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ABSTRACT Mobile crowd-sensing (MCS) is a new sensing paradigm that takes advantage of the extensive

use of mobile phones that collect data efficiently and enable several significant applications. MCS paves the

way to explore new monitoring applications in different fields such as social networks, lifestyle, healthcare,

green applications, and intelligent transportation systems. Hence, MCS applications make use of sensing

and wireless communication capabilities provided by billions of smart mobile devices, e.g., Android and

iOS-based mobile devices. The aim of this paper is to identify and explore the new paradigm of MCS that

is using smartphone for capturing and sharing the sensed data between many nodes. We discuss the main

components of the infrastructure required to support the proposed framework. The existing and potential

applications leveragingMCS are laid out. Furthermore, this paper discusses the current challenges facing the

collectionmethodologies of the participants’ data in taskmanagement. The recent issues in theMCSfindings

are reviewed as well as the opportunities and challenges in sensing methods are analyzed. Finally, open

research issues and future challenges facing MCS are highlighted.

INDEX TERMS Mobile crowd-sensing, smartphone, data sensor management, Internet of Things, location

privacy.

I. INTRODUCTION

Smart phones are ubiquitous mobile devices expected to

proliferate rapidly, and their penetration is estimated to be

in the order of billions worldwide. Delivery applications

such as mobile application stores (Apple AppStore, Google

Play Store, etc.) and social media have transformed mobile

phones into intelligent computing devices using the instant

download of applications [1]. Smartphone vendors are con-

tinuously increasing the number of built-in sensors, a fact

thatmakes them an excellent contextual information provider.

Thus, smartphones can be used for large scale sensing of

the physical world at low cost by leveraging the available

sensors on the phones. With the proliferation of smartphones,

several sensing approaches have emerged such as mobile

phone sensing [2]. To enhance the user experience, many of

the applications that come installed or can be downloaded

from the online application delivery platforms take advan-

tage of sensors available on the phone. The fixed sensors

on the smartphone offer the chance to develop innovative

applications in many sectors such as environmental monitor-

ing, healthcare, and transportation [3]. In such applications,

smartphones play the role of base sensor nodes and gateways

depending on the availability of the mobile phones within

a region of interest. Similarly, sensors deployed in today’s

smartphones are witnessing a continuous improvement of

their hardware and software capabilities Smartphones can
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gather process and transfer data between users. Eventually,

smartphones, similar to static nodes are capable of sensing,

computing, and communicating [4], [5]. However, the main

difference is that smartphones are moving and repositioning

themselves in the network all the time. In such innovative

sensory networks, smartphones can collaborate with tradi-

tional sensor nodes to form a global-scale network formed

by billions of sensor nodes that are dynamically deployed,

to support the needs of a variety of applications and ser-

vices. The embedded sensors in mobile phones are leveraged

for various sensing tasks for MCS applications of particular

interest [6].

MCS takes advantage of large number of smartphone

devices to collect data efficiently enabling several significant

applications [1]. MCS refers to the use of smartphones owned

by a diversity of participants to gather and share data of

incidents of common interest. The basic idea ofMCS is trying

to consolidate the sensing idea with a ‘‘collective’’ sensing

view The sensed data collected using fixed sensors in tradi-

tional sensing techniques is substituted by data collected from

citizen-generated content within social media or applications

using smartphones [7], [8]. This creates a great amount of

information, which complements sensor data with the opin-

ions and experiences of citizens [9].

MCS allows a large number of smartphones to be used for

activities that have a large public impact and the exchange

of information between their users and can be supported

by the cloud. With the support of the cloud, data fusion

techniques can be applied on the information collected from

the smartphones. This allows mobile sensing to be a mul-

tipurpose platform that can replace static sensing infras-

tructure to support a comprehensive range of applications

from smart city applications and safety to monitoring the

environment [10]. An emerging sensing paradigm is mobile

crowd-sensing [13] which comes in a variety of modes:

(i) opportunistic sensing [11], [12], (ii) participatory

sensing [11], and (iii) people/human-centric sensing [11],

[14], [15]. The traditional sensor network supports a single

use case, while crowd-sensing data may contribute to various

use cases [16].

Mobile sensing devices are extensively available and are

a rich and inexpensive source of sensing data. Recently,

varieties of sensors exist in most smartphones for different

purpose. iPhone users represent 59.6 million in one database

with embedded sensors including GPS, accelerometer, gyro-

scope, ambient light, proximity, microphone, and camera

sensors. Light sensors are used for fine-tuning the screen

brightness. Both proximity and light sensors permit the phone

to complete simple forms of context recognition linked with

the user interface. The GPS allows the phone to localize

itself and enables regional or location aware searches, navi-

gation, and mobile social networking applications [17], [18].

Both compasses and gyroscopes determine direction and ori-

entation, improving location based applications depending

on the GPS [19]. The accelerometer has a different role,

it can be used to identify several activities such as running,

walking, and standing. The most powerful sensors found

in any smartphone today are the camera and microphone,

which are possibly the most global sensors on the planet [20].

The camera on the front of the phone can also be used for

conventional tasks such as tracing the user’s eye movement

as an intermediary to start applications [21], [22]. In addition

to traditional purposes for the aforementioned sensors, more

advanced applications are developed to further utilize the

sensors. The mode of transportation of a user can be detected

by a combination of accelerometer data and location from

the GPS sensor This combination of sensor readings allows

us to detect if the user is riding a bike, a car, a bus or even

walking or running [23]. The sensors allow new applica-

tions in a wide diversity of domains, such as healthcare

that uses accelerometer to measure the user’s activities [24];

safety and environmental monitoring which uses GPS for

location data collection [25]; transportation which also uses

GPS [17], [26]; social networks based onWi-Fi and GPS [17]

These can open new areas of research called mobile phone

sensing. The MCS research is focused on the possibility of

growing pervasive urban and individual mobile technologies

to support citizen daily life. The evolution of mobile phones

has often been paired with the introduction of new sensors.

For example, accelerometers have becomemore popular after

being utilized to enhance photos captured by the camera and

after using it in graphical user interface [19]. Sensors are

used to automatically determine the orientation of the mobile

phone screen and use that information to mechanically switch

the display between landscape and portrait or properly orient

the photos taken.

Mobile crowd-sensing can be considered as crowdsourcing

where the resource provided by the crowd is their sensing

capabilities. Crowdsourcing is a group of outsourcing tech-

niques that utilizes independent, volunteer, and paid human

resources to complete a specific task [27]. It is also a process

in which a task, a project, or a problem is performed by

a group of private and geographically isolated participants.

The participating members are compensated or provided

with recognition once the problem is solved or the task is

completed. Smartphone-based crowd-sensing take advantage

of the tremendous growth in network-monitoring applica-

tions. Several smartphone based crowdsourcing applications

use the call data records (CDR). The CDRs of social net-

work refers to the information on communications between

a large number of people at a certain time, which contains

actual observations of communications between people and

is stored by all telecom operators, though data semantics

vary slightly among them [28]. Faggiani et al. [29] discuss

the most important opportunities offered by crowdsourcing

and the associated key challenges. Portolan, a smartphone-

based crowdsourcing system, has been built to demonstrate

possible benefits of crowdsourcing. For a large number of

clients, the Portolan server is used to coordinate the activities

of data collection. Portolan is able to build signal coverage

maps and produce a graph of the Internet at the autonomous

system (AS) level. Furthermore, Ren et al. [27] focus on
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the use of crowdsourcing for data collection to address

numerous solid challenges in widespread computing systems

such as participatory urbanism that encourages new meth-

ods and approaches for individual citizens to become active

participants within their city, neighborhood, and urban self-

reflexivity. Another example is the use of mobile phones

as environmental sensing platforms that support community

action to enforce positive societal change. Rosen et al. [30]

proposed a Mobile Crowdsourcing Network for wireless net-

workmanagement (MCNet). This tool permits users to imple-

ment crowdsourcing of WiFi performance measurements.

Wi-Fi was used to communicate between mobile devices

such as smartphones or tablets and many access points that

are fixed in a university or organization setting. Few hun-

dred users used the MCNet application tool, where at a

certain time at least 20 mobile devices should be connected

to the network to guarantee an efficient crowdsourcing of

measurements. They deployed this tool in one corporate

and one university WLAN. They worked together with the

network IT engineer to enhance the latency and through-

put to as high as 37% and 38%, respectively. Their results

showed that MCNet is an effective, practical system for

crowdsourced Wi-Fi performance measurements in large and

complex WLANs.

A. POSITIONING THE PROVIDED SURVEY

There are several surveys in the litreture that address the broad

topic of mobile crowd-sensing. The survey in [1] focuses

on existing work on mobile crowd-sensing strategies with

emphasis on reducing the resource cost and achieving high

Quality-of-Service, however it did not address sensing tech-

niques and applications. Lane et al. [19] give an overview

of the sensors on the phone and their potential uses The

paper targets novice or practitionars new to the field of MCS.

Finally, the survey in [5] addresses the use of mobile phones

in detectingmovements and actions. To the best of our knowl-

edge, all the reviewed surveys did not consider the most com-

mon mobile crowd application modes such as participatory

and opportunistic modes that are used in most of the mobile

crowd-sensing applications. In this work, we address mobile

crowd-sensing applications focusing on the participatory and

opportunistic modes. The detailed objectives of our contribu-

tion are listed below:
1) Present a comprehensive literature review of mobile

crowdsensing, demonstrating the shift from traditional

sensing paradigm towards MCS paradigm, and intro-

ducing several research work done in this field using

smartphone sensors.

2) Describe the current techniques and frameworks

for MCS.

3) Discuss the significant research findings of MCS and

identify the application areas considering both the two

urban sensing namely participatory and opportunistic

sensing

4) Explore applications of crowdsensing in areas such

as healthcare, environment, smart city, infrastructure,

social networking, tourism, Sports and public safety and

military applications (as shown in Figure 1).

5) Discuss the challenges and explore new research areas in

MCS deployment such as enhancing the collected data

accuracy.
We believe this work can open doors to more research

on this vital topic inspiring designers to develop attractive

mobile crowd-sensing systems while considering privacy of

the participants before system deployment.

The remainder of this paper is structured as follows:

Section 2 contains the MCS paradigm and overview.

Section 3 describes the MCS framework with its components

such as data collection; communication media; data aggrega-

tion; and data storage and classification. MCS applications

including healthcare, environmental, smart city, infrastruc-

ture social networking, tourism, sports and public safety and

military applications; are described in Section 4. A discussion

of extensive investigations of MCS is presented with open

research issues and challenges are described in Section 5, and

finally, the paper concludes in Section 6.

II. MCS APPLICATION MODES AND PARTICIPANT

SELECTION

Human participation in MCS varies depending on the appli-

cation mode. There are two application modes of sensing

data collection which are active (participatory) and passive

(opportunistic) [15].

