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This survey presents multidimensional scaling (MDS) methods and their applications in real world. MDS is
an exploratory and multivariate data analysis technique becoming more and more popular. MDS is one of
the multivariate data analysis techniques, which tries to represent the higher dimensional data into lower
space. The input data for MDS analysis is measured by the dissimilarity or similarity of the objects under
observation. Once the MDS technique is applied to the measured dissimilarity or similarity, MDS results
in a spatial map. In the spatial map, the dissimilar objects are far apart while objects which are similar
are placed close to each other. In this survey paper, MDS is described fairly in comprehensive fashion by
explaining the basic notions of classical MDS and how MDS can be helpful to analyze the multidimensional
data. Later on various MDS based special models are described in a more mathematical way.
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1. INTRODUCTION
Multidimensional scaling (MDS) is one of the dimensionality reduction techniques
which converts multidimensional data in to lower dimension space, while keeping the
intrinsic information. The main reason for using MDS is to get a graphical display for
the given data, such that it is much easier to understand. There are number of other
dimensionality reduction techniques like, principal component analysis (PCA), factor
analysis and isomap. But MDS is much popular among all these techniques because
of its simplicity and many application areas. MDS analysis finds the spatial map for
objects given that the similarity or dissimilarity information between the objects is
available [Borg and Gronen 2005; Bronstein et al. 2006b; Kruskal 1956]. MDS assigns
observations to specific points in a multidimensional space (2 or 3 dimensional space)
in a way that the given dissimilarities or similarity information is matched closely to
the distances between points [Honarkhah and Caers 2010; Cambria et al. 2014; Bai
et al. 2016; Gansner et al. 2004]. MDS and factor analysis are similar techniques but
MDS is preferred over factor analysis because, MDS does not depend on most common
assumptions like linearity and normality [Biswas et al. 2006]. In fact, the only assump-
tion of MDS is that, the number of dimensions should be one less than the number of
points, which also means at least three variables must be entered in the model and at
least two dimensions must be specified [Bronstein et al. 2006a; Bronstein et al. 2007;
Young et al. 2007]. Once the proximities (similarity or dissimilarity information) are
available, MDS can provide the lower dimension solution.

A rich literature is available on MDS methods [Borg et al. 2012; Hout et al. 2013;
Izenman 2008; France and Carroll 2011; Kamada and Kawai 1989], resulting in sev-
eral milestones for the multivariate data analysis. Some recent and classical results
on MDS are discussed in [Cox and Cox 2001] and [Borg and Gronen 2005] and the ref-
erences therein. The authors in [Eckart and Young 1936] and [Young and Householder
1938] are the founders of MDS. The first input metric for MDS was developed by Torg-
erson, considered as classical MDS (CMDS) [Torgerson 1952a]. CMDS was further
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Table I. Brief history of MDS

MDS techniques Authors Year
Foundation for MDS Eckart and Young 1936-1938

Classical MDS (CMDS) Torgerson 1952
Principal coordinate analysis Gower 1966

Non-metric MDS (NMDS) Shepard and Kruskal 1962-1964

Table II. Development of loss function for MDS

Loss functions Authors Year
Sammons non-linear mapping Sammon 1969

Unfolding model Coombs 1964
Individual differences models Carroll and Chang 1970

ALSCAL Takane 1977
Maximum likelihood based MDS Ramsay 1982

MDS with optimal scaling Meulman 1992-1993

extended by Gower and developed the relationship between PCA and CMDS [Gower
1966]. Major difference between PCA and CMDS is that the PCA uses a correlation (or
variance-covariance) matrix as an input while MDS uses a distance matrix. PCA tries
to minimizes a squared loss function, which is inappropriate for non real value data.
In [Collins et al. 2001] the authors proposed generalized PCA which can work with
exponential, generalized linear models, and Bregman distances. PCA is used to model
the linear variability in higher dimensional data. However, in many applications the
higher dimensional data is nonlinear in nature. PCA gives output of optimum linear
approximation for a given high-dimension data but due to the global linearity its per-
formance is limited. Shepard and Kruskal [Kruskal 1964a] developed the non-metric
MDS (NMDS) in which the similarity or dissimilarity information is monotonically re-
lated to the distances [Solaro 2011]. Brief history about the development of MDS is
given in table I. NMDS opened new areas for MDS based models by specifying and
optimizing the loss function [Sammon 1969]. Table I summarizes the development of
loss functions for MDS. It includes the Coombs unfolding model [Coombs 1964] dealing
with the data that is derived from two different set of objects and is also called individ-
ual difference model [Carroll and Chan 1970]. Coombs unfolding model is based on a
geometric model for a preference and a choice. It tries to locate object and its specifics
as points in a combine space, where an object will pick the specifics that is closest
to its point. ALSCAL is an efficient algorithm developed by implementing the MDS
model [Takane et al. 1977] and is included in statistical package for social sciences
(SPSS). Maximum likelihood based MDS is proposed in [Ramsay 1982], while an op-
timal scaling approach for multivariate analysis is introduced in [Meulman 1992] by
reformulating the CMDS.

