
International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

A SURVEY ON MALWARE DETECTION

AND ANALYSIS TOOLS

Sajedul Talukder1 and Zahidur Talukder2

1Department of Mathematics and Computer Science, Edinboro University

stalukder@edinboro.edu

2Department of Computer Science, University of Texas at Arlington

zahidurrahim.talukder@mavs.uta.edu

ABSTRACT

The huge amounts of data and information that need to be analyzed for possible malicious intent are one of

the big and significant challenges that the Web faces today. Malicious software, also referred to as malware

developed by attackers, is polymorphic and metamorphic in nature which can modify the code as it spreads.

In addition, the diversity and volume of their variants severely undermine the effectiveness of traditional

defenses that typically use signature-based techniques and are unable to detect malicious executables pre-

viously unknown. Malware family variants share typical patterns of behavior that indicate their origin

and purpose. The behavioral trends observed either statically or dynamically can be manipulated by using

machine learning techniques to identify and classify unknown malware into their established families. This

survey paper gives an overview of the malware detection and analysis techniques and tools.

KEYWORDS

Malware, Detection, Analysis, Tools, Machine Learning.

1. INTRODUCTION

Malware is any malicious software used to interrupt machine activity, capture sensitive informa-

tion, or obtain access to private computer systems. Malware is characterized by its malicious in-

tent, which works against the computer user’s specifications, and does not include software which

causes unintended harm due to a deficiency. The term badware is sometimes used and applied

to both true (malicious) malware and unintentionally harmful software. These are intended to

37DOI: 10.5121/ijnsa.2020.12203

mailto:stalukder@edinboro.edu
mailto:zahidurrahim.talukder@mavs.uta.edu


International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

gain access to computer systems and network resources, disturb computer operations, and gather

personal information without taking the consent of the system’s owner, thus creating a menace to

the availability of the internet, the integrity of its hosts, and the privacy of its users. Spreading

of malware has affected everyday life, from e-governance [1] to social networks [2], from digital

automation [3] spreading up to mobile networks [4]. Malware comes in a wide range of variations

like Virus, Worm, Trojan-horse, Rootkit, Backdoor, Botnet, Spyware, Adware etc. These classes

of malware are not mutually exclusive meaning thereby that a particular malware may reveal the

characteristics of multiple classes at the same time. In order to evade detection, malware authors

introduce polymorphism to the malicious components. This means that malicious files belonging

to the same malware “family”, with the same forms of malicious behavior, are constantly modi-

fied and/or obfuscated using various tactics, such that they look like many different files. Malware

is one of the most terrible and major security threats facing the Internet today. According to a

survey [5], conducted by Symantec in February 2019, 47% of the organizations experienced mal-

ware security incidents/network breaches in the past one year, as depicted in figures 1 and 2. The

malware is continuously growing in volume (growing threat landscape), variety (innovative mali-

cious methods) and velocity (fluidity of threats). These are evolving, becoming more sophisticated

and using new ways to target computers and mobile devices. McAfee [6] catalogs over 100,000

new malware samples every day means about 69 new threats every minute or about one threat per

second. With the increase in readily available and sophisticated tools, the new generation cyber

threats/attacks are becoming more targeted, persistent and unknown. The advanced malware is tar-

geted, unknown, stealthy, personalized and zero-day as compared to the traditional malware which

was broad, known, open and one time. Once inside, they hide, replicate and disable host protec-

tions. After getting installed, they call their command and control servers for further instructions,

which could be to steal data, infect other machines, and allow reconnaissance. Attackers exploit

vulnerabilities in web services, browsers, and operating systems, or use social engineering tech-

niques to make users run the malicious code in order to spread malware. Malware authors use

obfuscation techniques [7] like dead code insertion, register reassignment, subroutine reordering,

instruction substitution, code transposition, and code integration to evade detection by traditional

defenses like firewalls, antivirus and gateways which typically use signature based techniques and

are unable to detect the previously unseen malicious executables. Commercial antivirus vendors

are not able to offer immediate protection for zero-day malware as they need to analyze these to

create their signatures. To overcome the limitation of signature-based methods, malware analysis

techniques are being followed, which can be either static or dynamic. The malware analysis tech-

niques help the analysts to understand the risks and intentions associated with a malicious code

sample. The insight so obtained can be used to react to new trends in malware development or take

38



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

preventive measures to cope with the threats coming in the future. Features derived from analysis

of malware can be used to group unknown malware and classify them into their existing families.

This paper presents a review of techniques/approaches and tools for detecting and analyzing

the malware executables. There has been some study performed on comparison of static, dy-

namic, and hybrid analysis for malware detection [8], whereas some researchers tried to bridge the

static/dynamic gap [9]. Mobile technology in healthcare has also been a target of malware [10].

Few recent studies have been done on static and dynamic analysis of Android malware [11], de-

tection using permission [12–14], based on system call sequences and LSTM [15].

Many studies use static analysis for malware detection using exact decompilation [16], similarity

testing framework [17], based on register contents [18], using two-dimensional binary program

features [19], subroutine based detection [20], statistics of assembly instructions [21], file rela-

tion graphs [22], de-anonymizing programmers via code stylometry [23], based upon a wavelet

package technique [24], analysis and comparison of disassemblers for opcode [25].

The studies that use dynamic analysis perform synthesis the semantics of obfuscated code [7],

multi-hypothesis testing [26], analyzing quantitative data flow graph metrics [27], using simplified

data-dependent api call graph [28], downloader graph analytics [29], access behavior [30, 31],

APIs in initial behavior [32], log-based crowdsourcing analysis [33].

