores in a multiprocessor

SoC environment [105], [106]. The major malicious behav-

iors along this line include denial of service (DoS) [107],

linker behavior [26], [27], and router behavior [108], which

are launched by HTs implanted in links or routers. Attack-

ers may exploit covert communication [73], [109], bus idle

states [110], and peripheral interfaces [28] to disclose confi-

dential information, tamper with communication data, inter-

fere with normal operations, and perform DoS attacks.

In recent years, substantial progress has been achieved in

applying ML to secure on-chip buses, as shown in Fig. 11.

Table 11 briefly presents the main research contributions and

innovations of ML applied in bus security based on Fig. 11.

As described in Table 11, ML, especially supervised learning

algorithms, has high accuracy in indicating the abnormal

on-chip traffic behaviors caused by Trojan attacks. Then,

we provide the main contents of each ML-based approach,

as well as the advantages and disadvantages between

ML-based and non-ML-based methods in detail.

Kulkarni et al. exploited router behaviors to deter-

mine whether routers in a multi-core IC were infected

by HTs [107], [108]. These router behaviors are related

to the packet source and destination addresses, transfer

path, and transfer distance. They first extracted the features

from on-chip traffic and then classified them by several

ML models, including K-NN, SVM, linear regression (LR),

and DT, to identify HT-infected routers [107]. For attacks

that are not considered in the training phase, Kulkarni et al.

also presented a method to dynamically update the trained

model by using a modified balanced winnow (MBW) [108].

In addition, several unsupervised learning algorithms such as

K-means, farthest first (FF), estimation maximization (EM),

and hierarchical clustering (HC), were also explored to iden-

tify the malicious router behavior features [112]. Compared

to SVM and K-NN, the MBW-based technique achieves

a higher detection accuracy, a lower area overhead and a

lower detection latency. Moreover, unsupervised learning

algorithms are generally less accurate than supervised learn-

ing algorithms, possibly because the accuracy of these algo-

rithms depends on the compactness and separation of clus-

tering. Additionally, they are not effective against spoofing

attacks [112].

Madden et al. presented a spiking neural network (SNN)-

based HT detection approach that was designed to detect DoS

attacks through abnormal traffic patterns in NoC data [111].

They first extracted the spatial and temporal features of digital

data exchanged across traffic links between adjacent routers.

Then, these features were input into the SNNs and learned

to reveal the abnormal operations. This method can effec-

tively identify unseen attacks; however, the accuracy strongly

depends on the length of the attacks.

Table 12 illustrates the advantages and disadvantages

between ML-based and non-ML-based methods in bus secu-

rity. As shown in Table 12, bus security has made some

progress in terms of NoC bus and AHB bus. In prior work

that does not explore ML, researchers have attempted to

use the on-chip modules/probes to monitor the activities of

NoC buses to prevent information leakage attacks caused

by Trojans. Other techniques to protect the security of data

flowing within the NoCs include encryption, firewall, and

data tags. In addition, state obfuscation and secure routing

techniques could also be used to improve the probability

of HT detection for ensuring the integrity and confidential-

ity of data in the NoC buses. However, the above methods

still have some shortcomings. For example, these approaches

mainly identify the abnormal behaviors created by Trojans

at runtime. As intrusive solutions, they might increase the

power and time consumptions of the NoCs and affect the

performance of the system, such as increasing the system

delay. In particular, these strategies mainly focus on resisting

several common attacks such as DoS attacks. However, novel

10810 VOLUME 8, 2020



Z. Huang et al.: Survey on ML Against HT Attacks: Recent Advances and Challenges

TABLE 12. Comparisons of Positives and Negatives between ML-based and non-ML-based Approaches in Bus Security.

types of Trojans, such as covert communication-type Trojans,

have received less attention. In contrast, ML may allevi-

ate the above problems to some extent. In particular, most

ML-based methods utilize on-chip modules/probes to extract

the router and linker behaviors from the traffic of the NoC bus

and then train them throughML, which not only improves the

accuracy of HT detection but also reduces the area overhead

and detection delay. However, the accuracy of these methods

highly depends on the type of HTs, the length of the attacks,

and the traffic patterns selected. Additionally, golden designs

are required to build the training dataset, and certain unknown

Trojan attacks may not be well defended against.

For AHB bus security, the current study adopted a method

utilizing the dynamic replacement of functions to recover

from unexpected operations disabled by HTs during runtime,

thereby eliminating the effects of Trojans. This technique

could achieve a seamless connection of system operations

but requires embedded reconfigurable logic to implement

the above scheme, which increases the area overhead of the

system. Additionally, AHB utilizes the bus arbitration mode

to share the bus, and the above solution may affect the real-

time response of certain critical missions. Note that ML has

yet to be explored for the AHB bus.

4) SECURE ARCHITECTURE

With the increasing complexity of modern ICs and the reuse

of large numbers of 3PIPs, some researchers have attempted

to study HTs from an architectural perspective. An adversary

may exploit vulnerabilities from the architectural level to

undermine the security of hardware. Therefore, the demand

for a secure architecture is strong, and ML technology has

made progress in the area of secure architecture, as shown

in Fig. 12. In particular, Table 13 briefly describes the

main research contributions and innovations of ML algo-

rithms applied in secure architecture depending on Fig. 12.

As illustrated in Table 13, ML can be applied as an on-

chip security module to enhance the security of SoC at the

architectural level. Below, we introduce the main contents of

each ML-based approach, as well as the advantages and dis-

advantages between ML-based and non-ML-based methods

in detail.

Jin et al. advised that ML algorithms can be exploited for

secure architecture design in [113]. They also proposed a

FIGURE 12. Summary of ML applied in Secure Architecture.

FIGURE 13. Block diagram of proposed Post-deployment Trust Evaluation
Architecture [76].

trust evaluation architecture for the real-time protection of

deployed chips [64], [76]. Such a secure architecture applied

an on-chip analog ANN classifier to analyze current parame-

ters that are acquired and measured from on-chip sensors and

then classify as either Trojan-free or Trojan-infected chips.