A. APPLICATION MODES

The participatory (active sensing mode) depends on the par-

ticipants in performing some actions. In this method, the par-

ticipant willingly takes the responsibility of entering the

information. The active mode requires the user’s participation

and even the user’s involvement in the operation [31]. For

example, incident reporting requires the user to move to the

incident’s location, to take videos and photos, and finally send

them to the monitoring center.

The opportunistic (passive sensing mode) depends on a set

of applications installed on the users smartphones performing

a set of predefined actions. In this way, the application gathers

data without notifying the user. This method should meet

the application requirements and automatic data collection,

such as collecting a user’s geolocation information [8], [32].

In the passive participant mode, the MCS applications do

not require any involvement from the user of the mobile

device except downloading the mobile application and allow-

ing his/her mobile device to cooperate and participate in the

MCS operation [31]. For instance, an application that moni-

tors the environment in an urban area can rely solely on smart-

phones for data collection without the user’s involvement.

Figure 2 shows a comparison between the steps involved in

participatory and opportunistic sensing.

Jayaraman et al. [33] presented the Mobile Sensor Data

EngiNe (MOSDEN) as a collaborative mobile crowd-sensing

framework to develop and deploy opportunistic sensing appli-

cations. The framework was used for an environmental
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FIGURE 1. MCS application areas.

monitoring scenario (e.g. noise pollution) in smart cities.

The framework scenario has three steps. Initially the remote-

server registers for the required data to be collected from

the concerned users. Then, the smartphones collect the data

using their embedded sensors, preprocess the data and send it

to the remote-server. Finally, the crowd-sensing applications

gets the data from the remote-server for further processing

and visualization. The authors implemented and evaluated the

framework performance on an Android-based mobile to val-

idate the possibility and efficiency of running collaboratively

inmobile opportunistic sensing applications. Theymentioned

that MOSDEN performs well under load in collaborative

environment.

B. PARTICIPANT SELECTION

To perfectly select the participants in mobile crowd-sensing

paradigm, several points need to be covered such as par-

ticipant location, participant privacy, participant incentive,

and participant connectivity Nowadays, a huge amount of

research has been initiated to appropriately consider the

following concerns regarding participant location, privacy,

incentives and connectivity:
1- Participant location: The work-organizer selects some

participants whose locations are almost independent,

assuming that there is sufficiently number of participants

available [34]

2- Participant privacy: Several privacy techniques require

the locations of various participants to be uncorrelated to

protect the participant location [35]

3- Participant incentive: Mechanism in an MCS archi-

tecture framework needs incentives in order to increase

the human participant’s motivation to take part in the

MCS tasks and cover their mobile data cost. Without the

incentives mechanism, the participants will be reluctant to

collect and deliver the high-quality data [36].

4- Participant connectivity: Usually mobile devices are

equipped with numerous wireless communication inter-

faces such as Bluetooth, Cellular, ZigBee, WiFi, and

other interfaces maintained by several wireless technolo-

gies. Cellular data provides long-range communication

infrastructure, while WiFi is the mid-range of commu-

nication, and ZigBee and Bluetooth provide short-range

communication [31].

For example, to obtain information for participant selec-

tion, crowdsourcing application that uses CDR collected

from every user on the communication network can be used.

CDR includes a detailed record containing extensive spec-

trum of related information: the telephone numbers, tower
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FIGURE 2. MCS paradigm for participatory and opportunistic sensing [15].

TABLE 1. Sample of CDR data fields.

location, calling start time, calling duration, and calling and

receiving terminals as well as an international standard-

ized unique number to identify a mobile subscriber called

International Mobile Subscriber Identity (IMSI) [28], [37].

CDRs may contain a large amount of information on how,

when, and with whom one communicates, hence increase the

charges from the mobile phone operators. In addition, most

CDRs contain location, and customer’s external data such as

age or gender, and both information on voice calls and text

messages. However, to combine both portions of information

into one simple measure is not yet clear. Moreover, it seems

that there is a difference in the use of messages or priority

between texts and voice calls contained in measures, which

takes into account one type of communication [38], [39].

Such collection of personal data makes CDRs a very rich

source of data for researchers. Finally, the structure of a

social network from CDRs should be continuous, taking into

consideration that there is no one-size-fits-all technique avail-

able. CDRs are generated in real-time so it can exist almost

instantaneously for mining, whereas billing data is available

only monthly. Typical CDR data fields are shown in Table 1.

Ren et al. [27] propose a Social Aware Crowdsourcingwith

Reputation Management (SACRM) scheme for participant

location. To choose the perfect participant location for the

sensing task based on a fixed task budget, the authors pro-

pose a participant location selection scheme that is used to

evaluate the confidence and cost performance ratio of mobile

users for participant location selection. Social elements, task

delay, and reputation are all considered. The results show

that the proposed reputation management scheme reduces the

crowdsourcing cost using the cost performance ratio of the

participants for reputation evaluation.

MCS brings some concerns about participating users’ pri-

vacy. Thus, data privacy mechanisms should be enforced

on both the mobile devices and the monitoring center to

protect private data, such as the user location, the presence

of some people at a given place, and the driving patterns of

vehicle drivers. As demonstrated in Figure 2, data privacy

enforcement step is applied after data collection regardless of

whether participatory or opportunistic MCS. Wang et al. [40]

proposed a privacy-preserving reputation framework based

on blind signatures. While, Christin et al. [41] proposed

an IncogniSense anonymous reputation framework, which

generates a repeat alias by blind signature and then transfers

the reputation between these aliases.

For participant incentives, Yang et al. [42] described two

incentive mechanisms to stimulate mobile user participation

in platform-centric and user-centric mobile sensing, respec-

tively. To exploit the utility of the platform, the authors

presented a Stackelberg game in [43] based on an incen-

tive mechanism to represent the platform-centric model. For

the user-centric model, the authors design an auction-based
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FIGURE 3. An overview of the MCS framework.

incentive mechanism that is demonstrated to be computation-

ally efficient, individually balanced, profitable, and truthful.

Meanwhile, Wen et al. [44] proposed an incentive approach

based on a quality-driven auction with a Wi-Fi fingerprint-

based indoor localization system. This model incorporates

a theoretical framework into the practical MCS system.

Because MCS allows a broad range of mobile applications,

the authors introduce a probability model to evaluate the

reliability of the provided data. In the best approach of MCS,

the worker is paid off based on the quality of data sensed

instead of the working time. The authors presented extensive

experimental results and proved that the approach is true,

reasonable, and public. Moreover, Yang et al. [42] addressed

the problem of motivating people to participate in a crowd-

sensing experiment, with a game theoretic analysis of human

behavior and the suggestion of an auction-based approach for

incentives. This approach is extended by Koutsopoulos [45]

to provide the intention of an ideal compensation portion that

reduces the cost of the incentive provided to participants.

However, the incentives are not always possible, and a large

number of research applications of the crowdsourcing idea

rely on people voluntarily helping in the research project [46]

or being given non-financial incentives.

For participant connectivity, there exist several communi-

cation media that have different types of wireless protocols

such as ZigBee (IEEE 802.1.5.4), Bluetooth (IEEE 802.15.1),

and WiFi (IEEE 802.11b) as well as Cellular data. Details

of some of these protocols are presented later in the paper.

Some research have been done on optimizing these protocols,

for example Zhang et al. [47] propose TrMCD, which is

a robust route estimation strategy to extenuate the negative

impact of abnormal crowdsourced user routes and recognize

normal and abnormal users, as well as to attenuate the effect

of the location-unbalanced crowdsourced routes.

III. MOBILE CROWD-SENSING FRAMEWORKS

In a traditional sensing framework, the sensing level relies

on a network of dedicated and fixed sensing nodes. The

framework introduces many drawbacks such as higher

cost, inefficient sensing coverage, maintenance issues and

lack of scalability. The new paradigm shift towards MCS

addresses the aforementioned drawbacks by replacing the

dedicated sensing nodes with the MCS level. The remaining

MCS framework levels resemble the corresponding levels in a

typical wireless sensor network. Figure 3 shows an overview

of the MCS framework, which is divided into several levels:

crowd-sensing, data transmission, data collection, and appli-

cations on the server side.

1. The crowd-sensing level consists of the crowd-sensing

elements, which represent the devices that are selected

to be connected to large networks. These devices collect

two types of data, mobile sensing data and mobile social

network data. The raw data is transferred to the server for

information extraction, and the users can decide on which

category the data should be pooled. A quick discussion on

mobile sensing elements is provided in Table 3.
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TABLE 2. Comparisons between sensing groups.

TABLE 3. Impact of Zigbee, Bluetooth, Wi-Fi, and GSM/GPRS on MCS.

2. Data collection level is responsible for collecting the data

from the selected crowd-sensing elements and offers pri-

vacy mechanisms to the volunteers. Detailed discussion

on data collection is provided under the infrastructure

Subsection 3.1.1.

3. The data transmission level defines several mobile

networks and communication techniques such as ad

hoc or wireless networks [48] (e.g., Bluetooth, Wi-Fi) and

infrastructure-based networks (e.g., cellular) that can be

leveraged by MCS. The participant uploads the data to the

server, where all the applications and services are located.

This data transmission should be tolerant to network con-

nectivity outages. Data transmission is further discussed

under the communication part in Subsection 3.1.2.

4. The application level consists of a variety of potential

applications and services enabled by MCS, such as data

visualization. A comprehensive discussion on different

MCS applications is provided in Section 4.

In a sensor network, each node has three branches; first,

the sensor will sense the environment; second, it performs

some local computation on sensed data; and third, it is respon-

sible for message exchange, which is communication [49].

Several classes of sensor groups are used in the MCS appli-

cations. Table 2 shows a comparison between these sensor

groups, their types, communication environments, and appli-

cations used [32], [50].

In the following, we discuss some of the existing MCS

enabling platforms that can be deployed on the MCS frame-

work. Medusa is one of the most popular MCS applications,

which is a mobile sensing framework that has been classified

in [51] as a multi-purpose mobile sensing system that intro-

duces a significant performance improvement compared to

a standalone system. It allows the use of the opportunistic

approach within the crowd-sensing paradigm and enables

data collection on the cloud component of theMedusa frame-

work. As soon as the data collected is transferred to the

server side, there is no room for monitoring or even amending

the timeframe of the data collection process. However, syn-

chronization between multiple sensors is not necessary and

not recommended due to data privacy and communication

security on smartphones.

Another popular MCS application is Hive, which is a

general software application framework that enables third-

party developers to integrate their products in one applica-

tion. These products include several operations such as data

handling, user interactions, mobile or server analytics, and

managing user participation [52]. Hive specifies new MCS

tasks with minimized development effort that can simply
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FIGURE 4. Infrastructure required to support the MCS framework.

spread its functionality. Thus, it allows developers to focus

only on the novel characteristics of the mobile crowdsourcing

application. A practical yet a challenging feature of Hive is to

recognize the framework’s future generality and extensibility.