There have been many studies on the detection and analysis of malware using machine learning

that study fine-grained features [34], deep learning [35–37], dynamic features [38], static fea-

tures [36, 39], concept drift [40], predicting signatures [41], hybrid framework [42], malware

metadata [43], reverse engineering of large datasets of binaries [44].

Our Contributions: This paper presents the following contributions:

• Techniques and tools for detecting and analyzing malware. This paper provides the first

comprehensive survey on techniques and tools for detecting and analyzing malware. There

have been numerous surveys in the area of malware detection specific to machine learning,

android and a few surveys on static and dynamic analysis. However, none of the work

addresses the techniques and available tools.

• State-of-the-art Survey. This paper reveals that the most existing surveys in this area are

either outdated [45] or fail to provide a holistic view of the problem, since they usually focus

on a specific subset of the standard [46].
39



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Figure 1. Top 10 malwarebytes business detections in 2018 compared to 2017 [47]

• List of comprehensive tools. This paper presents a novel overview of the list of com-

prehensive tools available for malware detection, memory forensics, packet analysis, scan-

ners/sandboxes, reverse engineering, debugging, and website analysis. Further, it differen-

tiates the malware analysis tools based on specific domain and approach.

• Guide for malware analysts. Finally, it is realized that the contribution claimed in this

paper will help, guide and assist researchers and malware analysts on getting appropriate

tools for their domain-specific analysis.

The rest of the paper is organized as follows. Section II describes the different types of malware.

Section III describes the ways of malware analysis. Section IV discusses malware analysis tools.

Finally, Section V concludes the paper with a highlight on the scope of future work.

2. DIFFERENT TYPES OF MALWARE

With so many different types of malware – and the vast range of malicious software programs

within each type – it’s important that every malware item can be unambiguously classified and

easily distinguished from other malicious programs. The term malware includes viruses, worms,

Trojan Horses, rootkits, spyware, keyloggers and more. To get an overview of the difference

between all these types of threats and the way they work, it makes sense to divide them into

groups:

40



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

2.1. Viruses and worms: the contagious threat

Viruses and worms both are designed to spread without the user’s knowledge. A computer virus is

a small program written to alter the way a computer operates, without the permission or knowledge

of the user. A virus must meet two criteria [8]:

1. It must execute itself. It will often place its own code in the path of execution of another

program.

2. It must replicate itself. For example, it may replace other executable files with a copy of the

virus-infected file.

Viruses can infect desktop computers and network servers alike. Some viruses are programmed to

damage the computer by damaging programs, deleting files, or reformatting the hard disk. Others

are not designed to do any damage, but simply to replicate themselves and make their presence

known by presenting text, video, and audio messages. Even these benign viruses can create prob-

lems for the computer user. They typically take up computer memory used by legitimate programs.

As a result, they often cause erratic behavior and can result in system crashes. Also, many viruses

are bug-ridden, and these bugs may lead to system crashes and data loss.

Computer worms, on the other hand, spread across the internet by replicating itself on comput-

ers via their network. Both viruses and worms can carry a so-called “payload”, malicious code

designed to do damage. Worms are programs that replicate themselves from system to system

without the use of a host file. This is in contrast to viruses, which requires the spreading of an

infected host file. Although worms generally exist inside of other files, often Word or Excel doc-

uments, there is a difference between how worms and viruses use the host file. Usually the worm

will release a document that already has the “worm” macro inside the document. The entire doc-

ument will travel from computer to computer, so the entire document should be considered the

worm. PrettyPark is a particularly prevalent example.

2.2. Trojans and Rootkits: the masked threat

Trojans and rootkits are grouped as they both seek to conceal attacks on computers. Trojan Horses

are malignant pieces of software pretending to be benign applications. Users therefore download

them thinking they will get a useful piece of software and instead end up with a malware infected

computer. A Trojan horse, or Trojan, in computing is a generally non-self-replicating type of

41



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Figure 2. Total number of malware detected by year (in million) [48]

malware program containing malicious code that, when executed, carries out actions determined

by the nature of the Trojan, typically causing loss or theft of data, and possible system harm. The

term is derived from the story of the wooden horse used to trick defenders of Troy into taking

concealed warriors into their city in ancient Anatolia, because computer Trojans often employ a

form of social engineering.

Rootkits are different. They are a masking technique for malware, but do not contain damaging

software. Rootkit techniques were invented by virus writers to conceal malware, so it could go

unnoticed by antivirus detection and removal programs. A rootkit is a stealthy type of software,

typically malicious, designed to hide the existence of certain processes or programs from normal

methods of detection and enable continued privileged access to a computer. The term rootkit is a

concatenation of “root” (the traditional name of the privileged account on Unix operating systems)

and the word “kit” (which refers to the software components that implement the tool).

2.3. Spyware and keyloggers: the financial threat

Spyware and keyloggers are malware used in malicious attacks like identity theft, phishing and

social engineering, threats designed to steal money from unknowing computer users, businesses

and banks. Spyware is a type of malicious software (also called “malware”) that scammers try to

install on your computer. As the name suggests, spyware programs allow people to spy on what

you are doing on your computer: the websites you visit, the files you use and the details you store

on your PC.

42



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Key-loggers are a particular type of spyware. Key-loggers secretly record what keys you press

on your keyboard and sends this data back to the scammer over the internet. Scammers use these

programs to steal passwords such as online banking passwords. They may also use spyware to steal

other personal information from you such as documents that you have stored on your computer.

Scammers use a wide range of tricks to get their spyware and key-loggers loaded on to your

computer. This usually involves tricking you into clicking on a link in a spam email they have

sent, or visiting a website that they have set up solely to infect people’s computers. Other sources

of spyware and key-loggers are free games or music that you can download from the internet.