Fig. 13 presents the block diagram of the proposed trusted

evaluation architecture. However, the accuracy and stability

of this scheme depend on the primary inputs, and the tradeoff

between security and performance overhead also needs to be

considered.

Krishnendu et al. introduced a runtime trust neural archi-

tecture (RTNA) based on adaptive resonance theory (ART1)

NNs [114]. RTNA focuses on preventing the confidentiality-

undermining attacks launched by HTs and masks the effects

of HTs as circuit aging through unsupervised learning strate-

gies. Although it can eliminate the need for a golden model,

the sensitivity of RTNA depends on the periodicity of the

internal clock in an SoC.

Table 14 illustrates the advantages and disadvantages

between ML-based and non-ML-based methods in secure

architecture. As shown in Table 14, the secure architecture
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TABLE 13. Main Research Contributions and Innovations of ML in Secure Architecture.

TABLE 14. Comparisons of Positives and Negatives between ML-based and non-ML-based Approaches in Secure Architecture.

mechanism hasmade substantial program in terms of wireless

crypto ICs, COTS, FPGA, and SoC. For conventional defense

strategies, early work combined a trust computing and vot-

ing mechanism to achieve the reliable execution of pro-

grams in untrusted COTS that may infect HTs. Subsequently,

researchers incorporated dynamic reconfiguration, software-

hardware co-defense, and function monitoring or verification

techniques to enhance the security of the architecture level.

Although such methods effectively resist HT attacks and

ensure safe operations, several disadvantages still remain.

For example, these solutions can increase the area over-

head and affect the performance of the system. Further-

more, such methods focus on detecting the HTs in untrusted

units/cells/modules, therein lacking corresponding error cor-

rection or recovery policies. These solutions may also fail

to detect collusion attacks. In addition, the countermeasures

mentioned above may not be applicable to SoC chips due

to the heterogeneous characteristics of current SoCs [18].

To this end, architects and researchers have attempted to

construct secure architectures specifically for SoCs such as

IIPS and E-IIPS. Such state-of-the-art methods incorporate

dedicated on-chip security IPs into an SoC to provide fine-

grained protection for SoCs to resist IP-level and SoC-level

HT attacks. However, these schemes work mainly at runtime,

and the effectiveness depends highly on the hardware secu-

rity primitives applied. In addition, golden designs are still

required as reference for some secure architectures.

On the other hand, ML-based strategies in secure archi-

tecture have similar advantages as non-ML-based methods.

However, the difference is that the former integrates the

classifiers as on-chip modules in the ICs. Especially for

wireless crypto ICs, for example, trust evaluation architecture

established through on-chip ANNs [76], the incorporation

of ML models can reduce the false positive rate (FPR) and

false negative rate (FNR) and can effectively identify Trojans

activated during operation. However, this method only evalu-

ates the reliability of the circuits under detection; to assist the

on-chip classifier, additional support components, such as on-

chip sensors, memory, etc., are also required, which increases

the area overhead. In addition, the construction of the training

dataset still requires golden designs, and the accuracy of HT

detection depends on the test vectors applied. For SoC chips,

for example, RNTA [114], ART1 NNs can be applied as

an on-chip module to provide confidentiality protection for

SoCs. This method does not require a golden model and can

effectively eliminate the impacts of Trojans. However, this is

a passive protection strategy that works if and only if the HTs

are actually activated and affect the SoCs.

IV. PRIOR LESSONS AND POTENTIAL CHALLENGES

This section discusses the lessons learned and challenges aris-

ing from previous studies. Section IV.A analyzes the usage

trends ofMLmodels in HT defense domains. In Section IV.B,

we explore the effects of ML on the performance of HT

countermeasures from several perspectives. The possible

problems and potential challenges remaining when applying

ML are discussed in Section IV.C.

A. RESEARCH TREND ANALYSIS

A review of available studies has indicated that ML is highly

attractive for enhancing the security and trustworthiness of

hardware. Here, we analyze the usage and research trends of

ML techniques that have been explored in the HT defense

domains. Fig. 14 summarizes the frequency of each ML

model applied for HT defense based on the references in this

survey.

From Fig. 14, it can be concluded that the most extensive

use case of ML is HT detection, accounting for approxi-

mately 58.3% of all cases. This is because HT detection is

the simplest and most common method of identifying HTs,
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FIGURE 14. Frequency of ML models applied in HT defense domains.

and ML can be inherently and effectively incorporated to

address HTs [16], [56]. Furthermore, DFS and bus security

have also seen remarkable applications of ML, with per-

centages of 20.8% and 16.7%, respectively. This trend is

reasonable because more untrusted entities are involved in

the design and fabrication process of modern ICs. These

entities may insert HTs at design time, especially SoC-level

HTs, which cannot be recognized only by HT detection. The

remaining application, secure architecture, is rarely explored,

accounting for only 4.2% of all cases. This approach can

be considered powerful and partially overcome the require-

ments for golden designs/ICs. However, it is subjective,

and security depends on the experience, funding, vulnera-

bility analysis and evaluation strategies used. In addition,

this process also requires substantial time and effort when

incorporating ML.

Further analysis of Fig. 14 reveals that ML algorithms

with the largest amount of published literature in the field

of HT defense are CAs, wherein K-means appear most fre-

quently. This is primarily because they are not restricted

by the requirements of golden ICs. On the other hand,

ANNs are the most widely exploited ML algorithm, being

involved in almost all HT defense areas. This can be explained

by the fact that ANNs have a variety of variants, both

supervised and unsupervised; hence, they can be adapted

to different application scenarios. From Fig. 14, we can

see that several ML algorithms have been explored in only

one or a few aspects. For example, K-means, ELM, DL

and BPNN are generally applied for HT detection; how-

ever, they have not yet been exploited for DFS, bus secu-

rity, or secure architecture. Therefore, this could provide

researchers with an opportunity to enhance the accuracy

of HT protection by incorporating these models into these

aspects. In addition, note that some ML optimization algo-

rithms have appeared for HT defense such as GAs for feature

selection [72].

