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Abstract— The threats malware pose to the people around the world are increasing rapidly. A software that sneaks to your computer 

system without your knowledge with a harmful intent to disrupt your computer operations. Due to the vast number of malware, it is 

impossible to handle malware by human engineers. Therefore, security researchers are taking great efforts to develop accurate and 

effective techniques to detect malware. This paper offers an overall view and detailed survey for malware detection methods like 

signature-based and heuristic-based. The Signature-based is largely used today by anti-virus software to detect malware. It is fast and 

capable to detect known malware. However, it is not effective in detecting zero-day malware and is easily defeated by malware that 

use obfuscation techniques. Likewise, a considerable amount of legitimate files that are incorrectly classified as malware (false 

positive) and long scanning time are the major limitations of heuristic-based. Alternatively, memory-based analysis is a promising 

technique that gives a comprehensive view of malware and it is expected to become more popular in malware detection. This paper 

mainly focuses on the following areas: (1) providing an overview of malware types and malware detection methods, (2) discussing 

current malware analysis techniques, their findings and limitations, (3) studying the malware obfuscation, attacking and anti-analysis 

techniques, and (4) exploring the structure of memory-based analysis in malware detection. The methods of malware detection are 

compared with each other according to their techniques, selected features, accuracy rates, and their advantages and disadvantages. 

This paper aims to help the readers to have a comprehensive view of malware detection and discuss the importance of memory-based 

analysis in malware detection.   
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I. INTRODUCTION 

The threat that malware (short for malicious software) 

cause to the computing world is growing rapidly. According 

to the AV-TEST institute, 48 million various malware 

samples were developed in the first quarter of 2017 [1].  

Due to the vast number of malware, it is impossible to 

handle malware by human engineers. Thus, security 

researchers use malware detection systems to detect 

malware. Detection systems includes two stages: analysis 

and detection. Anti-virus software commonly use signature-

based approach to detect malware. This approach is fast and 

capable to detect known malware with minimal false 

positive rate. However, signature-based fails to discover 

unknown malware and is easily defeated by malware that 

uses obfuscation techniques. On the other hand, behavior-

based is another approach that is used in malware detection 

where suspicious files are executed in a controlled 

environment, monitored, and marked as malicious if their 

behaviors match with known malware behavior. Behavior-

based is able to detect unknown malware and malware that 

use obfuscation techniques, but it is time consuming with 

considerable false positive rate [2].      

Alternatively, memory-based is another approach that is 

becoming more popular in malware detection lately due to 

the wealth of information found in the dumped memory that 

can be used in investigating malicious activities [3].  

The paper is organized as follows: In the next section, 

under material and method, we explain malware types, 

detection methods, analysis techniques, and an overview of 

related works, Section III discusses the future direction of 
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malware and the main sources of malware dataset. Finally, 

the conclusion of the survey. 

II. MATERIAL AND METHOD 

This section provides an overview of malware types, 

malware detection methods, and analysis techniques.  

A. Malware Types   

Malware is a software that is inserted into the system 

without user knowlege. It can harm the computer system by 

compromising computer functions, stealing data or evading 

access controls. The following list presents the common 

categories of malware: 

•  Virus: A malicious software that duplicates itself by 

injecting its code into other programs. Virus can 

spread from one program to another and from one 

computer to another [4].  

•  Worms: Are malicious programs that replicate 

themselves in a computer and destroy the files and 

data on it. Worms might also encrypt files or send 

junk emails. Unlike viruses, worms carry themselves 

in their own containers [5].  

•  Trojan horse: While acting as a legitimate programs, 

Trojans perform unknown and unwanted activities [4]. 

Trojans allow attackers to gain access to the effective 

computer and extract user confidential information 

like password and banking details. 

•  Spyware: Spyware is a software that continuously 

spies on the users activities. It is used to gather 

information about the users like webpages regularly 

visited and credit card number without their 

knowledge, then sends that information back to the 

attackers [6].      

•  Rootkit: Rootkit is a collection of malicious software 

that is programmed to access a computer system and 

allow other types of malware to get into the system 

[7].  

•  Ransomware: A harmful software that allows the 

hacker to lock the computer and restrict the victim 

access to the vital information. Ransomware encrypts 

the important data on the infected computer or 

network then asks for payment to lift the restriction 

[8]. 

•  Adware:  Advertising-supported software is a type of 

malware that continuously brings advertisements to 

the computer. Usually adware is bundled with free 

downloaded software and applications like free 

playing games [9].  

•  Botnet: A malware that remotely controls a group of 

devices like PCs, smart phones and internet of things 

devices are infected and controlled by a cybercriminal.  