Traditional MDS methods, consider that distances among objects are symmetric, al-
though, this consideration is not always satisfied. For instance, [Tversky 1977] and
[Tversky and Gati 1978] explained the characters of similarity among objects studied
with psychological scale and concluded that cognitive similarity is mostly asymmetric.
The motivation behind these asymmetric MDS methods is to remove the shortcomings
of traditional MDS methods, i.e., in case where similarity or dissimilarity matrices are
asymmetric in nature as they are based on supposition that similarity or dissimilarity
matrices can be associated to inter-point distances in a given metric space [Torgerson
1952b], [Kruskal 1964b], [Guttman 1968a]. Many researchers have extended the tra-
ditional MDS methods by assuming that the similarity or dissimilarity among objects
is not a function of only inter-point distances but is also a function of the quantities
associated to these objects. For instance, the squared distances is expended by weights
in weighted distance model which was first proposed by [Young 1975]. In [Saito 1983],
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[Saito 1986] and [Weeks and Bentler 1982] the authors have proposed altered distance
models where the distance between points is developed by a few constants associated
to these points. In [Okada and Imaizumi 1984] and [Okada and Imaizumi 1987] a non-
metric type of generalized altered distance model is proposed. Smallest space analysis-
2 (SSA-2) is introduced in [Guttman 1968a] and [Lingoes and Guttman 1973], where
column and row compatibility is applied on the data to get two solutions in metric
space. Wind model is proposed in [Tobler 1975], where the asymmetries are explained
by the direction of wind given to mesh point on the arrangement of objects. In [Saito
1988] and [Sato 1989] the authors proposed a model, in which the asymmetries is an-
alyzed by utilizing the Randers metric i.e., an asymmetric metric function. [Tversky
1977] proposed the future matching model which explains the similarity or dissimilar-
ity among two objects through a linear combination of the amount of distinctive and
common characteristic of the two objects. In [Chino 1978] and [Chino 1980] the authors
proposed a model using a generalization of scalar products, which fits the magnitude
of cross and inner (scalar) products of solution vectors to skew-symmetric and symmet-
ric parts of the data respectively. In [Constantine and Gower 1978] and [Gower 1977],
first the asymmetric proximity matrix is split into two components, i.e., symmetric
and skew-symmetric components and then deal with them separately. For symmet-
ric component traditional MDS method is used while for skew-symmetric component
canonical decomposition is used. In [Saburi and Chino 2008] the authors proposed a
maximum likelihood method for asymmetric proximity matrix, which expand the work
for asymmetrical data [Takane 1981].

2. APPLICATIONS OF MDS
Different Application areas of MDS include data mining, pattern recognition, infor-
mation theory, psychometry, ecology and marketing [Borg and Gronen 2005]. Recently
MDS have also being used for locating the wireless nodes in the network to get loca-
tion aware information [Priyantha et al. 2003]. Furthermore, the MDS applications
are defined below:

2.1. Scientific Visualization
In scientific visualization, MDS is used for the compression of multified visualize data.
The goal of multified visualization is to portray information contained in two or more
fields in the compositional manner, which facilities combination overview or visual
comparison [Hansen et al. 2014; Buja et al. 2008]. In visualization, the key to achieve
this goal is to exploit different visual channels available in the design space, referred
to as channel fusions. The main issue with multified data is that they exceed the avail-
able number of channels. This is similar to the obstacle of multivariate data when the
aim is to reduce the dimensions of the data for display, which is called low-dimension
embedding through dimension reduction. MDS perform linear or non-linear projection
of data into a lower dimensional space. The quality of embedding is measured by a
stress metric which root mean square error of point-wise distance in data space and
the respective distance in embedded space. MDS can be used on multified data embed-
ded space. MDS can be used on multified data to set number of visual channel [Hansen
et al. 2014; Lawrence et al. 2011]

2.2. Psychological Structure
One of the major application of MDS is in the field of psychology. Psychology usually
brings up different questions in the mind of Psychologists. MDS is used in exploratory
manner to search for the relationship between observed similarities or dissimilarities.
Thus, different trends in a psychological structures can be find out using MDS meth-
ods. Fitzgerald and Hubert [Jaworska and Chupetlovska-Anastasova 2009] suggested
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analyzing individual differences by using multiple proximity matrices. These matri-
ces can be obtained from individual subjects or from subgroups. A bunch of measures
can be generated if each subject’s data is treated as a independent proximity matrix.
Moreover, independent proximity measures can be constructed for data collection in
different setting or at different times. Hence, utilization of MDS is not only for rep-
resentation of interrelations between objects and determination of underlying data
dimensions, but also for providing a representation of individual or group differences.

2.3. Data exploration
MDS is used to find out the structure of data, to describe the input data as a spatial
map in multidimensional space. Two different situations can be detected and compared
whether they are similar enough to be acted upon as the same or dissimilar enough
to require different actions. It is often of great interest to have a quantitative esti-
mate of the similarity or dissimilarity between the two items. MDS takes estimated
similarity or dissimilarity information as an input. The outcome of MDS is a spatial
map that gives the information, spatially, i.e., the relationships among different items,
where similar items are in close proximity to each other while dissimilar items are lo-
cated far apart. For example, if MDS is applied to the pairwise similarity to the set of
color patches, the outcome of MDS would resemble the Netwon‘s famed “color wheel”
[Newton 1704], with red color being near to orange, but far from green, and so on. The
maps provided by MDS are valuable because they reduce complex data sets to a visual
relationships in the data which are more easy to understand.

2.4. Testing structural hypothesis
One of the most fundamental issues of testing a hypothesis is that how subjective
impressions of similarity come about. Why does Mike look like Julias son? How come
that a Ferrari looks similar to a Porsche than to a Cadillac? Specifically, one who wants
to find, if and how the facets (dimensions, factors, features, etc) by which the items
are conceptually salient. In order to explain these kind of perceptions, MDS can be
used with the given distance model. In such distance based models, the objects are
first considered as points in a certain space based on the similarity between those
objects. Then with the help of MDS data can be classified from given global similarity
judgments. This is a confirmation process for the MDS, in order to verify that whether
the available data supports the assumptions that can classify the original data.