In the following sections, we will specifically analyze and

discuss the usage and research trends of ML exploited in each

HT defense domain.

FIGURE 15. Frequency of ML used for HT detection.

1) USAGE OF ML IN HT DETECTION

Fig. 15 shows the usage of ML in HT detection. It is clear

that ML algorithms are used mostly in side-channel analysis,

probably because the side-channel information of ICs is easy

to sample and vectorize. The second dominant feature is

circuit feature analysis. However, it is rarely used in reverse

engineering because the process of feature extraction is com-

plex and time consuming, making it less practical.

From Fig. 15, we can conclude that SVM, including one-

class and two-class SVM, is the most widely used supervised

ML algorithm for identifying HT-infected ICs. However,

SVM assumes that there are golden ICs available for training.

Furthermore, K-means approaches are also relatively popular

unsupervised learning algorithms for HT detection. However,

they are not constrained by the above condition.

2) USAGE OF ML IN DFS

Fig. 16 shows the usage of ML in DFS. It can be seen from

Fig. 16 that publications on ML-based approaches in Trojan

assistance and trusted library are minimal in number, while

there is only one publication on implantation prevention.

This is primarily because Trojan detection assistance and

trusted library can benefit from supervised or unsupervised

methods to further enhance the detection and diagnosis of

HTs. However, implantation prevention cannot be effectively

incorporated with these strategies, except by applying several
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FIGURE 16. Frequency of ML used for DFS.

FIGURE 17. Frequency of ML used for bus security.

optimization algorithms to prevent the implantation or activa-

tion of HTs.

In addition, several design optimization technologies, such

as GAs, LightGBM, MOEA, AIOA, and PSO, have been

exploited in DFS alone. These algorithms will increase the

performance of feature extraction and selection and optimize

the performances of learning models (see Section III.B.2).

3) USAGE OF ML IN BUS SECURITY

Fig. 17 shows the usage of ML in bus security. Router

behaviors and traffic links are typically utilized as hardware

behavior-related features to identify the anomalies introduced

only through the on-chip routers of a many-core chip. These

routing nodes might be infected by system-level HTs, which

can launch anomalous behavior patterns.

As shown in Fig. 17, the features of router behaviors

are more frequently exploited to train several supervised

ML models, e.g., one-class SVM, LR, K-NN, and DT, for

hardware behavior analysis. However, traffic links have been

studied less frequently, and only SNN-based methods have

explored traffic links. One possible reason for this is that the

traffic patterns are somewhat more difficult to extract and also

require the assistance of adjacent routing nodes at runtime.

4) USAGE OF ML IN SECURE ARCHITECTURE

Fig. 18 shows the usage of each ML algorithm that has

been utilized for secure architecture. Current solutions in

this aspect generally employ 1) on-chip classifiers, 2) ded-

icated security IPs, or 3) design-for-debug (DfD) features to

ensure the security and trustworthiness ofmulti-core ICs from

FIGURE 18. Frequency of ML used for secure architecture.

an architectural perspective. However, ML has only been

explored in the first two schemes.

From Fig. 18, architects have only applied ANN algo-

rithms, for example, one-class NNs and ART1 NNs, to build

secure architectures for many-core chips. There have been

few publications on this aspect, especially studies explor-

ing ML. This, however, may also provide an opportunity

to construct architectures with better performance for multi-

core chips when learning models other than ANNs are

incorporated.

B. PRIOR LESSONS

The previous sections have systematically explored the

advances in applying ML to HT defense (see Section III.B);

however, the effective phases of ML in HT protection are not

indicated, and the necessary data information is also lacking.

Since ML-based approaches essentially follow a data-driven

pattern, most of the solutions have similar procedures, includ-

ing feature extraction, main feature selection, PV and noise

elimination, and classification or clustering (see Fig. 4). How-

ever, through an in-depth analysis, it is found that the specific

effective phase of each ML algorithm in HT protection are

not the same. Fig. 19 highlights the specific effective phase

of each ML explored in HT protection.

From Fig. 19, it can be concluded that most ML methods

are concentrated in the model selection and training phase.

This is primarily because researchers usually utilized ML to

determine whether the IC or IP under detection was infected

by a Trojan instance. Particularly, the classification or clus-

tering algorithms are selected according to whether the data

labels are available. Next is the dimensionality reduction

phase, and several commonly applied pretreatment tech-

niques are implemented in this phase to overcome dimen-

sional disaster, acquire the essential features, and simplify

the learning process. For other phases, such as PV and

noise elimination, main feature selection, and performance

optimization, ML has also been implemented for selecting

the best feature subset, eliminating PVs and measurement

noise, and tuning the parameters. In addition, note that some

optimization algorithms, which do not conform to the general

procedure in Fig. 19, are only effective during the design stage

of ICs such as MOEA.

To further illustrate the effects of ML-based solutions

on the performance of HT protection strategies, we also
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FIGURE 19. Effective phase of each ML algorithm applied in HT defense domains.

summarize and analyze the properties of the data used

with respect to the ML workflow, which may be of great

interest to the reader. In particular, Tables 15 – 18 sys-

tematically summarize each ML-based approach in the

reviewed state-of-the-art. In the following sections, we will

analyze and discuss these techniques and lessons learned

from the following seven aspects: (1) extraction and selec-

tion of relevant features, (2) dimensionality reduction and

pretreatment methods, (3) size of the training and test-

ing datasets, (4) reasonable selection of the learning mod-

els, (5) performance optimization strategies, (6) effect

of the PVs and noise, and (7) performance evaluation

criteria.