When they are delivered in this way, they are sometimes called “Trojans”–a file that claims to be

for some harmless purpose so it can get under your guard, but contains a nasty surprise.

3. MALWARE ANALYSIS

Before creating the signatures for newly arrived malware, these are required to be analyzed to

understand the associated risks and intentions. The malicious program and its capabilities can be

observed either by examining its code or by executing it in a safe environment.

3.1. Static analysis

Analyzing malicious software without executing it is called static analysis. The detection patterns

used in static analysis include string signature, byte-sequence n-grams, syntactic library call, con-

trol flow graph and opcode (operational code) frequency distribution etc. The executable has to

be unpacked and decrypted before doing static analysis. The disassembler/debugger and memory

dumper tools can be used to reverse com pile windows executables. Disassemble/Debugger tools

like IDA Pro and OllyDbg displays the malware’s code as Intel X86 assembly instructions, which

provide a lot of insight into what the malware is doing and provide patterns to identify the attack-

ers. Memory dumper tools like LordPE [9] and OllyDump [10] are used to obtain protected code

located in the system’s memory and dump it to a file. This is a useful technique to analyze packed

executables which are difficult to disassemble. Binary obfuscation techniques, which transform

the malware binaries into self-compressed and uniquely structured binary files, are designed to

resist reverse engineering and thus make the static analysis very expensive and unreliable. More-

over, when utilizing binary executables (obtained by compiling source code) for static analysis,

the information like size of data structures or variables gets lost thereby complicating the malware

code analysis [11]. The evolving evasion techniques being used by malware writers to thwart static

43



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Figure 3. (a) Top ransomware by country (2019) (b) Top malicious mobile app categories (2019) (c) Top

compromised website categories (2019) (d) Top countries for IoT attacks (2019) [5]

analysis led to the development of dynamic analysis. Moser et al. [12], explored the drawbacks of

static analysis methodology. In their work, they introduced a scheme based on code obfuscation

revealing the fact that the static analysis alone is not enough to detect or classify malware. Fur-

ther, they proposed that dynamic analysis is a necessary complement to static analysis as it is less

vulnerable to code obfuscation conversion.

3.2. Dynamic analysis

Analyzing the behavior of a malicious code (interaction with the system) while it is being exe-

cuted in a controlled environment (virtual machine, simulator, emulator, sandbox etc.) is called

dynamic analysis. Before executing the malware sample, the appropriate monitoring tools like

Process Monitor [13] and Capture BAT [14] (for file system and registry monitoring), Process Ex-

plorer [15] and Process Hackerreplace [16] (for process monitoring), Wireshark [17] (for network

monitoring) and Regshot [18] (for system change detection) are installed and activated. Vari-

ous techniques that can be applied to perform dynamic analysis include function call monitoring,

44



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

function parameter analysis, information flow tracking, instruction traces and autostart extensi-

bility points etc. [11]. Dynamic analysis is more effective as compared to static analysis and

does not require the executable to be disassembled. It discloses the malware’s natural behavior

which is more resilient to static analysis. However, it is time intensive and resource consuming,

thus elevating the scalability issues. The virtual environment in which malware are executed is

different from the real one and the malware may perform in different ways resulting in artificial

behavior rather than the exact one. In addition to this, sometimes the malware behavior is trig-

gered only under certain conditions (on specific system date or via a specific command) and can’t

be detected in virtual environment. Several online automated tools exist for dynamic analysis of

malware, e.g. Norman Sandbox [19], CWSandbox [20], Anubis [21] and TTAnalyzer [22], Ether

[23] and ThreatExpert [24]. The analysis reports generated by these tools give in-depth under-

standing of the malware behavior and valuable insight into the actions performed by them. The

analysis system is required to have an appropriate representation for malware, which are then used

for classification either based on similarity measure or feature vectors. However a large number

of new malware samples arriving at anti-virus vendors every day requires an automated approach

to limit the number of samples that require close human analysis. Several Artificial Intelligence

techniques, particularly machine-learning based techniques have been used in the literature for

automated malware analysis and classification.

4. MALWARE ANALYSIS TOOLS

Analysts use tools for analyzing malware to protect and predict future attacks, and share knowl-

edge among them. Open source tools are often the first choice to carry out such actions. It’s no

secret that distributing malware is a big business and the fast-growing malware epidemic will only

grow in ability and efficiency in the years to come. Using open source malware analysis tools,

researchers will check, identify and log different variants of malicious triggers when analyzing the

life-cycle of attack. As malware trading forums are proliferating on the dark web, the crypters,

botnets and zero-days needed to carry out powerful attacks have become easier than ever to get.

With the growth of complexity of malware variants, the jobs of understanding and benchmarking

the specific type have become harder. It’s the job of security researchers and analysts to find out

the right tool to analyze each specific type of attack. We now present some open source malware

analysis tools that can help the researchers and security engineers.

45



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Malware Detection Malware Analysis

Static Dynamic In-memory

Reverse-

Engineering Debugging Network
Online

Scanners Sandboxes
Memory

Forensics

Packet Website

Figure 4. Malware Detection and Analysis Tools

4.1. Open Source Malware Analysis Tools

Google Rapid Response (GRR). The GRR platform is an incident response system developed

by security researchers at Google, identifying common malware footprints workstations focused

on remote live forensics. This consists of an application that is installed on the target system to

communicate with the agent and a server infrastructure. GRR is a python client (agent) that is

installed on target systems, and python server infrastructure that can manage and talk to clients.