However, Hive framework is a little less flexible thanMedusa

in terms of the type of tasks that can be identified and this is

due to the consecutive workflow that is only supported by this

framework.

A research group from IBM [53], University of Illinois,

and University of Minnesota has developed a middleware

MCS platform that is called Citizen Sense. This platform

allows individuals to propose, design, and manage dis-

tributed crowd-sensing campaigns. Another MCS applica-

tion was developed by Google, which is called Science

Journal (SJ) [54]. The Science Journal application acquires

data from natural sources and apply real-time analytics by

utilizing different built-in sensors in smartphones to pro-

duce useful information about natural phenomena of interest

to the user. SJ allows users to investigate and participate

with the world through several onboard sensors in Android

phone and Chromebook along with well-matched peripheral

sensors.

Restuccia et al. [55] developed a new framework to define,

survey and analyze the current state-of-the-art of the quality

of information (QoI) in mobile crowd-sensing. Information

quality is the amount of information received in a period

of time and it is specified in reports received during one

hour.

The collected data from mobile devices suffer from

inaccuracies, noise, and errors. Hence, data aggregation and

filtering is needed to improve the accuracy. Indeed, one of

the main challenges of dealing with MCS data is related

to the problem of separating the characteristic signal from

the background noise contaminating the data sets generated

by spatially separated sensors. The solution to this problem

is to apply the essential redundancy of such simultaneous

parallel MCS data sources, which is suitable for the cross-

correlation analysis expected to reduce the local background

noise, while revealing the true signal simultaneously present

in all parallel data sets. However, even if such data pre-

processing approaches successfully filter out all unwanted

interfering signals, to perform an accurate modal analysis of

the frequency response of the system, one still has to address

the essential statistical fluctuations affecting the power spec-

tral density (PSD) estimates obtained by Fast Fourier trans-

form (FFT) analytically.

A. INFRASTRUCTURE REQUIRED FOR THE PROPOSED

MCS FRAMEWORK

The proposed mobile crowd-sensing framework mandates

an infrastructure composed of four main components [7],

[8], [56], which are data collection, communication media,

data source aggregation/fusion, and data storage and clas-

sification. Figure 4 shows the MCS infrastructure and its

main components. The explanation of each component can

be introduced as the following:

1- Data collection, with the help of an expert group to

maintain larger participant base and deliver the required

verification of the usability of the collected sensing

data.
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2- Communication medium, which could be 3G/4G/GSM,

WiFi or Bluetooth depending on the required range of

transmission.

3- Data aggregation/fusion, which is the process that collects

the data from different sensor nodes, and based on a

decision criterion pre-processes the data and transfers it

to another node/base station

4- Data storage and classification, which is mandated by

combination of human and machine intelligence resulting

from the participation of human in sensing data. Based on

the wealth of data, both human and machine intelligence

can be used for data processing.

B. MCS DATA COLLECTION

In MCS, there are two different data source types: mobile

sensing and user-generated data in mobile social network

services. Mobile sensing is a method of data collection using

participatory sensing, while mobile social networks rapidly

bridge the gap between online interactions and physical ele-

ments [47]. Maji and Sen [37] developed a mechanism to

store CDR data in appropriate data warehouse schematic

and analytically process the data using On-Line Analytical

Processing (OLAP) server tools to understand the prepaid

customer’s usage and spending and provide appropriate mar-

keting offers. The system also analyzes the telecom data,

such as CDR billing, and proposes customer reporting cri-

teria based on ON net and OFF net call frequency to clas-

sify appropriate cutomers for different promotional action

types. Authors mentioned that the result shows a percentage

of retention and attracts other customers from competitors.

Wang and Zhang [57] used approach of agglomerative hier-

archical clustering to distinguish the abnormal users from

normal ones. Authors studied the proposed scheme based

on the data of CDR for 10,000 subscribers provided by

Chinese telecom operator, which are sampled randomly for

one month. The result shows that the abnormal users are

distributed in an urban area and normal centralized area.

Silva et al. [58] proposed a visualization technique called

City Image that captures typical transition between Points of

Interest (PoI) in a city using publicly available data. Based on

the people mobility, the technique provides a visual summary

of the city dynamics. Moreover, it explores urban transition

graphs to user’s movements between city locations. Even-

tually, City Image is a promising technique that allows for

a better understanding of the city dynamics, and helps to

visualize the common routine of its citizens.

Social networks have become extremely popular in infor-

mation technology in recent years because of the proliferation

of online social networks sources such as Facebook, LinkedIn

and MySpace. These sources can provide information about

human mobility, air quality, traffic patterns, and geograph-

ical data. The data are gathered by smartphones, vehicles,

machinery, medical equipment, and other machines and then

sent to the remote server. In this regard, the large-scale

user-contributed data opens a new window to understand

the dynamics of the city and society, which constitutes the

other data source for mobile crowd-sensing There exist sev-

eral approaches that attempt to use crowdsourcing utilizing

diverse data collection techniques. Some of these approaches

focus on actions of the services and actions of the citizens in

very critical or different time situations. CrisisTracker (CT) is

an online system that captures the distribution state of aware-

ness reports based on social media activities throughout large-

scale events such as natural disasters. It tracks a huge pool of

keywords on Twitter social media and builds stories by gath-

ering tweets that contain these keywords. CT system is used

for exploring Twitter with pre-filters based on tweets related

to specific disaster and location to provide social awareness

from public tweets. It is an open-source web platform and

does not use any other social media sources or civil reactions

for its sensing [59]. Another open-source crisis-mapping plat-

form called Ushahidi was used on January 12, 2010, when a

7.0-degree magnitude earthquake struck Haiti. Ushahidi pro-

vides a way to capture, organize, and share information about

dangers coming immediately from Haitians. Ushahidi col-

lects information from two sources, text messages received

via mobiles phones, and social media (e.g., Twitter, Face-

book, blogs). Eventually, it tries to serve expert organizations

with possibilities for demanding citizens or digital support-

ers to collect important data or to share information [60].

Wu et al. [61] present an innovative framework for collecting

critical information in a particular disaster area from end-

users and mobile devices in order to support timely suit-

able contextual reconstruction and rescue operations. Both

crowdsourcing and crowd-sensing pose the challenge of han-

dling excessive amount of data which requires leveraging

big data processing techniques [62]–[64]. Ludwig et al. [65]

prototyped a crowd monitoring system based on the concept

of mobile phone crowd-sensing approach. The design and

implementation of the concept of crowd monitoring com-

bine monitoring of physical activities of local citizens with

digital social media activities. In addition, it assigns tasks

to citizens for emergency services. The tasks can vary from

filling sandbags for example to collecting crisis-related infor-

mation. The authors explored the impact of citizen-generated

content on social media during a specific emergency event.

They also explored on-site and off-site citizen involvement.

Eventually, it led to the implementation of a web-based

application called ‘‘CrowdMonitor’’ to use the observed find-

ings to support assessment and collaboration between citi-

zens and emergency services. Finally, with the help of this

approach, emergency services can collect information from

social media or from local citizens and could obtain a better

overview of the event.

C. MCS COMMUNICATION MEDIA

MCS have grown from small-scale with specific applica-

tions to large-scale ubiquitous data collection for a wide

range of applications. However, a large-scale network is

sometimes not achievable due to many factors including

economical factors due to high cost associated with large

number of sensors, and difficulty of full coverage due to
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large area. It will need many relay nodes to maintain a com-

plete field coverage and communication connectivity. This

will be hard to implement due to both the expensive sensor

cost and the distribution, as well as the maintenance cost [66].

Most of the communication technologies in wireless sen-

sor nodes (WSNs) are radio-frequency wireless network-

ing technology-based. WSNs have some limitations such as

low processing power, low processing speed (approximately

8 MHz clock speed) [67] very limited storage (few hundred

kilobytes), a short communication range and high power

consumption. The sensor has a small form factor (mm3).Min-

imal energy sources such as batteries have a finite lifetime,

and passive devices provide limited energy due to protocol

constraints.

Recently, researchers are considering the benefits of

mobile sensor networks as an operational and reasonable

solution to large scale sensing networks. However, there are

several differences between the two sensing techniques [32].

First, MCS relies on mobile devices and smartphones, while

WSNs use tiny sensor nodes. This difference allows MCS

to perform local processing, as mobile devices and smart-

phones have more processing power, memory, and energy.

Additionally, mobile devices and smartphones use charge-

able batteries, which makes local processing for MCS less

power-limited (compared with local processing in WSNs).

The second difference is the larger scale of MCS (hundreds

of thousands or millions of devices and phones across a city

or a country) compared with WSNs, which typically have

hundreds, or at most thousands, of sensor nodes. Deploying

sensors for traditional WSNs at the city-wide level requires

at least tens of thousands of sensors. In [3], it was shown

that 90,000 sensors and 1,000,000 relays are required to

perform citywide (about 900 km2) environmental monitor-

ing to maintain full area coverage and communication con-

nectivity. The third difference is the human involvement

in MCS, which brings some issues such as concerns about

user privacy but also brings some opportunities such as the

ones emerging from using human involvement in a way

that makes the system smarter. Human involvement also

brings the issue of incentive policies to ensure user partic-

ipation in the MCS operation. The fourth difference is the

dynamic nature of MCS due to the user mobility, variation

of power levels, and changes in user behavior and participa-

tion. Finally, the fifth difference is that in traditional WSNs,

the sensors are usually stationary whether deployed in deter-

ministic or random locations, while in MCS, the sensors

(embedded in mobile devices and smartphones) are mobile

and move randomly and independently. This paper presents

two of the widely used MCS communication media: wireless

access communications network and IP-based core network

For the communication used in the MCS framework, there

are two levels of communications: 1) Access communications

network 2) IP-Based Core network. The access communi-

cations network is part of a telecommunications network

that connects customers to their service provider directly.

It ranges in diameter from a few hundred meters to several

miles and includes all devices between the core network

and the user terminal. The core network uses a fiber-optical

structure due to its high transmission rate. A core network is

the essential component of the telecommunications network

that provides several services to customers who are connected

by the access communications network. Servers, computer

accessories, and applications represent the core network in

this study. The following points will present a brief descrip-

tion of the two media and will show in detail the inside

and outside communication media that are used in the above

framework [66].

