

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid

and Memory Analysis

Rami Sihwail
#
, Khairuddin Omar

*
, K. A. Z. Ariffin

*

Supporting Studies Centre, King Faisal University, Al-Hasa, Saudi Arabia

E-mail: rsihwail@kfu.edu.sa

*Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia

E-mail: ko@ukm.edu.my, k.akram@ukm.edu.my

Abstract— The threats malware pose to the people around the world are increasing rapidly. A software that sneaks to your computer

system without your knowledge with a harmful intent to disrupt your computer operations. Due to the vast number of malware, it is

impossible to handle malware by human engineers. Therefore, security researchers are taking great efforts to develop accurate and

effective techniques to detect malware. This paper offers an overall view and detailed survey for malware detection methods like

signature-based and heuristic-based. The Signature-based is largely used today by anti-virus software to detect malware. It is fast and

capable to detect known malware. However, it is not effective in detecting zero-day malware and is easily defeated by malware that

use obfuscation techniques. Likewise, a considerable amount of legitimate files that are incorrectly classified as malware (false

positive) and long scanning time are the major limitations of heuristic-based. Alternatively, memory-based analysis is a promising

technique that gives a comprehensive view of malware and it is expected to become more popular in malware detection. This paper

mainly focuses on the following areas: (1) providing an overview of malware types and malware detection methods, (2) discussing

current malware analysis techniques, their findings and limitations, (3) studying the malware obfuscation, attacking and anti-analysis

techniques, and (4) exploring the structure of memory-based analysis in malware detection. The methods of malware detection are

compared with each other according to their techniques, selected features, accuracy rates, and their advantages and disadvantages.

This paper aims to help the readers to have a comprehensive view of malware detection and discuss the importance of memory-based

analysis in malware detection.

Keywords— malicious; malware detection method; feature; behaviour-based; memory analysis; security.

I. INTRODUCTION

The threat that malware (short for malicious software)

cause to the computing world is growing rapidly. According

to the AV-TEST institute, 48 million various malware

samples were developed in the first quarter of 2017 [1].

Due to the vast number of malware, it is impossible to

handle malware by human engineers. Thus, security

researchers use malware detection systems to detect

malware. Detection systems includes two stages: analysis

and detection. Anti-virus software commonly use signature-

based approach to detect malware. This approach is fast and

capable to detect known malware with minimal false

positive rate. However, signature-based fails to discover

unknown malware and is easily defeated by malware that

uses obfuscation techniques. On the other hand, behavior-

based is another approach that is used in malware detection

where suspicious files are executed in a controlled

environment, monitored, and marked as malicious if their

behaviors match with known malware behavior. Behavior-

based is able to detect unknown malware and malware that

use obfuscation techniques, but it is time consuming with

considerable false positive rate [2].

Alternatively, memory-based is another approach that is

becoming more popular in malware detection lately due to

the wealth of information found in the dumped memory that

can be used in investigating malicious activities [3].

The paper is organized as follows: In the next section,

under material and method, we explain malware types,

detection methods, analysis techniques, and an overview of

related works, Section III discusses the future direction of

1662

Malware
Detection
Methods

Signature-
Based

Hash
Signature

Byte
Signature

Heuristic-
Based

Static
Techniques

Dynamic
Techniques

malware and the main sources of malware dataset. Finally,

the conclusion of the survey.

II. MATERIAL AND METHOD

This section provides an overview of malware types,

malware detection methods, and analysis techniques.

A. Malware Types

Malware is a software that is inserted into the system

without user knowlege. It can harm the computer system by

compromising computer functions, stealing data or evading

access controls. The following list presents the common

categories of malware:

• Virus: A malicious software that duplicates itself by

injecting its code into other programs. Virus can

spread from one program to another and from one

computer to another [4].

• Worms: Are malicious programs that replicate

themselves in a computer and destroy the files and

data on it. Worms might also encrypt files or send

junk emails. Unlike viruses, worms carry themselves

in their own containers [5].

• Trojan horse: While acting as a legitimate programs,

Trojans perform unknown and unwanted activities [4].

Trojans allow attackers to gain access to the effective

computer and extract user confidential information

like password and banking details.

• Spyware: Spyware is a software that continuously

spies on the users activities. It is used to gather

information about the users like webpages regularly

visited and credit card number without their

knowledge, then sends that information back to the

attackers [6].

• Rootkit: Rootkit is a collection of malicious software

that is programmed to access a computer system and

allow other types of malware to get into the system

[7].

• Ransomware: A harmful software that allows the

hacker to lock the computer and restrict the victim

access to the vital information. Ransomware encrypts

the important data on the infected computer or

network then asks for payment to lift the restriction

[8].

• Adware: Advertising-supported software is a type of

malware that continuously brings advertisements to

the computer. Usually adware is bundled with free

downloaded software and applications like free

playing games [9].

• Botnet: A malware that remotely controls a group of

devices like PCs, smart phones and internet of things

devices are infected and controlled by a cybercriminal.

Botnet is typically used for spam emails campaigns or

denial of service attacks. Users are often unaware that

their systems are infected by a botnet malware [10].

Fig. 1 Methods of Malware detection

B. Malware Detection Methods

Malware detection methods are categorized in several

ways from different point of view. In this section, we discuss

the main methods of malware detection: Signature-based and

heuristic-based. Figure 1, shows the main malware detection

methods.

1) Signature-Based Detection

Majority of available antivirus software use signature-

based approach. This approach extracts unique signature

from captured malware file and use this signature to detect

similar malware. A signature is a sequence of bytes or a file

hash that can be used to identify specific malware [11].

Therefore, this method has small false positive (FP) rate

[14].. However, it is not difficult for attackers to change

malware signature to evade being detected by antivirus

software. Signature-based is very effective and fast in

detecting known malware, but it is incapable to capture new

released malware [13]. Signature-based approach depends

on implementing static analysis to extract exceptional byte

sequences known as marks [12]Figure 2 shows the

signature-based general procedure for malware detection.

