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A SURVEY ON ML4VIS

A Survey on ML4VIS: Applying Machine
Learning Advances to Data Visualization

Qianwen Wang, Zhutian Chen, Yong Wang, and Huamin Qu

Abstract—Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve
a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research
attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS
is needed. In this paper, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: “what visualization
processes can be assisted by ML?” and “how ML techniques can be used to solve visualization problems?” This survey reveals seven
main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight
Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing
visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations.
Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization.
Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While
more studies are still needed in the area of ML4VIS, we hope this paper can provide a stepping-stone for future exploration.

Index Terms—ML4VIS, Machine Learning, Data Visualization, Survey.

1 INTRODUCTION

ATA visualization (VIS), which maps data into visual pre-
D sentations (e.g., position, color), is a powerful approach to
uncover hidden insights and communicate compelling stories in
data. However, achieving an effective visualization is typically
challenging, requiring a large amount of human effort and having a
high reliance on expertise, such as graphic design, user experience
design, and data analysis.

Machine Learning (ML), on the other hand, provides a practical
opportunity to relieve the reliance on experts in visualization.
By automatically learning knowledge from data, ML enables
task completion without explicit instructions from humans. The
application of ML techniques can benefit a variety of visualization-
related problems. In this paper, we define visualization-related
problems as problems that are related to the process of creating,
interacting with, and evaluating visualizations. We refer to studies
that apply ML techniques to solve visualization-related problems
using the knowledge extracted from data as ML4VIS in this paper.
MLAVIS studies can be traced back to 1986 [89] and have been
reignited by the recent advances in ML. A series of ML4VIS studies
are emerging, covering a wide range of visualization problems
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(e.g., graph layout [50], visualization assessment [54]) and ML
techniques (e.g., variational auto-encoders [49], Mask-RCNN [60]).

While MLAVIS generates a stream of new opportunities, it
also poses a series of challenges. First, it is not always clear,
among various problems related to visualization, which one can be
significantly improved by existing ML techniques and which one
still requires a high level of human intervention. Roughly applying
ML techniques to unsuitable visualization problems may only
impose the drawbacks of ML (e.g., uncertainty, inexplainability)
and threaten the validity of a visualization without bringing any
benefit. Second, given a visualization-related task, selecting a
proper ML technique and employing necessary adaptation are
crucial yet challenging. There are a plethora of ML techniques,
most of which are exclusively suitable for a certain type of
problems. For example, to automatically interpret infographics, ML
techniques developed for natural-image-understanding are more
helpful and relevant than ML techniques developed for speech
recognition. Therefore, the success of ML4VIS hinges on a better
understanding of both the visualization and the ML, as well as the
integration between the two.

Researchers have contributed a series of frameworks and
surveys about the integration between visualization and ML, but
they mainly investigate how visualization can assist ML in data
analysis [90], [91], [92], [93], [94], [95] rather than how ML
can be used to solve visualization-related problems. For example,
in a state-of-the-art report, Endert et al. [92] depicted a closer
integration between visualization and ML techniques through
interactive ML. However, the goal of this integration is still
to facilitate data analysis in different application domains (e.g.,
text analytics, multimedia analytics). Some recent surveys have
reviewed studies on automatic visualization creation [96], [97], but
these surveys consider both ML-based and non-ML-based methods.
More importantly, they only focus on one specific visualization-
related problem, i.e., visualization creation. The opportunities for
applying ML techniques to various visualization-related problems
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(e.g., visualization creation, visualization assessment) have not been
fully discussed in previous studies. To the best of our knowledge,
this paper is the first published survey on ML4VIS.

In this work, we systematically reviewed the literature in related
fields including data visualization, human-computer interaction
(HCI), ML, and data mining to investigate how ML techniques
are employed and adapted for visualization. Build upon existing
visualization theoretical models, we proposed in an ML4VIS
pipeline, which reveals seven main processes that can benefit from
employing ML techniques. The seven visualization processes (i.e.,
Data Processing4VIS, Data-VIS Mapping, Insight Communication,
Style Imitation, VIS Interaction, VIS Reading, and User Profiling)
are mapped into the main learning tasks in ML to bridge the needs
in visualization with the capabilities of ML. We discuss the current
practices and future opportunities of ML4VIS in the context of
the MLAVIS pipeline and the ML-VIS mapping. Specifically, our
contributions are:

o A codification of 88 ML4VIS studies into seven processes
in visualization that can benefit from the employment of ML
techniques (Section 4);

o An MLA4VIS pipeline that integrates the seven visualization
processes with existing visualization models (Section 5) and an
ML-VIS mapping between the seven visualization processes
and an ML taxonomy (Section 6).

« A set of research challenges and opportunities derived from
our analysis (Section 7).

We hope this paper can provide a stepping stone for further

exploration in the area of ML4VIS. An interactive browser of

this survey is available at https://ml4vis.github.io.

2 RELATED WORK

This paper mainly relates to two streams of literature: surveys
that aim to guide ML-assisted design and theoretical models that
summarize the process in visualization.

2.1

As various ML capabilities (e.g., recommendation, interaction
prediction) are integrated into user interfaces, many surveys and
reviews have been conducted to guide the application of ML
techniques in the design of user interfaces [98], [99], [100].
These surveys on general ML-assisted designs have contributed
various guidelines and taxonomies that also inform the ML4VIS
studies. Efforts to review these guidelines can be traced back to
1999, when Horvitz [100] reviewed and outlined 12 guidelines
for coupling automated services with direct user manipulation.
These guidelines were later extended by Amershi et al. [99], who
distilled 18 design guidelines for human-Al interaction from over
150 Al-related design recommendations. The majority of these
guidelines, such as “learn from user behaviors”, “convey the
consequence of user interactions”, can also be applied to the
design of ML-assisted interactive visualizations. Apart from design
guidelines, taxonomies can also provide a better understanding
of ML techniques through a design perspective. Yang et al. [98]
analyzed more than 2000 HCI publications using topic modeling
and summarized four channels through which ML advances can
provide value to users: self-understanding, contextual awareness,
optimization, and utility-capability. The four channels can also
help people envision new ways of ML techniques to improve
visualization. While these surveys shed some light on the study of
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MLAVIS, visualizations have certain unique characteristics that re-
quire specified investigations. For example, a precise understanding
of and an efficient interaction with data are required in visualization,
but they are rarely discussed in the general design of user interfaces.

To guide ML-assisted visualization designs, Saket et al. [101]
compared and categorized existing approaches for learning visual-
ization design principles based on the learning method and the input
features. The authors then described a research agenda for deriving
visualization design principles using ML techniques. Even though
this study provides a helpful and insightful agenda, it focuses on
the creation of visualization and makes little investigation about
user interaction and perception, which are important in interactive
visualizations. In this study, we present a survey on ML4VIS that
covers various visualization processes.

2.2 Theoretical Models in Visualization

Theoretical models (e.g., workflows, pipelines) have become
increasingly important in designing, developing, and evaluating
visualizations. A variety of theoretical models have been proposed
to depict different processes in visualization [91], [102], [103].
For example, Card [104] presented a visualization workflow to
describe the process of creating and interacting with visualizations.
Munzner [102] proposed a nested model for the design and
validation of visualization.

With the growing usage of ML in visualization, more and
more studies have included ML techniques as a component in the
theoretical models of visualization. Keim et al. [91] presented
the first effort to form a general VA pipeline, where ML is
included as a data processing module. Follow-up studies proposed
theoretical models tailored for different analysis scenarios and ML
techniques [105], [106], [107]. For example, El-Assady et al. [107]
extended the general VA pipeline to encompass a new visual
analytics paradigm, i.e., speculative execution. Sacha et al. [105]
introduced a process model to describe the visual interaction
with dimension reduction, a widely-used ML technique. Endert et
al. [92] reviewed theoretical models that embed ML techniques
into visual analytics and listed opportunities for future research.
In these studies, ML is integrated with visualization techniques to
facilitate the analysis of complex data. The capabilities of ML in
enabling more effective visualizations still remain unclear.

Recently, there is a growing research trend on modeling the
role of visualization in the design, development, and evaluation
of ML [90], [93], [94], [95], [108]. For example, a Dagstuhl
Seminar [90] identified a series of research opportunities in
combining ML with visualization. Sacha et al. [108] reinterpreted
the traditional VA pipeline and proposed a VIS4ML ontology
to encompass ML development workflows into VA workflows.
Spinner et al. [109] presented a VA framework for interactive and
explainable ML. A research gap exists in summarizing how ML
can contribute to visualization.

Contrary to those prior theoretical models, we investigated how
ML techniques can be used to benefit the creation, evaluation, and
interaction of visualizations. We present an ML4VIS pipeline based
on our survey of 88 papers. While more studies are still needed in
the field of ML4VIS, we hope this pipeline can help map out the
current landscape and inform future opportunities.

3 SURVEY METHODOLOGY

To provide an understanding of the current ML4VIS studies, we
conducted an analysis of 88 related papers in the field of VIS, HCI,
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TABLE 1
Relevant venues

VIS IEEE VIS (InfoVis, VAST, SciVis),
(visualization) EuroVis, PacificVis, TVCG

HCI (human-computer
interaction)

DMM (data mining and
management)

CHI, UIST, IUI

KDD, SIGMOD, ICDE, VLDB

CVPR, ECCV, ICML, NeurlPS,

ML (machine learning) ICCV, AAAIL TJCAL ICLR

VIS

HCI

ML

DMM

Other
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Fig. 1. (@) The number of ML4VIS studies published in different fields:
VIS, HCI, DMM (data mining and management), ML;(b) The number of
ML4VIS studies over time.

ML, and data mining & management. Each paper is coded based on
the VIS process and the ML task. Even though automatic analysis
methods (e.g., topic modeling) are popular among recent survey
papers [98], [105], [110], automatic methods usually only provide
a high-level understanding of a large number of papers (e.g., more
than 2000 [98]). Manual analysis is still needed to extract details
for a deep analysis [105], [110]. Therefore, to ensure a thorough
analysis, we conducted a manual analysis for the collected papers.