Once both the server side and the agent are deployed they can become GRR clients and start

receiving messages from the servers. Then the incident response staff on the host computer will

perform various technical operations, such as reviewing the memory, looking for different settings

and handling software choices. GRR has been designed to run on a scale so analysts can easily

capture and process data from large numbers of computers. GRR’s goal is to support forensics

and investigations in a simple, flexible way that allows investigators to rapidly triage incidents and

conduct remote analysis.

REMnux. REMnux is a free Linux toolkit designed to assist malware analysts with malware

reverse engineering. This seeks to make this easy for forensic investigators and accident witnesses

to continue using the variety of free-to-use software that can analyze ransomware, although it

may be difficult to locate or set up. This Linux toolkit has been developed as a one-stop shop

for researchers searching for examples of reverse engineering malware. REMnux is focused on

Ubuntu and integrates several resources into one for quickly analyzing malware based on Windows

and Linux. The cornerstone of the project is the Ubuntu based REMnux Linux system. This

46



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

lightweight distro provides various resources to detect Windows and Linux ransomware, review

browser-based vulnerabilities such as obfuscated JavaScript, investigate unusual text files, and

uninstall other harmful objects. The distro can be used by investigators to intercept suspicious

network traffic in an isolated laboratory. It helps researchers investigate browser-based malware,

perform forensics on memory, analyze multiple samples of malware, extract and decode suspicious

items, etc.

Cuckoo Sandbox. Created by a team of volunteers during the Google Summer of Code initiative

back in 2010, it is an open source framework that automates malicious file analysis for Windows,

OS X, Linux and Android and offers comprehensive and practical input on how each presented file

operates in isolated environments. And since it is open source software, developers are constantly

writing plugins that provide enhanced features. Cuckoo is used by malware detection and security

firms to help ease the strain of manually wading through troves of potentially malicious data. The

modular design allows the recording and analysis phases simple to configure. In recent years, it

has, understandably, become one of the most commonly used open source tools. In 2012, Cuckoo

published Malwr, a sandbox-as - a-service that allows users to use their collected data through an

easy-to-use GUI. The goal was to act as an option for users who can’t handle Cuckoo properly but

still want to exploit their intellect.

Zeek. The Zeek Network Security Monitor (formerly Bro) is a versatile network dependent ana-

lytics system that transforms network traffic into events to cause scripts. It is comparable to an IDS

(intrusion detection system) in that it gives users a bird’s-eye view of their network activity, using

both signature-based (looks for rules or trends of documented malicious traffic) and anomaly-

based monitoring (looks for unusual activity). Nevertheless, its features go far beyond those of

conventional IDS that can be used to conduct investigations in forensics, network monitoring and

interface research. Although focussing on tracking network security, Zeek also provides a com-

prehensive forum for more general analysis of network traffic. Well grounded in more than 20

years of research, Zeek has since its inception succeeded in bridging the traditional gap between

academia and operations.

Yara Rules. Another open source malware identification tool that can identify samples of malware

based on textual or binary trends once they are tested in Cuckoo. Investigators use Yara to com-

pose pattern-based definitions of the malware families. YARA stands for “Yet Another Recursive

Acronym” as the descriptions are called rules. This helps researchers to identify and categorize

apparently similar malware types and can be adapted for use inside Cuckoo. IBM calls Yara the

“pattern matching Swiss army knife” of the malware researcher and can be used on both Windows

and Linux computers. Yara’s creators released a new service still in alpha called YaraRules Ana-

47



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

lyzer, that lets users analyze files in the cloud using full rulesets. This ensures that users are always

analyzing samples against the most recent ruleset version and frees them from needing to install

Yara locally. Yara rules have been added to many Endpoint Detection and Response framework

to help them identify the malware samples they encounter, classify them and share their findings

with clients and the community later.

Table 1 and table 2 list some tools available for malware detection, memory forensics, packet

analysis, scanners/sandboxes, reverse engineering, debugging, and website analysis.

4.2. Mobile Malware Analysis Tools

APKTool. A tool for reverse engineering 3rd party, closed, binary Android apps. By making

several changes, it can decode resources to almost original form and restore them. It also makes it

easier to deal with a device owing to the project such as file creation and completion of some repet-

itive tasks such as creating the apk etc. We can decode APK resources to almost original form with

the help of Apktool; we can modify the source code on the fly and rebuild the decoded resources

back into APK. Its project-like structure makes working with them easy. Apktool can decode

APK resources (resources.arsc, classes.dex and XMLs), rebuild decoded resources back to binary

APK, organize and handle APKs that depend on framework resources along with automating the

repetitive tasks.

Smali. Smali / baksmali is a dex format assembler / disassembler used by Dalvik, a Java VM

implementation for Android. The syntax is loosely based on the syntax of Jasmin / dedexer, and

follows the complete dex format features (annotations, debug data, line details, etc.). Also, code

created by the baksmali is often considered to be written in the Smali language. Baksmali is a

dex Bytecode software disassembler. The terms “Smali” and “Baksmali” are just the correspond-

ing Icelandic versions of “assembler” and “disassembler.” It wasn’t an easy task to debug smali

code before, but recently a wonderful plugin was launched for Intellij IDEA / Android Studio -

Smalidea.

Dex2Jar. Dex2Jar is a free tool for dealing with the files Android “.dex” and Java “.class.” An-

droid programs are assembled into“.dex” (Dalvik Executable) scripts, which in effect are zipped

onto the computer into a single.apk file. Android will automatically create the “.dex” folders, by

converting the compiled applications written in the Java. Dex2Jar reads the dex instruction to dex-

ir format and can convert to ASM format. It can also be used to perform some basic deobfuscation.