Fig. 2 Signature-based general flow

Malware authors have created another challenge for

signature-based approach by using obfuscation techniques.

This techniques include dead code insertion, register

reassignment, instruction substitution, and code

manipulation [15]. In the following we briefly explain each

technique.

• Dead-Code insertion: This simple code obfuscation

technique adds some NOP (No operation Performed)

instructions or inserts ineffective PUSH/ POP

statements to a program to change its look, but keep

its same behavior.

1663

• Register Reassignment: This technique works by

switching registers or by reassigning the value of one

register to unused one. For example, EAX is

reassigned to EBX register.

• Subroutine Reordering: Subroutine is a group of

program operations that do a specific task. This

technique changes the subroutines order randomly in

the program.

• Instruction Substitution: In this technique, original

instructions that perform the same function are

replaced by equivalent ones, such as replacing MOV

instruction with PUSH instruction.

• Code Integration: A malware that embedded itself to

another legal program. It was first found in Zmist

malware. To apply this technique, malware

decompiles its targeted program and adds itself in

between its source code [16]. Code integration is

considered as one of the most sophisticated

obfuscation techniques that allows malware to evade

detection.

2) Heuristic-Based Detection

Heuristic-based is also known as anomaly or behavior-

based detection. In this detection, the activities performed by

malware during runtime are analyzed in a training (learning)

phase. After that, the file is labelled as malicious or

legitimate file during a testing (monitoring) phase based on a

pattern extracted during the training test [11].

Unlike signature-based, behavior-based approach is

capable to detect both unknown malware and malware that

uses obfuscation techniques. However, the major drawbacks

of behavior-based are a considerable false positive rate (FP)

and excessive monitoring time [14]. Further, the reduction of

thousands of extracted features, evaluate similarities

between them, and monitoring malware activities are

directly effecting the ability of detecting zero-day malware

attacks [17], [18].

Heuristic-based commonly depends on data mining

techniques in order to understand the behaviors of running

files, such techniques include Support Vector Machine,

Naïve Bayes, Decision Tree and Random Forest.

C. Malware Analysis Techniques

Malware analysis concerns studying malicious files with

the aim of having better understanding about several aspects

of malware like malware behavior, evolution over time, and

their selected targets [19]. The outcome of malware analysis

should allow security firms to strengthen their defence

strategies against malware attacks.

Techniques used for malware analysis mainly categorized

into three parts: Static, Dynamic, and Hybrid analysis. In

addition, memory-based analysis is another technique that is

very useful in malware analysis. Figure 3, shows malware

analysis techniques and their common features.

Fig. 3 Malware analysis techniques and features

1) Static Analysis

This technique refers to analyzing the Portable Executable

files (PE files) without running them. Malware commonly

uses binary packer, such as UPX and ASP Pack Shell, to

avoid being analyzed [6]. A PE file needs to be unpacked

and decompressed before being analyzed. To decompile

windows executable file a disassembler tool can be used,

such as IDA Pro and OlleyDbg that display assembly

instructions, provide information about the malware, and

extract pattern to identify the attacker.

The detection pattern can be extracted in static analysis

like Windows API calls, string signature, control flow graph

(CFG), opcode (operation codes) frequency and byte

sequence n-grams [20]. In the following, we explain the

main features in static analysis.

Almost all programs use Windows API (short for

Application Programming Interface) calls to communicate

with the operating system. For example, the "OpenFileW" is

a Windows API in "Kernel32.dll" that creates a new file or

opens an existing one. Therefore, API calls reveal the

behavior of programs and could be considered as an

essential mark in malware detection. For instance, the

Windows API calls "WriteProcessMemory", "LoadLibrary"

and "CreateRemoteThread" are a suspected behavior used by

malware for DLL injection into a process, while rarely come

together in a legitimate set. DLL injection is discussed in

memory analysis section.

Strings are good indicator of malicious existence. Strings

reveal the attacker's intent and goals since they often hold

critical semantic information [6]. For example, the following

string “This program cannot be run in DOS mode” indicates

malicious file when it is found outside of the typical PE

header, which is a common feature of droppers and

installers.

Control Flow Graph (CFG): A CFG is a directed graph

that demonstrates the control flow of a program, where

blocks of code are presented by nodes and control flow paths

by edges. In malware detection, CFG can be used to capture

the behavior of a PE file and extract the program structure

[19].

1664

Opcodes is the first part of a machine code instruction

(also called machine language) that identifies what operation

to be executed by the CPU. A full machine language

instruction composed of opcode and, optionally, one or more

operands (e.g., "mov eax 7", "add eax ecx" and "sub ebx 1").

Opcode can be employed as a feature in malware detection

by testing opcode frequency or calculating the similarity

between opcode sequences.

N-grams are all of contiguous subsequences of a sequence

of a length N [21]. For example, the word "MALWARE" is

a sequence of letters of length 7, it can be segmented into 3-

grams as: "MAL", "ALW", "LWA", "WAR" and "ARE". N-

Grams have been applied with various detection features like

API calls and opcodes.

Beside the previous features, there are other features that

have been used in static analysis like file size and function

length. Networking features like TCP/ UDP ports,

destination IP and HTTP request are also features in static

analysis [19].

One of the most significant research on malware signature

evasion techniques has been done by Kirat and Vigna [22].

They were able to extract techniques from 2810 malware

samples and group them into 78 similar evasion signature

techniques.

Hashemi and Hamzeh presented a new approach that

extracts unique opcode from the executable file and converts

them into digital image. Visual features are then extracted

from the image using Local Binary Pattern (LBP), which is

one of the most famous texture extraction method in image

processing. Finally, machine-learning methods are used to

detect malware. The proposed detection technique obtained

accuracy rate of 91.9% [23]. Shaid and Maarof also

suggested displaying malware in the form of images. Their

technique captures API calls of malware and converts them

into visual cues or images. These images are used to identify

malware variants [24].

On the other hand, both Salehi et al. [25] and Han et al.

[26] built their techniques based on extracted API calls.