Botnet is typically used for spam emails campaigns or 

denial of service attacks.  Users are often unaware that 

their systems are infected by a botnet malware [10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 1  Methods of Malware detection  

 

B. Malware Detection Methods   

Malware detection methods are categorized in several 

ways from different point of view. In this section, we discuss 

the main methods of malware detection: Signature-based and 

heuristic-based. Figure 1, shows the main malware detection 

methods. 

1)  Signature-Based Detection  

Majority of available antivirus software use signature-

based approach. This approach extracts unique signature 

from captured malware file and use this signature to detect 

similar malware. A signature is a sequence of bytes or a file 

hash that can be used to identify specific malware [11]. 

Therefore, this method has small false positive (FP) rate 

[14].. However, it is not difficult for attackers to change 

malware signature to evade being detected by antivirus 

software. Signature-based is very effective and fast in 

detecting known malware, but it is incapable to capture new 

released malware [13]. Signature-based approach depends 

on implementing static analysis to extract exceptional byte 

sequences known as marks [12]Figure 2 shows the 

signature-based general procedure for malware detection.    

   

    

 

 

 

 

 

 

 

 

 
 

 
Fig. 2  Signature-based general flow 

 

Malware authors have created another challenge for 

signature-based approach by using obfuscation techniques. 

This techniques include dead code insertion, register 

reassignment, instruction substitution, and code 

manipulation [15]. In the following we briefly explain each 

technique. 

•  Dead-Code insertion:   This simple code obfuscation 

technique adds some NOP (No operation Performed) 

instructions or inserts ineffective PUSH/ POP 

statements to a program to change its look, but keep 

its same behavior. 
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•  Register Reassignment: This technique works by 

switching registers or by reassigning the value of one 

register to unused one. For example, EAX is 

reassigned to EBX register.  

•  Subroutine Reordering: Subroutine is a group of 

program operations that do a specific task. This 

technique changes the subroutines order randomly in 

the program.    

•  Instruction Substitution: In this technique, original 

instructions that perform the same function are 

replaced by equivalent ones, such as replacing MOV 

instruction with PUSH instruction. 

•  Code Integration: A malware that embedded itself to 

another legal program. It was first found in Zmist 

malware. To apply this technique, malware 

decompiles its targeted program and adds itself in 

between its source code [16]. Code integration is 

considered as one of the most sophisticated 

obfuscation techniques that allows malware to evade 

detection.       

2)  Heuristic-Based Detection  

Heuristic-based is also known as anomaly or behavior-

based detection. In this detection, the activities performed by 

malware during runtime are analyzed in a training (learning) 

phase. After that, the file is labelled as malicious or 

legitimate file during a testing (monitoring) phase based on a 

pattern extracted during the training test [11]. 

Unlike signature-based, behavior-based approach is 

capable to detect both unknown malware and malware that 

uses obfuscation techniques. However, the major drawbacks 

of behavior-based are a considerable false positive rate (FP) 

and excessive monitoring time [14]. Further, the reduction of 

thousands of extracted features, evaluate similarities 

between them, and monitoring malware activities are 

directly effecting the ability of detecting zero-day malware 

attacks [17], [18].      

Heuristic-based commonly depends on data mining 

techniques in order to understand the behaviors of running 

files, such techniques include Support Vector Machine, 

Naïve Bayes, Decision Tree and Random Forest.  

C. Malware Analysis Techniques 

Malware analysis concerns studying malicious files with 

the aim of having better understanding about several aspects 

of malware like malware behavior, evolution over time, and 

their selected targets [19]. The outcome of malware analysis 

should allow security firms to strengthen their defence 

strategies against malware attacks.   

Techniques used for malware analysis mainly categorized 

into three parts: Static, Dynamic, and Hybrid analysis. In 

addition, memory-based analysis is another technique that is 

very useful in malware analysis. Figure 3, shows malware 

analysis techniques and their common features.   

 
Fig. 3 Malware analysis techniques and features 

1)  Static Analysis  

This technique refers to analyzing the Portable Executable 

files (PE files) without running them. Malware commonly 

uses binary packer, such as UPX and ASP Pack Shell, to 

avoid being analyzed [6]. A PE file needs to be unpacked 

and decompressed before being analyzed. To decompile 

windows executable file a disassembler tool can be used, 

such as IDA Pro and OlleyDbg that display assembly 

instructions, provide information about the malware, and 

extract pattern to identify the attacker.    