1) ACCESS COMMUNICATION NETWORK

In access communication networks, the communication

media have different types of wireless protocols such as

ZigBee (IEEE 802.1.5.4), Bluetooth (IEEE 802.15.1), and

Wi-Fi (IEEE 802.11b) as well as Global system for

mobile communications (GSM)/general packet radio service

(GPRS). In the following, we will present a brief description

of ZigBee, Bluetooth, and Wi-Fi, as well as 3G/4G/5G as

sensor communications media

Zigbee is one option enabling the crowd-sensing connec-

tivity through technology based on IEEE 802.15.4 and oper-

ates on 2.4 GHz [67]. ZigBee is typically used for low data

transfer rate, low power consumption due to low physical data

rate, and low-cost wireless applications. It can accommodate

up to 264 nodes in the network [68]. Cai and Liang [69]

used ZigBee to design and implement an intelligent sys-

tem for remote health monitoring electroencephalograph

(ECG) analysis and diagnosis. ZigBee is designed for self-

recovery network acknowledgements, and it can automat-

ically interpret data messages routed in different areas of

a network with different radios without user intervention.

Gad-ElRab et al. [70] propose a flow coverage scheme

based on using a modified localization method that relies on

less GPS usage and employs ZigBee technology to cover a

specific street and complete the coverage requirements. The

scheme uses ZigBee technology in order to communicate

with the neighbor nodes and estimate the distance between

these nodes using Time of Arrival method. The experimental

result shows that the flow coverage scheme and localiza-

tion reduce the usage of location sensors and demonstrates

that the proposed coverage scheme reaches the coverage

requirements, and finally achieve high localization accuracy.

The ZigBee technology is simpler and less expensive than

Bluetooth technology. Arai et al. [71] defined and measured

ZigBee’s Received Signal Strength Indicator (RSSI). They

analyzed a time-series of RSSI in indoor space to acquire

information about crowd behavior (CB). They showed three

CB features, which are: density, velocity, and specific pat-

terns. Despite the extended area covered when using the

ZigBee technology, it is not supported by modern

smartphones [72].

Bluetooth is a wireless technology designed to connect

different wireless devices such as telephones, notebooks,

PDAs, printers, and computers. Bluetooth provides a short
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range of 10, which can be increased up to 100 meters, and

operates in the 2.4 GHz band with a transmission speed

(data rate) of 800 kb/s [73]. Stopczynski et al. [74] express

the structural design of the Android mobile operating system

that allows the Bluetooth sensor approach to obtain partic-

ipatory data. The approach is used to map the mobility of

crowds in large-scale events. The approach is deployed in a

large music festival with 130,000 attendees, where a small

subset of participants installed Bluetooth sensing apps on

their own smartphones. However, this approach has limited

scalability and limited spatial coverage. More recent utiliza-

tion of the Bluetooth technology in crowd-sensing can be

found in [75] where the authors have proposed a new context-

aware approximation algorithm to find vertex cover that is

tailored for crowd-sensing tasks. Authors design human-

centric preface strategies to collect information about the

participants using sensors. The sensing task refers to the task

of collecting opportunistic Bluetooth contacts, or wireless

contacts, in mobile ad hoc networks. You et al. [76] pro-

posed an MCS application to collect opportunistic sensing

data in a limited area using Bluetooth based on Community

Information-Centric Networking technology. The application

feature supports data integrity and uses IP-less communica-

tion as a simple communication model. Several sensors have

been deployed with Raspberry Pis and Bluetooth across a

building to collect data when a participant walks and draws

a map for sensors‘ location in the building. The application

fundamentally supports privacy and data integrity of partic-

ipants. The work in [77] proposed an opportunistic location

discovery method that fills the gaps in a user’s location trace

by deriving location data from other users employing the

power of mobile crowd-sensing. Authors used a hierarchical

cluster merging approach, which looks for other users using

Bluetooth and Wi-Fi scans to detect closeness of users. How-

ever, Bluetooth has a very short range that requires higher

participants’ density for same sensing accuracy requirements.

Wireless Fidelity (Wi-Fi) refers to certain types of wire-

less network protocol 802.11b standards that enable devices

to communicate with each other without cords or cables.

Wi-Fi enables a better range from the base station, a faster

connection, and better security than Bluetooth. Wi-Fi uses

the super ultra-low noise S-band (2.4 GHz) to extend the

range [78], uses frequency-hopping techniques to connect

multiple devices together, and has a range of approxi-

mately 1000 feet outdoors [79] Average data transmission

rates is 54 Mb/s. Wi-Fi differs from Bluetooth in that it

covers greater distances and provides higher throughput, but

it requires more expensive hardware and may present higher

power consumption [22], [50]. Wu and Luo [78] present a

WiFiScout advisory system that integrates a gamification-

based incentive system to compensate users who give the

most important data based on variety and amount of the

contributed data. The proposed system supports three ways:

1) offline search, which allows a user to search around

for WiFi, 2) online review, user can use his smartphone

to submit a review about his experience on that WiFi, and

3) gamification-based WiFi map, which shows all WiFi

access points on a city map. Using Wi-Fi in the MCS is very

important, an iSense novel framework has been proposed

in [80] for decreasing the unnecessary energy overhead on

participatory devices. iSense entirely offloads the localization

burden to the crowd-sensing servers. Thus, it reduces the con-

sumed energy at themobile devices. iSense employs the exist-

ing network signaling. Wi-Fi is the most common technology

available onmobile devices; however, the infrastructuremode

is more technologically developed compared to the Ad Hoc

mode. Whereas Ad Hoc mode is typically more suitable for

MCS especially in areas not covered by Wi-Fi access points.

Cellular communication technology, GPRS supports

mobile data service on the 2G (GSM) and 3G cellular com-

munication systems [50], [79] Moreover, 4G offers joint

services such as voice, data, and multimedia at data rates

of up to 100 Mbps as well as pervasive mobile access to

a wide variety of user devices and independent networks.

Foremski et al. [81] propose a location-tracking algorithm

that improve crowd-sensing data for modeling cellular net-

works. To measure human location and signal strength in

cellular networks, a practical application has been developed

to perform the measurements of human mobility and signal

levels without user interference and with minimum power

utilization. However, authors mention that many users are

not willing to participate in crowd-sensing experiments. They

also mentioned that their system decreased the battery life-

time by around 20%. Another research in [82] discusses the

challenges that face cellular providers as the number of cyber-

physical system (CPS) devices trying to access the cellular

spectrum increases dramatically. This work presents a device-

to-device (D2D) communication technology for CPS com-

munication over current network infrastructure through the

use of fifth generation cellular networks. Masek et al. [83]

develop a next-generation traffic management system in

a smart city environment that incorporates the Internet of

Things (IoT) technologies with low-power and long-range

5G embedded devices. They started by data sensing that

utilizes heterogeneous road monitoring tools that measure,

and send the traffic information, vehicle speed, etc. to the

traffic management entity. The results show that the use of

modern devices, such as Raspberry Pi2, satisfies the require-

ments for future traffic management systems in smart cities.

Sun et al. [84] present a secure and privacy protective object

finding application via mobile crowdsourcing using 4G/5G.

They proposed an approach called SecureFind that obtains

the finding request from the service provider. Hence, 4G and

5G cellular networks authentication and privacy schemes are

required to protect user identity, and location privacy among

others. Another interesting system utilizes location-based

social network (LBSN) on Cellular systems is called Check-

Inside [85]. This system provides a fine grained indoor local-

ization. It leverages the crowd-sensing data collected from

mobile devices during the check-in operation. In addition,

it extracts knowledge from the LBSN to connect a location

with a logical name and a footprint. The system uses Wi-Fi in
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TABLE 4. Technology characteristics for Zigbee, Bluetooth, Wi-Fi, and cellular.

two modes: ON and OFF.When theWi-Fi is ON, this leads to

a higher accuracy compared to the use of cellular localization.

Experimental results show that the CheckInside system can

achieve the actual participant’s location. Even though cellular

is costly, it is the most widely used technology. Costs are

expected to drop with the advent of 5G and its support for IoT

through the massive machine type communications (mMTC)

paradigm. Table 3 and Table 4 show the comparison between

ZigBee, Bluetooth, Wi-Fi, and Cellular in terms of impact on

MCS and technology characteristics [22], [82], [86]–[88].

2) IP-BASED CORE-NETWORK

The core network is the vital component of a telecommu-

nications network that offers several services to customers

who are connected to the access network. Usually, the term

core network is used for service providers. It offers routes to

exchange information between different sub-networks. Gen-

erally, it denotes the high-capacity communication facilities

that interconnect fundamental nodes [68].

The core network offers several features like aggrega-

tion, authentication, switching, charging, service invoca-

tion, and gateways. The core network consists of IP-based,

cloud, or long-haul networks based on microwave, opti-

cal, or satellite technologies. IP is the internet protocol (IP)

that refers to part of the TCP/IP protocol. Cloud is a type

of computing that depends on sharing resources rather than

having dedicated local devices to manage applications [89].

In other words, it describes services delivered over a network

by a group of remote servers. There are three benefits for

cloud computing: 1) Self-service Supplying: for any type of

workload, particularly on-demand, the end user could turn

up the computing resources; 2) Flexibility: depending on

computing needs, companies can increase or decrease their

available infrastructure as needed; 3) Pay per use: allowing

users to pay only for resources needed for their current work-

load. Finally, long-haul networks are groups of commonly

distributed computers that are connected through a collective

communication network. Communication in such systems is

moderately slow and changeable, normally through telephone

lines, microwave links, and satellite channels [90]. However,

several services are provided through long-haul networks for

users. These services include the capability to send or mail

information from one site to another and post news on bulletin

boards so that any user can read them

D. MCS DATA SOURCE AGGREGATION/FUSION

MCS also explores the data fusion from different sen-

sor nodes acting as spatially distributed data sources [91].

Therefore, using MCS, both online and offline-denoted data

can be leveraged by participants exploring through-space data

fusion to develop modern applications. Several distinctive

research challenges grow from the mobile crowd-sensing

paradigm such as proper incentive mechanisms, data collec-

tion, and through-space data fusion. Moreover, MCS rep-

resents a mixture of human and machine intelligence that

is not explored so far. A data fusion node collects the data

from numerous nodes, and based on a decision criterion,

it fuses the data with its own and transfers it to another

node. The advantages are that it reduces the traffic load and

conserves the battery of the smartphone. The data comes

from different sensors, databases, or more accurate data sets.

The data fusion algorithm is very important for any mobile

monitoring system [92], [93]. Finally, data fusion takes place

closer to the sensors, especially for raw sensor data, to reduce

the network load resulting from many sensors collecting data

from different locations.