3.1 Survey Scope

We began our analysis by assembling a corpus of ML4VIS papers.
We collected all research articles published between 2016 Jan
to 2020 Oct in main journals and conferences in the field of
VIS, HCI, ML, and data mining & management by directly
accessing the venues, as shown in Table 1. We selected impactful
journals and conferences in corresponding fields mainly according
to Google Scholar Top Publications [111]. The time range was
chosen based on two main considerations: a) this time range has
covered the majority of the state-of-art MLAVIS studies and is
manageable to conduct a detailed manual analysis; b) given that ML
techniques are progressing rapidly, the latest research can provide
better guidance for follow-up studies. Moreover, papers published
before this time range will be included later by going through
the representative references of the collected papers. Following
the practice in [93], we mainly checked the title and abstract of
each paper to strike a balance between efficiency and accuracy.
We went through the full manuscript only when the title and
abstract cannot provide clear information. During this process,
we paid special attention to a set of ML-related keywords (e.g.,
“learning”, “machine”, “training”, “Al”, “automation”, “CNN”,
“LSTM”) and visualization-related keywords (e.g., “visualization”,
“infographic”, “diagrams”, “charts”). After such a round of paper
selection and filtering, we obtained 259 papers.

We further carefully checked the 259 papers using the following
criteria. First, since this survey aims to understand the current

TABLE 2
All surveyed papers and their codes.
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ID paper venue @?9@)%?9?9/%?9%%%% > >
1 Sips et al. [1] EuroVis 2009 | ]
2 Gotz and Wen [2] 1V} 2009
3 Savva et al. [3] UIST 2011
4 Key et al. [4] SIGMOD 2012
5 Steichen et al. [5] Ul 2013
6 Brown et al. [6] TVCG 2014
7 Lalle et al. [7] 1V} 2014
8 Toker et al. [8] Ul 2014
9 Sedimair and Aupetit [9] CGF 2015
10 Mutlu et al. [10] TiS 2016] [ |
11 Aupetit and Sedimair [11]  PVis 2016
12 Siegel et al. [12] ECCV 2016
13 Kembhavi et al. [13] ECCV 2016
14 Al-Zaidy et al. [14] AAAI 2016
15 Pezzotti et al. [15] TveG 2016 |l
16 Poco et al. [16] VIS 2017
17 Kwon et al. [17] VIS 2017
18 Bylinskii et al. [18] UIST 2017
19 Saha et al. [19] IJCAI 2017
20 Kruiger et al. [20] EuroVis 2017
21 Poco and Heer [21] EuroVis 2017
22 Jung et al. [22] CHI 2017
23 Bylinskii et al. [23] anxiv 2017
24 Al-Zaidy and Giles [24] _ AAAI 2017
25 Siddiqui et al. [25] VLDB _ 2018
26 Gramazio et al. [26] VIS 2018
27 Moritz et al. [27] VIS 2018
28 Berger et al. [28] VIS 2018
29 Wang et al. [29] VIS 2018
30 Haehn et al. [30] VIS 2018
31 Luo et al. [31] SIGMOD 2018
32 Milo and Somech [32] KDD 2018
33 Zhou et al. [33] IJCAI 2018
34 Kahou et al. [34] ICLR 2018
35 Luo et al. [35] icoE___ 2018 | | |
36 Fan and Hauser [36] EuroVis 2018
37 Chegini et al. [37] EuroVis 2018
38 Katle et al. [38] CVPR 2018
39 Kim et al. [39] CVPR 2018
40 Battle et al. [40] CHI 2018
41_Dibiaand Demiraip [41] __CGA 2018 | || |
42 Haleem et al. [42] CGA 2018
43 Madan et al. [43] anxiv 2018
44 Yu and Silva [44] VIS 2019
45 He et al. [45] VIS 2019
46 Chen et al. [46] VIS 2019
47 Han and Wang [47] VIS 2019
48 Chen et al. [48] VIS 2019
49 Kwon and Ma [49] VIS 2019
50 Wang et al. [50] VIS 2019
51 Han et al. [51] VIS 2019
52 Wall et al. [52] VIS 2019
53 Fujiwara et al. [53] VIS 2019
54 Fu et al. [54] VIS 2019
55 Porter et al. [55] VIS 2019
56 Jo and Seo [56] VIS 2019
57 Ma et al. [57] VIS 2019
58 Wang et al. [58] VIS 2019
59 Cui et al. [59] VIS 2019
60 Chen et al. [60] VIS 2019
61 Wang et al. [61] VIS 2019
62 Smart et al. [62] VIS 2019
63 Huang et al. [63] VIS 2019
64 Hong et al. [64] PVis 2019
65 Fan and Hauser [65] EuroVis 2019
66 Ottley et al. [66] EuroVis 2019
67 Abbas et al. [67] EuroVis 2019
68 Kasseland Rohs [68]  EuroVis 2019
69 Hu et al. [69] CHI 2019
70 Fan and Hauser [70] CGA 2019
71 Kafle et al. [71] anxiv 2019
72 Mohammed [72] VLDB 2020
73 Zhang et al. [73] VIS 2020
74 Wu et al. [74] VIS 2020
75 Tang et al. [75] VIS 2020
76 Qian et al. [76] VIS 2020
77 Wang et al. [77] VIS 2020
78  Oppermann et al. [78] VIS 2020
79 Fosco et al. [79] uUIST 2020
80 Giovannangeli et al. [80] PacificVis 2020
81 Liu et al. [81] PacificVis 2020
82 Luo et al. [82] ICDE 2020
83  Lekschas etal [83]  EuroVis 2020 M
84 Zhao et al. [84] CHI 2020
85 Lai et al. [85] CHI 2020
86 Kim et al. [86] CHI 2020
87 Luetal. [87] CHI 2020
88 Zhou et al. [88] aiv__ 2020 [ |
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practices of employing ML techniques for visualizations, we
focused on papers that contribute novel techniques and applications.
Theory, evaluation, and dataset papers were excluded. Then, we
validated the three terms, ML, VIS, and 4 (for), respectively. To
validate the term ML, a paper should employ ML techniques
to learn from training data rather than totally depend on human
defined rules. This criterion requires that a training or optimiza-
tion process is conducted on a collection of sample data. For
example, Voyager [112] was excluded from the corpus because it
recommends charts using a list of permitted channels and marks
defined by human experts. To validate the term VIS, ML should
be used for visualization-related problems, including the creation,
interaction, and evaluation of visualizations. In other words, we
consider information visualization, scientific visualization, and
visual analytics except those studies that purely use ML techniques
for data processing. This criterion distinguishes ML4VIS studies
from studies that purely use ML to analyze data. For example,
NNVA [113] employs ML techniques to analyze the parameter
sensitivity of yeast cell polarization simulations. In this study,
visualizations are merely used to represent the sensitivity analysis
that are generated by ML. Therefore, NNVA is not an ML4VIS
study and was eliminated from the corpus. To validate the term
4 (for), a paper should contribute a novel application or an
improvement of existing ML techniques. This criterion helps
focus on insightful applications and better scope the range of
this survey. For example, a large number of papers that directly
use the existing dimension reduction methods to visualize high-
dimensional data were not included since they fail to improve these
techniques or apply these techniques to a new problem. But the
paper [20] that employs t-SNE to layout graph and the paper [29]
that improves LDA to maximize the perceived separation of humans
were included. Following the practice in other surveys [93], [114],
we conducted one-round reference-based search and further went
through the related work of these papers. To focus on the latest
development in ML4VIS and provide insights for follow-up studies,
we did not include papers that were published before 2000. We
collected 12 referenced papers that satisfy the aforementioned
criteria but appeared earlier than 2016 or on other venues. Our
final corpus included 88 relevant papers. A summary of the survey
statistics is shown in Fig. 1.

3.2 Paper Coding

The paper analysis consisted of three phases. In the first phase,
we extracted a brief description for each paper, including the
targeted visualization problems, the employed ML models, and
the collected training data. In the second phase, we coded the
collected papers from a visualization perspective and analyzed
what visualization problems are solved by ML techniques. We
categorized these visualization problems based on the visualization
processes that these problems are related to. We aimed to answer
the question “what visualization processes can be automated
by ML?” from this encoding. We referred to the visualization
processes in existing visualization pipelines [103], [104] and
modified them accordingly to better fit the context of ML4VIS.
Each of the three authors independently coded the content of 60
papers to ensure that each paper was coded by at least two authors.
Note that, at this stage, we did not have unified names for all
the visualization processes. The three authors then discussed their
own codes about visualization processes with all authors. During
weekly discussion, we iteratively adapted, split, and refined the
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Fig. 2. (a) An illustration of the Data Processing4VIS; (b) An example
of employing ML in Data Processing4VIS: Luo et al. [82]. An ML model
(orange box) is trained to detect data errors and propose cleaning options.

codes multiple times until there was no further disagreement and
finally arrived at seven main visualization processes. More details
of the seven visualization processes are explained in Section 4.
Meanwhile, the seven processes form an ML4VIS pipeline, whose
differences from existing visualization pipelines are discussed in
Section 5. In the third phase, we sought to characterize ‘“how
ML can be used to solve visualization problems?” As new ML
models constantly emerge and one ML model is usually applied
to solve various problems, we found that it is not practical to
code ML4VIS studies based on the used ML models. Therefore,
we answered this question by coding the types of learning tasks.
As with phase two, each of the three authors coded 60 papers
to ensure each paper was at least coded by two authors. We
employed a bottom-up approach and referred to the learning tasks
in [115], [116]. The learning tasks are summarized and discussed
in Section 6. The codes of all collected papers are summarized
in Table 2. For those papers that appeared both at IEEE VIS
conference and IEEE TVCG, we listed their venue as VIS. Most
of the ML4VIS papers used one ML technique to solve one major
visualization problem. But it is also possible that an MLAVIS paper
involves more than one learning task and one visualization process,
so a few papers are labeled with more than one ML or VIS code.