1) EXTRACTION AND SELECTION OF RELEVANT FEATURES

There are a variety of relevant features that can be exploited

to identify HT-infected ICs. From Tables 15 – 18, the widely

used features involve circuit net-related features, circuit

parameter features, and behavior-related features. Therefore,

it is important to select effective relevant features from the

raw dataset, which can significantly affect the performance of

the learning models. For example, when the K-NN model is

trained based on power-consumption instead of propagation

delay, the HT detection accuracy increases from 93.12% to

99.02% [88], [89].

On the other hand, the size of the feature vectors, i.e., the

attribute spaces, could also affect the performance of themod-

els. For instance, when the learning model is trained with the

best 11 gate-level Trojan features selected from the original

51 features using RF, the F-measure is increased from 66.9%

to 77.8% and to even 100% in certain cases [60]. In addition,

Karimian et al. applied a GA to select the optimal set of

RO measurements for training. After that, the HT detection

accuracy increased to 99.6%, and the equal error rate (EER)

decreased to even 0.8% in the best case [72]. However, this

process consumes more time overhead (190 and 120 times

more than PCA+convex hull and pure SVM, respectively),

because it requires many iterations to select the best feature

set.

2) DIMENSIONALITY REDUCTION AND PRETREATMENT

An increase in the number of relevant features may improve

the performance of the models; however, this is not always a

better option. Especially in the cases in which the number

of relevant features is very large and mutually correlated,

redundant features will affect the trained models. Therefore,

the dataset of the relevant features can be analyzed and recti-

fied using dimensionality reduction techniques to obtain the

optimized dataset for training to both prevent over-fitting and

improve the performance of the models.

PCA is an effective dimensionality reduction method and

is mostly utilized to address circuit parameter-related features

(see Tables 15 – 16). For instance, Cui et al. employed the

PCAmethod to reduce the original 10000-dimensional power

data to 2050 dimensions, thus greatly reducing the amount of

computations [90]. In [104], after using PCA to reduce the

number of data dimensions from 8000 to 17, the structure of

the NN was decreased from 8000×89×1 to 17×5×1, which

increased the HT detection accuracy from 41% to 100% and

reduced the computational complexity of the NN by more

than 8000 times.

In addition to PCA, there are several other pretreatment

techniques that have been applied to side-channel features,

e.g., wavelet translation [67], 2DPCA [71], andDFT [87] (see

Table 15). Moreover, Xue et al. introduced a modified unsu-

pervised correlation-based feature selection method (UCFS)

and adopted it to preprocess the raw power traces of ICs [91].

The detection accuracy of the clustering models subsequently

increased by approximately 5%. However, this process incurs

a slight increase in time overhead, increasing by up to 0.135%

in the EDA evaluation and 3.23% in the FPGA evaluation.

3) EFFECT OF THE TRAINING AND TESTING DATASET SIZES

The study of ML cannot be separated from the dataset

because the dataset is an essential component of any

ML-based approach and can affect the prediction results of

the learning models. Tables 15 – 18 list the size of the training

and testing datasets for each HT defense technique. Note that

the size of the training and testing datasets varies greatly in
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TABLE 15. ML Models in HT Detection.

the literature. For example, the size of the training dataset

exploited in [68] and [87] could be as small as 1 instance,

while the size of the testing dataset utilized in [84] was as

large as 500K samples (see Table 15).

Furthermore, increasing the size of the training dataset can

typically prevent over-fitting and improve the generalizability

of the models, thereby enhancing the accuracy in predicting

the target outputs of previously unseen inputs. For example,

the size of the training dataset in [72] varies from 8 instances

to 24 instances, and the corresponding HT detection accuracy

increases from 96.9% to 99.6% (see Table 16). At this point,

the time cost for training each classifier increased by 0.24sec,

0.89sec, and 94.35sec (i.e., 19.35%, 67.94%, and 49.69%),

respectively. However, the extra training time required due to

the changes in dataset size varies for different ML models.

In general, the ratio of the dataset size to the feature size

should be sufficiently large, typically 5–10 times the feature

size [115].

Note that in addition to Markv distance-based CA, unsu-

pervised learning models only require testing datasets as

input such as in [70], [85], [91], [111], and [114] (see

Tables 15 – 18). Some researchers use sample datasets with

labels as unlabeled data, for example, the work of Cui et al.

in [90], to train the learning models and then validate them

using the testing datasets.

4) REASONABLE SELECTION OF THE LEARNING MODELS

The selection of learning models should be based on the

application scenario, feature type, and availability of train-

ing datasets. An appropriate learning model can achieve

the best prediction outputs in HT problems. This is reason-

able because even if the features learned are identical, the
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TABLE 16. ML Models in DFS.

TABLE 17. ML Models in Bus Security.

TABLE 18. ML Models in Secure Architecture.

accuracy will vary under different applied learning models.

For instance, the work in [108] applied MBW, SVM, and

K-NN to identify the unexpected attacks created by

HT-infected routers, and the overall accuracy for MBW

was 5% to 8% higher than SVM and K-NN, respectively

(see Table 17).

On the one hand, ML algorithms can be selected

according to the given application scenario. For instance,

to minimize the number of rare signals and maximize

the performance of logic encryption, an MOEA method

has been applied to achieve the best obfuscation with an

average 50% Hamming distance and prevent the insertion

of HTs [75]. Other application scenarios include feature

selection, dimensionality reduction, classification/clustering,

and performance enhancement of the learning

models.

On the other hand, ML algorithms, especially super-

vised or unsupervised learning-based approaches, can be

selected according to whether the training datasets are

available. For example, the works of [59], [61], [73],

and [86], among others, selected a classification-based

approach for HT detection because they assumed that

golden designs or ICs are available as training datasets

(see Table 15).
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In addition, each ML-based approach has its own

characteristics such as distinct storage space and computing

requirements. These characteristics can also affect the pre-

cision of the predictions. Therefore, a single model may

not achieve good results. It has been suggested that several

learning models can compete with each other to select the

most suitable model for current applications [88], [89].

5) PERFORMANCE OPTIMIZATION STRATEGIES

The performance when applying ML varies greatly accord-

ing to various factors. Except for the aforementioned

points, there are several other factors that can also

greatly affect the performance of the learning models

such as different model parameter settings and iteration

numbers.