2.5. Pattern Recognition
In pattern recognition, MDS is used for reducing the number of variables through
feature selection (selection of subset of the original variables for classifier design) or
feature extraction (determining a linear or non-linear transformation of original vari-
able to obtain a smaller set), which can lead us to improved classifier performance
and a better understanding of the data. It is applied to a class of techniques that
examine a matrix of dissimilarities (the proximity matrix) or distances in order to pro-
duce a representation of the data points in a reduced dimension space, which is called
representation space. Both metric and non-metric MDS are used in pattern recogni-
tion. Metric MDS considers that the data is quantitative and its procedure assumes a
functional relationship between the inter-point distances and the given dissimilarities.
While non-metric MDS considers that the data is qualitative and has ordinal impor-
tance and its procedure produces configuration that maintains the rank of the dissimi-
larities. Metric MDS was proposed into pattern recognition by Sammon in 1969 [Webb
2003]. It was inroduced to comprehend class information and to provide non-linear
transformations for dimension reduction in feature extraction [Webb 2003].
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2.6. Ecology
The MDS is used for the ordination in the ecology, which summarizes the patterns
and main trends of multidimensional data spaces in to concise low-dimensional ordi-
nation space. The type used for the ordination is non-metric MDS [Falk et al. 2006].
According to [Gauch 1982], “ordination primarily endeavors to represent sample and
species relationships as faithfully as possible in a low-dimensional space”. The ordina-
tion is necessary as it is impossible to visualize multiple dimensions simultaneously
and most importantly a single multivariate analysis saves huge time as compare to
separate uni-variate analysis of each piece [Gauch 1982]. There are many techniques
used for ordination including NMDS, i.e. polar ordination (PO) and Principal coordi-
nates analysis (PCoA). PO organizes samples between endpoints or poles according to
distance matrix. PCoA is similar to PO, it shows the distance between samples [Bray
and Curtis 1957]. PO and PCoA has number of flaws, MDS rectifies those flaws by
increasing the rank order correlation. This is the main reason why NMDS is widely
used in ecology.

2.7. Sports Visualization
MDS is also being used in sports to visualize the competing teams performance [Raalte
et al. 1990; Carter et al. 2001]. In [Machado and Lopes 2017], authors have studied the
behavior of competing teams in soccer league using MDS technique. The dissimilari-
ties between the soccer teams are measured using the results of each round and that
information is imposed on MDS algorithm to visualize the performance of teams. The
dissimilarities between teams are shown using three different approaches. In first, one
dissimilarity matrix and one MDS per map are generated. In second approach, whole
data is combined into dissimilarity matrix, which leads to a single global MDS chart.
In third approach, the result of each round is used to generate time series for all teams
[Machado and Lopes 2017]. In [Carter et al. 2001], using multidimensional scaling au-
thors have shown the analysis of sports photographs. To explore the properties of still
photographs, observers judged the similarity under two conditions, image focus and
movement focus. The image focus has shown how similar are images and movement
focus has shown how similar is the type of movement.

2.8. Earthquake
The seismic data is difficult to analyze and classical mathematical tools impose strong
limitations in unveiling the hidden relationships between earthquakes [Machado and
Lopes 2013]. MDS is one of the approach which is useful to get the information regard-
ing earthquakes. MDS maps are proven as an intuitive and useful visual representa-
tion of the complex relationships that are present among seismic events, which may
not be perceived on traditional geographic maps [Lopes et al. 2013; 2014]. MDS pro-
duces spatial or geometric representation of complex objects, such that those objects
that are perceived to be similar in some sense are placed on the MDS maps forming a
cluster [Lopes et al. 2013]. The analysis of earthquake using MDS is studied in [Lopes
et al. 2013] and [Lopes et al. 2014] using the data over three million seismic occur-
rences from the period of January 1 1904 to March 14 2012. In which, space-time and
space-frequency correlation indices are proposed to quantify the similarities among
events. According to [Lopes et al. 2014], MDS has the advantage of avoiding sensi-
tivity to the non-uniform spatial distribution of seismic data, resulting from poorly
instrumented areas, and is well suited for accessing dynamics of complex system.
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2.9. Temperature Analysis
The climate change and global warming have major impact on economic, social and
health aspects of the human life. The surface temperature time-series characterize
earth as a slow dynamic spatio-temporal system [Lopes and Machado 2014]. The com-
plex correlations between global temperature time-series using MDS has been studied
in [Lopes and Machado 2014]. In which, MDS provides a graphical representation
of the pattern of climatic similarities between regions around the globe. The simi-
larities are evaluated through mathematical indices that correlate the monthly aver-
age temperatures observed in meteorological stations over a period of time.[Lopes and
Machado 2014].

2.10. Forest Fire Analysis
Forest fires caused by natural factors, human negligence or human intent consume
every year vast areas of vegetation [Machado and Lopes 2014]. Forest fires has di-
rect impact upon economy due to the destruction of property and infrastructures. It
raises the carbon dioxide emissions to the atmospheres, affects the water cycle, con-
tributes to soil erosion and has economic implications associated with climate change.
The authors in [Machado and Lopes 2014] has shown that the public domain forest
fires information of events of Portugal from 1980 to 2012. In which, MDS approach
has been used as a visualizing tool to generate maps where objects that are similar to
each other are placed on the map forming clusters.