Dex2Jar’s core feature is converting an APK classes.dex file to classes.jar, or vice versa. So, us-

48



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Detection Tools Online scanners and sandboxes

AnalyzePE Wrapper for a variety of tools for reporting on

Windows PE files.

AndroTotal Online analysis of APKs against multiple mobile

antivirus apps

chkrootkit Linux rootkit detector. APK Analyzer Dynamic analysis of APKs

Detect-It-Easy A program for determining types of files. AVCaesar Online scanner and malware repository

hashdeep Compute digest hashes with a variety of algo-

rithms.

Cryptam Analyze suspicious office documents

Loki Host based scanner for IOCs. Cuckoo Sandbox Open source sandbox and automated analysis sys-

tem

MASTIFF Static analysis framework. Comodo Valkyrie File verdict system that conducts several analysis

using run-time behavior and hundreds of features

from a file

MultiScanner Modular file scanning/analysis framework DeepViz Multi-format file analyzer with machine-learning

classification

nsrllookup A tool for looking up hashes in NIST’s National

Software Reference Library database.

detux A sandbox developed to do traffic analysis of

Linux malware and capturing IOCs

PEV A multiplatform toolkit to work with PE files, pro-

viding feature-rich tools for proper analysis of sus-

picious binaries.

Document Analyzer Analysis of DOC and PDF files

Rootkit Hunter Detect Linux rootkits. DRAKVUF Dynamic malware analysis system.

totalhash.py Python script for searching in Total-

Hash.cymru.com database.

File Analyzer Free dynamic analysis of PE files

TrID File identifier. firmware.re Unpacks, scans and analyzes firmware packages

YARA Pattern matching tool for analysts. Hybrid Analysis Online malware analysis tool

Memory Forensics Tools IRMA An asynchronous and customizable analysis plat-

form for suspicious files

DAMM Differential Analysis of Malware in Memory, built

on Volatility

Joe Sandbox Deep malware analysis.

evolve Web interface for the Volatility Memory Forensics

Framework

Jotti Online AV scanner

FindAES Find AES encryption keys in memory Limon Sandbox for Analyzing Linux Malware

Muninn A script to automate portions of analysis using

Volatility, and create a readable report

Malheur Automatic sandboxed analysis of malware behav-

ior

Rekall Memory analysis framework (from a Volatility

fork).

Malwr Free analysis with an online Cuckoo Sandbox in-

stance

TotalRecall Script based on Volatility for automating various

malware analysis tasks

MASTIFF Online Online static malware analysis

Volatility Advanced memory forensics framework. Metadefender.com Scan a file, hash or IP address for malware

WinDbg Kernel debugger for Windows systems NoDistribute Scan files with over 35 anti-viruses.

Packet Analysis Tools NVISO ApkScan Dynamic analysis of APKs

Network Miner A Network Forensic Analysis Tool (NFAT) for

Windows

PDF Examiner Analyse suspicious PDF files

NetworkTotal Online analysis of .pcap files to detect viruses,

worms, trojans and malware.

SEE “Sandboxed Execution Environment”, a frame-

work for building test automation in secured en-

vironments

PacketTotal Online engine for analyzing .pcap files and visu-

alizing the network traffic within, useful for mal-

ware analysis and incident response. My review

URL Analyzer Dynamic analysis of URL files

Wireshark Widely-used network protocol analyzer. VirusTotal Online analysis of malware samples and URLs

Table 1. Tools available for malware detection, memory forensics, packet analysis, scanners and sandboxes.

49



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

ing any Java decompiler, it is possible to view the source code of an Android application, and it

is fully legible. Here we get files from.class and not the real Java source code that the program

author wrote.

Mobile-Sandbox. Mobile-Sandbox provides static and dynamic malware analysis for Android

OS smartphones. The system is designed to automatically evaluate Android software in two novel

ways: (1) by integrating static and dynamic analysis, i.e., static analysis findings are used to di-

rect dynamic analysis and expand coverage of executed code, and (2) by using different logging

methods for native API calls. It can evaluate the application with different modules within the

static analysis component to get a summary of the program. To achieve this, it uses the VirusTotal

service to perform several anti-virus scans, parse the manifest file and finally decompile the ap-

plication to better identify suspect code. Within the dynamic analysis, it can run the application

in an emulator and log every application operation, i.e. it logs both actions performed in the Java

Virtual Machine Dalvik and actions performed in native libraries that may be bundled with the

application.

4.3. Other Analysis Tools

Malzilla. Malzilla is a useful malware hunting tool for analyzing websites containing malicious

code. Web pages that contain exploits often use a sequence of redirects and obfuscated code

to make it difficult for someone to track them. This allows users to access websites and obtain

all of their source code, such as wget, without visiting the site and potentially damaging their

device. This program has the option of switching the user agents and picking the user’s referrer.

This shows the full list of webpages for browsers and all the headers for HTTP. It also has proxy

features, complex decoders and, most notably, JavaScript code deobfuscation, all in one program.

Wireshark. Wireshark, a network monitoring application once known as Ethereal, records pack-

ets and shows them in the human-readable format in real-time. It intercepts traffic and transforms

the binary data into a readable format for users. Wireshark includes filters, color coding, and other

features that allow individuals to dig deep into network traffic and inspect individual packets. It is

the leading network traffic analyzer in the world, and an essential tool for any skilled security or

device administrator. This free software allows people to track network traffic in real-time, and is

often the best tool on any network for troubleshooting problems. Common issues that Wireshark

can deal with troubleshooting include lost messages, latency issues and malicious network opera-

tion. It enables network data to be held under a microscope and offers resources for filtering and

digging into that information, zooming into the root cause of the issue. It is used by management

50



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

Reverse Engineering and Debugging Tools strace Dynamic analysis tool for Linux executables

angr Platform-agnostic binary analysis framework Triton A dynamic binary analysis (DBA) framework

bamfdetect Identifies and extracts information from bots and

malware

Udis86 Disassembler library and tools

BARF Open source multiplatform Binary Analysis and

Reverse engineering Framework.