Data fusion significantly improves accuracy of the sta-

tistical model by combining specific information of sev-

eral heterogeneous sensing systems, where the datasets are

represented in different feature spaces. This makes it hard

to investigate relationships between the heterogeneous data,

even in case the datasets are related to each other. A statistical

approach to data fusion combines sensor datasets in a robust

way as they benefit from variances between devices and their

complementary features [94]. Castrignanò et al. [95] com-

bined multiple sources of information in a statistical frame-

work. The main advantage of the statistical framework is that

straightforward probability models are used to describe the

different relationships between sensors, taking into account

the uncertainty behind it and the change of support. However,

there are several statistical methods that analyze heteroge-

neous data based on Bayesian and machine-learning meth-

ods. Other research work in [96] introduces a novel model

using heterogeneous data fusion through a fully convolutional

neural networks to acheive semantic labeling. The authors

presented the residual correction as a way of learning how

to fuse predictions from a dual stream structure. The result

shows that the residual correction is capable to recognize

accurately, which stream is trusted for different classes.

E. MCS DATA STORAGE AND CLASSIFICATION

APPLICATIONS

This section discusses data storage, preprocessing, feature

extraction, detection, and classification to measure the data

accuracy.

The data storage and classification application on the

server side is a very important element of MCS, to detect

and classify the collected data accuracy. The architecture
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framework has two parts, the client or mobile sensing node,

where the acquiring client application runs, and the server,

where the collected raw data are stored and kept for future

use. The client application regularly acquires the data, applies

simple preprocessing, and transfers it to the server over a

secure Internet connection. On the other side, the server

immediately places the received data into a queue that is later

processed in a separate thread. Local storage and processing

modules manage the acquired raw data from the sensor. This

allows nodes to support an off-line mode for temporary local

storage. When network connectivity is accessible, the locally

stored data is transferred to an external server for further

processing [88].

Processing of raw collected data is very important to

reduce the transferred data size, which ultimately increases

the sensor battery lifetime. However, the normal readings

from sensors may not be proper for direct use by applications,

depending on the quality of the raw data and the needs of

the application. There is a need for local analysis of data to

perform specific processing of raw data on the mobile sensor

node. This analysis produces intermediate results, which are

transferred over the core network to the storage. There are

two motivations for such local sensor analysis. First, this

processing eventually will reduce the transmitted data there-

fore less energy consumption and less bandwidth during the

transmission. Second, it decreases the amount of processing

that is performed at the server side [91]. Data processing has

been simplified and reorganized in recent years using data

centers and high-speed cloud computing capabilities. Data

processing is automated to the extent that heavy processing

applications such as pattern recognition and image process-

ing are executed in near real-time [92]. Before saving data

to databases, stream computing technology has evolved to

provide real-time analysis of huge size of data to help with

timely decision-making. Some continuous streams of data

may originate from sensors, cameras, news feeds and a vari-

ety of other sources to be classified, filtered, interconnected,

and transformed into informed decisions.

Feature extraction is a process that produces a set of

the most relevant features that represents the information

for analysis and classification in an efficient way. Feature

extraction plays a significant role in identifying most data.

Obtaining useful and discriminant features depends largely

on the feature extraction method used [92]. The objective

of feature extraction is to increase the performance and effi-

ciency of the analysis and classification. This can be achieved

through removing redundancy and variability in the data that

is of little or no value in the classification or discarding

entire data sets if applicable. Another option is restructuring

the data in the feature space to optimize the performance

of the classifier [92]. Finally, it is possible to extract spatial

information, which is critical to target similarity or identi-

fication. The main advantage of these features is the reduc-

tion of the dimensions of the cross-correlation sequences for

use as inputs into individual classifiers. The motivations of

these processes are to minimize the number of features and

maximize pattern discrimination. As the increased number of

features is not necessarily good; because they increase the

redundancy in the features which might confuse the classi-

fier, so the ideal case is to generate a minimum number of

discriminant features. Feature extraction techniques can gen-

erally be categorized into time-domain or frequency-domain-

based according to the features used. These techniques were

used in several research work [50], [97], [98]. Time-domain

features are easily computed, and their time complexity is

usually manageable [98]. While, Frequency-domain features

are obtained by transforming data from time into their basic

frequency components using FFT [99].

Detection and Classification play an essential role in

timely analyses. There are two types of detection such as

event detection and object detection. The event detection is

used to detect the occurrence of a certain event and the sig-

nificance of the occurrence, while an object detection, detects

the existence of an object and possibly some of its properties

such as size, color... etc. A classification is an ordered group

of correlated categories used to organize data according to

its similarities. Each class must have easily recognizable

features that should be few and not overlapping with those of

other classes. The overall accuracy of the classifier represents

the degree of closeness of the measured results to the true

values [100]. Specificity and sensitivity are two factors that

affect the classification accuracy, defined as functions of the

true and false positives and negatives. A false positive (FP)

refers to the condition in which the results are incorrectly

perceived as positive, while true positives (TP) are test results

that show correctly perceived results [50]–[98].

Similarly, a true negative (TN) is defined as the correct

behavior to detect the normal condition; while a false negative

(FN) is the incorrect detection of the normal condition [50].

Specificity in classification refers to the ability of an asses-

sor to measure a particular substance [98]. Specificity, also

known as a class precision, is defined as the percentage of

true negative tests within the total number of negative tests.

The sensitivity, also known as a class recall, in classification

testing represents the smallest amount of a substance in a

sample that can be accurately measured by an assessor. Sensi-

tivity is defined as the percentage of true positive tests within

the total number of affected (positive) testes. Therefore, the

specificity, sensitivity, and overall accuracy of the classifier

can be defined as [50], [98], [100]

Specificity =
TN

TN + FP
, (1)

Sensitivity =
TP

TP+ FN
(2)

and

Accuracy =
TP+ TN

TN + FP+ TP+ FN
× 100, (3)

where TP, FP, TN, FN are the true positives, false positives,

true negatives, and false negatives, respectively. Both positive

and negative terms are denoted as the classifier’s predic-

tion or expectation and true and false refer to whether that
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FIGURE 5. Feature extraction and classification.

TABLE 5. Crowd-sensing types of measured phenomena [32], [66], [69].

prediction corresponds to an external judgment/observation.

Consequently, these terms compare the results under the

test of the classifier with trusted external judgments. The

procedure of feature, detection and classification is shown

in Figure 5

IV. MOBILE CROWD-SENSING APPLICATIONS

In this section, we will introduce a brief summary of available

mobile crowd-sensing applications, describe their character-

istics, demonstrate several research challenges, and finally

discuss possible solutions. Generally, MCS applications can

be classified into two groups based on the type of phe-

nomenon being monitored: personal and community sensing

applications. In personal sensing applications, the phenom-

ena pertain to an individual, while community-sensing appli-

cations apply to monitoring large-scale phenomena that are

not easily measured using an individual application. These

applications link computing devices together, share data,

and then extract information to map phenomena of common

nature, which generally belongs to one of the following four

types: healthcare, environmental, infrastructure, and social

life [66].

In healthcare monitoring, smartphones are capable of

connecting patients with medical services through mobile

communications networks for sensing and diagnostic capa-

bilities. In environmental applications, some of the main

phenomena to be sensed are water levels in creeks, air pol-

lution in a city, and wildlife habitats in order to monitor

their behavior for further study. In infrastructure applications,

the main phenomena to be sensed are traffic congestion,

road conditions, parking availability, and outages of public

works Finally, social life, where individuals share sensed

information between themselves. For instance, individuals

can share their exercise time in a day and compare their

daily exercise routines. Another example is that individuals

can share their exercise data and then compare their exercise

levels with those of the rest of the community [32]. Moreover,

the individuals can use this comparison to help enhance their

daily exercise routines. Table 5 shows the summary for the

four different crowd-sensing types of measured phenomena.

Mobile sensing and smartphone devices deliver an appro-

priate platform for the four categories of MCS monitoring

applications listed in the Table 5.

A. HEALTHCARE

Healthcare monitoring uses sensors to monitor patient

vital signs both locally and remotely. It offers enhanced
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patient care through early detection of adverse health con-

ditions. It can influence patients’ behavior to improve their

health [101]. For a wide range of patient conditions, biosen-

sors offer point-of-care monitoring. These sensors read some

specific measurements such as heart rate, blood pressure and

body temperature; and monitor certain medical conditions

such as diabetes or seizures. The medical data collected

from biosensors of the patient is forwarded to medical facil-

ities or specialists for analysis and diagnosis Smartphone

manufacturers are increasingly interested in healthcare appli-

cations, which led to the integration of more sensors in

mobile phones. These devices are widely accessible and

continuously connected to the network. They also have pro-

cessing capabilities that exceed all of the traditional sensors

used in WSNs. The combination of the powerful process-

ing and connectivity of smartphones offers low-cost access

to health services from an increasing range of healthcare

applications [21], [48], [50], [98].

According to mobile research specialists (research2

guidance), smartphone applications for the mobile health

industry are successfully installed and have reached 500 mil-

lion of the total 1.4 billion smartphone users in 2015.

Presently, there are more than 17,000 mHealth applications

in major app stores [102]. Research in the domain of remote

health monitoring over the past few years can be categorized

into three main streams: how data is collected, how data is

communicated, and where is the data processing performed.

Foremski et al. [81] the research focuses on the role of mobile

phone devices and their related technologies to monitor the

patients. This role was limited to amobile client terminal used

to browse healthcare records. However, with the extensive

availability of smartphones a range of new smartphone-based

medical applications became available. These tools provide

the user as well as the care provider with essential tools that

help monitoring and diagnosing certain health situations that

requires continuous care.

In the aforementioned scenarios all the discussed health-

care applications are personalized rather than belonging

to MCS. However, we envision that MCS can serve the

healthcare sector from the point of view of medical practi-

tioners’ clinical research and treatment assessment statistics,

which is a major pillar of medical advancement. An example

of using MCS in medical clinical research is the TrackY-

ourTinnitus project [103], where MCS has been used with

data anonymization to provide datasets on large numbers of

patients on daily basis with low cost enabling ubiquitous

clinical trials research. The same model can be applied to

clinical trials related to any of the various smartphone-based

sensing applications discussed earlier in this Subsection.

Thus, MCS would allow the transfer of the collected personal

mHealth information to a centralized cloud, after appropriate

anonymization (as discussed in Section V.B). Then, big data,

cloud computing, and data analytics could be used on a

collective level to study the population’s health status, gather

information about disease proliferation, and take appropriate

measures.