First, model parameters should be carefully tuned to ensure

that the final models will achieve optimal performance. The

parameters could be checked and determined by performing

cross-validation (CV) [86]. For instance, the ν parameter,

ν ∈ (0,1), is fine-tuned for the one-class ν-SVM to improve

the performance of classification [65]. In particular, taking

an s298 chip as an example, when the ν parameter is set

to 5×10−4, the classification accuracy on HT-free chips is

100%, while the accuracy on HT-infected chips varies from

0% to 9% according to the HT type.When ν is set to 7×10−3,

the detection accuracy on both HT-free and HT-infected chips

is 100%. Additionally, when ν is set to 5×10−2, the detection

accuracy on HT-free chips is 0%, while all HT-infected chips

are detected. However, the time consumption of this process

is at least 4 times greater for determining the optimal parame-

ter settings. Furthermore, several researchers have attempted

to obtain the best parameter settings for their models by

using optimization algorithms. For example, when PSO is

applied to ANNs for network weight optimization, the HT

detection accuracy with a TCR of 0.32% increases from

91.9% to 99.1% compared with the BPNN [104]. However,

the optimization program also results in at least 75% extra

time overhead.

Second, multiple iterations of the training or testing pro-

cedure can enhance the performance of the selected learning

models. The number of iterations varies greatly. For instance,

the iterations of MOEA necessary to find the most effective

logic encryption key can be as large as 10000, or 12 hours

(see Table 16). On the other hand, the experimental pro-

cess could also be iterated multiple times to determine the

most effective structure of the learning models. For example,

the work in [61] obtained the most efficient structure of

the NN classifier by iteratively changing the number of the

middle layers and the number of units in each middle layer,

thereby maximizing the TPR and TNR to 88.9% and 70.1%,

respectively. Similar to the CV approaches, this process also

spent much more time to obtain the most efficient structure

of the learning models.

In addition to choosing appropriate model parameters and

iterating, the performance of the learning models can also

be improved through ensembling strategies. For instance,

some progress has been made on voting ensembling [62] and

clustering ensembling [91] approaches to decrease FPR and

increase the HT detection accuracy.

According to the findings reported in previous research,

we suggest that ensemble learning assisted by an efficient

structure of learning models, parameter tuning and iteration

optimization strategies can enhance the performance of ML-

based approaches.

6) EFFECT OF PROCESS VARIATIONS AND NOISE

Random PVs and noise are two challenging factors that

can significantly affect the HT detection sensitivity. They

can mask effects of Trojan instances into the measurable

parameters of an IC, especially in side-channel analysis. This

concern becomes increasingly obvious with increasing IC

scale, making random PVs and noise difficult to separate

from the effects of the Trojan [4]. For instance, when random

PVs increased from 20% to 40%, the HT detection accuracy

in AES chips decreased from 89% to 44% and the FPR

increased from 5% to 8% (under LTPD = 0.111, unsuper-

vised clustering) [71]. Here, we outline several ML-related

solutions that have appeared in studies to decrease the impact

of random PVs and noise.

For the random PV problems, regression models, e.g.,

MLR, SVR, DTR, and RFR [96], can be applied to predict the

PV changes in circuit parameters that are highly correlated; as

a result, the RFRmodel obtains the lowest average prediction

error (PE) and PE standard deviation and can facilitate the

detection of HT-infected chips. This method did not cause

any area overhead, and the increase in performance over-

head was less than 2.25%. The study in [63] exploited a

Bayesian inference-based MAP algorithm to calibrate and

recover the spatial PV distribution for each fabricated chip

in the batch (see Section III.B.2). Furthermore, increasing

the number of PV monitors and effectively placing them can

further offset the effects of random PVs and enhance the

Trojan detection performance. However, this will result in

extra hardware overhead. In addition to the above techniques,

several pretreatment methods, such as 2DPCA, can also be

exploited to overcome this problem [71].

For noise problems, real data collected from hardware

should be adequately de-noised when working with data with

high levels of noise. For example, the collected data can be

sampled multiple times, and then, the mean value can be

calculated for noise elimination. Several studies have applied

pretreatment methods to eliminate noise effects. Ni et al.

employed the wavelet transform technique to reduce the high-

frequency noise and improve the HT detection accuracy from

92.2% to 99.2% [67]. It is suggested in [56] that noise-

sensitive models such as K-means should be avoided for data

training. In addition, model parameter tuning strategies can

also be explored to reduce the effects of noise [65].

7) PERFORMANCE EVALUATION CRITERIA

A variety of performance indicators have been used to evalu-

ate the effectiveness of ML-based methods. However, unified
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criteria for performance evaluation have yet to be developed.

As shown in Tables 15 – 18, the commonly utilized values

for evaluating the results include Accuracy, TPR, TNR, FPR,

and FNR.

Accuracy is the measure with the most extensive usage in

ML-based methods, especially in supervised learning, and

is related to the sum of true positive data (TP) and true

negative data (TN) [56]. However, it is probably not the best

measure for performance evaluations. For example, the HT

detection accuracy and TPR of s38417-T300 in [95] are as

high as 99.8% and 99.9%, respectively, whereas the TNR

is only 54.5%. In contrast, the accuracy, TPR, and TNR of

HT detection for s38417-T100 and s38417-T200 are almost

100%. From this perspective, it seems unreasonable to use

only one indicator to evaluate the prediction results obtained

by the learningmodels. Several measures, such as TNR, TPR,

and precision, can be collectively exploited to evaluate the

predictions of the learning models. For instance, the research

in [60] utilized four values to assess the results. Similar

concerns also exist in [86] and [95] (see Tables 15 – 16).

Note that the criteria used for the performance evaluation

may rely on the given specific application and ML algorithm.