Vivisect Python tool for malware analysis

binnavi Binary analysis IDE for reverse engineering X64dbg Debugger for windows

Capstone Disassembly framework for binary analysis and

reversing

Website Analysis Tools

codebro Web based code browser with basic code analysis. Desenmascara.me Tool to retrieve metadata from websites

dnSpy .NET assembly editor, decompiler and debugger Dig Online dig and other network tools

Evan’s Debugger (EDB) Modular debugger with a Qt GUI dnstwist Domain name permutation engine for detecting

typo squatting, phishing and corporate espionage

Fibratus Windows kernel exploration and tracing tool Firebug Firefox extension for web development.

GDB The GNU debugger IPinfo Gather information about an IP or domain by

searching online resources

GEF GDB Enhanced Features, for exploiters and re-

verse engineers

Java Decompiler Decompile and inspect Java apps

hackers-grep Uility to search for strings in PE executables Java IDX Parser Parses Java IDX cache files

IDA Pro Windows disassembler and debugger JSDetox JavaScript malware analysis tool

Immunity Debugger Debugger for malware analysis jsunpack-n Javascript unpacker that emulates browser func-

tionality

ltrace Dynamic analysis tool for Linux executables Krakatau Java decompiler, assembler, and disassembler

objdump Static analysis tool for Linux binaries Machinae OSINT tool for gathering information about

URLs, IPs, or hashes

OllyDbg Debugger for Windows executables mailchecker Cross-language temporary email detection library

PANDA Platform for Architecture-Neutral Dynamic Anal-

ysis

Malzilla Analyze malicious web pages.

PEDA Python Exploit Development Assistance for GDB PunkSpider Web application vulnerability search en-

gine.ÂăMy review

pestudio Static analysis tool for Windows executables RABCDAsm ActionScript Bytecode Disassembler

plasma Interactive disassembler for x86/ARM/MIPS SenderBase Search for IP, domain or network owner

PPEE (puppy) PE file inspector. Spidermonkey Mozilla’s JavaScript engine, for debugging mali-

cious JS

Process Monitor Advanced monitoring tool for Windows programs Sucuri SiteCheck Website Malware and Security Scanner

Pyew Python tool for malware analysis swftools Adobe Flash decompiler.

Rdare2 Reverse engineering framework TekDefense Automator OSINT tool for gathering information about

URLs, IPs, or hashes

ROPMEMU Framework to analyze, dissect and decompile

complex code-reuse attacks

xxxswf Analysis tool for Flash files

SMRT Sublime Malware Research Tool, a plugin for Sub-

lime Text 3 focused on malware analyis.

ZScalar Zulu Zulu URL Risk Analyzer

Table 2. Tools available for reverse engineering, debugging, and website analysis.

51



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

to detect defective network equipment that loses packets, latency problems caused by machines

transmitting traffic around the world and data exfiltration or even intrusion attempts against any

entity.

SysAnalyzer. SysAnalyzer is an open-source tool developed to provide an interactive resource for

malware researchers to easily compile, analyze, and monitor the behavior that a binary performed

when operating on the network. It is an interactive framework for the malcode run time analy-

sis that tracks different aspects of device and method states. SysAnalyzer was designed to allow

analysts to rapidly create a detailed report. SysAnalyzer’s main components function off of com-

paring device snapshots over a given user time interval. Similar to a live monitoring system, the

reason a snapshot method was used is to reduce the amount of data analysts need to wade through

when performing their research. By using a snapshot method, audiences can easily display only

the persistent changes that have been identified since the first run of the application.

VirusTotal. Virustotal is a service that analyzes suspicious files and URLs and helps to detect

viruses, worms, Trojans and all kinds of malware detected by antivirus engines quickly. In addi-

tion to a variety of methods for removing signals from the studied material, VirusTotal inspects

products with over 70 antivirus scanners and URL / domain blacklisting services. Every person

can use their browser to pick a file from their device, and submit it to VirusTotal. VirusTotal offers

various methods for uploading data, including the default public web portal, desktop uploaders,

browser extension, and a programmatic API. The web interface has the greatest scanning priority

among the forms of application which are available to the public. The specifications can be made

using the HTTP-based public API in any programming language. It also offers a variety of other

functions, including the VirusTotal Community: a network that allows users to report on files and

URLs and exchange comments with each other. This can be helpful in detecting malicious content

and also in finding false positives – regular and harmless objects identified as dangerous by one or

more scanners.

5. CONCLUSION

This survey paper presents a summary of malware detection and analysis techniques and tools. In

particular, the different tools available for malware detection, memory forensics, packet inspec-

tion, scanners/sandboxes, reverse engineering, hacking, and website analysis have been thrown

light. Since most of the current surveys typically concentrate on a specific subset of the model,

this paper offers an in-depth study of methods to identify and evaluate malware with a clear un-

derstanding of domain-specific analytics.

52



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

REFERENCES

[1] S. K. Talukder, M. I. I. Sakib, and M. M. Rahman, “Model for e-government in bangladesh:

A unique id based approach,” in 2014 International Conference on Informatics, Electronics

Vision (ICIEV), pp. 1–6, May 2014.