Salehi et al. extracted API calls from each binary files and

used API frequencies to learn the classifier. Then, three

feature sets were generated ‘API calls list’, 'API arguments'

and ‘API and arguments list’, and each set has been tested

separately. Results showed that API arguments list is better

compared to the other two sets with accuracy of 98.4% and

false positive rate around 3%. In the same way, Han et al.

extracted APIs from the IAT table (import Address Table)

using static analysis. They compared the extracted API

sequence with another sequence and calculated the similarity

between them to classify malware family. Han found that

malware within the same family are about 40% similar and

false positive rate calculated 16%. Likewise, Cheng et al.

[27] analyzed native APIs sequences using WinDbg tool and

applied Support Vector Machine to detect shellcode

malware. They used a too small training set, and were able

to achieve 94.37% accuracy rate. However, false negative

rate accounted as high as 44.44%.

Table I, shows the results of surveyed papers that applied

static analysis in their malware detection approaches.

TABLE I

SURVEYED PAPERS THAT APPLY STATIC ANALYSIS

Author

Year

Static

feature
Classifier

Dataset

Malware/

Benign

Acc FP

Hashemi

2018 [23]
Opcode KNN

M=3,100

B=3,100
91.9% -

Salehi

2014 [25]

API,

arguments

ROT-F, RF,

DT, J48,

NB

M=826

B=395
98.4% 3%

Han

2012 [26]

APIs

sequence
- M=545 40%* 16%

Santos

2013 [28]

Opcode

sequence

DT, KNN,

BN, SVM

M=1,000

B=1,000
97.5% 6%

Cheng

2017 [27]

Native APIs

sequence
SVM

M=18/

B=72
94.4% 1.4%

* Similarity within the same family

2) Dynamic Analysis

It is also called behavior analysis. In this analysis,

suspicious files are executed and monitored in a controlled

environment like VM, emulator or simulator [9]. The

infected files need to be analyzed in invisible environment

for simple reason that some malware are supported with

anti-virtual machine and anti-emulator techniques. Malware

behave normally when they detect such environment and do

not show any malicious activity.

Compared to static analysis, dynamic analysis is more

effective as there is no need to disassemble the infected file

to analyze it. In addition, dynamic analysis is able to detect

known and unknown malware. Furthermore, obfuscated and

polymorphic malware cannot evade dynamic detection.

However, dynamic analysis is time intensive and resource

consuming [6].

TABLE II

SURVEYED PAPERS THAT APPLY DYNAMIC ANALYSIS

Author

Year

Dynamic

feature
Classifier

Dataset

Malware/

Benign

Acc FP

Liang

2016 [32]
API calls

DT, ANN,

SVM
M=12,199 91.3% -

Mohaisen

2013 [29]

file system,

registry,

network

SVM, DT,

KNN
M=1,980 95% 5%

Mohaisen

2015 [30]

file system,

registry,

network

SVM, DT,

KNN
M=115,000 99% -

Galal

2017 [33]

APIs

sequence

DT, RF,

SVM

M=2,000/

B=2,000
97.2% -

Ki

2015 [34]

APIs

sequence
- M=23,080 99.8% 0%

Fan

2015 [35]

User API,

native API

J48, NB,

SVM

M=773/

B=253
95.9% 5%

Various techniques can be used with dynamic analysis,

such as function call monitoring, function parameter

analysis, instruction traces, and information flow tracking

[20]. Reviewing the surveyed papers, API and system calls

are largely employed in malware dynamic analysis as well as

file system, Windows registry and network features.

Mohaisen et al. tried to classify Zeus malware using

several machine learning techniques. Artifacts like registry,

file system, and network features were used to learn the

1665

classifier [29]. The dataset consisted of 1980 samples of

Zeus Banking Trojan and accuracy achieved close to 95%.

Afterward, in the next work, Mohaisen et al. proposed

AMAL, an automated and behavior-based malware analysis

and labeling system. AMAL consists of two components:

AutoMal and AutoLabel. Automal uses file system, network

activity logging, and registry monitoring features to analyze

malware samples. Further, AutoLabel classifies malware

samples into their families based on their behavior. AMAL

used more than 115,000 malware samples and achieved

detection rate around 99% [30].

In their work [31], Chen and Bridges studied WannaCry

Ransomware features from system logs, which is produced

using Cuckoo Sandbox. TF-IDF approach, shorts for term

frequency–inverse document frequency, has been used to

calculate frequent terms with high weights in the system

logs.

Most of the dynamic techniques focused on API calls to

represent malware behaviors (e.g. [32], [33], [34]–[35]).

Liang et al. [32] introduced a behavior-based malware

variant classification technique that captures API calls of

running malware, then creates multilayer dependency chain

based on the dependency relationship of the API calls. The

technique is able to measure the degree of similarity between

malware variants. Galal et al. also applied API hook to

capture information about API calls and their parameters.

Then, related API calls that share common semantic

purposes are set together into sequences. Their highest

accuracy was 97.19% achieved using Decision Tree [33].

Likewise, Ki et al. [34] proposed an approach that extracts

user level API call sequences by using, Microsoft supported

tool, Detours and apply Multiple Sequence Alignment

algorithm (MSA), which is one of the most popular

algorithms used in DNA sequence alignment. After that, Ki

et al. applied Longest Common Subsequence algorithm

(LCS) to match similar sequences. The approach achieved

99.8% accuracy and zero (0) false positive. Further, Fan et

al. [35] used API hooking to trace APIs that malware try to

hide. The technique monitors both regular APIs and native

APIs like undocumented and low-level APIs. In the

experiment, only 80 APIs were selected and detection rate

reached 95% using Decision Tree and Naive Bayesian

algorithms.

Table II, shows the results of surveyed papers that applied

dynamic analysis in their malware detection approaches.

In dynamic analysis, malware are executed in a controlled

environment to examine the live behavior of malicious files

without being harmed by them. There are several types of

control environment like emulators, debuggers, simulators

and virtual machines. Next, we present each type and

explain the strategies malware use in order to detect the

existence of controlled environment.

Emulator is a controlled environment that is used to

control the execution of a malicious program. A full

emulation system controls the CPU, hard disk and resources.