The detection pattern can be extracted in static analysis 

like Windows API calls, string signature, control flow graph 

(CFG), opcode (operation codes) frequency and byte 

sequence n-grams [20]. In the following, we explain the 

main features in static analysis. 

Almost all programs use Windows API (short for 

Application Programming Interface) calls to communicate 

with the operating system. For example, the "OpenFileW" is 

a Windows API in "Kernel32.dll" that creates a new file or 

opens an existing one. Therefore, API calls reveal the 

behavior of programs and could be considered as an 

essential mark in malware detection. For instance, the 

Windows API calls "WriteProcessMemory", "LoadLibrary" 

and "CreateRemoteThread" are a suspected behavior used by 

malware for DLL injection into a process, while rarely come 

together in a legitimate set.  DLL injection is discussed in 

memory analysis section. 

Strings are good indicator of malicious existence. Strings 

reveal the attacker's intent and goals since they often hold 

critical semantic information [6]. For example, the following 

string “This program cannot be run in DOS mode” indicates 

malicious file when it is found outside of the typical PE 

header, which is a common feature of droppers and 

installers. 

Control Flow Graph (CFG): A CFG is a directed graph 

that demonstrates the control flow of a program, where 

blocks of code are presented by nodes and control flow paths 

by edges. In malware detection, CFG can be used to capture 

the behavior of a PE file and extract the program structure 

[19].         
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Opcodes is the first part of a machine code instruction 

(also called machine language) that identifies what operation 

to be executed by the CPU. A full machine language 

instruction composed of opcode and, optionally, one or more 

operands (e.g., "mov eax 7", "add eax ecx" and "sub ebx 1"). 

Opcode can be employed as a feature in malware detection 

by testing opcode frequency or calculating the similarity 

between opcode sequences.     

N-grams are all of contiguous subsequences of a sequence 

of a length N [21]. For example, the word "MALWARE" is 

a sequence of letters of length 7, it can be segmented into 3-

grams as: "MAL", "ALW", "LWA", "WAR" and "ARE". N-

Grams have been applied with various detection features like 

API calls and opcodes.  

Beside the previous features, there are other features that 

have been used in static analysis like file size and function 

length. Networking features like TCP/ UDP ports, 

destination IP and HTTP request are also features in static 

analysis [19].  

One of the most significant research on malware signature 

evasion techniques has been done by Kirat and Vigna [22]. 

They were able to extract techniques from 2810 malware 

samples and group them into 78 similar evasion signature 

techniques.  

Hashemi and Hamzeh presented a new approach that 

extracts unique opcode from the executable file and converts 

them into digital image. Visual features are then extracted 

from the image using Local Binary Pattern (LBP), which is 

one of the most famous texture extraction method in image 

processing. Finally, machine-learning methods are used to 

detect malware. The proposed detection technique obtained 

accuracy rate of 91.9% [23]. Shaid and Maarof also 

suggested displaying malware in the form of images. Their 

technique captures API calls of malware and converts them 

into visual cues or images. These images are used to identify 

malware variants [24].  

On the other hand, both Salehi et al. [25] and Han et al. 

[26] built their techniques based on extracted API calls. 

Salehi et al. extracted API calls from each binary files and 

used API frequencies to learn the classifier. Then, three 

feature sets were generated ‘API calls list’, 'API arguments' 

and ‘API and arguments list’, and each set has been tested 

separately. Results showed that API arguments list is better 

compared to the other two sets with accuracy of 98.4% and 

false positive rate around 3%. In the same way, Han et al. 

extracted APIs from the IAT table (import Address Table) 

using static analysis. They compared the extracted API 

sequence with another sequence and calculated the similarity 

between them to classify malware family. Han found that 

malware within the same family are about 40% similar and 

false positive rate calculated 16%. Likewise, Cheng et al. 

[27] analyzed native APIs sequences using WinDbg tool and 

applied Support Vector Machine to detect shellcode 

malware. They used a too small training set, and were able 

to achieve 94.37% accuracy rate. However, false negative 

rate accounted as high as 44.44%. 

Table I, shows the results of surveyed papers that applied 

static analysis in their malware detection approaches. 