B. ENVIRONMENTAL

A few years ago, the trend towards clean world technolo-

gies led to a large flood of environmental senor technolo-

gies. The environment needs to be sensed and monitored to

deliver information about the variation of environmental con-

ditions such as temperature, humidity, carbon-dioxide levels

as well as all pollution sources. Increased industrialization

and extensive agricultural activities due to the growth of

population, have led to deterioration in the air quality due

to emission of undesired materials into the atmosphere. The

effect was not limited to air but it also affected the water

quality which reached unprecedented levels of pollution in

decades. Hence, natural life and environment is negatively

affected. A mixture of fixed localized sensors and mobile

smartphone sensors can provide a monitoring context from

both personal and local perspectives. This includes many

motivating technologies that have become more and more

important [6]. The demand on wide range of applications

in environmental sensors has increased in recent years. The

environmental sensing category could be divided into three

different groups: physical sensors, chemical sensors, and bio-

logical sensors. Physical sensors measure physical quantities

such as dynamic forces, light, temperature, sound, mag-

netism, and electromagnetism. Chemical sensors measure

humidity, gas, ions, CO, as well as chemical process and oil

refining products. Finally,Biological sensors measure immu-

nities, microorganism, tissues, bacteria, viruses, proteins, and

enzymes [33].
Motion sensors and air pollution sensors are integrated

into the air quality monitoring for both indoor and outdoor

environments. The exposure to air pollution while being on

the move in cities relies heavily on the choice of the means

of transportation as well as the route chosen. High levels

of air pollution are easily identifiable by the human sensory

system (e.g. eye, nose). Similarly, human ears can sense high

noise pollution levels [104]. Because people are able to easily

sense the air pollution with smartphone devices while being

on the move within the city, this may have an impact on

mobility behavior as well as their awareness of air pollution.

An increased awareness of air pollution will lead to people

examining their own mobility behavior with the resulting

impact on air quality [105]. Sensing air quality in real-time

and providing it as an online service will lead to a crowd-

sensing city-wide air pollution map. However, to obtain a

robust and extensive database of the air-quality in the city,

the crowd-sensed data stream must be accompanied with

measurements from official air quality monitoring devices

as well as measurements from small sensing devices fixed

on public transportation vehicles that move across a city

regularly [106]. The research team in [107] developed an

iPhone application called CreekWatch in order to monitor the

local crisis with the support of crowdsourced data about the

quantity of water, rate flow, amount of trash, and depiction of

the channel. Each single user plays a key role in enhancing

the quality of water resources by sharing captured data with

water control panels.
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FIGURE 6. Schematic of an integrated air quality monitoring network, with a single platform receiving data from multiple sources
of different types. Bottom Layer: MCS / Participatory sensing; Middle Layer: medium-sized sensor nodes ; Upper Layer: Large
standardized analyzer stations.

Consequently, to reach an integrated air quality monitoring

network targeting improved urban life quality, data needs to

be gathered from multiple sources of different types:

a. Reference analyzer based, standard compliant, large mon-

itoring stations, that can be deployed in limited numbers

due to cost and size constraints;

b. Medium-sized sensor nodes with acceptable accuracy and

reasonable cost, that can provide street level pollution

information in densely populated areas or localized details

at certain road intersections for example;

c. MCS/participatory sensing through the involvement of

people sending ‘‘personalized’’ pollution information.

This can be achieved through smartphone sensors or small

portable sensors that can be as small as the size of a wrist

watch. Although currently most of these sensors lack the

accuracy level of reference analyzers or medium sized

nodes, their performance is rapidly improving. They can

be used to monitor personalized pollution exposure and

track the impact of air quality on specific individuals.

The third category of sensors can be used in order

to give to the individual the possibility of becoming an

air quality observation platform, thus building a citizen

observatory through MCS. Collecting the data from the var-

ious sources (analyzers, WSNs, and MCS/participatory net-

work) under a single platform allows the implementation of

advanced quality assurance (QA) and quality control (QC)

methods: data from standardized analyzer stations can be

used to validate themeasurements of themedium scale sensor

nodes, and the measurements of these latter nodes can be

used to check/correct/validate the measurements from the

small portable sensors, which are the least accurate. Hence,

data validation techniques can be automated, with the sys-

tem receiving and integrating information from three layers,

as shown in Figure 6 (the layers correspond to the same

geographical area and overlap in reality. They are separated

in the Figure for clarity).

Consequently, MCS can pave the way towards more spa-

tially and temporally accurate environmental information that

will enhance the ability to prevent and mitigate air pollution

in urban areas. It will allow reaching very local environmental

scales based on small sensors, wireless networks and phone

applications. Furthermore, new information about temporal

and spatial variability of pollution may allow to more accu-

rately estimate both contribution of individual sources and the

effects on human exposure: this knowledge can then be used

to prevent pollution or mitigate the effects.

C. SMART CITY

A smart city aims to increase the quality of life in the

city by making it more convenient for the residents to

find information of interest and providing such informa-

tion in a way that is easily understood [108]. To form a

smart city, several interconnected systems are necessary to

provide the required services (healthcare, infrastructure, envi-

ronmental, social netwroking) based on intelligent tech-

nologies. According to Navigant Research report on Smart
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Cities [109] the worldwide smart city market is expected

to grow at $88.7 billion dollars by 2025 from $36.8 billion

in 2016. The report shows that this market was escalating

from the cooperation interconnection of five key industries

and service sectors: water, buildings, energy, mobility, and

government. The report shows that the worldwide revenue

forecasts for smart city technologies, divided by industry

and region spread through 2025. The report also studied the

significant market drivers and challenges correlated to smart

cities, key business models used to fund smart city projects,

and the competitive landscape. However, for a numeral of

technical, financial, and political barriers the Smart City mar-

ket has indeed started taking off. For realization of smart city

using Internet of Things (IoT) the research in [110] proposed

a unified framework includes a complete urban information

system. The system components vary from the sensors level

and network support through data management and Cloud

based consolidation of concerned systems and services, and

form a transformative part of the current cyber-physical sys-

tem. A taxonomy has been devised in [111] to bring the

best summary of the IoT paradigm for smart cities, network

types, and possible openings and major requirements. This

research also presented the up-to-date efforts in this filed as

well as focused on the current open source IoT platforms for

recognizing smart city applications.

Smart city emphasizes the collaboration between the gov-

ernment and the society in several fields that affects the

citizen in his daily life such as, economy, mobility, environ-

ment, and governance. The idea of a smart city can offer

high-quality services to the population to reduce the oper-

ational cost through information and communication tech-

nology [112]. A smart city needs to effectively use public

resources and enhance the quality of services, while decreas-

ing the public administration operational cost. Smart cities

need to consider people daily life conditions, environment

protection, safety, and city services as well as industrial and

commercial activities. All of the proposed solutions should

use collected data and a way to meet the demand for high

quality services [113]. The city services are registered and

reported through collected geo-content, such as waste dis-

posal, damage of car parking, road condition, and traffic

lights. Since the purpose of smart cities is enhancing the citi-

zens’ quality of life, the role of people in a smart city frame-

work through participatory sensing and MCS is of utmost

importance. For example, Smart City sensing is an applica-

tion that can sense, report, review, and discuss local problems

through social media and participatory sensing [114]. Mobile

crowd-sensing becomes a significant part of any smart city

by leveraging the national mobile services to monitor the city

provided services. MCS applications include monitoring the

city noise [115], [116], traffic congestion [117], emergency

incidents [118], weather [119], population density [120], and

even detecting earthquakes [121]. Mainly, these applications

depend on mobile sensors available with users or installed in

vehicles, however, the user’s privacy will be at risk at such

locations and times. Nowadays, smartphones with powerful

embedded sensors have facilitated new applications such as

real-time road-traffic monitoring, air and noise pollution,

crime control, and wildlife monitoring through pervasive

Internet connectivity.

As a case study, TreSight [122] is an example of smart city

big data application that uses data analytics and Internet of

Things (IoT). Authors used the concept of smart and con-

nected communities for a community to live in the present,

plan for the future, and remember the past by highlighting

MCS as the most important IoT technology. TreSight was

proposed to develop the smart tourism and sustainable cul-

tural heritage in the city of Trento, Italy.

Gao et al. [123] the research work proposes a system

called Jigsaw that reconstructs a floor plan by integrating

data crowdsensed from mobile users such as place of image

capturing, accelerometer, and gyroscope data. This data is

integrated to figure accurate indoor floor plans that increase

localization performance. Zhang et al. [124] proposed a self-

contained indoor navigation system (GROPING) isolated

from any infrastructure support. GROPING utilizes MCS

to build floor maps without the need for digitized maps of

individual places. GROPING was able to deliver adequate

accuracy for localization and provided smooth navigation

through 20 participants in each floor in a big shopping mall.

D. INFRASTRUCTURE

Infrastructure comprises the essential facilities, such as roads,

water supply, bridges, and telecommunications, as well as

all other structures serving a country, city, or region [125].

This can be defined as the real components of related systems

to provide services to sustain, or enhance people daily life

conditions. The evaluation of the condition of civil infras-

tructures and critical facilities is especially important after

natural disasters such as earthquakes, hurricanes, ormanmade

disasters, namely terrorist attacks [126] Two of the most

common infrastructure MCS applications are drive sensing

and structure health monitoring. In the following we provide

detailed description for the latter.

1) DRIVE SENSING

Traffic monitoring is a significant participatory sensing

application, where GPS enabled smartphones can offer

priceless information about traffic conditions. It can sense

driver/vehicle activities and behavior, sudden traffic events

and risky/aggressive driving. It can also sense the traf-

fic status (dynamic travel time, traffic congestions, etc.).

Eventually, it will monitor the road conditions including

potholes, road bumps, and slippery roads (using sensors

attached to vehicles), vehicle fuel consumption, and emis-

sions. Moreover, authorities can perform analysis of the col-

lected data in terms of the detection of real-time traffic events,

dynamic black spots, and can generate profiles for bad driving

habits [17], [26]. Other recent work, Basudan et al. [127] sug-

gest a new idea for privacy preserving for vehicular crowd-

sensing. The idea is to introduce a certificateless aggregate

signcryption scheme, (technique to accomplish both
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encryption and signature in one logical step), which is highly

efficient in term of low communication overhead and fast

verification. The authors developed a road surface condi-

tion monitoring system consisting of a control center, smart

devices, and a cloud server.

2) STRUCTURE HEALTH MONITORING (SHM)

Structural health monitoring research is based on the use

of sensors to detect and localize damage through structural

responses as well as patterns of vibrations induced in the

structure. SHM itself is not a new concept. A close look at

civil infrastructures everywhere and their importance shows

how essential it is to use new technologies to monitor these

structures on social and economic life. That leads to a great

need for advanced methods for monitoring such structures

and detecting (or even predicting) the damage [128]. Unfor-

tunately, the normal practice these days is to detect/predict

the damage based on visual inspection using very traditional

methods such as nondestructive testing, reinforcement detec-

tors, and using hammers to check for delamination. Not only

are these tasks labor-intensive, but they are also carried out

infrequently. Moreover, the traditional methods use personal

computers cables that need to be deployed at the inspection

site. This will increase the cost as well as the complexity of

installation and maintenance. Researchers tried to save the

cost by using wireless sensor networks (WSNs) as their main

technique, which improved and facilitated the deployment of

these WSNs. Compared with conventional methods, the use

of WSNs in SHM provides the same functionality at a much

lower cost, which enables much more efficient monitoring.