2.11. Virus Diseases Analysis
Viruses are infectious agents that replicate inside organisms and reveal a plethora of
distinct characteristics. Viral infections spread in many ways, but often have devastat-
ing consequences and represent a huge danger for public health [Lopes and Machado
2016]. To design statistical and computational techniques capable of handling the
available data and highlighting the most important features, [Lopes and Machado
2016] has used MDS. In which, proposed methodology has represent a solid mathe-
matical tool to tackle a large number of virus and additional information about these
infectious agents.

2.12. Localization
Recently MDS is used for localization purpose in wireless sensor networks. In [Shang
et al. 2003] the authors addressed a sensor network localization problem based on
MDS, where binary information is used as a proximity information. The main idea in
[Shang et al. 2003] is to construct a global configuration using CMDS. The MDS based
localization algorithms in [Shang et al. 2003] and [Vivekanandan and Wong 2006] are
centralized having higher computational complexity [Saeed and Nam 2015]. A semi-
centralized MDS is used in [Ji and Zha 2004], [Moore et al. 2004], [Yu and Wang 2008],
[Shon et al. 2010], [Saeed and Nam 2016] and [Stojkoska et al. 2008] to compute local
coordinates of nodes and these local coordinates are refined to find the final position of
nodes. In [Patwari et al. 2003], [Li and Zhang 2007] and [Yin et al. 2012] the authors
proposed manifold learning to estimate the sensor nodes location in wireless sensor
networks. In [Macagnano and de Abreu 2013] the authors proposed Nystrom approx-
imation for the proximity information matrix in MDS to reduce its size for better lo-
calization accuracy in sensor networks. Distributed MDS based localization algorithm
is proposed in [Wei et al. 2015] with noisy range measurements, where they assume
that the distances are corrupted with independent Gaussian random noise. MDS with
different refinement schemes to get better localization accuracy for the sensor nodes
location in WSNs have also been proposed in literature [Latsoudas and Sidiropoulos
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2005], [Shi et al. 2007], [De Marziani et al. 2009], [Zhu and Ding 2012], [Saeed and
Nam 2014].

There are various accurate localization algorithm based on MDS are proposed for 2-
dimensional WSNs but in real world applications 3-dimensional localization is needed
for better estimation and accuracy. In 2-dimensional WSNs with the help of three an-
chors (nodes with already known position), location of all other nodes in the network
can be computed while in 3-dimensional networks atleast 4 anchor nodes are required.
All the localization techniques that are developed for 2-dimensional WSNs are violated
in 3-dimensional networks [Alam and Haas 2006]. 3-dimensional localization tech-
nique can not be directly extended from the 2-dimensional solution by just increasing
one parameter. There are several problems which can be solved using 2-dimensional
localization but are much more complex when modeled as 3-dimensional. Localization
of WSNs in 3-dimensional is an interesting and challenging task. In [Stojkoska 2014],
[Chaurasiya et al. 2014], [jun Peng and wei Li 2014] and [Stojkoska 2013] the authors
proposed 3-dimensional localization for WSNs based on MDS.

The analogy between object distances and node distances in a network is used for
the purpose of wireless sesnsro network (WSN) localization. MDS algorithm can use
inter node distances in order to produce 2 or 3 dimensional representation, which cor-
responds to the real nodes deployment. Since nodes are capable to measure the inter
node distances with respect to their neighboring nodes, the only problem remains ob-
taining the non neighboring inter node distances. In MDS-MAP, these distances are
approximated with the distances calculated by Floyd Warshall shortest path algorithm
[Floyd 1962].

Distances between every node in the network are collected at the central station
(sink). The remaining (non neighboring) distances would be calculated by the sink.
Thus, MDS can be classified as centralized, range-based localization algorithm. The
well known MDS-MAP for 2-D network consists of the following steps:

1. Compute the shortest path distances between every node in the network (using
either Dijkstra or Floyd algorithm). These shortest path distances work as an input
data for MDS.

2. CMDS is applied to the shortest path distance matrix. The first 2 largest eigen-
values and eigenvectors forms the relative location of every node in the network.

3. Finally the relative locations are transformed to the absolute global map using
the anchor nodes. This transformation includes optimal rotation, translation and re-
flection. This type of transformation is also called rigid or Euclidean transformation.
Singular value decomposition (SVD) is one of the most stable transformation[Eggert
et al. 1997].

3. MDS ALGORITHM
MDS is the approach that maps the original high dimensional data (m dimensions) in
to a lower dimensional data (d dimensions). It addresses the problem of constructing
a configuration between the n points from k × k matrix D, which is called distance
affinity matrix if it is symmetric, i.e., dii = 0, and dij > 0, i 6= j. MDS finds n data
points y1, ...yn from the distance matrix D in a d dimension space, such that if d̂ij is
the Euclidean distance between yi and yj , then D̂ is similar toD. In [Ghodsi 2006; Cox
and Trevor F 2008], MDS considered is

min
Y

k∑
i=1

k∑
i=1

(dXij − dYj )
2

(1)

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2018.



1:8 N. Saeed et al.

where dXij = ||xi − xj ||2 and dYij = ||yi − yj ||2. The distance matrix DX is converted to a
kernel matrix of inner product XTX by

XTX = −1

2
HDXH (2)

whereH = I− 1
t ee

T and e is a column vector of 1’s. The above equation can be written
as

min
Y

k∑
i=1

k∑
i=1

(xTi xj − yTi yi)
2

(3)

The solution is Y = Λ1/2V T where V is the eigenvectors of XTX and Λ is the d
eigenvalues of XTX.