Emulators are distinguished based on the controlled part of

the running environment. TEMU, which is part of BitBlaze

project, introduced in 2008 by Sont et al. [36] as a full

emulation system that supports dynamic binary analysis by

monitoring features like network activities, memory

locations, function calls, processes, modules and API calls.

TTAnaylze [37] is another type of emulators that works on

QEMU, which is an open source machine emulator, and

provides automatic malware analysis module that records

windows APIs and native APIs. However, majority of

malware are able to detect emulated environment. In case of

partial emulation system, malware can perform operation

that works outside the emulated environment to detect

whether it is running inside a controlled environment.

Further, malware can still detect the characteristics and side

effects of full environment system like detecting imperfect

CPU features and comparing system properties (i.e.

currently logged-in user) [38].

Debugger is another type of controlled environment,

which is a program that observes and examines the

execution of other binary programs. WinDbg, OllyDbg and

GDB are debuggers that can be used to monitor the

execution behavior of suspected binaries at the instruction

level. Unlike OllyDbg, WinDbg also supports kernel

debugging. Further, IDA Pro is a static analysis tool that has

less capable built-in debugger. Though, The use of Windows

API is the most straightforward technique malware use to

determine that it is being debugged. API functions that can

be used for anti-debugging include “IsDebuggerPresent”,

“CheckRemoteDebuggerPresent” and “OutputDebugString”.

Another technique performed by malware is to look for signs

of installing debugging tool on the system such as searching

registry keys, files and directories. Further, malware can use

several techniques like exceptions and interrupts to disrupt

the execution of a program only if it is being debugged [40].

Another environment is simulator, which is a program

that simulates operation in order to be observed by user

without actually performing that operation. Simulator tools

such as CWSandbox, Norman sandbox and Detours allow

malware to execute in a controlled virtual environment and

record its behavior. Detours is used to intercept function

calls made by a process to any DLL (DLL injection), while

CWSandbox performs API hooking to capture Windows

API calls invoked by a malware. On the other hand, Norman

sandbox simulates Windows operating system, LAN and

Internet connectivity on the host machine [38]. For anti-

simulation, Malware checks for registry, files or processes to

determine the existence of certain sandbox product. The

execution time is another technique to detect sandbox and

virtual environment as executing instruction under controlled

environment requires longer time than a real one [41].

The most common controlled environment is virtual

machine (VM). VM is a computer software that runs an

operating system and applications. These applications are

isolated from the host system. Thus, running file or software

inside a virtual machine cannot interfere with the host

machine. Virtual machine applications include VirtualBox,

Parallels and VMware. A virtual machine monitor (VMM) is

a software that creates, runs and manages virtual machine

1666

[39]. Furthermore, it is also responsible for assigning

hardware to virtual machine. However, Malware examines

the existence of virtual machine (VM) on a system by

searching for artifacts that installed VM tools leave in the

file system, registry and process listing. Malware can also

look for certain instructions that can be invoked by user

mode such as “sidt”, “sgdt“, and “sldt“ to observe the

presence of VM tools [40]. Furthermore, Hardware

characteristics and features may lead to the presents of

virtual machine. For example, CPUID hypervisor bit is set to

zero in the real system and malware, therefore, can test this

bit to determine if they are running inside a virtual machine.

In addition, most debuggers and Virtual Machines create

files and drivers that belong to that particular tool, malware

can look for these artifacts to discover the presence of virtual

machines or debuggers [41].

3) Hybrid Analysis

Hybrid analysis gather information about malware from

static analysis and dynamic analysis. By using hybrid

analysis, security researchers gain the benefits of both

analyses, static and dynamic. Therefore, increasing the

ability of detecting malicious programs correctly [42]. Both

analyses have their own advantages and limitations. Static

analysis is cheap, fast and safer compared to dynamic

analysis. However, malware evade it by using obfuscation

techniques. On the other hand, dynamic analysis is reliable

and can beats obfuscation techniques. Furthermore, it is able

to recognize malware variants and unknown malware

families. However it is time intensive and resource

consuming [6].

Shijo and Salim [43] proposed an integrated technique to

detect and classify unknown files. Printable strings

information (PSI) feature was extracted by performing static

analysis. Besides, using dynamic analysis to extract API

calls. Experiment showed detection rate of 95.8% applying

static, 97.1% applying dynamic and 98.7% for hybrid

analysis. Their highest accuracy was achieved using SVM

technique. Islam et al. [44] extracted two features from static

analysis Function Length Frequency (FLF) and Printable

String information (PSI) and API calls and parameters

during dynamic analysis. Based on the results, Random

Forest machine learning technique showed the highest result

in classifying the data. In addition, they have found that

applying the approach on old malware samples has better

accuracy compared to new samples, with accuracy of 99.8%

and 97.1% respectively. Further, Ma et al. [45] introduced a

method to reduce false positive in malware classification

called Ensemble that combined static and dynamic classifier

into one classifier. The method uses multi features include

static import functions and dynamic call functions to

improve the accuracy and reduce false positive.

Furthermore, Santos et al. [46] introduced OPEM, a tool to

detect unknown malicious files by combining opcode

frequency obtained during static analysis and system calls,

operations and raised exceptions during dynamic analysis.

OPEM showed accuracy of 95.9% from static analysis,

77.26% using dynamic and 96.6% using hybrid analysis with

SVM.

Table III, shows the results of surveyed papers that applied

hybrid analysis in their malware detection approaches.

TABLE III

SURVEYED PAPERS THAT APPLY HYBRID ANALYSIS

Author

Year

Feature

Static/

Dynamic

Classifier

Dataset

Malware/

Benign

Acc FP

Shijo

2016 [43]
PSI/ API calls RF, SVM

M=1,368

B=456
98.7% -

Islam

2013 [44]

Function

length, PSI/

API

DT, SVM,

RF, IB1
M=2,939 97% 5.1%

Ma

2016 [45]

Import

functions/ call

functions

DT, NB,

SVM
M=279 - -

Santos

2013 [46]

Opcode/

system calls,

operations, and

exceptions

DT, KNN,

NB, SVM

M=13,189

B=13,000
96.6% 3%

4) Memory Analysis

Memory analysis has become a popular technique, in the

recent years, proven to be efficient and accurate in malware

analysis. Memory analysis attracts malware analysts as it

gives comprehensive analysis of malware [47] since it is

able to examine malware hooks and code outside the

function normal scope [48]. It uses memory image to

analyze information about running programs, operating

system, and the general state of the computer.