Hence, SHM based on WSNs has recently gained growing

interest, due to its efficiency and accuracy. Several structural

health-monitoring techniques have been studied and investi-

gated in the last three decades [129], [130]. These approaches

include vibration-based and time-frequency wave propaga-

tion [129], localization in wireless sensor networks [130],

fiber-optic sensors and networks [131], optical inspection

methods [132] and optoelectronic scanning [133]. However,

there are still several significant research challenges in SHM

using WSNs that need to be investigated.

One of the infrastructures that need continuous moni-

toring are bridges as they are vulnerable to natural wear

and their collapse leads to disasters. Monitoring structural

health of bridges is one of the goals of infrastructure

monitoring [125], [126]. Elsersy et al. [128] proposed

SHM model using WSNs to monitor and detect the damage

condition of the real bridge. The model have several compo-

nents such as sensor nodes, shaking table with its amplifier,

and real concrete bridge. The sensors were fixed on the scaled

down bridge that is fixed on the shaking table. The experi-

ment was conducted in the case of normal bridge, single-side

damage, and double-side damage. The mode has detected

the damage in terms of acceleration on different nodes at

a particular excitation frequency. One of the challenging

problems, is the identification of the modal parameters of

civil engineering structures, mode shapes, from ambient

excitation It can be addressed by sophisticated techniques

such as the basic frequency domain (BFD) and frequency

domain decomposition (FFD) methods [134] or the signal to

model ratio (SMR) statistical estimator [135].

MCS allows complementing the role of traditional WSNs

in SHM by using the sensors in the drivers’ smartphones to

monitor the structural health of bridges. In fact, smartphones

present an important opportunity to form a low-cost citizen

wireless sensor network and introduce big data formonitoring

structural reliability and safety under operational and extreme

loads. The research work in [136] presents a SHM platform

integrating smartphone sensors, the web, and crowdsourcing

for a prospective crowdsourcing-based SHM platform. They

developed an iPhone (iOS) application to allow citizens to

use their smartphones sensors for measuring structural vibra-

tions, and then upload the data to a central server. They also

developed a web-based platform to automatically collect and

process the data then store the processed data. However, some

challenges were noticed related to citizens such as location,

connection conditions, and sampling length. After a major

event such as an earthquake for example, the collected data

could be very useful for performing a quick assessment of

structural damage in a large urban setting. For measuring

structural vibration, the research work in [128] and [137] dis-

covered that smartphone accelerometers could monitor struc-

tural vibrations under normal and extreme loads. They tested

smartphones under sinusoidal wave excitation with varying

frequencies in a range of civil engineering structures. The

experiments for normal and heavy loads show that the ref-

erence and the smartphone sensor measurements are close to

each other in time and frequency domains. They also demon-

strated the smartphone sensor’s ability to measure structural

responses ranging from low-amplitude ambient vibrations to

a high-amplitude seismic response. Another research in [132]

proposed a cluster-based data aggregation architecture to

facilitate application development for efficient SHM. The

authors developed a modular middleware on sensor nodes

and an SQL-like user interface to configure the SHM in run-

timemode. A three-level structure was built to filter unwanted

samples and extract features from raw measurement data.

The multiple measurements are then combined from different

locations.

E. SOCIAL NETWORKING

Social can be categorized into two categories: social network

and social sensing information. In social network, the users

can share their information between each other by utilizing

many systems like LinkedIn, Twitter, Facebook, and Yahoo!

Answers [138]. A large number of individuals connected in a

social network can deliver best answers to complex problems

as compared to a single individual.

While in social sensing, the MCS application collects

data about personal activity and sends it to the remote

server for further processing. In such system, the users

can share their information only among certain groups of

friends or community for privacy purposes. Since most of
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the data are sensitive information such as personal health,

location, pictures and videos; the community approach is the

best one to collect and integrate data from several people [5]

Morgan-Lopez et al. [139] examine the single and joint pre-

dictive validity of linguistic and metadata features in pre-

dicting the age of Twitter users. Authors created a dataset

that describes Twitter users across several groups of ages

such as youth, young adult, and adults, then collecting their

birthday. Finally, examine the predictive validity of the fol-

lowing features: language only, metadata only, language and

metadata, and phrases from other age-validated dataset. The

result suggested that examining linguistic and Twitter meta-

data features for prediction may be helpful for public health

and evaluation research.

In [140], an application called MobiGroup, combining

mobile computing with social networks, is a group-aware

system that delivers assistance during several group activ-

ity organizational stages. MobiGroup is a smartphone sens-

ing system to endorse current activities based on user

activity distance and interaction dynamics in a community.

Also, it uses smartphone sensing to capture online/offline

social events and enables group formation and management.

Bulut et al. [141] present a crowd-sensing application for

observing and predicting the waiting time to enter a coffee

shop called LineKing. LineKing is used on daily basis to

monitor and estimate the wait time for hundreds of users at a

coffee shop in the University at Buffalo, SUNY. In addition,

it uses uninterrupted streams of accelerometer data provided

by participants to detect the waiting time of users. Another

MCS application is FlierMeet [142] that applies crowd-

powered sensing system to collect and share public informa-

tion in cross-space using the built-in sensors of smart mobile

phones. Authors utilize several contexts (e.g., flier publish-

ing/reposting behaviors, spatio-temporal info, etc.) and writ-

ten features to group and categorize related reposts. FlierMeet

application captures the data through 38 recruited participants

and 2,035 reposts during eight-weeks. The results proved that

FlierMeet is an effective and convenient application for flier

category tagging.

Another interesting discussion is how to correlate informa-

tion extracted from smartphone data with other information

from demographics or socio-economical status to predict and

anticipate better results for the individual user. The study of

the population based on several factors such as race, gender,

age, education, income, marital status, job, religion, birth

rate, death rate,.., etc. is called demographics. Frequently,

demographical studies are used by governments, corpora-

tions, and non-governments to learn more about population

characteristics for several purposes, plus policy development

and economic market research [143]. The factors of family

demographics help in describing the level of human cap-

ital in a family. In [144] the work assesses the separate

and common predictive of lingual authenticity and metadata

approaches to predict ages. The work was based on both

Al Zamal et al. [145] and Nguyen et al. [146] research work

which inspects the common prediction of annotation age and

labeling. Their objective was to increase the validaty of age

prediction in Twitter.

F. TOURISM

Tourism could be significantly empowered by crowdsens-

ing, crowd management, context-aware and location-aware

services. In fact, these techniques allow tracking tourists for

safety purposes and also for providing contextual information

that can enhance their experience: information about the

nearest restaurants, coffee shops, shopping centers, and so

on. Furthermore, collected information can provide indica-

tions about the most popular sights and hence services could

be planned and provided accordingly. For example, an IoT

sensor can detect the location of a visitor standing in front

of a certain item in a museum, and then the information

relevant to that item can be forwarded directly to the visitor’s

smart phone using an appropriate communication technology.

Then, the frequency of visitors and the duration of their

stay in front of that item could be transferred to a central

server for future processing and analysis. This would lead to

determining the most popular items, and will provide useful

information for planning a smooth flow of tourists across the

museum (to avoid congestion in certain areas, etc.).

In addition, with information tracked via MCS, smart

loyalty and incentive programs can be devised, where a

universal platform for loyalty and rewards can be applied

through blockchain technology for example, enabling tourists

to collect points and redeem rewards across a given coun-

try or region for sites and attractions they visit, thus promot-

ing tourism activity [147].

G. SPORTS

Crowdsensing allows for crowd management through

context-aware and location-aware services. In fact, these

techniques allow tracking spectators in stadiums for safety

purposes and also for providing contextual information that

can enhance their experience. For example, a wireless sensor

network implementing IoT technology could be used to

manage the number of spectators in a football field. The

system could be used to balance the seating of participants

in different parts of the stadium. It could also be used to point

them to the most suitable exit route in case of an emergency.

Similarly to the Tourism case, smart loyalty and incentive

programs can be devised, where a universal platform for

loyalty and rewards can be applied through blockchain tech-

nology, enabling sports fans to collect points and redeem

rewards for visits to stadiums to support their favorite football

team for example.

Besides enhancing the experience for spectators,

MCS could be used to encourage commitment to sports activ-

ities on the personal level. Indeed, as per the discussion in

Sections 4.1 and 4.2, several devices such as fitness watches,

BAN sensors, and a multitude of wearable devices are avail-

able in the market. They allow a person to track his/her

exercise level, effort done, progress made, calories burned,

miles walked, etc. They are based on IoT technologies
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TABLE 6. Summary of the role of MCS in different applications.

with data analytics, coupled with mobile applications.

An interesting novel approach that could expand these activ-

ities using MCS, is to transfer this collected information to

a centralized cloud, and use big data, cloud computing, and

data analytics on a collective level to study the population’s

fitness level, and encourage commitment to personal health

through exercising. This information could also be used in

conjunction with the health data collected through the use

of MCS in the healthcare sector as discussed previously.

This would allow a detailed study of the correlation between

sports activities and certain illnesses, and could guide certain

awareness campaigns targeting a specific region or a specific

age range of the population.

H. PUBLIC SAFETY AND MILITARY APPLICATIONS

MCS, coupled with advanced communications and cyber-

security could allow reliable information transfer between

public safety teams or between military troops, in addi-

tion to securing communications between a command center

and the military forces deployed on the field or the pub-

lic safety teams deployed at an incident’s location. In fact,

new communications technologies designed for tactical use

are affecting the battlefield with game-changing capabili-

ties. Such technologies include Command, Control, Com-

munications, Computers and Intelligence (C4I) technologies

such as mobile and wireless networking, advanced antenna

systems, jamming/anti-jamming capabilities, and software

defined radios, among others [148].

WithMCS, IoT and cybersecurity, reliable information can

be collected from the field in real time and appropriate action

can be taken as needed. BAN sensors could provide informa-

tion about the health conditions of individual firefighters on

a fire scene, or of soldiers in a battlefield. Important aspects

to take into account are reducing energy consumption of

BAN sensors (to increase their longevity in harsh battlefield

conditions) and enhancing the efficiency of ad-hoc network

formation and communication (to reduce overhead and com-

munication time) when sensors and low power devices are

involved.

In addition, the above techniques can be extended to a sce-

nario with ground-to-air or air-to-ground communications.

In fact, Flying Ad-Hoc Networks (FANETs) are becoming

an integral part of public safety and of tactical networks.

They consist of networks of drones or unmanned aerial

vehicles (UAVs) [149]. In addition to their role in military

communications, FANETs can have an important role in pub-

lic safety applications such as maintaining security, border

surveillance, etc. They can be used to remotely monitor large

areas and transmit surveillance videos and various sensor

measurement data in real-time (e.g. pollution levels after the

explosion of a chemical plant), thus saving time and resources

while increasing the efficiency of the security surveillance

and monitoring system.