For general ML-based HT detection methods, the indicators

mentioned above can be exploited to evaluate the effective-

ness of the prediction results. For other studies, such as the

work in [75], the Hamming distance is applied to evaluate

the logic encryption keys because its goal is to reduce the

occurrence of rare signals and maximize the efficiency of

logic encryption; for secure architecture with unsupervised

learning, there are two indicators, e.g., the hardware area and

power overhead, utilized to assess the performance [114].

In addition, only a few efforts have assessed the time overhead

of the ML-based approaches.

C. POTENTIAL PROBLEMS AND CHALLENGES

The previous section discusses the important research

advances, trends and lessons learned regarding the applica-

tion of ML techniques in HT defense. Although it is advanta-

geous to improve the security and reliability of hardware via

ML-based approaches, a variety of problems and challenges

remain and are summarized below:

1) EFFECTIVE SELECTION OF RELEVANT FEATURES

As described in Section IV.B.1, the size of the feature vectors

can affect the performance of the learning models. If the

size is too large, much time is required to learn them, thus

resulting in a large overhead. Conversely, if the size is too

small, they cannot be classified correctly. Hence, selecting the

appropriate number of relevant features for the ML models is

important for the accuracy and computational efficiency of

HT detection. However, in the current ML-based approaches,

only a small amount of work has focused on this aspect.

Therefore, how to apply ML algorithms to determine the

correct number of relevant features that should be selected

is an important factor and challenge to be considered.

2) PROPER CHOICE OF PRETREATMENT TECHNIQUES

The dimensionality reduction and pretreatment of HT-related

features can also enhance the performance and reduce the

utilization overhead of the learning models. However, pre-

treatment techniques are primarily effective for side-channel

analysis-based methods. When the impacts of HT instances

are very small, they may be filtered out as noise. In particular,

for some other features, such as circuit net-related and circuit

behavior-related features, pretreatment techniques have not

been utilized. As a result, how to consider the proper choice

of pretreatment technology to amplify the influence of HTs

on circuit features is a challenge, which can significantly alter

the quality of the output results.

3) REQUIRED OBSERVATION NUMBER FOR THE TRAINING

DATASET

The required observation number for the training data refers

to the minimal effective feature dataset that can be utilized to

train a model. This number depends on the selected features

and training models. For instance, different features of the

same ICs or different training models for the same features

need different numbers of observations for learning the under-

lying pattern. In addition, these numbers also depend on the

environment in which the procedures are carried out. As a

result, a balance is needed between the training dataset size

and the learning models to achieve the optimal performance,

therein reducing the risks of over-fitting and decreased gen-

eralization.

4) EFFECTIVE DEPLOYMENT OF ML KERNEL

The effective deployment of ML kernels should also be taken

into account. A ML kernel mainly contains feature extrac-

tion logic, the training or testing datasets, and the execution

strategies. As specialized security primitives, ML kernels can

be deployed as offline policies, for example, executed on

a PC or server [67], [86], [95], or implemented as online

policies through dedicated on-chip hardware modules, e.g.,

as in the studies in [58], [76], [107], [108], [114]. Although

the current approaches can effectively provide dynamic ver-

ification and trust evaluation, however some challenges and

risks still remain.

On the one hand, if the ML kernels were deployed offline,

it may not be possible to achieve automated defenses against

HT attacks during runtime. On the other hand, the hardware

implementation of ML kernels also faces several challenges,

such as extraction and pretreatment of relevant features,

complexity of computational models, and managing memory

transfers [107], [108]. Moreover, the security strategies that

are built on these dedicated on-chip classifiers might produce

a few false alarms compared to the software versions, while

the latter will lead to high resource utilization and execution

time overheads [76], [114].

In addition, several ML models cannot be trained offline,

such as K-NN and MBW. Although training ML algorithms

offline can reduce the overhead, this is also a challenge when

deploying this kind of learning model.
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5) BEST BALANCE FOR ML PRACTICES

As can be concluded from Section IV.B, ML has been

explored in each stage of HT defense, e.g., (i) effective

extraction of relevant features, (ii) attribute space genera-

tion, (iii) appropriate data pretreatment, (iv) PVs and noise

elimination, (v) proper training model selection, (vi) model

parameter tuning, and (vii) iteration improvement. However,

when applying ML to HT defenses, each stage of this process

should be properly balanced to achieve the best performance

of the models.

6) SECURITY OF ML-BASED DEFENSES

Since ML-based techniques can protect against HT attacks,

defense mechanisms themselves may also be compromised.

Adversaries may maliciously change the model parameters

and the training datasets or inject an attack to tamper with the

execution procedure of the classifiers, resulting in reduced

trustworthiness. Therefore, the security and trustworthiness

of the explored ML models also present a challenge in prac-

tical application.

7) NEWLY EMERGING THREATS

With the continuous emergence of new techniques, novel

methods can be exploited by an adversary to implement more

intelligent attacks. While effort should be devoted to solving

the remaining outstanding issues, newly emerging threats are

also a concern.

New three-dimensional (3D) IC technology will change

the current IC supply chain model and may produce new

vulnerabilities. For instance, Hasan et al. proposed a novel

HT that utilized the unique structure of 3D ICs [116]. Such a

Trojan circuit can only be triggered by the thermal effect of

middle tiers in 3D ICs.

In addition, attackers may also utilize ML techniques

to perform more covert and advanced attacks. Chen et al.

showed that the simulated annealing algorithm (SAA) can be

adopted to produce a new type of HT [117].

V. HT THREATS BEYOND CHIPS

This section describes theHT threats as well as corresponding

security policies in the hardware ecosystem. Section V.A

summarizes the new HT threats emerging in higher layers.

Section V.B proposes a reference model of HTs from the

perspective of the full hardware ecosystem to define the cor-

responding security protections that the hardware ecosystem

should possess. A discussion on future research directions is

provided in Section V.C.