[2] S. Talukder and B. Carbunar, “When friend becomes abuser: Evidence of friend abuse in

facebook,” in Proceedings of the 9th ACM Conference on Web Science, WebSci ’17, (New

York, NY, USA), ACM, June 2017.

[3] S. K. Talukder, M. I. I. Sakib, and M. M. Rahman, “Digital land management system: A new

initiative for bangladesh,” in 2014 International Conference on Electrical Engineering and

Information Communication Technology, pp. 1–6, April 2014.

[4] S. Talukder, I. I. Sakib, F. Hossen, Z. R. Talukder, and S. Hossain, “Attacks and defenses in

mobile ip: Modeling with stochastic game petri net,” in 2017 International Conference on

Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), pp. 18–

23, IEEE, 2017.

[5] S. Corporation, “Internet security threat report.” Symantec, shorturl.at/aqKO7, 2019.

[6] M. Labs, “Mcafee labs threats reports.” McAfee, shorturl.at/izEJU, 2019.

[7] T. Blazytko, M. Contag, C. Aschermann, and T. Holz, “Syntia: Synthesizing the semantics of

obfuscated code,” in 26th {USENIX} Security Symposium ({USENIX} Security 17), pp. 643–

659, 2017.

[8] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “A comparison of

static, dynamic, and hybrid analysis for malware detection,” Journal of Computer Virology

and Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[9] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification: bridging the

static/dynamic gap,” in Proceedings of the 5th ACM workshop on Security and artificial

intelligence, pp. 3–14, 2012.

[10] S. Talukder, S. Witherspoon, K. Srivastava, and R. Thompson, “Mobile technology in

healthcare environment: Security vulnerabilities and countermeasures,” arXiv preprint

arXiv:1807.11086, 2018.

[11] C. Raghuraman, S. Suresh, S. Shivshankar, and R. Chapaneri, “Static and dynamic malware

analysis using machine learning,” in First International Conference on Sustainable Tech-

nologies for Computational Intelligence, pp. 793–806, Springer, 2020.

53

shorturl.at/aqKO7
shorturl.at/izEJU


International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

[12] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: Android malware detection using per-

mission pairs,” IEEE Transactions on Information Forensics and Security, 2019.

[13] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, “Intelligent mobile mal-

ware detection using permission requests and api calls,” Future Generation Computer Sys-

tems, 2020.

[14] S. Talukder and B. Carbunar, “Abusniff: Automatic detection and defenses against abu-

sive facebook friends,” in Twelfth International AAAI Conference on Web and Social Media,

2018.

[15] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android malware detection

based on system call sequences and lstm,” Multimedia Tools and Applications, vol. 78, no. 4,

pp. 3979–3999, 2019.

[16] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Loginov, “Evolving exact decompila-

tion,” in Workshop on Binary Analysis Research (BAR), 2018.

[17] J. Upchurch and X. Zhou, “Variant: a malware similarity testing framework,” in 2015 10th

International Conference on Malicious and Unwanted Software (MALWARE), pp. 31–39,

IEEE, 2015.

[18] M. Ghiasi, A. Sami, and Z. Salehi, “Dynamic vsa: a framework for malware detection based

on register contents,” Engineering Applications of Artificial Intelligence, vol. 44, pp. 111–

122, 2015.

[19] J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimen-

sional binary program features,” in 2015 10th International Conference on Malicious and

Unwanted Software (MALWARE), pp. 11–20, IEEE, 2015.

[20] J. Sexton, C. Storlie, and B. Anderson, “Subroutine based detection of apt malware,” Journal

of Computer Virology and Hacking Techniques, vol. 12, no. 4, pp. 225–233, 2016.

[21] P. Khodamoradi, M. Fazlali, F. Mardukhi, and M. Nosrati, “Heuristic metamorphic malware

detection based on statistics of assembly instructions using classification algorithms,” in 2015

18th CSI International Symposium on Computer Architecture and Digital Systems (CADS),

pp. 1–6, IEEE, 2015.

[22] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent malware detection based on file

relation graphs,” in Proceedings of the 2015 IEEE 9th International Conference on Semantic

Computing (IEEE ICSC 2015), pp. 85–92, IEEE, 2015.

54



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

[23] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, and R. Green-

stadt, “De-anonymizing programmers via code stylometry,” in 24th {USENIX} Security Sym-

posium ({USENIX} Security 15), pp. 255–270, 2015.

[24] B. Gu, Y. Fang, P. Jia, L. Liu, L. Zhang, and M. Wang, “A new static detection method of

malicious document based on wavelet package analysis,” in 2015 International Conference

on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 333–

336, IEEE, 2015.

[25] M. Nar, A. G. Kakisim, M. N. Yavuz, and İ. Soğukpinar, “Analysis and comparison of dis-

assemblers for opcode based malware analysis,” in 2019 4th International Conference on

Computer Science and Engineering (UBMK), pp. 17–22, IEEE, 2019.

[26] P. Vadrevu and R. Perdisci, “Maxs: Scaling malware execution with sequential multi-

hypothesis testing,” in Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security, pp. 771–782, 2016.

[27] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust and effective malware detection through

quantitative data flow graph metrics,” in International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pp. 98–118, Springer, 2015.

[28] A. A. E. Elhadi, M. A. Maarof, and B. Barry, “Improving the detection of malware behaviour

using simplified data dependent api call graph,” International Journal of Security and Its

Applications, vol. 7, no. 5, pp. 29–42, 2013.

[29] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The dropper effect: Insights into

malware distribution with downloader graph analytics,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pp. 1118–1129, 2015.

[30] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity, behavior-based automated

malware analysis and classification,” computers & security, vol. 52, pp. 251–266, 2015.