4 BENEFIT FROM ML: SEVEN VIS PROCESSES

In this section, we introduce seven visualization processes emerged
from our literature review that are benefiting from ML techniques,
as shown in Table 3. We first explain the transition from inputs to
outputs at each visualization process, and then discuss the problems
solved by ML at each process with representative examples.

4.1

Process Description: In Data Processing4VIS (Fig. 2(a)), raw
data is transformed into a format that better suits the following
visualization processes. Contrary to the general-purpose data
processing, Data Processing4VIS refers to a process that is tightly
related to and exclusively designed for the context of visualization,
such as enabling efficient visualization creation and enhancing
human perception.

Data Processing4VIS

Problems Solved by ML: In Data Processing4VIS, ML tech-
niques demonstrate the ability to make raw data better satisfy
certain visualization-related purposes, including enabling efficient
visualization creation and enhancing human perception.

» Enabling efficient visualization creation. By narrowing down the
purpose of data processing to the creation of specific visualizations,
the employment of ML techniques can improve the efficiency of
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TABLE 3
Seven main visualization processes that benefit from employing ML techniques.

Process | Description | Problems Solved by ML | Representative Examples
<« raw data is transformed improve the efficiency of data ML cleans data for a specified visualization by asking
= Data into a format that better . L
< . . . processing questions to users [82]
a Processing4 VIS suits the following - - -
SR . ML transforms high dimension data to 2D and
visualization processes enhance perception of generated - . .
Lo maximizes the human-perceived separation among
visualizations
classes [29]
. S ML tes Vega-Lite visualization specifications
Data-VIS data fields are mapped generate suitable visualizations generates Vega-Lile visuaization specincations
X . R for a given dataset [41]
Mapping into visual channels — - - —~ -
. . ML synthesizes intermediate density map images
improve the efficiency of . . . .
L . between given density maps without storing and
visualization creation . .. L
visualizing data of all time steps [48]
Insight ir}sigh?s are embedded in interpret insichts ML recognizes entities from the user-provided text
- visualizations to be p Sights insights [59]
v | Communication ffectivel icated ghts | i - N
> eftectively communicate . L ML predicts suitable visualization specifications for
generate suitable visualizations L . L
communicating given insights [31]
styles are extracted from o . ,
Stvle Imitati the given examples and imitate the color selection ML generates co!or ramps by imitating designers
yle Imitation applied to the created practices in choosing colors. [62] -
visualization imitate the layouts ML generates graph drawings with similar layout
styles of the given examples [50]
users interact with a . -
VIS Interact visualization and Feﬁne the result of the current ML reﬁnes the selected points of a lasso selection in
nteraction transformed it into a new interaction 3D pomt clouds [4§] _
stage through user actions | ynderstand natural interaction ML interprets t_he given text descriptions and extracts
the corresponding visual patterns [25]
user actions with
v User visualizations are logged predict user behavior ML predicts a user’s next click in a scatter plot [66]
m Profiling and analyzed to better . - ML predicts a user’s task performance and personality
2 predict user characteristics - .
) understand users based on mouse interaction [6]
VIS users read visualizations extract content ML extracts an exten.sible visualization template from
Readi and obtain useful a timeline 1nf0graphlcs [60] . i
cading information interpret content ML answers questions about a given bar chart visual-
ization [38]
. . ML predicts the distribution of users’ attention on an
estimate human perception . -
infographic [18]

data processing. For example, data cleaning, an inevitable step
in data processing, is often treated as an independent step and
completed before the visualization creation. Instead, Luo et al. [82]
related the data cleaning processes with visualization creations and
used ML techniques to help users interactively clean the data after

the visualization creation. Fig. 2(b) illustrates an overview of [82].

Users first specify a visualization and create it using the uncleaned
data. A trained model then detects errors and generates cleaning
options for the data underlying the visualization. These cleaning

options are provided to users in the form of yes/no questions.

Based on users’ answers, the underlying data is cleaned and the
visualization is updated. This progressive data cleaning enables a
more flexible and efficient creation of visualization, since data does
not need to be totally cleaned before creating visualizations.

» Enhancing human perception. Meanwhile, ML techniques also
demonstrate the ability to enhance user perception of the created
visualizations in Data Processing4VIS. For example, dimension
reduction (DR) is a widely used data processing method for
visualizing high dimensional data. Previous studies often directly
employ the general DR methods proposed in ML field without
considering the needs in visualizations. To better present data in
scatter plots, Wang et al. [29] proposed a supervised DR method

that takes the perceptual capabilities of humans into account.

The modified DR method mimics human perception in cluster

separation and successfully maximizes the visually perceived
cluster separation in 2D projections.

4.2 Data-VIS Mapping

Process Description: In Data-VIS Mapping (Fig. 3(a)), the values
of data fields are mapped into the visual channels of graphic marks.
Appropriate visual mapping is needed in this process to help
people better understand and analyze the visualized data. Such a
mapping is usually manually specified using code or authoring tools,
which results in steep learning curves and makes data visualization
inaccessible to general users.

Problems Solved by ML: In the collected ML4VIS studies, ML
techniques mainly facilitate Data-VIS Mapping by recommending
suitable visual representations and by improving the efficiency of
visualization creation.

» Recommending visualizations. A set of recent research has shown
that ML can be used to automatically recommend suitable visual
representations. For example, DeepEye [35] combines supervised
ML techniques with expert rules to automatically recommend
good visualizations for users. Given a dataset, all the possible
visualizations are enumerated and classified as “good” or “bad” by
a binary decision tree classifier. All the “good” visualizations are
then ranked and provided to users. Meanwhile, the great success
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Data-VIS Mapping

Data Forward Visualization
Transform ;
"encoding": { "x": { "field"
“sale”, "scale "bandSize"
DEICRYN i '?"P ! 30}, "type": "quantitative"
Mapping “category”:. -
car”,“year
“1993”} } M’\/
Backward /
VIS Transform L.V

Fig. 3. (a) An illustration of the Data-VIS Mapping process. (b) A repre-
sentative example of employing ML in Data-VIS Mapping: Data2Vis [41].
An ML model (orange box) is trained to map JSON-encoded datasets
into Vega-lite visualization specifications.

of deep learning in various domains promotes its application in
Data-VIS Mapping. VizML [69] collects a large visualization
dataset and trains a fully connected neural network to predict
the top five design choices when creating visualizations for a
specific dataset. Data2Vis [41] formalizes the process of Data-
VIS Mapping as a sequence to sequence translation from the
original data to the visualization specifications. As illustrated
in Fig. 3(b), a sequence-to-sequence neural network learns the
mapping between JSON-encoded datasets (source sequence) and
Vega-lite visualization specifications (target sequence). In these
studies, ML automatically learns design choices from the training
dataset and directly translates data to suitable visualizations. As a
result, the employment of ML can effectively reduce the manual
efforts in selecting data attributes, designing visual representations,
and specifying the mapping from data values to graphic marks.

» Improving the efficiency of visualization creation. Another line of
research focuses on improving the efficiency of creating visualiza-
tions. One direction is to improve the efficiency of creating dynamic
visualizations. For instance, creating dynamic density maps usually
leads to high computational cost and memory demand since a
large amount of data needs to be recorded and then visualized
at each time step. To address this issue, GenerativeMap [48]
proposes a generative model to synthesizes a series of density map
images and show the dynamic evolution between two given density
maps, thus relieving the burden of storing intermediate results.
Similarly, to visualize the dynamics in spatial-temporal data, TSR-
TVD [47] applies a recurrent generative network to learn the pattern
in dynamic evolution and generate temporal super-resolution
visualizations. In these studies, ML learns the patterns in dynamic
evolution from training data and directly synthesize intermediate
visualizations to reduce the needed storage and computation cost.
Another interesting direction is to facilitate parameter exploration
in visualization creation. For example, Berger et al. [28] trained a
Generative Adversarial Network (GAN) to synthesize visualizations
and guide users in transfer function editing by quantifying expected
changes in the visualization. Similarly, InsituNet [45] introduces
a deep learning based surrogate model to create visualizations
of simulation data by learning the mapping from simulation
parameters to visualization images. These methods enable people to
explore synthesized visualizations under various input parameters
without actually executing the expensive creation processes.

4.3

Process Description: In Insight Communication (Fig. 4(a)), in-
sights are transformed into visualizations that can effectively
communicate them. As with many studies in the visualization
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Fig. 4. (a) An illustration of the process of Insight Communication. (b)
One representative example of ML4VIS in Insight Communication: Text-
to-Viz [59]. A text insight is first analyzed by a text analyzer and then be
transformed into expressive infographics by a visualization generator.
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community [117], [118], we refer to the term Insight as the knowl-
edge about the data that is communicated through visualizations.
The main difference between Insight Communication and Data-
VIS Mapping is the availability of insights. In Data-VIS Mapping,
insights are hidden in the underlying data and need to be discovered
by people through visual exploration. In Insight Communication,
on the contrary, insights are already available to designers and
need to be highlighted in the created visualizations. This difference
is also denoted as exploratory versus explanatory visualization in
prior studies [119]. To better communicate insights, visualizations
in Insight Communication are usually more visually pleasing to
improve user engagement and memorability.

Problems Solved by ML: In Insight Communication, existing stud-
ies have successfully applied ML techniques to interpret insights
and to build a mapping from insights to suitable visualizations.

» Interpreting insights. The insights can be either provided by
the designers or automatically generated from the data. For
example, Text-to-Viz [59] allows users to provide insights through
natural language statements such as “40% of USA freshwater
is for agriculture” (Fig. 4(b)). A text analyzer (a supervised
CNN+CRF model) is trained to extract entities from the sentence
and understand the provided insights. DataShot [58] automatically
identifies insights from tabular data and presents these identified
insights to the users through infographics.