Memory forensics investigations pass through two steps:

memory acquisition and memory analysis. In the memory

acquisition, the memory of the target machine is dumped to

obtain a memory image using tools such as Memoryze,

FastDump and DumpIt. The memory analysis step is to

analyze the memory image looking for malicious activities

using tools like Volatility and Rekall.

A number of researches related to memory forensics

techniques have been proposed. Teller and Hayon [50]

proposed a trigger-based memory analysis approach that

triggers memory dumps based on the following events: API-

based, performance-based and instrumentation-based in

order to know what happens during the execution of the

malware file and not only at the end of it. Further, Choi et al.

[51] introduced a modification to Teller and Hayon’s

technique in [50]. By implementing API trigger-based

memory dump technology for Cuckoo sandbox, which

makes Cuckoo capable to dump the memory at every wanted

API call.

In their research, Mosli et al. [3] investigated three

features extracted from memory images: imported libraries,

registry activity, and API function calls to detect malware.

Their highest accuracy was about 96% using SVM with data

from registry activity. Afterward, in the next research, Mosli

et al. [52] proposed a technique that uses the process handles

to detect whether the suspected sample is malicious or

benign. The experiment have spotted the light on the main

types of handles that malicious process commonly use, such

1667

as section handles, process handles and mutants. On the

other hands, Zaki and Humphrey [7] studied the memory

artifacts left by rootkits in kernel-level such as: driver,

module, SSDT hook, IDT hook and callback. The

experiment has proven that callback functions, modified

drivers, and attached devices are the most suspicious

activities in the kernel-level. Table IV, shows the results of

surveyed papers that applied memory analysis in their

malware detection approaches.

TABLE IV

SURVEYED PAPERS THAT APPLY MEMORY ANALYSIS

Author

Year
Feature Classifier

Dataset

Malware/

Benign

Acc FP

Mosli

2016 [3]

Registry,

imported libraries,

API calls

SVM,

SGD, DT,

RF, KNN

M=400

B=100
96% -

Mosli

2017 [52]

Number of

opened handles

KNN,

SVM, RF

M=3,130

B=1,157
91.4% -

Zaki

2014 [7]

Driver, module,

hooks, callback
- - - -

In addition, Memory forensic techniques are able to

monitor malware behaviors like API hooking, DLL injection

and Hidden processes [49]. In the following, we discuss each

behavior and malware anti-forensics techniques.

Windows API is generally used to communicate with

system resources like files, processes, registry and network

[53]. Malware use a technique called API hooking to

interrupt the function calls. In other words, it can change the

behavior and flow of API calls. Following is the most

common types of API hooks [54] [55]:

• IAT hooks: A PE file stores the address of API

functions in the Import Address Table (IAT). Malware

overwrites the location of API in the IAT, thus forcing

the process to call an attacker function instead of the

original API. Many well-known malware are using

IAT hook like Zeus, FinFisher and Stuxnet.

• Inline API hooks: Also called trampoline or detours

hooks. Inline hooks require writing in few places in

process's memory. For example, Malware adds jump

instruction (JMP) into a legitimate function prologue

to move the flow to a different memory location that is

occupied by a rootkit.

• IDT hook: The Interrupt Descriptor Table (IDT) stores

functions for handling interrupts and exceptions.

Malware changes the value in 0x2E entry in the IDT

and gain control when a call to a kernel mode API

function is executed.

• SSDT hooks: The System Service Descriptor Table

(SSDT) is a table containing pointers to kernel mode

functions. Malware uses SSDT to protect and hide

themselves. For example, by hooking the SSDT

malware can negate the call to "NTOpenProcess" and,

therefore, no program will be able to kill the malicious

process.

• IRP hook: Applications in Windows communicate

with drivers through Input/ Output Request Packet

(IRP). Malware uses IRP hook to do malicious actions

such as keylogging and disk access filtering.

DLL injection is a technique aiming to insert a malicious

code into a legitimate process. Once the malicious DLL is

injected, the execution flow is transferred to the malicious

memory space [56]. The DLL injection can be categorized

into the following main techniques:

• Classic DLL injection using remote thread: DLL

injection is a common technique malware use to inject

malicious code into another process. Malware write

the Dynamic Link Library (DLL) path in the virtual

address space of the target process, and creates remote

thread in the target process to make sure that it loads

the malicious DLL. The malware first calls the API

"VirtualAllocEx" to assign memory into the address

space of the victim, and then it calls

"WriteProcessMemory" to write the DLL path into the

allocated memory. After that, "LoadLibrary" is called

for the DLL load. Finally, the malware calls function

like "CreateRemoteThread", "NtCreateThreadEx" or

"RtlCreateUserThread" to create the thread in the

target process [57].

• Injecting via registry modification: Hackers modify

the value of "Appinit_DLL" registry key that is

located at

"HKLM\Software\Microsoft\WindowsNT\CurrentVer

sion\Windows\Appinit_Dlls", to conduct DLL

injection. Then, the location of the malware library is

added to "Appinit_DLL" to make another process load

their library. To apply this, malware calls

"RegCreateKeyEx" to open the "Appinit_Dlls"

registry key, and then calls "RegSetValueEx" to

modify its values. Additional, rebooting the system is

needed to apply the modifications in the registry

values to the system [58].

• Injection using window hooking function: In

Windows application, program code is executed based

on events. Malware can load their malicious DLL

whenever certain event is triggered. The

"SetWindowsHookEx" function is used to install a

hook routine into the hook chain. Thus, the malicious

action inputted into the "SetWindowsHookEx"

function is called whenever a particular event is

triggered such as mouse move or key press [56].