A. SUMMARY OF HT PROBLEMS

HT attacks and HT defense are similar to a game between

a spear and a shield. Previous sections have analyzed and

discussed the advances, lessons learned, and challenges in

applying ML-based techniques for HT defense from the per-

spective of the chip layer. However, this is still not sufficient

in HT defense domains, and HT attacks have gone beyond the

FIGURE 20. 4 layers of HT threats in the hardware ecosystem.

chip layer. Beyond chips, novel HT attacks have appeared at

in higher layers and may corrupt the security of the overall

hardware ecosystem [118].

Ensuring the security and trustworthiness of the modern

hardware ecosystem requires not only ensuring the security

of the modern IC supply chain but also that of the entire

hardware ecosystem. In particular, given the development of

Internet of Things (IoT) technology, the security of electronic

devices is facing unprecedented challenges.

In the authors’ opinion, HT threats should be re-examined

from the viewpoint of the overall hardware ecosystem. Thus,

depending on the new threats, we categorize the HT threats to

the hardware ecosystem into four layers: the chip layer, com-

ponent layer, device layer and behavior layer. Fig. 20 gen-

eralizes the four layers of Trojan threats in the hardware

ecosystem. Note that the chip-layer HT threats (the first layer

of the four layers) include three types: IP-level HTs, bus-

level HTs and SoC-level HTs. These threats are introduced by

five typical scenarios during the IC design and manufacturing

process (see Section III.A), which represents the mainstream

of current HT research. In particular, the HT threats in each

layer are described as follows:

- Chip Layer. IP-level, bus-level and SoC-level HT

attacks, i.e., chip HTs, are maliciously injected into

chips at any stage of the modern IC supply chain and

can incur IP-level, bus-level and SoC-level impacts on

the chips (see Table 6).

- Component Layer. Printed circuit board (PCB) designs

can be deliberatelymodified by tamperingwith the inter-

connect lines at the internal layers or by altering the

components, thereby introducing PCB HTs (or compo-

nent HTs) [118], [119]. For example, an adversary may

inject such macro HTs into commercial-off-the-shelf

(COTS) modules or separate functional modules or use

PCB features, such as the joint test action group (JTAG)

interface and test hooks, to cause malfunctions or secret

information leakage [120], [122]. PCB HTs can specifi-

cally affect the components themselves.

- Device Layer. Device HTs may exist in the functional

components and COTS, e.g., Bluetooth and WiFi mod-

ules, of electronic devices and can affect the commu-

nication and data transmission between each function

module of the electronic device. For example, an exter-

nal memory module containing device HTs might tam-

per with data during communication or maliciously
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FIGURE 21. Overview of the proposed HTD reference model.

intercept and deliver such data through the connected

multiplexing interface.

- Behavior Layer. Abnormal behaviors and operations

by electronic devices during runtime can be produced

by extremely hidden HTs in hardware system or func-

tional modules. In addition, behavior HTs in boot pro-

grams can mislead the device and make it load untrusted

programs or change the ownership of an IoT device,

thus affecting the identity authentication for device-to-

device and device-to-user communication. For example,

a malicious universal serial bus (USB) flash disk (i.e.,

BadUSB) may disguise itself as another component,

thereby affecting system functionality.

Prior security solutions to the threats facing chips (e.g.,

SoCs) have typically focused on IP-level, bus-level, and SoC-

level HT attacks, i.e., ensuring that the chips used by con-

sumers are HT-free. During the design and development of

electronic devices, the above security features should still be

followed but are largely overlooked in the literature.

B. REFERENCE MODEL

Given the aforementioned HT threats, we suggest that the

defense policies for electronic devices against HT threats

should also be classified into multiple layers, and the threats

facing each layer should be addressed accordingly. Therefore,

we introduce an HT defense (HTD) reference model based on

summarizing the 4-layer HT threats that should be mitigated

in HT defense domains. In particular, the reference model

also illustrates and summarizes the security strategies that

each layer should apply to protect hardware devices from HT

attacks.

The proposed HTD reference model defines the corre-

sponding security protection based on four layers: the chip

verification layer, component validation layer, device authen-

tication layer, and behavior certification layer. Fig. 21 illus-

trates the security policies that each layer should apply to

address the corresponding HT issues. The following depicts

the security responsibilities of each layer in detail.

1) CHIP VERIFICATION LAYER

Chip verification aims to ensure the security of chips that are

used in hardware devices. This technique can ensure that the

chips have not been threatened by HTs. However, the current

IC supply chain model has many vulnerabilities, which can

FIGURE 22. Block diagram of IC design flow. (a) Current IC design flow
without vulnerabilities analysis [123]. (b) AMS-IP based design flow with
vulnerabilities analysis [123]. (c) Security IP based design flow with
vulnerabilities analysis [124].

be exploited by an adversary to perform HT attacks. This

severely affects the security and trustworthiness of chips (see

Section I). Therefore, researchers must strive to construct a

strong-secure IC supply chain model to resist HT threats of

the chip layer to provide fundamental security protection for

hardware devices at the chip layer.

Some effort has been devoted in this area. For instance,

Boher et al. proposed modifying the current IC design pro-

cess, as shown in Fig. 22 (a), and exposing all existing

vulnerabilities during the AMS-IP design process to identify

potential security risks [123], as shown in Fig. 22 (b). Huang

et al. introduced a novel security IP-based SoC design flow

that considered the threats from the very beginning of the SoC

design process [124], as shown in Fig. 22 (c). In addition, Sen-

gupta et al. applied the PSO algorithm to explore optimized

Trojan secure scheduling at design time [125].

2) COMPONENT VALIDATION LAYER

Component validation refers to providing protections for the

hardware function modules, such as PCB or COTS, against

PCB HTs. An adversary may implant a malicious design

into the COTS and hardware components or design them

using HT-infected chips, which may have catastrophic con-

sequences. To effectively mitigate these types of threats, pre-

ventive strategies through hardening have been presented to

address PCB HT attacks.