3.1. Input Data for MDS
In MDS based applications, the input data plays an important about the final spatial
map in multidimensional space. The closeness of points data is generally termed as
proximity and it is the measurement to which pair of objects are same or different
[Okada and Imaizumi 1997]. The proximity measure for MDS based application is very
diverse in nature. One of the major difference between the proximities is the way they
are collected in direct or indirect fashion. The proximities are said to be direct if they
are based on qualitative judgment or quantitative appraisals that directly shows the
state of the point that how similar or dissimilar the point is in a set of points. These
judgments can be transformed to preference rankings when points are needed to be
sorted in terms of perception, preference or opinion [Bove 2006]. Indirect proximities
are measured from certain type of information available, most often this information
is in the form of variables in a matrix [Davidson and Skay 1991]. Confusion data is
one of the examples of indirect proximity that is derived from perceptual mistakes
[Gilmore et al. 1979]. A data matrix may consist of quantitative, qualitative or mixed
information, therefore, it is a crucial task to set up the indirect proximities by choosing
the most suitable measure to handle the variables based on their metric or non-metric
characteristics.

The proximity information computed through direct or indirect method is organized
into proximity matrices. This proximity matrix represents the basic input data for any
MDS based application. One of the major obstacle in MDS based applications is to
collect proximity information, which is an expensive task. The cheapest way to over-
come this obstacle is that, the input data can be replaced by some assumptions. There
are basic two major assumptions for MDS based applications. First, the dissimilarity
ρij between points i and j is always symmetric, because of this ρji is not needed. The
proximity information of a point to itself, ρii, is zero [Gower 1966]. The dissimilarity
or similarity between points i and j should satisfy the conditions of non-negativity
(ρij ≥ 0), identity ρii = 0 and symmetry ρij = ρji. In [Gower and Legendre 1986] and
[Caillez and Kuntz 1996] the authors disagree with the above conditions, even though
ρij = 0 hold for two points i and j, there may be ρik 6= ρjk for third point k. This problem
may not arise if dissimilarity or similarity information satisfies the definiteness prop-
erty or triangle inequality i.e., both points i and j coincides for ρij = 0 or ρij ≤ ρik +ρjk
[Caillez and Kuntz 1996].

Generally, dichotomous (binary) variables are used for the similarities. Similarity
concept is based on co-presence where a phenomena is present on points i and j.
The opposite concept is of co-absence where a phenomena is absent on points i and j
[Tan et al. 2005]. Qualitative variables are modeled as dichotomous variables where as
quantitative variables can be modeled using well known Minkowski family of distances
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[Klock and Buhmann 2000]. Consider m quantitative variables Y l with observations
yil, then the dissimilarity is given as

ρij =

(
m∑
l=1

|yil − yjl|r
) 1
r

, (4)

where r = 1 for Manhatton or City-block [Groenen et al. 1997] , r = 2 for Euclidean
and r = ∞ for Lagrange and Chebyshev models. Table 1 gives an overview of popular
proximity measures for dissimilarity ρij and similarity σij between any two points i
and j. Note that 1 to 4 models in Table III are the Minkowski distances for four differ-
ent cases, which combine dimensional differences directly. The proximity models from
4 to 8 in Table 1 are to control the dispersion of variables [Gower 1966]. Absolute dif-
ferences are corrected in the Canberra distance model along each dimension for the
size of the coordinates along the axis. In addition, if yil have negative values, then
ρij reaches an asymptote of infinity. Therefore, Canberra distance model is good to
use when yil have positive values. The Bray-Curtis distance model [Gerry and Keough
2004] is mostly used in the field of ecology, it tries to correct the sum of absolute differ-
ences. Bray-Curtis distance model also works well for positive values of yil. The Chord
distance [Ault 2007] also requires positive yil. The angular separation computes the
angle between yi and yj from the origin and its index lies between -1 and 1. The values
of correlation coefficient also lies between -1 to 1 and it works well if their are large
number of dimensions m.

MDS can handle mixed type of data which involves both quantitative and quali-
tative variables using general coefficient of similarity (GCS) [Gower 1971]. The GCS
computes give wights to the similarity values and average it. The general form of sim-
ilarity between points i and j is given by

σij =

∑m
l=1 wijlσijl∑m
l=1 wij

, (5)

where σijl is the similarity values and wijl is the non negative weights between points
i and j respectively. Weighting is used to handle the missing values, a weight wijl = 0
when the observation between points i and j is not available. Finally, GCS give much
weights to the qualitative variables, when the variables are heterogeneous, such as
Gini’s or Shannon’s heterogeneity [Solaro 2010].

3.2. Loss Functions for MDS
MDS models need to map each dissimilarity exactly into its Euclidean distance, which
may not be practical due to many factors like noise added to the measurement, sam-
pling effect and unreliability [Borg and Gronen 2005]. In order to get as close result
as possible to ensure the equality requirement in f(ρij) = dij(X) as mentioned in
section 3.3, most of the computer programs used to solve this problem usually start-
ing with some initial configuration and tries to minimize the difference between f(ρij)
and dij(X) iteratively. To ensure the equality sign holds, a statistical concept of error
is used in literature also called squared error, defined as

e2
ij =

(
f(ρij)− dij(X)

)2

. (6)
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Table III. Proximities

S. No Model Formula

1 Euclidean ρij =
(∑m

l=1 |yil − yjl|2
) 1

2

2 City block and Manhatton ρij =
(∑m

l=1 |yil − yjl|
)

3 Langrange and Chebyshev maxml=1 |yil − yjl|
3 Minkwoski ρij =

(∑m
l=1 |yil − yjl|r

) 1
r with r ≥ 1

4 Canberra ρij =
∑m

l=1
|yil−yjl|
|yil+yjl|

5 Bray-Curtis ρij =
∑m
l=1 |yil−yjl|∑m
l=1

(yil+yjl)