The existence of hidden processes, files or network

connections is a good indicator of a successful malicious

attack [59]. Therefore, attackers try to hide their malicious

artifacts. Hiding a process is typically accomplished by

rootkit called stealth rootkit, which modifies program

binaries. Another method is to hook the call path between

applications and the kernel by modifying system call tables,

dynamic link structures, libraries, or operating system

functions [60]. Further, some rootkits modify the kernel data

structures using direct kernel object manipulation (DKOM)

leading to incorrect user requests and, therefore, unrevealing

the existence of malicious process [61].

In order to prevent memory forensics or make it

unworkable, malware use anti-forensic techniques. The

following are some of anti-forensic techniques:

• Memory hiding: Malware tries to hide malicious

memory region form memory analysis tools.

1668

• Memory acquisition failure: By terminating certain

processes or limiting driver loading to thwart memory

acquisition process.

• Anti-Carving: Malware attempts to prevent memory

analysts from extracting kernel information by

manipulating the kernel data structure field in order to

make the memory analysis tools mislead the field [62].

• Increase timing: Malware creates fake objects in the

kernel data structure to increase analysis time.

III. RESULTS AND DISCUSSION

A. Future Direction

Many security researchers believe that the future of

malware still ambiguous. There are a number of challenges

in the future of malware development in which, we believe,

security firms and researchers should consider. First, one

worry is the automation of creating malware variants.

Studying the latest malware detection methods and using

machine learning, attackers can develop automated tools that

are able to produce thousands of different malware samples

every day. Second, malware groups may offer those malware

automation tools for rental or sale, giving the chance to low-

skilled groups and amateur hackers to enter malware world.

Third, Malware are rapidly change in terms of structure and

functionality. Most of the surveyed techniques used one

malware dataset to learn and test the behaviors (the

classifier). Although they have got a high detection rate, but

results would be different when applying the techniques on a

new released malware. Finally, malware are expected to

become more complicated in the future. Attackers might use

a new encryption methods or obfuscation techniques to make

malware detection and analysis an impossible job.

The traditional way anti-virus software use to capture

malware is by searching for known signature. Unfortunately,

this technique can easily be evaded by simple obfuscation

technique [63]. Static and dynamic analyses have their

limitations as well. Alternatively, memory analysis gives

comprehensive analysis of malware. Malware can hide its

code in the computer system effectively. However, malware

must execute its code in the memory to perform its tasks

eventually. Volatile memory (RAM) keeps its contents until

it is powered off. Therefore, analyzing the RAM can tell us

about the activities which is happening in the system.

Valuable live Information that resides in memory include

running process, Dynamic Link Library (DLL), files,

registry keys, services, sockets and ports, and active network

connections [64]. Thus, memory analysis is a promising

technique that is expected to become more popular, together

with data mining and machine learning techniques, in

malware detection.

B. Dataset

In order to study malware techniques and tricks, it is very

important for researchers to collect malware samples. One

way to collect samples is by using honeypots, which is a

dedicated machine deployed to attract attackers to learn their

attacking techniques [65]. Researchers can also use known

malicious URLs. In addition, malware dataset can be

downloaded from anti-malware agents' websites such as

Malware DB, Malwr, MalShare, VX Heaven, theZoo and

VirusShare malware repository. Furthermore, some

specialized companies and research project groups

occasionally share their collection of malware datasets. In

2015, Microsoft provided 500 GB dataset of known malware

files in the big challenge competition [66]. Recently,

Endgame is sharing “ember” project with 600 thousands

malicious files to address the lack of open-source datasets in

the domain of static detection malware [67].

IV. CONCLUSION

Malware is causing a critical threat to our computer

systems, internet and data. The challenges that malware

authors pose by developing complicated malware that

frequently changes their signature to evade detection, and by

releasing more sophisticated versions of malware that use

new obfuscation techniques, have brought many issues to

anti-virus software and security researchers. In this paper,

we briefly surveyed malware types and malware detection

methods. We have also reviewed three types of malware

analysis techniques: static, dynamic and hybrid. We also

gave a discussion on the use of memory forensics in finding

malware artifacts. In addition, we discussed the future of

memory-based analysis in malware detection. Techniques

used by malware to evade detection such as obfuscation,

attacking and anti-analysis techniques have been reviewed as

well. Finally, the future direction of malware development

and the main sources of malware dataset have been studied

in this paper.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Education

Malaysia for supporting this work under grant

FRGS/1/2016/ICT02/UKM/01/1. Also, would like to thank

Universiti Kebangsaan Malaysia (UKM) for supporting this

work under grant GGPM-2017-026.

REFERENCES

[1] AV-TEST, “The AV-TEST Security Report,” 2017. [Online].

Available: https://www.av-

test.org/fileadmin/pdf/security_report/AV-

TEST_Security_Report_2016-2017.pdf.

[2] C. T. Lin, N. J. Wang, H. Xiao, and C. Eckert, “Feature selection and

extraction for malware classification,” J. Inf. Sci. Eng., vol. 31, no. 3,

pp. 965–992, 2015.

[3] R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection

using artifacts in forensic memory images,” in 2016 IEEE

Symposium on Technologies for Homeland Security, HST 2016,

2016, pp. 1–6.

[4] M. Karresand, “Separating Trojan horses, viruses, and worms - A

proposed taxonomy of software weapons,” in IEEE Systems, Man

and Cybernetics Society Information Assurance Workshop, 2003, pp.

127–134.

[5] X. Wang, W. Yu, A. Champion, X. Fu, and D. Xuan, “Detecting

worms via mining dynamic program execution,” in Proceedings of

the 3rd International Conference on Security and Privacy in

Communication Networks, SecureComm, 2007, pp. 412–421.

[6] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware

Detection Using Data Mining Techniques,” ACM Comput. Surv.,

1669

vol. 50, no. 3, pp. 1–40, 2017.