[31] W. Mao, Z. Cai, D. Towsley, and X. Guan, “Probabilistic inference on integrity for access

behavior based malware detection,” in International Symposium on Recent Advances in In-

trusion Detection, pp. 155–176, Springer, 2015.

[32] N. Kawaguchi and K. Omote, “Malware function classification using apis in initial behavior,”

in 2015 10th Asia Joint Conference on Information Security, pp. 138–144, IEEE, 2015.

[33] A. Raff, D. Peri, and A. Lotem, “System and methods for malware detection using log based

crowdsourcing analysis,” Aug. 27 2019. US Patent 10,397,246.

55



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

[34] X. Jiang, B. Mao, J. Guan, and X. Huang, “Android malware detection using fine-grained

features,” Scientific Programming, vol. 2020, 2020.

[35] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: Deep learning based android mal-

ware detection using real devices,” Computers & Security, vol. 89, p. 101663, 2020.

[36] S. Talukder, “Tools and techniques for malware detection and analysis,” arXiv preprint

arXiv:2002.06819, 2020.

[37] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and detection

using deep learning,” Tsinghua Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[38] I. Sogukpinar, “Analysis and evaluation of dynamic feature-based malware detection meth-

ods,” in Innovative Security Solutions for Information Technology and Communications:

11th International Conference, SecITC 2018, Bucharest, Romania, November 8–9, 2018,

Revised Selected Papers, vol. 11359, p. 247, Springer, 2019.

[39] G. Laurenza, L. Aniello, R. Lazzeretti, and R. Baldoni, “Malware triage based on static

features and public apt reports,” in International Conference on Cyber Security Cryptography

and Machine Learning, pp. 288–305, Springer, 2017.

[40] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro,

“Transcend: Detecting concept drift in malware classification models,” in 26th {USENIX}

Security Symposium ({USENIX} Security 17), pp. 625–642, 2017.

[41] M. Howard, A. Pfeffer, M. Dalai, and M. Reposa, “Predicting signatures of future mal-

ware variants,” in 2017 12th International Conference on Malicious and Unwanted Software

(MALWARE), pp. 126–132, IEEE, 2017.

[42] Z. Feng, S. Xiong, D. Cao, X. Deng, X. Wang, Y. Yang, X. Zhou, Y. Huang, and G. Wu, “Hrs:

A hybrid framework for malware detection,” in Proceedings of the 2015 ACM International

Workshop on International Workshop on Security and Privacy Analytics, pp. 19–26, 2015.

[43] M. Asquith, “Extremely scalable storage and clustering of malware metadata,” Journal of

Computer Virology and Hacking Techniques, vol. 12, no. 2, pp. 49–58, 2016.

[44] M. Polino, A. Scorti, F. Maggi, and S. Zanero, “Jackdaw: Towards automatic reverse engi-

neering of large datasets of binaries,” in International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pp. 121–143, Springer, 2015.

[45] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic malware-

analysis techniques and tools,” ACM Comput. Surv., vol. 44, Mar. 2008.

56



International Journal of Network Security & Its Applications (IJNSA) Vol. 12, No.2, March 2020

[46] D. Uppal, V. Mehra, and V. Verma, “Basic survey on malware analysis, tools and techniques,”

International Journal on Computational Sciences & Applications (IJCSA), vol. 4, no. 1,

p. 103, 2014.

[47] M. Labs, “2019 state of malware.” Malwarebytes, shorturl.at/bjtP8, 2019.

[48] I. Lapowsky, “Malware last 10 years.” AV-TEST, shorturl.at/yzN01, 2020.

AUTHORS

Sajedul Talukder, Ph.D. is a tenure-track Assistant Professor of Com-

puter Science at Edinboro University. Dr. Talukder’s research interests

include security and privacy with applications in online and geosocial

networks, machine learning, wireless networks, distributed systems,

and mobile applications. His current research focuses on building an

automated system that aims to reduce the online social networking risks

for the general users and seeks to detect and defend abuses that can arise

from social networking friends. His research works have been pub-

lished on top-tier social networking conferences and invited by Face-

book in their headquarter. His work attracted a number of media at-

tention including from NBC 6 and Sage Research Methods. In addition, he is also serving as the

program committee member and reviewer in several prestigious conferences and journals. At FIU,

Dr. Talukder worked as a research mentor for Science without Borders, NSF-RET and NSF-REU.

Prior to Ph.D., he worked as a research intern at Samsung R&D Institute and Ministry of Foreign

Affairs Bangladesh. Professor Talukder is the founder and director of Privacy Enhanced Security

Lab (PENSLab), where he and his group develop privacy enhanced security systems.

Zahidur Talukder is a Ph.D. student in Computer Science at the Uni-

versity of Texas at Arlington. Currently, he is working in Rigorous De-

sign Lab (RiDL) at UTA and advised by Professor Mohammad Atiqul

Islam. His research interests are broadly in the areas of cyber-physical

systems, computer architecture, and security. Currently, he is working

on data center security by enhancing the physical infrastructure secu-

rity, with a particular focus on mitigating the emerging threat of “power

attacks” in multi-tenant “colocation” data centers.

57

shorturl.at/bjtP8
shorturl.at/yzN01
http://penslab.cs.edinboro.edu

	Introduction
	Different Types of Malware
	Viruses and worms: the contagious threat
	Trojans and Rootkits: the masked threat
	Spyware and keyloggers: the financial threat

	Malware Analysis
	Static analysis
	Dynamic analysis

	Malware Analysis Tools
	Open Source Malware Analysis Tools
	Mobile Malware Analysis Tools
	Other Analysis Tools

	Conclusion