 

 

TABLE I 

SURVEYED PAPERS THAT APPLY STATIC ANALYSIS 

Author 

Year 

Static 

feature 
Classifier 

Dataset 

Malware/ 

Benign 

Acc FP 

Hashemi  

2018 [23] 
Opcode KNN 

M=3,100 

B=3,100 
91.9% - 

Salehi  

2014 [25] 

API, 

arguments 

ROT-F, RF, 

DT, J48, 

NB 

M=826 

B=395 
98.4% 3% 

Han 

2012 [26] 

APIs 

sequence 
- M=545 40%* 16% 

Santos 

2013 [28] 

Opcode 

sequence 

DT, KNN, 

BN, SVM 

M=1,000 

B=1,000 
97.5% 6% 

Cheng 

2017 [27] 

Native APIs 

sequence 
SVM 

M=18/ 

B=72 
94.4% 1.4% 

* Similarity within the same family 

 

2)  Dynamic Analysis 

It is also called behavior analysis. In this analysis, 

suspicious files are executed and monitored in a controlled 

environment like VM, emulator or simulator [9]. The 

infected files need to be analyzed in invisible environment 

for simple reason that some malware are supported with 

anti-virtual machine and anti-emulator techniques. Malware 

behave normally when they detect such environment and do 

not show any malicious activity. 

Compared to static analysis, dynamic analysis is more 

effective as there is no need to disassemble the infected file 

to analyze it. In addition, dynamic analysis is able to detect 

known and unknown malware. Furthermore, obfuscated and 

polymorphic malware cannot evade dynamic detection. 

However, dynamic analysis is time intensive and resource 

consuming [6]. 

TABLE II 

SURVEYED PAPERS THAT APPLY DYNAMIC ANALYSIS 

Author 

Year 

Dynamic 

feature 
Classifier 

Dataset 

Malware/ 

Benign 

Acc FP 

Liang 

2016 [32] 
API calls 

DT, ANN, 

SVM 
M=12,199 91.3% - 

Mohaisen 

2013 [29]  

file system, 

registry, 

network 

SVM, DT, 

KNN 
M=1,980 95% 5% 

Mohaisen 

2015 [30] 

file system, 

registry, 

network  

SVM, DT, 

KNN 
M=115,000 99% - 

Galal 

2017 [33] 

APIs 

sequence 

DT, RF, 

SVM 

M=2,000/ 

B=2,000 
97.2% - 

Ki 

2015 [34] 

APIs 

sequence 
- M=23,080 99.8% 0% 

Fan 

2015 [35] 

User API, 

native API 

J48, NB, 

SVM 

M=773/ 

B=253 
95.9% 5% 

 

Various techniques can be used with dynamic analysis, 

such as function call monitoring, function parameter 

analysis, instruction traces, and information flow tracking 

[20]. Reviewing the surveyed papers, API and system calls 

are largely employed in malware dynamic analysis as well as 

file system, Windows registry and network features.  

Mohaisen et al. tried to classify Zeus malware using 

several machine learning techniques. Artifacts like registry, 

file system, and network features were used to learn the 
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classifier [29]. The dataset consisted of 1980 samples of 

Zeus Banking Trojan and accuracy achieved close to 95%. 

Afterward, in the next work, Mohaisen et al. proposed  

AMAL, an automated and behavior-based malware analysis 

and labeling system. AMAL consists of two components: 

AutoMal and AutoLabel.  Automal uses file system, network 

activity logging, and registry monitoring features to analyze 

malware samples. Further, AutoLabel classifies malware 

samples into their families based on their behavior. AMAL 

used more than 115,000 malware samples and achieved 

detection rate around 99% [30].    

In their work [31], Chen and Bridges studied WannaCry 

Ransomware features from system logs, which is produced 

using Cuckoo Sandbox. TF-IDF approach, shorts for term 

frequency–inverse document frequency, has been used to 

calculate frequent terms with high weights in the system 

logs.   

Most of the dynamic techniques focused on API calls to 

represent malware behaviors (e.g. [32], [33], [34]–[35]). 

Liang et al. [32] introduced a behavior-based malware 

variant classification technique that captures API calls of 

running malware, then creates multilayer dependency chain 

based on the dependency relationship of the API calls. The 

technique is able to measure the degree of similarity between 

malware variants. Galal et al. also applied API hook to 

capture information about API calls and their parameters. 

Then, related API calls that share common semantic 

purposes are set together into sequences. Their highest 

accuracy was 97.19% achieved using Decision Tree [33]. 

Likewise, Ki et al. [34] proposed an approach that extracts 

user level API call sequences by using, Microsoft supported 

tool, Detours and apply Multiple Sequence Alignment 

algorithm (MSA), which is one of the most popular 

algorithms used in DNA sequence alignment. After that, Ki 

et al. applied Longest Common Subsequence algorithm 

(LCS) to match similar sequences. The approach achieved 

99.8% accuracy and zero (0) false positive. Further, Fan et 

al. [35] used API hooking to trace APIs that malware try to 

hide. The technique monitors both regular APIs and native 

APIs like undocumented and low-level APIs. In the 

experiment, only 80 APIs were selected and detection rate 

reached 95% using Decision Tree and Naive Bayesian 

algorithms. 