[7] A. Zaki and B. Humphrey, “Unveiling the kernel : Rootkit discovery

using selective automated kernel memory differencing,” Virus Bull.,

no. September, pp. 239–256, 2014.

[8] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock

(and Drop It): Stopping Ransomware Attacks on User Data,” in

Proceedings - International Conference on Distributed Computing

Systems, 2016, vol. 2016–Augus, pp. 303–312.

[9] G. A. N. Mohamed and N. B. Ithnin, “Survey on Representation

Techniques for Malware Detection System,” Am. J. Appl. Sci., vol.

14, no. 11, pp. 1049–1069, 2017.

[10] M. Chowdhury and A. Rahman, “Malware Analysis and Detection

Using Data Mining and Machine Learning Classificatio,” in

International Conference on Applications and Techniques in Cyber

Security and Intelligence, 2018, vol. 580, pp. 266–274.

[11] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M.

Stamp, “A comparison of static, dynamic, and hybrid analysis for

malware detection,” J. Comput. Virol. Hacking Tech., vol. 13, no. 1,

pp. 1–12, 2017.

[12] A. Souri and R. Hosseini, “A state-of-the-art survey of malware

detection approaches using data mining techniques,” Human-centric

Computing and Information Sciences, vol. 8, no. 1. 2018.

[13] M. Alazab, S. Venkataraman, and P. Watters, “Towards

understanding malware behaviour by the extraction of API calls,”

Proc. - 2nd Cybercrime Trust. Comput. Work. CTC 2010, no. July

2009, pp. 52–59, 2010.

[14] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A

survey on heuristic malware detection techniques,” in IKT 2013 -

2013 5th Conference on Information and Knowledge Technology,

2013, pp. 113–120.

[15] I. You and K. Yim, “Malware obfuscation techniques: A brief

survey,” in Proceedings - 2010 International Conference on

Broadband, Wireless Computing Communication and Applications,

BWCCA 2010, 2010, pp. 297–300.

[16] W. Wong and M. Stamp, “Hunting for metamorphic engines,” J.

Comput. Virol., vol. 2, no. 3, pp. 211–229, 2006.

[17] M. Hafiz, M. Yusof, and M. R. Mokhtar, “A Review of Predictive

Analytic Applications of Bayesian Network,” Int. J. Adv. Sci. Eng.

Inf. Technol., vol. 6, no. 6, pp. 857–867, 2016.

[18] S. N. Das, M. Mathew, and P. K. Vijayaraghavan, “An Approach for

Optimal Feature Subset Selection using a New Term Weighting

Scheme and Mutual Information,” Int. J. Adv. Sci. Eng. Inf.

Technol., vol. 1, no. 3, pp. 273–278, 2011.

[19] D. Ucci, L. Aniello, and R. Baldoni, “Survey on the Usage of

Machine Learning Techniques for Malware Analysis,” arXiv Prepr.

arXiv1710.08189, pp. 1–67, 2018.

[20] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and

Classification: A Survey,” J. Inf. Secur., vol. 05, no. 02, pp. 56–64,

2014.

[21] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-

based detection of new malicious code,” Proc. 28th Annu. Int.

Comput. Softw. Appl. Conf. 2004. COMPSAC 2004., vol. 2, no. 1,

pp. 41–42, 2004.

[22] D. Kirat and G. Vigna, “MalGene,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security -

CCS ’15, 2015, pp. 769–780.

[23] H. Hashemi and A. Hamzeh, “Visual malware detection using local

malicious pattern,” Journal of Computer Virology and Hacking

Techniques, pp. 1–14, 2018.

[24] S. Z. M. Shaid and M. A. Maarof, “Malware behaviour

visualization,” J. Teknol., vol. 70, no. 5, pp. 25–33, 2014.

[25] Z. Salehi, A. Sami, and M. Ghiasi, “Using feature generation from

API calls for malware detection,” Comput. Fraud Secur., vol. 2014,

no. 9, pp. 9–18, 2014.

[26] K. S. Han, I. K. Kim, and E. G. Im, “Malware classification methods

using API sequence characteristics,” in Lecture Notes in Electrical

Engineering, 2012, vol. 120 LNEE, pp. 613–626.

[27] Y. Cheng, W. Fan, W. Huang, and J. An, “A Shellcode Detection

Method Based on Full Native API Sequence and Support Vector

Machine,” in IOP Conference Series: Materials Science and

Engineering, 2017, vol. 242, no. 1, pp. 1–7.

[28] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode

sequences as representation of executables for data-mining-based

unknown malware detection,” Inf. Sci. (Ny)., vol. 231, pp. 64–82,

2013.

[29] A. Mohaisen and O. Alrawi, “Unveiling Zeus: automated

classification of malware samples,” Proc. 22nd Int. Conf. World

Wide Web companion, pp. 829–832, 2013.

[30] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: High-fidelity,

behavior-based automated malware analysis and classification,”

Comput. Secur., vol. 52, pp. 251–266, 2015.

[31] Q. Chen and R. A. Bridges, “Automated Behavioral Analysis of

Malware A Case Study of WannaCry Ransomware,” arXiv Prepr.

arXiv1709.08753, pp. 1–9, 2017.

[32] G. Liang, J. Pang, and C. Dai, “A Behavior-Based Malware Variant

Classification Technique,” Int. J. Inf. Educ. Technol., vol. 6, pp.

291–295, 2016.

[33] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features

model for malware detection,” J. Comput. Virol. Hacking Tech., vol.

12, no. 2, pp. 59–67, 2016.

[34] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware

based on API call sequence analysis,” Int. J. Distrib. Sens. Networks,

vol. 2015, no. 6: 659101, pp. 1–9, 2015.

[35] C.-I. Fan, H.-W. Hsiao, C.-H. Chou, and Y.-F. Tseng, “Malware

Detection Systems Based on API Log Data Mining,” in 2015 IEEE

39th Annual Computer Software and Applications Conference, 2015,

pp. 255–260.

[36] D. Song et al., “BitBlaze: A new approach to computer security via

binary analysis,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2008, vol. 5352 LNCS, pp. 1–25.