» Mapping insights into visualizations. ML techniques also
demonstrate the capability to learn the mapping from insights to
suitable visual representations. To facilitate this mapping, ML4VIS
studies usually describe visual representations using specifications
in a predefined design space to ensure a well-defined output
space. Using the information from insights, ML can identify
candidates for each dimension in the design space and produce
the final visualization from these valid combinations [31], [58],
[59]. For example, DeepEye [31] employs declarative visualization
languages similar to Vega-Lite to enable the creation of common
visualizations (e.g., bar, pie charts). A decision tree model learns
the mapping from insights and data characteristics to visualization
specifications. Meanwhile, to generate visualizations with higher
aesthetic values in Insight Communication, researchers also con-
tribute more advanced design spaces. For example, Text-to-Viz [59]
summarizes four design-space dimensions of infographics—layout,
description, graphic, and color—from discussion with design experts.
A visualization generator synthesizes infographics by generating a
tuple of values on these four dimensions.

4.4 Style Imitation

Process Description: In Style Imitation (Fig. 5(a)), the styles of
given visualizations examples are applied to create new visualiza-
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Fig. 5. (a) An illustration of the process of Style Imitation. (b) A repre-
sentative example of ML4VIS in Style Imitation: DeepDrawing [50]. A
Graph-LSTM model (orange box) learns the drawing styles from a set of
samples and generates drawings of a similar style for the input data.

tions. We use the term style to denote a set of variables that affect
the appearance of visualizations but are not directly mapped to
data values. Typical visualization styles include the color palette,
the chart decoration, and the view layout and aspect ratio. The
main difference between Data2VIS Mapping and Style Imitation is
whether the visual properties are mapped to data values. For exam-
ple, Data-VIS Mapping decides whether data should be visualized
as a scatter plot or a bar chart. In contrast, Style Imitation extracts
color palettes from given examples for creating a scatter plot.

Problems Solved by ML: Even though the visualization style
involves a large number of variables, existing ML4VIS studies on
Style Imitation mainly apply ML techniques on two aspects, the
imitation of color selection and the imitation of layout styles.

» Imitating color selection. Color selection in visualizations is not
only an aesthetic choice but also influences the effectiveness of
information communication. Even though some helpful guidelines
about colors are available, it is still challenging for novice
visualization developers to use these loosely defined qualitative
guidelines to generate high-quality color ramps. To address this
issue, Color Crafter [62] mimics the practices of professional
designers and automatically generates high-quality color ramps.
The color style imitation is achieved by modeling the paths that
expert-designed color ramps traverse through color space. The
authors trained ML models in a corpus of 222 expert-designed
color ramps that are summarized from popular visualizations, and
used these models to generate effective color ramps for developers
from one single seed color.

» Imitating layouts. A parallel line of research on Style Imitation
focuses on generating visualizations of similar layouts.

ML techniques have been extensively employed to generate
graph drawings that mimic the layout styles of given graph drawing
examples. Kwon et al. [17] presented an ML approach to facilitate
large graph visualization by learning the topological similarity
between large graphs. Specifically, the method provides a quick
overview of visualizations for an input large graph data by learning
from the drawings with similar topology structures. This approach
is further extended in a recent study [49], which learns the layout
from examples using a deep generative model. The model is then
used to provide users with an intuitive way to explore the layout
design space of the input data. Meanwhile, DeepDrawing [50]
trains a graph-LSTM to learn one specific layout style from graph
drawing examples. Instead of drawing a single graph in diverse
layouts, the trained ML model in DeepDrawing directly maps new
input data into graph drawings that share similar layout styles with
the training examples, as shown in Fig. 5(b).

Apart from graph drawing, a few studies have explored
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Fig. 6. (a) An illustration of the VIS Interaction Process. (b) A representa-
tive example of employing ML in VIS Interaction: LassoNet [46]. An ML
model (orange box) predicts the user intended node selection in a 3D
point cloud from a lasso drawn on 2D space.

imitating the layouts of other types of visualizations, including
storyline visualization [75] and mobile visualization [74]. For
example, PlotThread [75] trains a reinforcement learning agent to
learn the layout of human-designed storyline visualizations. By
imitating the layout from human-drawn examples, PlotThread is
able to include more diverse narrative elements and create more
expressive storylines compared with optimization-based methods.

4.5 VIS Interaction

Process Description: In VIS Interaction (Fig. 6(a)), the appearance
of a visualization is modified based on the user actions (e.g., zoom,
filter). VIS Interaction usually reflects user intentions in visual
exploration and modifies the visualization by manipulating the view
configurations, the visual mappings, or the underlying data [120].

Problems Solved by ML: In VIS Interaction, previous studies
have demonstrated the capabilities of ML techniques to infer user
intentions and thus assist users in interactions. According to our
survey, the visualization problems solve by ML techniques in
VIS Interaction can be classified into two main groups, refining
interaction results and understanding natural interactions.

» Refining interaction results. ML techniques can refine the
results of user interactions to achieve more accurate and efficient
interactions. When interacting with a large number of visual
elements, an accurate and efficient selection is crucial but usually
hard to achieve. Take the brushing in 2D space as an example.
Traditional interactions often need to make a trade-off between
interaction efficiency and accuracy, e.g., rectangular brushing is
fast but inaccurate while the logical combination is accurate but
slow. Fan and Hauser [36] exploited a CNN model to achieve
both fast and accurate node selection in 2D scatter plots. The
CNN estimates the intended node selection based on a simple
line-brushing and data distribution in the visualization. Compared
with selections in 2D space, node selection in 3D space is even
more challenging: visualizing 3D points in 2D space easily causes
occlusion; input devices such as touchscreens only operate in 2D
space. To facilitate the node selection in the large-scale 3D point
cloud, LassoNet [46] uses a deep learning model to predict the
node selection based on a lasso drawn on a 2D surface, the user’s
viewpoint, and characteristics of the point cloud. A pipeline of
LassoNet is illustrated in Fig. 6(b).

» Understanding natural interactions. Natural interactions are
interactions that humans naturally communicate through, such as
gestures, natural language, and sketches [121]. ML techniques have
demonstrated the capabilities to understand nature interactions
and allow a more intuitive and convenient way to interact with
visualization. Given that the input natural interaction (e.g., sentence,
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sketch) can be fuzzy and uncertain, ML techniques help interpret
the user’s input and trigger dedicated functions. For example,
ShapeSearch [25] allows users to search visual patterns from trend
line visualizations using sketches and text descriptions. The authors
trained a CRF model to recognize entities and understand natural in-
teractions. FlowSense [44] supports users in visual data exploration
via natural language command, e.g., “highlight the selected cars
in a parallel coordinates plot”. While the language understanding
is mainly accomplished by a non-ML method (semantic parsing)
in FlowSense, a supervised learning model is trained to effectively
resolve syntactic ambiguity in the language commands.

4.6 User Profiling

Process Description: In User Profiling (Fig. 7(a)), user actions
with visualizations are logged and then analyzed in order to better
understand users.

Problems Solved by ML: In User Profiling, previous studies have
demonstrated the capabilities of ML models in modeling user
behaviors and characteristics.

» Predicting user behaviors. ML techniques can predict next-step
interactions and facilitate complex visual explorations that consist
of a series of interactions. Therefore, the employment of ML can
ease the learning curve for users or reduce the interaction latency
in complex visual explorations. For example, to ease the learning
curve, REACT [32] models the analysis context using a generic
tree-based model, where the edges represent the user’s actions and
the nodes represent the system states. Given an analysis context,
relevant contexts are first fetched using a context-similarity metric
and then used to generate next-action suggestions for the user.
Another example is the study by Ottley et al. [66]. To reduce the
interaction latency, Ottley et al. utilized a Markov model to predict
the user’s next mouse clicks in large scatter plots and fetch related
data in advance.

» Predicting user characteristics. Interactions with the visualization
can reflect users’ reasoning processes in visual exploration and even
their own personal characteristics. ML can effectively analyze these
interactions and help designers learn about the users, including
their learning abilities [7], their cognitive abilities [5], their analysis
goals [2], [26], and even their personalities [6]. For example,
Gramaz et al. [26] demonstrated that the classification of mouse
interactions can effectively infer the visual analysis tasks of
cancer genomics experts. The ML classification can even expand
current knowledge about the visualization tasks in cancer genomics.
Brown et al. [6] applied ML techniques to analyze users’ mouse
interactions in the visual exploration of finding Waldo. They found
that ML can accurately predict the user task performance (i.e.,
the time used to find Waldo) and uncover user personalities (e.g.,
locus of control, extraversion, and neuroticism). Apart from mouse
interactions, eye gaze data has also been treated as a type of
interaction data and can help learn about users [122]. Lallé et
al [7], used ML techniques to predict a user’s learning curve of a
visualization based on the eye gaze data. By learning about users,
visualization developers are able to go beyond the one-size-fits-all
design and provide adaptive visualizations for different task needs,
user abilities, and analysis stages.

4.7 VIS Reading

Process Description: In VIS Reading (Fig. 8(a)), users observe
the appearance of a visualization, read the encoded data, and
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Fig. 7. (a) An illustration of the User Profiling process. (b) A representative
example of employing ML in User Profiling: Ottley et al. [66] employed a
hidden Markov model (orange box) to predict user future actions based
on their past actions and the visualization.
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Fig. 8. (a) An illustration of the VIS Reading process. (b) A representative
example of employing ML in VIS Reading. Chen et al. [60] employed a
deep learning model (orange box) to extract the graphical elements from
a timeline infographics.

understand the underlying information. ML techniques have
been used in VIS Reading process to automatically “read” the
visualizations like humans, thus helping designers better understand
users and enabling the analysis of a large corpus of visualizations.

Problems Solved by ML: In VIS Reading, the capabilities of
ML techniques can be divided into three main groups: extracting
content, understanding content, and modeling users.