Table II, shows the results of surveyed papers that applied 

dynamic analysis in their malware detection approaches. 

In dynamic analysis, malware are executed in a controlled 

environment to examine the live behavior of malicious files 

without being harmed by them. There are several types of 

control environment like emulators, debuggers, simulators 

and virtual machines. Next, we present each type and 

explain the strategies malware use in order to detect the 

existence of controlled environment.  

Emulator is a controlled environment that is used to 

control the execution of a malicious program. A full 

emulation system controls the CPU, hard disk and resources. 

Emulators are distinguished based on the controlled part of 

the running environment. TEMU, which is part of BitBlaze 

project, introduced in 2008 by Sont et al. [36] as a full 

emulation system that supports dynamic binary analysis by 

monitoring features like network activities, memory 

locations, function calls, processes, modules and API calls. 

TTAnaylze [37] is another type of emulators that works on 

QEMU, which is an open source machine emulator, and 

provides automatic malware analysis module that records 

windows APIs  and native APIs. However, majority of 

malware are able to detect emulated environment. In case of 

partial emulation system, malware can perform operation 

that works outside the emulated environment to detect 

whether it is running inside a controlled environment. 

Further, malware can still detect the characteristics and side 

effects of full environment system like detecting imperfect 

CPU features and comparing system properties (i.e. 

currently logged-in user) [38].  

Debugger is another type of controlled environment, 

which is a program that observes and examines the 

execution of other binary programs. WinDbg, OllyDbg and 

GDB are debuggers that can be used to monitor the 

execution behavior of suspected binaries at the instruction 

level. Unlike OllyDbg, WinDbg also supports kernel 

debugging. Further, IDA Pro is a static analysis tool that has 

less capable built-in debugger. Though, The use of Windows 

API is the most straightforward technique malware use to 

determine that it is being debugged. API functions that can 

be used for anti-debugging include “IsDebuggerPresent”, 

“CheckRemoteDebuggerPresent” and “OutputDebugString”. 

Another technique performed by malware is to look for signs 

of installing debugging tool on the system such as searching 

registry keys, files and directories. Further, malware can use 

several techniques like exceptions and interrupts to disrupt 

the execution of a program only if it is being debugged [40].  

Another environment is simulator, which is a program 

that simulates operation in order to be observed by user 

without actually performing that operation. Simulator tools 

such as CWSandbox, Norman sandbox and Detours allow 

malware to execute in a controlled virtual environment and 

record its behavior. Detours is used to intercept function 

calls made by a process to any DLL (DLL injection), while 

CWSandbox performs API hooking to capture Windows 

API calls invoked by a malware. On the other hand, Norman 

sandbox simulates Windows operating system, LAN and 

Internet connectivity on the host machine [38]. For anti-

simulation, Malware checks for registry, files or processes to 

determine the existence of certain sandbox product. The 

execution time is another technique to detect sandbox and 

virtual environment as executing instruction under controlled 

environment requires longer time than a real one [41]. 

The most common controlled environment is virtual 

machine (VM). VM is a computer software that runs an 

operating system and applications. These applications are 

isolated from the host system. Thus, running file or software 

inside a virtual machine cannot interfere with the host 

machine. Virtual machine applications include VirtualBox, 

Parallels and VMware. A virtual machine monitor (VMM) is 

a software that creates, runs and manages virtual machine 
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[39]. Furthermore, it is also responsible for assigning 

hardware to virtual machine. However, Malware examines 

the existence of virtual machine (VM) on a system by 

searching for artifacts that installed VM tools leave in the 

file system, registry and process listing. Malware can also 

look for certain instructions that can be invoked by user 

mode such as “sidt”, “sgdt“, and “sldt“ to observe the 

presence of VM tools [40]. Furthermore, Hardware 

characteristics and features may lead to the presents of 

virtual machine. For example, CPUID hypervisor bit is set to 

zero in the real system and malware, therefore, can test this 

bit to determine if they are running inside a virtual machine. 

In addition, most debuggers and Virtual Machines create 

files and drivers that belong to that particular tool, malware 

can look for these artifacts to discover the presence of virtual 

machines or debuggers [41]. 