6 Chord ρij =

(∑m
l=1 |y

1
2
il − y

1
2
jl |

2

) 1
2

7 Angular Separation σij =
∑m
l=1 yilyjl

(
∑m
l=1

y2
il

)
1
2 (

∑m
l=1

y2
jl

)
1
2

8 Correlation Coefficient σij =
∑m
l=1(yil−ȳi)(yjl−ȳj)

(
∑m
l=1

(yil−ȳi)2)
1
2 (

∑m
l=1

(yjl−ȳj)2)
1
2

For all pairs of points (i, j) combines the total error among the configurations yielding
raw Stress, represented as

ξr =

n∑
i=1

n∑
j<i

(
f(ρij)− dij(X)

)2

. (7)

The main problem with the raw Stress in (7) is that, it is not invariant under coor-
dinate scaling transformation. To overcome this problem of invariability some forms
of normalization are introduced. The most suitable choice for normalization is using
the disparities d̂ij . Normalization using the disparities develop the famous Kruskal’s
Stress-1 [Kruskal 1964a], given as

ξ1 =

√√√√√√∑n
i=1

∑n
j<i

(
d̂ij − dij(X)

)2

∑n
i=1

∑n
j<i d

2
ij(X)

. (8)

Kruskal’s Stress-2 formula is derived by inducing the mean of the distances d̄ as well,
for 1 ≤ i < j ≤ n, given as

ξ2 =

√√√√√√∑n
i=1

∑n
j<i

(
d̂ij − dij(X)

)2

∑n
i=1

∑n
j<i

(
dij(X)− d̄

)2 . (9)

Minimizing the Stress function always requires to find the optimal coordinates for X
in a given dimension m. Therefore, in [Borg and Gronen 2005] the authors proposed
normalized Stress based on the sum of squares of the dissimilarities ρij which are not
accounted for the distances, defined as

ξn =
ξr
η2
ρ

=

∑n
i=1

∑n
j<i

(
f(ρij)− dij(X)

)2

∑n
i=1

∑n
j<i wijρ

2
ij

. (10)
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Clearly, if
∑n
i=1

∑n
j<i wijρ

2
ij = 1, then ξn = ξr, where wij is the associated weight for

each dissimilarity. In [Leeuw et al. 1977] it is shown that how the normalized Stress ξn
is related to the Tucker’s coefficient. Consider that X̄ is a local minimum for the raw
Stress ξr, which implies that cȲ = X̄ must be a local minima with c > 0. To find the
optimal value of c the homogeneity property of Euclidean distance is considered i.e.,
dijcȲ = cdijȲ . Then ξr(cȲ ) can be written as

ξr(cȲ ) =
∑
i<j

wij

(
(ρij)− dij(cȲ )

)2

(11)

=
∑
i<j

wijρ
2
ij + c2

∑
i<j

wijd
2
ij(Ȳ )− 2c

∑
i<j

wijρijdij(Ȳ )

= η2
ρ + c2η2

d(Ȳ )− 2cζ(Ȳ ).

The minimum of (11) for optimum c is obtained by setting the first derivative of
ξr(cȲ ) = 0, 2cη2

d(Ȳ ) − 2ζ(Ȳ ) = 0, which gives the optimum value of c as, c? = ζ(Ȳ )
η2d

[Mathar 1990]. Inserting the optimum value of c in ξr(cȲ ) yields

ξr(c
?Ȳ ) = η2

ρ −
(
ζ(Ȳ )

ηd(Ȳ )

)2

. (12)

Dividing both sides by η2
ρ gives

ξn(c?Ȳ ) = 1−
(

ζ(Ȳ )

ηρηd(Ȳ )

)2

, (13)

where the last term of (13) gives the value of the Tucker’s congruence coefficient, which
lies in the range of -1 and 1 because of the Cauchy-Schwarz inequality. Thus, using the
normalized Stress provides a clear interpretation of the loss function which does not
depends on proximities scale.

There exist a simple relation between Kruskal’s Stress-1 ξ1 and the normalized
Stress ξn. Consider the local minimum X̄ after minimizing the normalized Stress ξn,
which implies that ηd(X̄) = ζX̄ and

ξn(X̄) = 1− η2
d(X̄)

η2
ρ

, (14)

where as the Stress-1 can be written as

ξ1(X̄) =
η2
ρ − η2

d(X̄)

η2
d(X̄)

(15)

=
η2
ρ

η2
d(X̄)

− 1.

From (14) η2d(X̄)

η2ρ−η2d(X̄)
= 1

1−ξn(X̄)
, yielding

ξ1(X̄) =
ξn(X̄)

1− ξn(X̄)
. (16)

Inducing the scaling factor c, the Stress-1 becomes

ξ1(cX̄) =
η2
ρ + c2η2

d(X̄)− 2cζ(X̄)

c2η2
d(X̄)

. (17)
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Fig. 1. Shephard Scatter Plot

In order to find the optimum value of scaling factor c, differentiating ξ1(cX̄) with re-
spect to c, that is,

∂ξ1(cX̄)

∂c
=

2c2(c− 1)η4
d(X̄)− 2cη2

d(X̄)(η2
ρ + (c2 − 2c)η2

d(X̄))

c4η2
d(X̄)

, (18)

=
2cη2

d(X̄)− 2η2
ρ

c3
,

which is equal to zero for c? =
η2ρ

η2d(X̄)
, inserting the optimum value of c in ξ1(cX̄) yields

ξ1(c?X̄) =
η2
ρ/η

2
d(X̄)− 1

η2
ρ/η

2
d(X̄)

= ξn(X̄). (19)

Thus, it is proved in (19), that normalized Stress and Stress-1 are same at local min-
imum. In [Leeuw et al. 1977] the authors introduce a methodology to minimize the
Stress function, which shows that beforin starting the minimization process the prox-
imities are normalized. This type of normalization is also known as scaling by ma-
jorizing a complicated function (SMACOF). The majorizing operation is efficient from
a computational point of view and is being used in many MDS models [Cox and Cox
2001].