For example, Ghosh et al. adopted proactive approaches,

such as secure interfaces and secure PCB, to protect against

HT attacks at the PCB level [118]. Guo et al. proposed

protecting PCBs from tampering via board-level RO and tem-

perature compensation [120]. In addition, Nin et al. suggested

that changes in the impedance of wiring could be used for

component-based HT detection [121].

3) DEVICE AUTHENTICATION LAYER

Device authentication primarily protects electronic devices

composed of one or more hardware function components
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or subsystems. Device authentication is a direct technique

for securing electronic devices and overcoming device

HT threats from the following respects.

First, hardware devices can be integrated with a hardware

security module (HSM) to specifically address the attacks

created by the device-based HTs such as tamper-proofing and

tamper-evidencing functions [126]. For example, ARM have

introduced a platform security architecture (PSA) to secure

IoT devices [127], [128]. Second, security authentication

mechanisms for devices should be enforced to ensure that

the underlying hardware is HT-free before application. For

instance, Fern et al. utilized commercial formal equivalence

checking tools to detect HTs inserted into the JTAG instruc-

tion set [129]. Third, devices can be developed using a secure

architecture that can implement trusted executions based on

untrusted COTS or hardware components that might contain

HTs. For example, the trustworthy computing-based tech-

niques in DFS, which are designed to overcome the untrusted

3PIP issues, can be extended to also address the issues of

device authentication [16], [52].

4) BEHAVIOR CERTIFICATION LAYER

Behavior certification is a newly introduced topic that aims

to reveal the abnormal behaviors of a system. The behavior

features can be formally described as hardware-based secu-

rity metadata. By modeling and analyzing the behavior fea-

tures of hardware devices, components and COTS in normal

operation, this technique can identify abnormal behaviors

through dynamic certification, thereby ensuring the security

and reliability of the system at runtime. This method can

also be called a trusted audit, and it is expected to be able

to effectively defeat behavior HT attacks.

Some progress has been made in this area by academia

and industry. For example, Choi et al. proposed a secure

firmware validation and update scheme for consumer

devices [130]. The Mentor Company introduced root of trust

and secure boot strategies to build a chain of trust policy

for electronic devices [131]. Erdin et al. presented a novel

threat detection and prevention framework to dynamically

analyze USB cases through individual hardware-assisted

modules [132].

C. FUTURE TRENDS AND DIRECTIONS

ML algorithms have shown great promise in overcoming

chip-layer HT threats. Beyond the chip layer, ML-based tech-

niques for HT defense deserve further exploration. We can

observe from the proposed HTD reference model that HT

problems in higher layers have similar concerns to those

at the chip layer. Therefore, the insights obtained from

research at the chip layer indicate that ML will be help-

ful in solving HT problems at higher layers. In addition,

the security practices currently applied in industry usually

adopt hardware-supported security products, e.g., HSM, iso-

lationmechanisms, and encryption units, combined with soft-

ware to secure the system. Compared with current indus-

try security practices, our HTD reference model can be

considered as supplementary to such practices and focuses

on the HT problems from an overall viewpoint.

Future trends and directions may include the following:

(1) Chip layer:

- The application ofMLmethods to logic testing is worthy

of further study because there is no relevant work in this

field at present.

- Research on HT problems in ANN-based accelerators

and computing units is lacking [133] and should be

considered. This is primarily because as an accelera-

tion engine, ANNs have made significant advances in

many application areas, and the design of ANN-based

hardware accelerator IP is a major trend for the future.

Therefore, its security cannot be overlooked.

- Additional studies on secure architecture, especially

those exploiting ML technologies to develop more

robust, security-aware architectures for modern SoCs

to resist bus-level and SoC-level HT threats rather than

IP-level HT threats, remain a challenging and essential

aspect of HT defense domains.

- Currently, ML-based approaches focus mainly on the

detection, diagnosis and prevention of HT attacks,

whereas there are few studies on error correction and

recovery. Therefore, research on how to explore ML

methods for providing error correction and recovery is

also an interesting future direction.

(2) Beyond Chip layer:

- Recent ML-based approaches are aimed at HT problems

at the chip layer (see Section III.B). However, several

recent advances have indicated that HTs may threaten

the security and trustworthiness of hardware at higher

layers [118], [119]. Hence, exploring high-layer HT

countermeasures via ML might also be an interesting

future direction.

- The studies in [75] and [125] explored using optimiza-

tion algorithms to enhance the reliability of IC design

flows. As a result, such discussions could be used as

references to establish a strong IC supply chain or even

hardware ecosystem.

(3) Application Scenarios:

- There is minimal work incorporated into important

application scenarios applying ML to solve HT prob-

lems. Future trends and research directions may con-

sider both HT problems with practical scenarios to build

scenario-related HT defense strategies. For example,

the work in [134] considered HT issues in implantable

medical devices, while the research in [135] focused

on HT problems facing smart grids and home area net-

works.

(4) Other Directions:

- In the implementation phase, most ML algorithms are

applied mainly to data collection and experimental val-

idation (see Fig. 19). However, there are only a few

papers about the ML implementation. Note that the spe-

cific deployment and implementation ofML-based tech-

niques still have several challenges (see Section IV.C.4),
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which could be an important future direction and should

be considered in practice.

- The security of the ML models themselves against vari-

ous threats should be considered in constructing model-

trust HT defense strategies (see Section IV.C.6).

- Rather than focusing on HT defenses, how ML could

be exploited by attackers is beginning to attract the

attention of researchers (see Section IV.C.7).

VI. CONCLUSION

HT threats have drawn increased attention in academic and

industrial research. In this article, we elaborated on the

state-of-the-art applications of ML-based approaches in HT

defense studies. By analyzing the relevant achievements,

potential challenges and problems facing current research

are identified. Since the HT threats have evolved beyond

the chip layer, a reference model is presented to illustrate

corresponding HT defense strategy requirements from the

perspective of the entire hardware ecosystem.

The primary purpose of this article is to demonstrate the

latest advances in the application of ML-based techniques

in HT defense fields to provide a general understanding and

a guidebook to those who want to engage in HT defense

research.
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