» Extracting content. ML techniques can directly extract content
from visualizations in the form of bitmap images, such as graphical
elements [60], color palette [16], and visual encodings [21]. The
extracted content can be used for indexing, restyling, and reusing
visualizations. A typical example is [21], which contributes an end-
to-end pipeline to extract Vega visualization specifications from
standard visualizations such as line charts. A set of classification
models are trained to identify chart types, localize text, and
recognize graphic marks separately. Compared with standard
visualizations, infographics have more diverse appearances and are
more difficult to interpret. Chen et al. [60] utilized a deep learning
model, Mask RCNN, for instance, segmentation to extract graphical
elements from infographics. The extracted graphical elements are
used as visualization templates for creating similar infographics
using different data.

Meanwhile, since contents of bitmap visualizations are usually
hard to be automatically extracted, some studies have proposed
methods to embed the required information (e.g., meta data, color
schema) into bitmap visualizations [73], [123]. The embedded
information will not influence human perception of the visualization
and can then be easily extracted from the visualization. For
example, VisCode [73] trains an encoder-decoder network, in
which the encoder embeds a QR code to the background of a
bitmap visualization and the decoder extracts the QR code from
the visualization. A BASNet is trained to identify the semantically
important regions and ensures the encoder will not affect human



A SURVEY ON ML4VIS

[ visuat | [ | 7

Form

= | |
Information | Dataset

View
Data | | Visual l

e ‘

| view | | Visuat |

Transform Mapping Transform Perception
() t t b emsion

i

1

l _

H o image X

Data Visualization Perception Knowledge

1 knowledge

i

i

1 P modify X

! Specification Specification Exploration

1
@ data__} 1 _visualization user

Fig. 9. (a) A visualization pipeline proposed by Card [104]. (b) A model of
visualization proposed by Van Wijk [103].
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each process.

perception of these regions.

» Interpreting content. More than extracting content, ML tech-
niques can also achieve a high-level interpretation of visualizations
and solve complex tasks. For example, Kembhavi et al. [13]
proposed an LSTM-based method to understand the concepts
and relationships in a diagram. Questions about the diagram like
“will the increases in lion lead to the decreases in deer?” can be
answered by an attention-based model with high accuracy. Another
recent example DVQA is presented by Kafle et al. [38]. DVQA
combines a CNN-based and an LSTM-based network and can
answer questions about data visualizations. Given a visualization,
the model reads the visualization content and answers reasoning
questions such as “which item sold the most units?”

» Estimating human perception. ML techniques can model how
humans perceive a visualization and help designers better assess
visualizations and understand audiences. A number of ML-based
methods have been contributed to model user perception of a
visualization from various aspects, including visual attention [18],
similarity recognition [57], and readability assessment [42]. For
example, Bylinskii et al. [18] trained a deep learning model to
predict the distribution of users’ visual attention on an infographic.
Guided by this prediction, designers can better arrange the layout
and ensure that the most important contents are emphasized in the
infographic. Haleem et al. [42] proposed a CNN-based approach to
evaluate the readability of graph layouts by using graph images as
inputs. An interesting phenomenon is that current ML4 VIS studies
extensively study the perception modeling in scatter plots, such
as the perception of class separation [11], the perception of local
patterns [37], and the perception of similarity [57]. This focus on
scatter plots might stem from the wide popularity of scatter plots
as well as their relatively simple visual forms.

—
P

Fig. 11. The employment of ML in one visualization process can benefit
other processes and further improve the whole workflow. Analyzed
examples: A) Bylinskii et al. [18] employed ML in VIS Reading and
further improved a manual Insight Communication process. B) Ottley et
al. [66] employed ML in User Profiling and further improved an non-ML
assisted VIS Interaction process.

5 AN MLA4VIS PIPELINE

To map out the role of ML4VIS in general visualization and
better inform future exploration, we connect the seven processes to
previous visualization models and present an MLA4VIS pipeline.

This MLAVIS pipeline is inspired by existing visualization
models, especially the one proposed by Card [104] and the one by
Van Wijk [103] (Fig. 9). We modify these visualization models to
better fit the scenarios of ML4VIS, i.e., to describe the visualization
processes so that they can be better aligned with ML tasks.
Specifically, we make the following main modifications. First,
contrary to previous studies, we take an additional element “style”
into consideration. We refer to style as elements that affect the
appearance of a visualization but are not mapped to data values.
Typical visualization styles include color palette, layout, and chart
decoration. Style is tightly related to the memorability [124] and
engagement [125] of a visualization and has gained increasing
research attention. Second, we decouple this pipeline from users’
internal states, e.g., users’ internal knowledge in Van Wijk’s
model, to better fit the context of ML4VIS. Instead of including
users’ internal states, we use the outputs of these internal states
(e.g., insights, user action) to ensure elements in the pipeline are
describable instances rather than vague concepts. For example,
user actions can reflect users’ intentions and tasks and insights
can reflect users’ perceived knowledge from a visualization. Since
ML usually requires well-defined inputs and outputs, the modified
pipeline can better fit the context of ML4VIS by removing vague or
hard-to-define concepts. Meanwhile, as in Van Wijk’s pipeline, we
also do not differentiate visual mapping and view transformation
that are introduced in Card’s pipeline. This decision is based on our
observation of the collection of ML4VIS studies. In the collected
MLA4VIS studies, the visual mapping and the view transformation
are sometimes achieved by an end-to-end ML model and are not
independent (e.g., [47], [48]).

The MLA4VIS pipeline is presented in Fig. 10. Each of the seven
blue boxes indicates a process where ML can assist in; each of the
white boxes indicates a key element that is either the input or the
output of a process. As with Van Wijk’s model [103], the seven
processes are grouped by three containers: DATA, VIS, and USER.
Example Usage: This ML4VIS pipeline illustrates the close
relationship among the seven processes: the outputs of one process
are used as the inputs for other processes. Therefore, employing
ML techniques in one visualization process can further facilitate
other processes, even though ML techniques are not used in
these processes. When designing visualization tools, this ML4VIS
pipeline can help decide where to embed ML techniques to enhance
the whole workflow. Below we present several examples in the
collected papers as a demonstration.
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« Bylinskii et al. [18] proposed a deep learning method to estimate
the visual attention of audiences on different regions of an
infographic. The employed ML technique takes visualization
as input, estimates user attention, and predicts user-perceived
insights (i.e., information in the highlighted regions), thus
contributing to User Profiling. Based on this method, the authors
developed a tool to help designers evaluate their visualizations
by checking whether important information received sufficient
attention. Meanwhile, the outputted insights can be used as
input of Insight Communication. In the developed authoring
tool, designers can also interactively modify their infographic,
observe the change of audience attention, and thus create
visualizations that better communicate important insights. As
shown in Fig. 11(A), the developed tool forms an Insight
Communication-VIS Reading loop: the Insight Communication
process does not employ ML techniques but benefits from the
ML techniques used in VIS Reading.

« Ottley et al [66] applied a Markov model to learn users’ needs
based on their mouse clicks and predicted users’ next-step
selections. While the ML techniques were employed in User
Profiling, the predicted next-step selections can be used as
input to the VIS Interaction and help the visualization tool
fetch potentially related data in advance, thereby improving
the interaction latency in large-scale data analysis. As a result,
the VIS Interaction process, even though employing no ML
techniques, can benefit from the ML techniques used in User
Profiling. As shown in Fig. 11(B), VIS Interaction and User
Profiling form a loop.

Meanwhile, the unconnected items in this pipeline can illustrate

possible future research directions. For example, the user charac-

teristics extracted from User Profiling can be used as inputs of

Data-VIS Mapping, Insight Communication, and Style Imitation

to construct user-adaptive visualizations, i.e., visualizations that

consider an individual user’s needs, abilities, and preferences.

While several studies [5], [7], [8] have discussed this direction

in their future work, few ML techniques have been employed to

successfully achieve this goal [2].

6 ALIGN ML wiTH VIS

In this section, we review the current ML4VIS studies from an ML
perspective, aiming to answer the question “how is ML used to solve
visualization problems”. We analyze both the training data and the
ML tasks. We first discuss the commonly-used formats of training
data, which are summarized from the collected 88 ML4VIS studies
using a bottom-up approach. We then categorize the collected
MLAVIS papers based on the main ML tasks [115], [116] to
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provide an overview of how the needs in visualization are formed
and solved as ML problems. This ML perspective (i.e., training data,
ML tasks) naturally corresponds to the visualization perspective
(i.e., process inputs and outputs, visualization processes). We map
the summarized data formats to the six types of information (i.e.,
inputs and outputs of the visualization processes) and the ML tasks
to the seven visualization processes. This ML-VIS mapping aims
to provide both an understanding of the current practices and a
guidance for future exploration in the ML4VIS research.

6.1

The format of training data reflects how information is encoded in
ML. It can influence how to formalize ML problems and choose
suitable ML models. The seven visualization processes in Section 4
reveal six types of information: data (underlying the visualization),
visualization, user action, user characteristics, style, and insight. In
this subsection, we summarize the common data formats that are
used to encode the five types of information based on a bottom-up
analysis of the collected papers (as shown in Table 4).

Image is the format that most visualizations “in the wild”
are presented in [3]. It is not surprising that many studies (e.g.,
[16], [21], [22], [23]) encode visualizations in the form of
images, contributing a number of large datasets of real-world
visualization images: FigureSeer Dataset (60k) [12], AI2D dataset
(5k) [13], Visually29K dataset (29k) [43], DVQA dataset (300k)
[38], FigureQA dataset (100k) [34], ColorMapping dataset (1.6k)
[16]. The emergence of large visualization-image datasets may
result from the considerable differences between natural images and
visualization images. Such differences make it difficult to directly
apply the datasets and techniques developed for natural images to
visualization images [13], [39], [60]. The styles of visualizations
and the insights extracted from visualizations can also be encoded
as parts of an image. For example, Chen et al. [60] encoded styles
of a visualization as its segmented graphical icons. Bylinskii et
al. [23] encoded the insights of an infographic as visual elements
that are diagnostic of the topic of an infographic. Meanwhile, some
researchers encode user actions in images. For example, Fan et
al. [36] encoded the user actions (i.e., click and drag) in a scatter
plot as the zoom and rotation of the scatter plot image.