Loss functions basically tells us the mismatch between the dissimilarities and the
corresponding distances, while the Stress function shows the badness-of-fit between
them. The scatter diagram also called Shepard diagram [Leeuw 2005] plots the dis-
similarities and distances as shown in Fig. 1. A regression line also exist which shows
how the dissimilarities and their distances are related.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2018.



A Survey on Multidimensional Scaling 1:13

3.3. MDS Output and Further Processing
Once MDS produces the coordinates for points in a m-dimensional space, the out-
put configuration is not explicit in terms of reflection, dilation and rotation. For the
configuration of points X in m-dimensions, with xi representing the i-th row, then
x̂i = sTxi + τ , where s is the dilation factor (s < 1 for shrinking and s > 1 for stretch-
ing), T is the orthogonal matrix representing rotation or reflection and τ is the trans-
lation. The non-unique solution of MDS creates an ambiguity about comparing the two
configurations taking into account the above transformations. Solution to this problem
lies in Procrustes analysis [Borg and Gronen 2005]. Consider that X and Y are the
two set of coordinates for n number of points in m and m̄ different dimensions respec-
tively, where m̄ ≤ m. Moreover, when m̄ ≤ m, then m − m̄ columns of zeros are added
to Y to convert it into n × m matrix. Then the matching between the two configura-
tions considers all the possible reflections, rotations, dilation and translations of X.
The miss-match between the two configurations can be formulated as a minimization
problem given as

min
s,τ ,T

R2 = min
s,τ ,T

n∑
i=1

(yi − sTxi − τ )T (yi − sTxi − τ ), (20)

where R2 is the summed and squared intra-point distances. All the mathematical
derivation to find the optimal values for s,τ and T can be found in [Cox and Cox 2001]
and [Mardia 1979].

4. VARIOUS MDS TECHNIQUES
Until now number of different MDS techniques have been proposed. Most of them tries
to represent the coordinates for the observed dissimilarities in m-dimensional space.
The dissimilarities are mapped in such a way that it tries to match the Euclidean dis-
tances. Thus, the dissimilarity ρij between points i and j is mapped into its Euclidean
distance dij with the minimum information loss. Let X is an n × m configuration of
points, where m defines the dimensional space and n is the number of points. The
the dissimilarities are related to the Euclidean distance by function f : ρij → dij(X),
where dij(X) implies that the distance dij depends on the unknown coordinates of
X. Different models of MDS can be defined based on this mapping of dissimilarities
to the distances. Hence every MDS model starts with the equation f(ρij) = dij(X).
The equality sign however has only theoretical value in real world applications it does
not hold exactly. Therefore from a practical point of view usually a weaker statement
should be defined with approximation relation f(ρij) ≈ dij(X), where as the exact
equality holds when the dissimilarity is in the form of disparity. Dissimilarities ρij are
converted into disparities by applying function f to it i.e., d̂ij = f(ρij). Some of the
commonly used functions for defining the disparities from the dissimilarities are, lin-
ear function d̂ij = bρij also called ratio MDS, identity function d̂ij = ρij i.e., absolute
MDS and finally d̂ij = g + hρij , which corresponds to interval MDS, parameters g and
h are selected such that it guarantees the relation to hold as far as possible. Thus, any
kind of function can be considered for the mapping which is continuous, parametric
and monotone in nature. According to proximities, MDS have 2 different types, metric
MDS (MMDS) and NMDS. In MMDS, proximity is related to distance ρij = d̂ij , whose
cost function is [Zhang 2007]

X =
∑
i 6=j

(d̂ij − dij)
2
. (21)
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Each proximity value ρij should correspond exactly to the distance between points
i and j in the m-dimensional MDS Space. The NMDS model presents only ordinal
properties of the data, e.g. if ρ12 = 6 and ρ34 = 3, an ordinal model reads this as ρ12 >
ρ34 [Zhang 2007]. In other words, MMDS considers that the the proximity information,
e.g., display of numeric data, like the distances measured between objects. Thus, the
MMDS tries to preserve the distances as close as possible to the intervals and ratios
between the proximities. While NMDS only consider proximty information order. In
NMDS the order of the distances gives the information regarding the order of the
proximity information. There are four types of models comes under MMDS, classical
MDS (CMDS), replicated MDS (RMDS), Generalized MDS (GMDS), weighted MDS
(WMDS) and Isomap.

4.1. CMDS
CMDS is similar to generating of a map. By starting with the distances between dif-
ferent objects and then try to arrange points on a piece of paper so that the distances
between the points in the map representing each of those objects are related to the true
distances between the objects [Borg and Gronen 2005; Amar et al. 2010]. Stating this
more mathematically CMDS endeavors to find an isometry between points distributed
in a higher dimensional space and in a low dimensional space. In other words, if there
are n m-dimensional points,X, then the the dissimilarities between the pairs of points
is, pij . The CMDS tries to create n projections, x, of the high dimensionality points in a
d-dimensional linear space by trying to arrange the projections so that the Euclidean
distances between pairs of them, dij , resemble the dissimilarities between the high
dimensional points. In short CMDS tries to minimize:

χ =
∑
i 6=j

(pij − dij)2 (22)

where pij is the dissimilarity between point Xi and point Xj , and dij is the distance
between the projection of Xi, xi, and the projection of Xj , xj . The classical MDS finds
the location of points in matrix form X by taking the eigenvalue decomposition of
the double centered matrix B = XX′. Double centered matrix B is constructed from
the proximity matrix P by multiplying it with the centering matrix J = I − n−111′.
Following are the major steps for CMDS:

— Compute the squared proximity matrix P = [p2].
— Double center the proximity information i.e.,B = 1

2JPJ using the centering operator
J = I − n−111′, where n tells us about the total number of objects. Double centering
is the method of subtracting the column and row means of a matrix from its elements
and adding the grand mean.