3)  Hybrid Analysis 

Hybrid analysis gather information about malware from 

static analysis and dynamic analysis. By using hybrid 

analysis, security researchers gain the benefits of both 

analyses, static and dynamic. Therefore, increasing the 

ability of detecting malicious programs correctly [42]. Both 

analyses have their own advantages and limitations. Static 

analysis is cheap, fast and safer compared to dynamic 

analysis. However, malware evade it by using obfuscation 

techniques. On the other hand, dynamic analysis is reliable 

and can beats obfuscation techniques. Furthermore, it is able 

to recognize malware variants and unknown malware 

families. However it is time intensive and resource 

consuming [6].  

Shijo and Salim [43] proposed an integrated technique to 

detect and classify unknown files. Printable strings 

information (PSI) feature was extracted by performing static 

analysis. Besides, using dynamic analysis to extract API 

calls. Experiment showed detection rate of 95.8% applying 

static, 97.1% applying dynamic and 98.7% for hybrid 

analysis. Their highest accuracy was achieved using SVM 

technique. Islam et al. [44] extracted two features from static 

analysis Function Length Frequency (FLF) and Printable 

String information (PSI) and API calls and parameters 

during dynamic analysis. Based on the results, Random 

Forest machine learning technique showed the highest result 

in classifying the data. In addition, they have found that 

applying the approach on old malware samples has better 

accuracy compared to new samples, with accuracy of 99.8% 

and 97.1% respectively. Further, Ma et al. [45] introduced a 

method to reduce false positive in malware classification 

called Ensemble that combined static and dynamic classifier 

into one classifier. The method uses multi features include 

static import functions and dynamic call functions to 

improve the accuracy and reduce false positive. 

Furthermore, Santos et al. [46] introduced OPEM, a tool to 

detect unknown malicious files by combining opcode 

frequency obtained during static analysis and system calls, 

operations and raised exceptions during dynamic analysis. 

OPEM showed accuracy of 95.9% from static analysis, 

77.26% using dynamic and 96.6% using hybrid analysis with 

SVM.  

Table III, shows the results of surveyed papers that applied 

hybrid analysis in their malware detection approaches. 

TABLE III 

SURVEYED PAPERS THAT APPLY HYBRID ANALYSIS 

Author 

Year 

Feature 

Static/ 

Dynamic 

Classifier 

Dataset 

Malware/ 

Benign 

Acc FP 

Shijo  

2016 [43] 
PSI/ API calls RF, SVM 

M=1,368 

B=456 
98.7% - 

Islam 

2013 [44] 

Function 

length, PSI/ 

API 

DT, SVM, 

RF, IB1 
M=2,939 97% 5.1% 

Ma  

2016 [45] 

Import 

functions/ call 

functions 

DT, NB, 

SVM 
M=279 - - 

Santos 

2013 [46] 

Opcode/ 

system calls, 

operations, and 

exceptions 

DT, KNN, 

NB, SVM 

M=13,189 

B=13,000 
96.6% 3% 

 

4)  Memory Analysis 

Memory analysis has become a popular technique, in the 

recent years, proven to be efficient and accurate in malware 

analysis. Memory analysis attracts malware analysts as it 

gives comprehensive analysis of malware [47] since it is 

able to examine malware hooks and code outside the 

function normal scope [48]. It uses memory image to 

analyze information about running programs, operating 

system, and the general state of the computer.  

Memory forensics investigations pass through two steps: 

memory acquisition and memory analysis. In the memory 

acquisition, the memory of the target machine is dumped to 

obtain a memory image using tools such as Memoryze, 

FastDump and DumpIt. The memory analysis step is to 

analyze the memory image looking for malicious activities 

using tools like Volatility and Rekall. 

A number of researches related to memory forensics 

techniques have been proposed. Teller and Hayon [50] 

proposed a trigger-based memory analysis approach that 

triggers memory dumps based on the following events: API-

based, performance-based and instrumentation-based in 

order to know what happens during the execution of the 

malware file and not only at the end of it. Further, Choi et al. 

[51] introduced a modification to Teller and Hayon’s 

technique in [50]. By implementing API trigger-based 

memory dump technology for Cuckoo sandbox, which 

makes Cuckoo capable to dump the memory at every wanted 

API call.  

In their research, Mosli et al. [3] investigated three 

features extracted from memory images:  imported libraries, 

registry activity, and API function calls to detect malware. 

Their highest accuracy was about 96% using SVM with data 

from registry activity. Afterward, in the next research, Mosli 

et al. [52] proposed a technique that uses the process handles 

to detect whether the suspected sample is malicious or 

benign. The experiment have spotted the light on the main 

types of handles that malicious process commonly use, such 
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as section handles, process handles and mutants. On the 

other hands, Zaki and Humphrey [7] studied the memory 

artifacts left by rootkits in kernel-level such as: driver, 

module, SSDT hook, IDT hook and callback. The 

experiment has proven that callback functions, modified 

drivers, and attached devices are the most suspicious 

activities in the kernel-level. Table IV, shows the results of 

surveyed papers that applied memory analysis in their 

malware detection approaches. 