In the aforementioned discussion, the term ‘‘MCS’’ in the

context of military and public safety scenarios is used with

a slight abuse of the terminology. In fact, conversely to a

‘‘normal’’ MCS scenario where users are free to make the

decision to participate or not, soldiers or public safety person-

nel must participate in real-time data collection/tranmission

as this is the best way to ensure the most efficient operation

of their unit and to ensure maximum protection for their

lives. Nevertheless, the ‘‘usual’’ MCS can be used by civilian

citizens in a public safety scenario to complement the mea-

surement data sent by the public safety teams. For example,

using MCS for sending the carbon dioxyde exposure levels

caused by a fire, chemical exposure due a chemical plant

incident, localization information afer an earthquake, etc.,

will provide valuable information to the authorities about the

impact of these incidents on the affected population and will

signifiantly help in guiding the rescue efforts. A summary of

the role of MCS in different applications is given in Table 6.

V. DISCUSSION, CHALLENGES AND OPEN

RESEARCH ISSUES

Mobile crowd-sensing plays a key role in future smart cities.

Two fundamental areas that have a significant impact are

energy conservation and security. The main challenges in

MCS are hardware cost, system architecture, wireless con-

nectivity, programmability, and security. The current hard-

ware cost of smartphones capable of tracking human mobil-

ity and location is moderately high. Their system architec-

ture is capable supporting several applications on top of it.
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However, most of the applications and research examples

are vertically integrated to maximize performance. Although

MCS has great potential and offers many opportunities as

mentioned above, it also has several challenges. The main

challenges and open research issues facing MCS are the

following:

A. USERS PARTICIPATION

Mobile crowd-sensing research has many challenges that

need to be considered before deploying such systems on

a large scale. One of these research challenges is finding

an appropriate incentive mechanism that encourage users

to participate in such system. One of the main challenges

facing MCS is the availability of an adequate number of

participants for the required application. The requirement

can be also expressed in terms of participant geographical

distribution. Therefore, incentive strategies, such as monetary

or credit rewards, can be employed to increase the users’

participation in MCS [150]. Minimizing the effect of running

these applications on the performance of the smartphones

(Minimizing the energy consumption, processing needs and

network requirements) is also important tomaintain the users’

interest in the participation in MCS. The user participation

becomes evenmore challenging in active participation since it

requires more user’s involvement. The research work in [151]

discusses the barriers and shows that people are most likely

to help when a minimum effort is required at no additional

cost.

B. PRIVACY AND SECURITY

Another research challenge in MCS is the authenticity and

integrity of the data collected from different users participat-

ing in the system. Privacy and security are very important in

MCS applications that collect data related to the participant.

It can be categorized into two types, user security and system

security. From the system point of view, authentication and

integrity verification of the information provided is critical,

as this information will lead to decision making, which,

if wrong, could have negative impact on the whole sensing

platform. From the user point of view, this information is also

critical as it may affect the user’s privacy. Hence, it remains

secure at the back-end processor. Each one of the above

challenges could be a starting point for future research. In the

following we provide some examples of existing approaches

addressing both categories.

Due to human involvement, MCS brings some concerns

about the privacy of the user using the mobile phone as

well as the people surrounding the user. Thus, data privacy

mechanisms are needed at the mobile devices, the network,

and the remote server to protect private data such as users’

location, vital signs, images . . . etc. For example, GPS sensor

readings are utilized to have private information about the

participant, such as daily movements as well as home and

work locations. The collected GPS sensor data is shared

within the community and can be used in a given city to obtain

traffic congestion levels. Hence, it is very important to protect

or maintain the participant privacy by not sharing his sensitive

information [5], [105] while still enabling MCS applications.

To preserve privacy, anonymization is a technique to pro-

tect and secure the user’s personal data, which seeks to secure

the sensitive data and identity of record owners. It is the

process of either removing or encrypting the information

between participants and other parts to achieve the privacy

and remain anonymous. Nonetheless, without the support of

policies, processes, and people, the implementation of only

data anonymization will be insufficient. Some companies

fairly managed to implement data anonymization on a small

scale using SQL scripts efficiently to encrypt data [152].

Some other companies have failed after obtaining the best

data-masking tool [153]. Anonymization consists of tech-

niques and procedures for data processing, algorithms, keys,

and data life cycle. For privacy reasons, personal identifiable

information (PII) needs to be anonymous for testing and

analysis. There are several anonymization techniques such as

1) Generalization, which replaces the date of birth with

reduced data size, such as the year of birth only, 2) Replace-

ment such as using an alternative identification number,

3) Perturbation, introducing random changes to the data,

4) Suppression, which deletes from the released data partially

or completely. However, these techniques can be applied

only on at-rest or visible data i.e. logs, data exports, web

pages [152], [153].

When malicious participants contribute with inaccurate

sensor data (e.g., fake GPS readings), this could affect the

integrity of the data collected from the system, which is a seri-

ous problem that could lead to lack of trust in the MCS appli-

cation. Some researchers have worked on developing new

approaches to resolve this problem. Some of these approaches

depend on co-located infrastructure, while others depend on

participation from the fixed expensive infrastructure, which

could be expensive and not available sometimes. Another

approach is based on trusted sensor hardware (sign) on a

mobile device. These approaches need to be addressed to

make sure that the integrity of the sensor data generated

by the participants is reliable to provide significant deci-

sions from the aggregate sensor data [43], [84], [105], [114].

Trust-based scores can be used and updated dynamically in

order to quantify the trust level of each participant in MCS

and thus deal with malicious participants (or simply partic-

ipants sending erroneous measurements due to some sensor

defect). Several reputation and trustworthiness metrics could

be investigated [154]. Furthermore, distributed or localized

trust management can be performed to reduce the load on

the central server. For example, in [155], crowd-sensing in

a vehicular ad hoc network (VANET) is studied, and the

platoon head vehicle pre-processes the measurements from

platoon members based on trust scores before forwarding the

trustworthy ones to the server.

C. DATA SIZE

Big data techniques and data analytics algorithms can be

used to effectively manage the huge amount and variety
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TABLE 7. Summary of challenges realted to MCS and their diffrences/similarities with IoT challenges.

of sensed data [136]. Many applications may need to run

analytical aggregation at the backend to detect patterns in

the sensor data from various mobile devices. These patterns

denote the features and characteristics of the events or the

surrounding environment that are of interest to the user.

These patterns may occur over some spatial scale and within

some duration. For example, participants can report prob-

lems in public work facilities such as broken water pipes

and defective traffic lights. The maintenance crew need to

know the severity of the incident, and they can use this

information to help rank and identify priorities and schedule

repairs.

The large scale of MCS results in a large amount of data

traffic that may overwhelm the network. In fact, conversely

to networks based on IoT with purely automated sensor

transmissions, MCS, due to the human participation, can

sometimes generate unexpected traffic. Therefore, some tech-

niques need to be employed to reduce the amount of traffic.

This can be achieved by selecting certain users for sending

sensed data, local data aggregation and processing at mobile

devices and smartphones and having data traffic split over

different available wireless networks (e.g., WiFi, Bluetooth,

3G, and LTE).

D. DATA ACCURACY

Although increasing the amount of collected data improves

the accuracy of the monitored phenomenon or detected event,

collecting sensed data from a large number of users may

overload the communication network and remote servers.

Therefore, it is required to determine clear and accurate

relationships describing the dependence of the performance

metric of MCS on the size of the collected data. Then, these

dependencies and tradeoffs should be carefully considered

to balance between the data accuracy from one side and the

overloading of the communication network and servers on the

other side.

Mobile devices and smartphones are equipped with differ-

ent types of sensors from different manufacturers that may

vary significantly in their sensitivity and noise immunity.

Thus, there is a need to improve the data accuracy by identi-

fying devices that are likely to produce accurate sensing data,

performing global centralized data aggregation, and taking

into consideration the spatiotemporal mobility patterns of the

users of the mobile devices and smartphones [114], [127].

Although this challenge is common to both MCS and more

‘‘traditional’’ IoT networks, MCS faces additional issues. For

example, accuracy inMCS can be compromised intentionally

by malicious users. This issue was discussed in the paragraph

related to trust in MCS in Section V.B. Another problem

is that with MCS, there is less control on the type of used

devices, and thus an increased degree of variety of devices is

to be expected compared to IoT. This challenge is discussed

in the previous paragraph.

E. OTHER CHALLENGES

Wireless connectivity indoors is still unpredictable using

low-energy consumption radio frequency transceivers, par-

ticularly due to interference from electromagnetic fields

produced by elevators, cordless phones at home, machin-

ery, and computers among others. Another challenge is the

programmability and re-programmability (re-configuration)

necessary for energy conservation and node-to-node commu-

nication.

Researchers in [27], [151], and [156] are still faced with

major obstacles to widely perform experiments, in spite of

the huge demand for MCS applications for smartphones.

These obstacles include the 1) the time and energy costs

of resolving a robust, scalable, and visually attractive appli-

cation and infrastructure, 2) the limited retention of users

after using the applications for few weeks, and finally

3) human related issues such as privacy, incentives, and

quality of data. Although, the idea of scaling to millions of

devices is attractive, the widespread computing community

still relies on expensive and short-term user contribution

with small numbers of users. The work in [156] discussed

a business-to-business model to limit the effect of obstacles

facing mobile crowd-sensing. In [27] the battery size was

shown to be themain factor limiting the use of mobile phones.

Although energy consumption is a limiting factor in WSNs

in general, an additional factor in MCS consists of the human

user decision: Some users tend to refrain from participation

in order to save battery energy. The challenges related to

MCS are summarized in Table 7.

VI. CONCLUSION

Mobile crowd-sensing is an evolving topic with an exten-

sive variety of possible applications. However, the outcome

of MCS depends on the participation of people who might
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be concerned about their confidentiality. In particular, task

management, as a central component of the crowd-sensing

structure, poses several threats to participant privacy that

need to be identified and addressed. In this survey, the MCS

paradigm was reviewed for both participatory and oppor-

tunistic sensory. An overview of theMCS system architecture

was provided, which includes several levels: crowd-sensing,

data transmission, data collection, and applications. There is

also a discussion about the challenges in terms of the number

of applications in the market, the cost of mobile device, and

we presented one of the topics that limits its use, namely the

user retention. Some of the MCS architecture elements have

been discussed, including data collection, communication

media, data aggregation/fusion, as well as feature extraction

and classification. The review also covers the main MCS

applications such as environmental, infrastructure, and social.

Some mobile crowd-sensing challenges have been discussed,

such as user participation, privacy and security, data size, and

data accuracy.
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