Natural language (e.g., text and speech) is the most common
form of human communication [126]. Prior studies [44], [63]
have enabled users to use natural language to express intended
user actions, aiming to achieve more convenient and intuitive
VIS Interaction. For example, Huang et al. [63] allowed users
to interact with a visualization system using textual sentences
such as “visualize trajectories passed through tourist attractions

Training Data Formats

TABLE 4
Examples of Different Training Data Formats.

Data ‘ Visualization ‘ User Action User Characteristic ‘ Style ‘ Insight
[12], [16], [21],
Image — [22], [23], [34], [38], | [36], [70] — [60], [87] [23], [43], [79]
[45], [48], [60], [73]
Natural [22], [38], [39],
Language - - [44], [63] - - (591, [81]
Engineered
P (351, [69] [31, [40] [51. (7], 26] [71. (8] [42] —
Sequences [41] [41], [88] [6], [32], [52], [66] — — —
Graph [49], [50] — — — — [13], [39]
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during January 25”. Apart from user actions, insights can also
be encoded in the form of natural language. Through natural
language, users can easily describe the insights they aim to
convey in Insight Communication [59] and understand the insights
extracted in VIS Reading [13], [38], [81]. For example, Text-to-
Viz [59] allows users to describe the insights using a natural
language statement and automatically generates the corresponding
infographics. AutoCaption [81] generates a text caption to describe
the insights of a visualization based on four types of chart features
detected (i.e., aggregation, comparison, trend, distribution). In
contrast to images, researchers usually collected a small number
of labeled natural language examples for their specific tasks. For
example, Yu and Silva [44] collected and labeled less than 20
examples to train an ML model that can resolve certain syntactic
ambiguity; Cui et al. [59] collected and labeled 800 examples to
train an ML model that can extract the four predefined entities.
Also, due to the small number of training data, ML-based methods
are often combined with non-ML-based methods. For example,
Yu and Silva [44] supported natural language queries using non-
ML-based semantic parsing. An ML model is only trained on few
labeled examples to resolve certain syntactic ambiguities.

Engineered features are high dimensional vectors that are
extracted from the raw data using domain knowledge. While
the great progress of deep learning helps reduce the reliance on
human-centric feature engineering, extracting features using human
knowledge is still popular in ML4VIS studies. This popularity
of feature engineering may come from its ability to effectively
capture important information without the need for large datasets
and enormous computational resources. Human specified features
have been used to encode all the five types of information except
insights. Here we discuss several representative examples. For the
data (underlying a visualization), VizML [69] encodes a tabular
data using 841 features related to statistical analysis, such as mean,
standard deviation, entropy, and skewness. For the visualization,
Beagle [40] encodes visualizations using the features extracted from
SVG visualization files, such as the number of axes, the position of
circles, and the width of rectangles. For the user actions, Gramazio
et al. [26] encoded user actions (i.e., mouse clicks) through a set
of human-defined features, such as the dwell time, the active time,
the region-of-interest transitions. For the style, Haleem et al. [42]
summarized the style of a graph layout using a set of graph aesthetic
metrics, such as the node occlusion and the edge crossing.

Sequences are rows of values whose order is important.
Sequences have been widely used to encode user actions in their
temporal order [6], [52], [66]. For example, Brown et al. [6]
conducted a sequence-based analysis of the user actions in visual
analytics. The sequences of seven types of user actions (i.e., pan left,
right, up, down, zoom in, and out) are converted into sub-sequences
of two or three user actions, such as first zoom in and then zoom
out. Interestingly, even though data (underlying visualizations)
and visualizations do not have a sequential structure, they can also
be encoded using sequences. For example, Data2Vis [41] encodes
both JSON data file and Vega-lite visualization configuration as
sequences. Table2Chart [88] encodes a visualization as a sequence
of actions, including selecting data fields, selecting chart types,
splitting data fields, and grouping data fields.

Graph is a non-Euclidean data format that consists of nodes
and edges. Data (underlying visualizations) can be encoded in its
original graph format in ML4VIS studies [49], [50]. Meanwhile,
insights of visualizations can also be encoded in the form of
graphs [13], [39]. For example, Kim et al. [39] encoded the insight
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Fig. 12. Each row is a visualization process and each column is an ML
task. In each cell, the number and the grayscale indicate the number of
papers. The height of the bar indicates the number of studies related to a
type of ML task (blue bar) or a visualization process (orange bar). Note
that the number on a bar can be smaller than the sum of the numbers in
the corresponding row/column, because some papers involve multiple
learning tasks or visualization processes.

of an infographic as a graph. Each node of the graph represents an
object in the infographic and each edge represents the relationship
between the two connected objects.

6.2 Mapping ML Tasks to Visualization Processes

This subsection first provides a statistic summary of how the
different ML tasks are mapped into different visualization processes.
Then, we discuss each learning task in detail, including the related
visualization processes, the commonly-used ML models, and the
representative examples.

When summarizing the collected studies from an ML perspec-
tive, we find that it is not practical to summarize based on the
employed ML models, as new ML models are constantly emerging
and one ML model is often applied to solve different problems. To
better align the capabilities of ML with the needs in visualization,
we categorize the existing ML4VIS studies based on the types
of ML tasks. This learning-task-based categorization allows us to
understand how the needs in visualizations are formed and solved
as ML problems, without diving into the ML model details (e.g.,
whether to use LSTM or GRU).

Current ML methods can be categorized into four basic
paradigms, i.e., supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning [115], [116].
Based on the collected 88 papers, we refer to the learning
tasks discussed in [115], [116] and further categorize the four
paradigms into seven subsets: clustering, dimension reduction,
generative, classification, regression, semi-supervised learning, and
reinforcement learning. One subset of learning tasks is obtained
when the following categorization is no longer related to learning
tasks. For example, Nicolas [115] further categorizes reinforcement
learning as Markovian or evolutionary. Since this categorization
is about learning mechanisms rather than learning tasks, we treat
reinforcement learning as one minimal subset of learning tasks.
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6.2.1 An Overview

Fig. 12 shows the ML-VIS mapping between the seven visualization
processes and the ML tasks. Each column represents one type of
learning task and each row represents one visualization process.
The columns are grouped using gray thick lines based on the four
paradigms, i.e., supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. The four-column
groups, and columns inside each group, are in descending order of
the number of papers. In each cell, the number and the grayscale
indicate the number of studies that are related to both the ML task
in column and the visualizations process in row. The height of
the bar indicates the number of studies related to a type of ML
task (orange bar) or a visualization process (blue bar). Note that
the number on a bar can be smaller than the sum of the numbers
in corresponding cells, since a paper can involve more than one
visualization process and one ML task.

Overall, most ML4VIS studies formulate the needs in visual-
ization processes as supervised learning tasks (44 as classification
and 25 as regression). Other types of learning tasks are less used.
Unsupervised learning, the second most-used learning, is employed
in 27/88 MLA4VIS studies. Only 4 papers use reinforcement learning
and 2 papers use semi-supervised learning. This is not surprising
as supervised learning is the most common type of learning [116].
When taking different visualization processes into consideration,
the preference towards supervised learning, especially classification,
appears on most visualization processes. This preference is most
pronounced in VIS Reading, where 23/36 studies are related
to classification. Unlike other visualization processes, in Data
Processing4VIS and Style Imitation, the collected ML4VIS studies
exhibit a preference for unsupervised learning. But this observation
needs to be treated cautiously due to the small number of studies
in the two processes.

Among the seven visualization processes, VIS Reading is the
most frequently investigated visualization process in ML4VIS
(by 36/88 papers). Most of the studies in VIS Reading employed
supervised learning (23/36 used classification and 16/36 used
regression). We speculate this is caused by the success of deep
learning in computer vision tasks (e.g., image classification, object
detection, instance segmentation). A large number of deep learning
models have been proposed to understand natural images and
are adopted for the perception of visualization images [18], [43],
[60], [85], [87]. A considerable proportion of ML4VIS studies
investigate the problems in Data-VIS Mapping (16 papers), User
Profiling (11 papers), and VIS Interaction (9 papers). The other
three processes (i.e., Data Processing4 VIS, Insight Communication,
Style Imitation) are relatively less investigated.

6.2.2 Supervised Learning

In supervised learning, a model learns the mapping from input X to
output Y from the labeled training examples. Labeled input-output
pairs are required in supervised learning. Supervised learning can
be further divided into regression and classification based on
whether the output is numerical or categorical [116].

When formalizing a visualization problem as a regression task,
the training examples need to be labeled with numerical values.
Among all visualization processes, regression is mainly (19/25)
used in the USER stage, especially in VIS Reading (16 papers). For
example, in VIS Reading, regression can be used to learn the salient
regions of a visualization [18], [43], the segmentation of important
visual objects [60], and the aesthetic scores of visualizations [17],
[42]. In User Profiling, regression can also be used to learn the
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dwell time of user mouse clicks [26] or the users’ learning curve
of understanding a visualization [7]. Regression is not used in
DATA stage and less used in the VIS stage, which may be due to
the difficulty to quantitatively label the data processing and the
visualization creation.

Many ML models can be used for regression tasks. How to
choose a suitable ML model largely depends on the data formats.
For example, CNNs are widely used when the input data are
images. Many CNN models that are originally proposed for general
computer vision tasks have been adopted to process visualization
images, including ResNet (used in [12]), Xception (used in [79]),
FCN used in ( [127]), Fast R-CNN (used in [43]), and Mask R-CNN
(used in [60], [85]). LSTM and GRU are used when processing
sequences and natural languages [38], [39]. Traditional (i.e., non-
deep-learning-based) ML models (e.g., SVR, logistic regression,
MLP) are usually used when the inputs are engineered features.