TABLE IV 

SURVEYED PAPERS THAT APPLY MEMORY ANALYSIS 

Author 

Year 
Feature Classifier 

Dataset 

Malware/ 

Benign 

Acc FP 

Mosli  

2016 [3] 

Registry, 

imported libraries, 

API calls 

SVM, 

SGD, DT, 

RF, KNN 

M=400 

B=100 
96% - 

Mosli  

2017 [52] 

Number of 

opened handles 

KNN, 

SVM, RF 

M=3,130 

B=1,157 
91.4% - 

Zaki 

2014 [7] 

Driver, module, 

hooks, callback  
- - - - 

 

In addition, Memory forensic techniques are able to 

monitor malware behaviors like API hooking, DLL injection 

and Hidden processes [49]. In the following, we discuss each 

behavior and malware anti-forensics techniques.   

Windows API is generally used to communicate with 

system resources like files, processes, registry and network 

[53]. Malware use a technique called API hooking to 

interrupt the function calls. In other words, it can change the 

behavior and flow of API calls. Following is the most 

common types of API hooks [54] [55]: 

•  IAT hooks: A PE file stores the address of API 

functions in the Import Address Table (IAT). Malware 

overwrites the location of API in the IAT, thus forcing 

the process to call an attacker function instead of the 

original API. Many well-known malware are using 

IAT hook like Zeus, FinFisher and Stuxnet.       

•  Inline API hooks: Also called trampoline or detours 

hooks. Inline hooks require writing in few places in 

process's memory. For example, Malware adds jump 

instruction (JMP) into a legitimate function prologue 

to move the flow to a different memory location that is 

occupied by a rootkit.  

•  IDT hook: The Interrupt Descriptor Table (IDT) stores 

functions for handling interrupts and exceptions. 

Malware changes the value in 0x2E entry in the IDT 

and gain control when a call to a kernel mode API 

function is executed. 

•  SSDT hooks: The System Service Descriptor Table 

(SSDT) is a table containing pointers to kernel mode 

functions. Malware uses SSDT to protect and hide 

themselves. For example, by hooking the SSDT 

malware can negate the call to "NTOpenProcess" and, 

therefore, no program will be able to kill the malicious 

process.  

•  IRP hook: Applications in Windows communicate 

with drivers through Input/ Output Request Packet 

(IRP). Malware uses IRP hook to do malicious actions 

such as keylogging and disk access filtering.  

DLL injection is a technique aiming to insert a malicious 

code into a legitimate process.  Once the malicious DLL is 

injected, the execution flow is transferred to the malicious 

memory space [56]. The DLL injection can be categorized 

into the following main techniques: 

•  Classic DLL injection using remote thread: DLL 

injection is a common technique malware use to inject 

malicious code into another process.  Malware write 

the Dynamic Link Library (DLL) path in the virtual 

address space of the target process, and creates remote 

thread in the target process to make sure that it loads 

the malicious DLL. The malware first calls the API 

"VirtualAllocEx" to assign memory into the address 

space of the victim, and then it calls 

"WriteProcessMemory" to write the DLL path into the 

allocated memory. After that, "LoadLibrary" is called 

for the DLL load. Finally, the malware calls function 

like "CreateRemoteThread", "NtCreateThreadEx" or 

"RtlCreateUserThread" to create the thread in the 

target process [57].       

•  Injecting via registry modification:  Hackers modify 

the value of "Appinit_DLL" registry key that is 

located at 

"HKLM\Software\Microsoft\WindowsNT\CurrentVer

sion\Windows\Appinit_Dlls", to conduct DLL 

injection. Then, the location of the malware library is 

added to "Appinit_DLL" to make another process load 

their library. To apply this, malware calls 

"RegCreateKeyEx" to open the "Appinit_Dlls" 

registry key, and then calls "RegSetValueEx" to 

modify its values. Additional, rebooting the system is 

needed to apply the modifications in the registry 

values to the system [58].  

•  Injection using window hooking function: In 

Windows application, program code is executed based 

on events. Malware can load their malicious DLL 

whenever certain event is triggered. The 

"SetWindowsHookEx" function is used to install a 

hook routine into the hook chain. Thus, the malicious 

action inputted into the "SetWindowsHookEx" 

function is called whenever a particular event is 

triggered such as mouse move or key press [56].  