[37] U. Bayer et al., “Dynamic analysis of malicious code,” J Comput

Virol, vol. 2, pp. 67–77, 2006.

[38] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on

automated dynamic malware-analysis techniques and tools,” ACM

Comput. Surv., vol. 44, no. 2, pp. 1–42, 2012.

[39] Microsoft Azure, “What is a virtual machine?,” 2018. [Online].

Available: https://azure.microsoft.com/en-in/overview/what-is-a-

virtual-machine/.

[40] M. Sikorski and A. Honig, Practical malware analysis: the hands-on

guide to dissecting malicious software. no starch press. 2012.

[41] X. Chen, J. Andersen, Z. Morley Mao, M. Bailey, and J. Nazario,

“Towards an understanding of anti-virtualization and anti-debugging

behavior in modern malware,” in Proceedings of the International

Conference on Dependable Systems and Networks, 2008, pp. 177–

186.

[42] M. Eskandari, Z. Khorshidpour, and S. Hashemi, “HDM-Analyser: a

hybrid analysis approach based on data mining techniques for

malware detection,” J. Comput. Virol. Hacking Tech., vol. 9, no. 2,

pp. 77–93, 2013.

[43] P. V. Shijo and A. Salim, “Integrated static and dynamic analysis for

malware detection,” in Procedia Computer Science, 2015, vol. 46,

pp. 804–811.

[44] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of

malware based on integrated static and dynamic features,” Journal of

Network and Computer Applications, vol. 36, no. 2. pp. 646–656,

2013.

[45] X. Ma, Q. Biao, W. Yang, and J. Jiang, “Using multi-features to

reduce false positive in malware classification,” in Proceedings of

2016 IEEE Information Technology, Networking, Electronic and

Automation Control Conference, ITNEC 2016, 2016, vol. 3, pp. 361–

365.

[46] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “OPEM:

A static-dynamic approach for machine-learning-based malware

detection,” in Advances in Intelligent Systems and Computing, 2013,

vol. 189 AISC, pp. 271–280.

[47] C. Rathnayaka and A. Jamdagni, “An efficient approach for

advanced malware analysis using memory forensic technique,” Proc.

- 16th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 11th

IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Conf. Embed.

Softw. Syst., pp. 1145–1150, 2017.

[48] J. Stüttgen and M. Cohen, “Anti-forensic resilient memory

acquisition,” in Digital Investigation, 2013, vol. 10, no. SUPPL., pp.

105–115.

[49] C. W. Tien, J. W. Liao, S. C. Chang, and S. Y. Kuo, “Memory

forensics using virtual machine introspection for Malware analysis,”

in 2017 IEEE Conference on Dependable and Secure Computing,

2017, pp. 518–519.

[50] T. Teller and A. Hayon, “Enhancing Automated Malware Analysis

Machines with Memory Analysis Report,” Black Hat USA, 2014.

[51] and K.-W. P. Choi, Sang-Hoon, Yu-Seong Kim, “Toward Semantic

Gap-less Memory Dump for Malware Analysis,” ICNGC Conf., pp.

1–4, 2016.

1670

[52] R. Mosli, R. Li, B. Yuan, and Y. Pan, “A behavior-based approach

for malware detection,” in IFIP Advances in Information and

Communication Technology, 2017, vol. 511, pp. 187–201.

[53] G. Willems, T. Holz, and F. Freiling, “Toward automated dynamic

malware analysis using CWSandbox,” IEEE Security and Privacy,

vol. 5, no. 2. pp. 32–39, 2007.

[54] M. H. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware

analyst’s cookbook and DVD: tools and techniques for fighting

malicious code. Wiley Publishing, 2011.

[55] Adlice Software, “Rootkits hooks,” 2014. [Online]. Available:

https://www.adlice.com/.

[56] S. Kim, J. Park, K. Lee, I. You, and K. Yim, “A Brief Survey on

Rootkit Techniques in Malicious Codes,” J. Internet Serv. Inf. Secur.,

vol. 3, no. 4, pp. 134–147, 2012.

[57] A. Hosseini, “Ten Process Injection Techniques: A Technical Survey

Of Common And Trending Process Injection Techniques,” 2017.

[Online]. Available: https://www.endgame.com/blog/technical-

blog/ten-process-injection-techniques-technical-survey-common-and-

trending-process.

[58] J. Berdajs and Z. Bosnic, “Extending applications using an advanced

approach to DLL injection and API hooking,” Softw. - Pract. Exp.,

vol. 40, no. 7, pp. 567–584, 2010.

[59] J. Butler, J. L. Undercoffer, and J. Pinkston, “Hidden processes: The

implication for intrusion detection,” in IEEE Systems, Man and

Cybernetics Society Information Assurance Workshop, 2003, pp.

116–121.

[60] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“VMM-based hidden process detection and identification using

Lycosid,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments - VEE

’08, 2008, pp. 91–100.

[61] A. Schuster, “Searching for processes and threads in Microsoft

Windows memory dumps,” Digit. Investig., vol. 3, no. SUPPL., pp.

10–16, 2006.

[62] K. Lee, H. Hwang, K. Kim, and B. N. Noh, “Robust bootstrapping

memory analysis against anti-forensics,” Digit. Investig., vol. 18, pp.

S23–S32, 2016.

[63] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for

malware detection,” in Proceedings - Annual Computer Security

Applications Conference, ACSAC, 2007, pp. 421–430.

[64] J. Okolica and G. Peterson, “A compiled memory analysis tool,” in

IFIP Advances in Information and Communication Technology,

2010, vol. 337 AICT, pp. 195–204.

[65] V. ATLURI, Anoop Chowdary; TRAN, Botnets threat analysis and

detection. Cham, 2017.

[66] Endgame, “Ember,” 2018. [Online]. Available:

https://www.endgame.com/blog/technical-blog/introducing-ember-

open-source-classifier-and-dataset.

[67] Microsoft, “Microsoft Malware Classification Challenge (BIG

2015),” 2015. [Online]. Available:

https://www.kaggle.com/c/malware-classification.

1671