When formalizing a visualization problem as a classification
task, all the training examples need to be categorized into finite
classes. Classification has been widely used in ML4VIS studies,
such as evaluating whether a visual encoding is valid [35],
predicting whether a visual region has interesting patterns [83], and
recognizing the types of charts [3], [22]. Complicated problems can
be decomposed into a series of classification tasks. For example,
VizML [69] decomposes the creation of a visualization as a series
of classification tasks, including classifying the type of marks,
the type of shared axis, and the type of visualization. Kim et
al. [39] and Kembhavi et al. [13] decompose the understanding of a
diagram infographic as classifying the relationships between every
two visual objects in the diagram. Classification has been used in
all the seven visualization processes except for Style Imitation. We
conjecture this is because that the possible styles of a visualization
can hardly be categorized into finite classes.

Most models used for regression can also be used for clas-
sification tasks through different ways, for example, setting a
threshold (binary classification, 1-vs-the-rest classification) or using
a softmax function (multi-class classification). Meanwhile, there
are some ML models whose outputs are, by nature, discrete, such
as SVM and decision tree.

The recent success of end-to-end deep learning methods has
contributed many ML models that can accomplish regression
and classification tasks at the same time. For example, Faster
RCNN [128], an instance segmentation model, has been used
in VIS Reading and can predict the type (classification) and the
bounding box (regression) of visual objects simultaneously [43].

6.2.3 Unsupervised Learning

In unsupervised learning, a model learns the underlying structure
of the unlabeled data X. Compared with supervised learning,
unsupervised learning relieves the requirement of the expensive
data labeling process. Based on the collected papers, we discuss the
three common tasks when using unsupervised learning in ML4VIS:
generative learning, dimension reduction, and clustering.

Similar to prior research [49], this paper refers a generative
model to a model that learns the distribution of unlabeled data
and is capable of generating new samples that are similar to,
but not the same as, the training data. Generative learning is
mainly used in four visualization processes: Data-VIS Mapping,
Style Imitation, VIS Reading, and User Profiling. In Data-VIS
Mapping and Style Imitation, the creation of a visualization can be
formed as generating a visualization that is similar to the collected
visualization examples [28], [45], [48], [49]. In User Profiling,
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predicting user actions can be formed as generating the next user
actions, so that the action sequence is similar to the collected user
action sequences [32], [66]. In VIS Reading, the human perception
of a visualization can be modeled through latent features [67].

Among all the generative models, GAN is a hot research topic
in the field of deep learning [129]. In MLAVIS, GANs have been
exclusively used in Data-VIS Mapping for scientific visualization,
including volume rendering [28], density maps [48], and in-situ
visualization of ensemble simulations [45]. GANs can effectively
synthesize visualizations without actually running the rendering pro-
cess, which can be time-consuming and computationally expensive.
However, training GANSs is usually difficult due to non-convergence
and model collapse [130]. Therefore, traditional (non-deep-learning-
based) generative models, such as Markov model, Gaussian mixture
model, variational autoencoder, are also popular, especially when
the training data is small and the problem is relatively simple. For
example, a click event has a relatively simple data format compared
with a visualization image and thus can be generated using a less
complicated ML model. Ottley et al. [66] used a hidden Markov
model to generate future click events on a scatter plot visualization.
The evolution of user attention on the visualization is modeled
based on the collected clickstream data. The future click events are
then generated based on the user attention evolution.

In dimension reduction, an ML model transforms the data
from a high-dimensional space to a low-dimensional space. In
the collected ML4VIS studies, dimension reduction is used in
five visualization processes for two main purposes. In Data
Processing4VIS and Data-VIS Mapping, dimension reduction is
often used to process high-dimensional data for the visualization in
a 2D space [19], [29]. For example, to visualize streaming data with
varying dimensions, Fujiwara et al. [53] improved the incremental
principal component analysis (PCA) and proposed a new dimension
reduction solution. In Style Imitation, VIS Reading, and VIS Inter-
action, dimension reduction is often used to extract representative
features for effective analysis [53], [56]. For example, to character-
ize the distribution patterns showed in scatter plots, Jo and Seo [56]
trained a f3-variational autoencoder to transform a scatter plot image
(64 x 64 x 1) to a 32 x 1 feature vector. The 32 features capture
the underlying data distribution of the scatter plot and can be used
to predict the human-perceived distances between scatter plots.

Popular dimension reduction methods include PCA, MDS, t-
SNE, UMAP, and autoencoder. PCA, MDS, t-SNE, and UMAP
have been widely used for visualizing high dimensional data on the
2D space. While the liner methods such as PCA and MDS are good
at preserving global structures, non-linear methods such as t-SNE
and UMAP are good at preserving local structures. Autoencoders
can be easily combined with other ML models to extract features
from complicated inputs. For example, an autoencoder can be
combined with graph neural networks (GNNs) to extract features
from graphs [49], combined with 3D convolution to extract features
from 3D streamlines and surfaces [51], and combined with CNNs
to extract features from images [54], [56].

In clustering, a model divides unlabeled data into a number of
groups based on their similarity. Clustering is a classical problem
and has been used for many applications in the visualization field.
In Style Imitation, collected training examples can be clustered
based on their color styles [62] to guide the creation of a new
visualization. In VIS Interaction and VIS Reading, visual objects
in a visualization can be clustered to better understand and
interact with this visualization [51], [65], [67]. Generally speaking,
clustering algorithms can achieve the most satisfactory results when
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the input features are representative. Therefore, when clustering
complicated inputs (e.g., images, natural language, extremely high-
dimensional features), it is necessary to apply feature engineering
or dimension reduction to extract representative features from the
original data. We refer the readers to [116], [131] for more details
about clustering algorithms.

6.2.4 Semi-supervised Learning

In semi-supervised learning. a model is trained using a small
amount of labeled data with a large amount of unlabeled data.
Semi-supervised learning is a combination between unsupervised
learning (no data are labeled) and supervised learning (all data are
labeled). Overall, semi-supervised learning is a less explored type of
learning in ML4VIS. The only two studies [82], [83] that employed
semi-supervised learning belong to the same sub-category, i.e.,
active learning. More specifically, Luo et al. [82] employed active
learning to interactively clean data in Data Processing4VIS. Users
are asked to label whether certain data items are duplicated and
will influence the visualization. Their labels will then be used to
improve the classification of data duplicates. Lekschas et al. [83]
applied active learning to improve the interactive visual pattern
search in VIS Interaction. A set of unlabeled visual regions are
identified using an active learning strategy, and labeled by the
users based on whether they contain interesting visual patterns.
A classification model is then iteratively trained using the user
labels to predict the interestingness of other unlabeled regions of
the visualization.

6.2.5 Reinforcement Learning

In reinforcement learning, an agent learns to take actions in an
environment to maximize the cumulative rewards. Different from
supervised and unsupervised learning, the task of reinforcement
learning is not to directly generate end results (e.g., classification
labels, latent features) but to take actions in an interactive
environment (e.g., playing a GO game).

To be solved through reinforcement learning, a problem needs
to be formalized as finding a sequence of actions that maximize
the cumulative rewards. More specifically, the problem needs to
be described as a Markov decision process, which contains a state
space S, an action space A, a transition function, and a reward
function. At each time step, the agent is in a certain state s, € S and
chooses an action a, € A. The agent moves to a new state s, in
the next time step based on the transition function s;4+1 = T (s;,a,)
and gets a corresponding reward r based on the reward function
si+1 =T (s¢,ay) [132]. For example, PlotThread [75] formalizes the
problem of creating a user-preferred storyline layout as performing
a sequence of layout modifications on a less satisfying layout.
All possible layouts form the state space and all possible layout
modifications form the action space. The reward is the similarity
between the current layout and the user-preferred layout. The
transition is implemented by applying the layout modification to
the current layout.

Reinforcement learning has made significant success in a
variety of tasks and a large number of reinforcement learning
models have been proposed. However, only a limited number of
MLA4VIS studies have used reinforcement learning, including asyn-
chronous advantage actor-critic [133] (used in PlotThread [75]),
policy gradient [134] (used in MobileVisFixer [74]), and deep
Q-learning [135] (used in Table2Chart [88]). How to apply
reinforcement learning to ML4VIS still requires further exploration.
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7 RESEARCH CHALLENGES & OPPORTUNITIES

In this section, we discuss the research challenges and opportunities
of ML4VIS that are derived from our survey, hoping to provide
insights for both researchers and practitioners in visualization.

7.1 From the Aspect of ML

More Diverse Types of ML: According to our survey, semi-
supervised learning and reinforcement learning are less considered
in ML4VIS studies, even though they demonstrate promising
properties for ML4VIS studies.

Semi-supervised learning extracts knowledge from data that
only a small proportion is labeled. By combining unlabeled data
with labeled data, semi-supervised learning not only reduces
the expense of data labeling but also surpasses both supervised
learning (trained only using the small amount of labeled data)
and unsupervised learning (trained using all data without their
labels). For many problems in ML4VIS (e.g., generating suitable
visualizations), the data labeling requires human experts (e.g.,
skilled designers). Sometimes, it is infeasible to get a large and
fully labeled training dataset. The application of semi-supervised
learning can help address this issue by reducing the required number
of labels. Initial exploration of semi-supervised learning in ML4VIS
has been conducted. For example, Lekschas et al. [83] and Luo et
al. [82] have demonstrated the effectiveness of using active learning
in data cleaning and visual pattern search. However, how to use
more techniques in semi-supervised learning for more visualization
processes in MLAVIS still requires further investigation.