The existence of hidden processes, files or network 

connections is a good indicator of a successful malicious 

attack [59]. Therefore, attackers try to hide their malicious 

artifacts. Hiding a process is typically accomplished by 

rootkit called stealth rootkit, which modifies program 

binaries. Another method is to hook the call path between 

applications and the kernel by modifying system call tables, 

dynamic link structures, libraries, or operating system 

functions [60]. Further, some rootkits modify the kernel data 

structures using direct kernel object manipulation (DKOM) 

leading to incorrect user requests and, therefore, unrevealing 

the existence of malicious process [61].          

In order to prevent memory forensics or make it 

unworkable, malware use anti-forensic techniques. The 

following are some of anti-forensic techniques: 

•  Memory hiding:  Malware tries to hide malicious 

memory region form memory analysis tools.  
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•  Memory acquisition failure: By terminating certain 

processes or limiting driver loading to thwart memory 

acquisition process. 

•  Anti-Carving: Malware attempts to prevent memory 

analysts from extracting kernel information by 

manipulating the kernel data structure field in order to 

make the memory analysis tools mislead the field [62]. 

•  Increase timing: Malware creates fake objects in the 

kernel data structure to increase analysis time. 

III. RESULTS AND DISCUSSION 

A. Future Direction 

Many security researchers believe that the future of 

malware still ambiguous. There are a number of challenges 

in the future of malware development in which, we believe, 

security firms and researchers should consider. First, one 

worry is the automation of creating malware variants. 

Studying the latest malware detection methods and using 

machine learning, attackers can develop automated tools that 

are able to produce thousands of different malware samples 

every day. Second, malware groups may offer those malware 

automation tools for rental or sale, giving the chance to low-

skilled groups and amateur hackers to enter malware world. 

Third, Malware are rapidly change in terms of structure and 

functionality. Most of the surveyed techniques used one 

malware dataset to learn and test the behaviors (the 

classifier). Although they have got a high detection rate, but 

results would be different when applying the techniques on a 

new released malware. Finally, malware are expected to 

become more complicated in the future. Attackers might use 

a new encryption methods or obfuscation techniques to make 

malware detection and analysis an impossible job. 

The traditional way anti-virus software use to capture 

malware is by searching for known signature. Unfortunately, 

this technique can easily be evaded by simple obfuscation 

technique [63]. Static and dynamic analyses have their 

limitations as well. Alternatively, memory analysis gives 

comprehensive analysis of malware. Malware can hide its 

code in the computer system effectively. However, malware 

must execute its code in the memory to perform its tasks 

eventually. Volatile memory (RAM) keeps its contents until 

it is powered off.  Therefore, analyzing the RAM can tell us 

about the activities which is happening in the system. 

Valuable live Information that resides in memory include 

running process, Dynamic Link Library (DLL), files, 

registry keys, services, sockets and ports, and active network 

connections [64]. Thus, memory analysis is a promising 

technique that is expected to become more popular, together 

with data mining and machine learning techniques, in 

malware detection.  

B. Dataset 

In order to study malware techniques and tricks, it is very 

important for researchers to collect malware samples. One 

way to collect samples is by using honeypots, which is a 

dedicated machine deployed to attract attackers to learn their 

attacking techniques [65]. Researchers can also use known 

malicious URLs. In addition, malware dataset can be 

downloaded from anti-malware agents' websites such as 

Malware DB, Malwr, MalShare, VX Heaven, theZoo and 

VirusShare malware repository. Furthermore, some 

specialized companies and research project groups 

occasionally share their collection of malware datasets. In 

2015, Microsoft provided 500 GB dataset of known malware 

files in the big challenge competition [66]. Recently, 

Endgame is sharing “ember” project with 600 thousands 

malicious files to address the lack of open-source datasets in 

the domain of static detection malware [67].   

IV. CONCLUSION 

Malware is causing a critical threat to our computer 

systems, internet and data. The challenges that malware 

authors pose by developing complicated malware that 

frequently changes their signature to evade detection, and by 

releasing more sophisticated versions of malware that use 

new obfuscation techniques,  have brought many issues to 

anti-virus software and security researchers. In this paper, 

we briefly surveyed malware types and malware detection 

methods. We have also reviewed three types of malware 

analysis techniques: static, dynamic and hybrid. We also 

gave a discussion on the use of memory forensics in finding 

malware artifacts. In addition, we discussed the future of 

memory-based analysis in malware detection. Techniques 

used by malware to evade detection such as obfuscation, 

attacking and anti-analysis techniques have been reviewed as 

well. Finally, the future direction of malware development 

and the main sources of malware dataset have been studied 

in this paper.   
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