Reinforcement learning is able to learn sequential decisions
without enumerating all possible training examples. While current
MLAVIS studies that use reinforcement learning are relatively
sparse (4/88), previous ML studies have successfully applied
reinforcement learning to human-computer interaction and demon-
strated the capabilities of reinforcement learning in modeling
user-data interactions [136], [137] and in making personalized
recommendations [138]. These previous studies in general user
interaction show the potential of reinforcement learning in various
visualization problems, such as predicting next-step interaction
in VIS Interaction, modeling users in User Profiling, and recom-
mending suitable visual representations in Data-VIS Mapping and
Insight Communication.

Note that we summarize the collected ML4VIS studies in terms
of ML tasks to better align ML capabilities with visualization needs
in this survey. We also encourage the readers to consider ML from
other perspectives and embrace more diverse ML techniques (e.g.,
federated learning, transform learning).

Public High-quality Datasets: In this survey, we notice that most
papers need to construct their own datasets due to the lack of public
visualization datasets [35], [69], [139]. In existing ML4 VIS studies,
the dataset quality is often limited by the size of data and the
reliability of the label, and may potentially endanger the validity
of the obtained ML models. For example, DeepEye [35] learns to
classify “good”/*“bad” visualizations based on the training examples
labeled by 100 students, whose knowledge about visualization is
unclear. VizML [69] trains a visualization recommender using
collected online visualizations, yet previous studies have pointed
out that online visualizations have a large proportion of deceptive
visualizations [140]. These studies prove the effectiveness of ML
in solving visualization problems, but the questionable quality of
their training data can degrade the performances of the ML models
(e.g., the quality of the recommended visualizations). Public and
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high-quality datasets are needed to further improve the application
of ML in visualizations. We hope this survey can encourage more
research on related directions.

Benchmark Tasks: ML4VIS studies are still at their early stage
and benchmark tasks for ML4VIS remain unclear. However,
benchmark tasks are important for the progress of ML tech-
niques [116]. In the field of ML, ML models are commonly
evaluated by comparing their performances with the state-of-
the-art on benchmark tasks (e.g., question answering, instance
segmentation). Advanced tasks can be accomplished by combining
the methods developed for multiple benchmark tasks. The lack of
benchmark tasks in ML4VIS makes peer comparison difficult and
can lead to negative impacts on follow-up studies.

Meanwhile, we find that existing ML4VIS studies have in-
tensively investigated several tasks, including graphic elements
extraction [21], [60], visualizations generation [35], [41], [69], and
graph layout [17], [49], [50]. These tasks can be the start point to
define benchmark tasks in ML4VIS.

7.2 From the Aspect of VIS

Diversity in Visualization We notice that the forms of visualiza-
tion are limited in the collected papers. First, current ML4VIS
studies exclusively focus on static visualizations. Even though
other forms of visualizations, such as animated transitions and data
videos, are popular and effective in information communication,
these visualizations are rarely discussed in the collected ML4VIS
studies. We conjecture this is partly caused by the difficulty of
understanding and generating dynamic visualizations using ML
techniques. Take image-format training data as an example. Com-
pared with statistic visualization (images), dynamic visualizations
(videos) require a larger set of training data, more complicated ML
models, and more powerful computational resources. Second, most
MLA4VIS studies focus on certain types of standard visualizations,
especially bar charts, scatter plots, and graphs. Other types
of visualizations, such as treemap, streamgraph, and parallel
coordinates, are not discussed despite their wide popularity in the
real world. Moreover, chart decorations are overlooked even though
they are important for the memorability and user engagement of
visualization. Multi-view visualizations are rarely mentioned even
though they are commonly used in visual analysis. Since the
success of visualization depends on choosing proper forms of
visualization [141], we believe good opportunities exist in applying
ML techniques to more diverse visualizations.

Towards VIS-Tailored ML: In this survey, most ML4VIS
studies directly apply ML techniques developed by ML researchers.
However, general ML techniques do not always suit well for the
specific problems in visualization. Take computer vision in VIS
Reading as an example. General ML techniques are mainly devel-
oped for natural images and cannot be directly applied to images
with charts and diagrams [13], [60]. Chen et al. [60] employed
a deep learning model to understand timeline infographics, but
found that they needed a series of post-processing to address the
poor model performance caused by the difference between natural
images and charts. The authors also highlighted the importance to
develop ML techniques specified for visualizations. We hope to see
more novel ML techniques that are tailored for the unique needs in
visualizations, such as the differences between chart images and
natural images [13], [60], the differences between user interactions
with visualizations and general user interactions [120].
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Human-Machine Collaboration: Most MLAVIS studies treat
ML as a black box without the involvement of humans. Take
Data-VIS Mapping as an example. ML directly generates suitable
visualizations from the given data in an end-to-end manner [41],
[69]. However, visualization is by nature a human-centric field:
visual design often relies on the creativity of designers; visual
analysis usually depends on the knowledge and experience of
domain experts. Keeping humans in the loop is crucial for the
success of visualization. More importantly, a perfect ML model
can rarely be obtained limited by the quality of training data and
the ambiguity of the problem. Unsatisfactory model results will
decrease user trust in ML4AVIS and hinder the wide adoption
of MLAVIS. Take VIS Interaction as an example, automated
interaction refinement can confuse users when the prediction is at
odds with the user’s expectation [36], [46].

Considering the possibility of unsatisfactory model results,
many MLA4VIS studies allow user participation by supporting
post-hoc refinement, such as adjusting the automatically selected
nodes [46] and modifying the auto-generated visualizations [59].
Recently, initial exploration in human-machine collaboration has
been conducted [75], [83]. For example, PlotThread [75] enables
the ML agent and the human designer to work in the same canvas
and modify the layout of a storyline collaboratively. However,
it requires further exploration of how to support a close human-
machine collaboration where human users are able to interpret,
modify, and improve the ML. We envision that a close human-
machine collaboration in ML4VIS can be achieved through
explainable and interactive ML, which not only increases user
trust by providing transparent predictions [94] but also improves
ML performances by utilizing user feedback [142].

Towards User-friendly ML4VIS: The employment of ML not
only provides opportunities but also poses new challenges in
designing visualizations. For example, using ML to automatically
refine user interaction or generate visualizations can violate the
design principle of “minimize unexpected changes” [99], [143].

Some MLAVIS studies have discussed the usability issues of
MLAVIS systems and proposed design suggestions in discussion
and future work. For example, Wang et al. [50] suggested that
self-exploring should be supported for expert users in automated
graph drawing. When evaluating their proposed natural language
interface for visual analysis, Yu et al. [44] found that users were
often confused about why their queries were rejected and did not
know how to modify the queries. Yu et al. suggested that possible
corrections of rejected queries should be provided to improve the
usability of the system.

While these design suggestions are insightful, they are scattered
among different papers. A systematic summary of these design
guidelines is still missing. More importantly, systematic cognitive
studies are required to help designers better understand user
behaviors and expectations in this new ML4VIS scenario.

8 DISCUSSION

In this section, we discuss the restrictions of ML4VIS and the limita-
tions of this survey. The discussion of ML restrictions complements
the review of ML4VIS, aiming to provide visualization researchers
and practitioners a comprehensive introduction of ML4VIS. The
limitations of this survey highlight several promising directions for
future surveys to further deepen our understanding about ML4VIS.
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8.1

In spite of the great success of MLAVIS, we still want to emphasize
that ML is not the only technical solution towards intelligent visu-
alization. ML-based methods are good at recognizing complicated
patterns from a huge amount of data. However, when the pattern is
simple or when training data is hard to obtain, ML may not be the
optimal solution. Previous studies [144], [145] have demonstrated
the effectiveness of non-ML-based methods, such as expert-defined
rules and statistic summaries, in solving visualization problems,
especially when the training data is hard to collect, when the
problem space is sparse, or when the solution can be easily
described through rules. For instance, ML techniques are widely
used to understand visualizations in the form of bitmap images [3],
[60]. But if the given input is an SVG file, a traverse of the SVG tree
can effectively deconstruct the visualization and extract the content
[146], [147], saving the great efforts to collect training data and
the high computation cost to train an ML model. Another example
is FlowSense [44], which uses a combination of pre-defined rules
and ML methods to capture natural language input patterns due to
the lack of labeled examples and computational resources. While
we hope this survey can demonstrate the effectiveness of ML in
visualizations and promote more MLAVIS studies, visualization
researchers should also pay attention to the unique advantages of
non-ML-based methods and apply them when applicable.

ML is Not a Panacea

8.2 Limitations & Future Work

This survey comes with certain limitations due to the adopted
approaches. First, we only investigate technique & application
papers in this survey. Apart from technique & application papers,
evaluation papers are also important for the field of ML4VIS.
For example, Hearst et al. [148] conducted a crowdsourcing
study with 274 participants to understand how to design natural
language interfaces for visual analytics systems. A review of
these evaluation papers can help us understand how users perceive
MLAVIS applications and guide the design of ML4VIS. Second,
we summarize the main purposes of employing ML in different
visualization processes based on our analysis of the collected papers.
We believe these analysis can provide useful insights. However, it
is possible that there are other under-explored areas of employing
ML. MLA4VIS is still an ongoing research field, we expect more
studies to be conducted to expand our understanding about it.

9 CONCLUSION

In this paper, we survey 88 papers to understand the current
practices in MLAVIS research, i.e., employing ML techniques
for solving problems related to data visualization. Guided by two
motivating questions: “what visualization processes are assisted by
ML?” and “what ML capabilities are used for visualization?”, we
summarize seven main visualization processes that are benefiting
from the application of ML techniques. The seven visualization
processes are also aligned with the learning tasks in ML to
reveal how the needs in visualization can be formed as ML
tasks. An ML4VIS pipeline is also proposed to organize the seven
visualization processes and map out the role of ML4VIS in general
visualizations. We further discuss the current practices and future
research opportunities in ML4VIS based on our analysis of the
collected studies. We believe this survey can provide useful insights
into the field of ML4VIS and promote future studies.
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