— Next step is to extract m eigenvectors e1, ..., em and the corresponding eigenvalues
λ1, ..., λm.

— Finally the coordinates for the n objects in m-dimensional space are derived from
X = EmΛ

1
2
m , where Em are the m eigenvectors and Λm are the m eigenvalues,

respectively.

In situations where the dissimilarity pij is not Euclidean distance, CMDS can still be
applied, such that matrix B is positive semi-definite or the dissimilarity matrix P has
Euclidean properties. If matrix B is not positive semi-definite then there can be large
number of negative eigenvalues. Under these circumstances dissimilarity matrix P is
considered Euclidean by transformations [Gower 1966], while very small eigenvalues
are ignored [Cox and Cox 2001].
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4.2. GMDS
GMDS is the extension of CMDS in which the dissimilarity matrix is non Euclidean
[Bronstein et al. 2006b]. CMDS evaluates all of the permutations between two differ-
ent surfaces, which is an expensive task, while GMDS can work with both, partial as
well as full surface matching. In other words, GMDS is a technique which computes the
map that best preserves the inter-geodesic distances while embedding one surface into
another. There are number of other choices than Euclidean distances e.g., hyperbolic
[Walter and Ritter 2002] and spherical [Elad and Kimmel 2002] spaces, which can be
more advantageous for different surfaces in GMDS. Consider that, ifG1 andG2 repre-
sent the inter-geodesic distances matrix of C1 and C2 configurations, respectively, then
GMDS attempts to find the permutation matrixW minimizing ‖WG1−G2W ‖22, i.e.,

min
W
‖WG1 −G2W ‖22, (23)

where ‖ . ‖22 represents the discretization of the L2 norm of a mapping between C1 and
C2 and W ij = {0, 1}. In continuous setting,

||F ||22 =

∫ ∫
S1,S2

F 2(x, y)da(x1)da(x2) (24)

and for the discrete setting,

||F ||22 ≈ trace(FTA2FA1) (25)

The L2 in above equation can be written as

‖WG1 −G2W ‖22= trace
(

(WG1 −G2W )
T
G2(WG1 −G2W )G1)

)
(26)

which can be written as

−2 trace
(
W TG2WG1

)
. (27)

Problem in (27) appears to be non-deterministic polynomial-time (NP) hard problem
which ignores the smooth relation between the two configurations. Several methods
have been proposed to overcome this problem [Bronstein et al. 2006b]. Recently spec-
tral GMDS (S-MDS) is proposed in [Aflalo et al. 2013] to further reduce the complexity
of GMDS and to overcome the non-convex nature of GMDS.

4.3. WMDS
In WMDS an extra parameter is also computed for the proximities to fit the points
and their corresponding dissimilarities in a better fashion. The WMDS also know as
INDSCAL was first by proposed by Carroll and Chang [Carroll and Chan 1970], which
removes the rotational in-variance existing in the CMDS, thus providing the user with
dimensions that are potentially psychologically meaningful [Greenacre 2005]. Once
these weights are estimated, the rest of the procedure is similar to CMDS. The loss
function for WMDS is defined as

χ =

n∑
j=i+1

wij

(
pij − dij(X)

)2

, (28)

where wij are the associated weights which quantify the accuracy of the dissimilar-
ity pij . if there is no dissimilarity information available between points i and j then
wij = 0. Weights wij tells us about the accuracy of proximities, such that more ac-
curate measurements are given higher weight-age in the overall loss function. For a
given measurement noise model, wij is modeled based on the variance [Costa et al.
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2006]. In [Leeuw and Heiser 1980] the authors used the idea of weighting, some of
them are S-Stress, STRAIN and Sammon’s mapping.

Consider the S-Stress or STRAIN defined for ALSCAL [Young et al. 1978], the error
function for S-Stress is defined as

ξs =

n∑
j=i+1

(
pij + dij(X)

)2(
pij − dij(X)

)2

, (29)

where the S-Stress depends on the two terms,
(
pij − dij(X)

)2

and the weighting term(
pij + dij(X)

)2

, both of terms are dependent on dij(X). Assuming that the residual

error is considerably small, then the weighing factor
(
pij + dij(X)

)2

can be approxi-

mated such that (
pij + dij(X)

)2

≈ 4p2
ij . (30)

Therefore, the S-Stress can be minimized by setting the weight wij = 4p2
ij . In [McGee

1966] the authors proposed elastic distances for the MDS, which provides equal impor-
tance to the fitting of both the small and large dissimilarities. The error function for
such weighting is

ξe =

n∑
j=i+1

(
1− dij(X)

pij

)2

=
∑
i<j

p−2
ij

(
pij − dij(X)

)2

(31)

Sammon mapping [Sammon 1969] is popular in pattern recognition, it also considers
WMDS [Lerner et al. 1998], where the weight wij = p−1

ij . The loss function for Sammon
mapping is defined as

ξsam =

n∑
j=i+1

(
1− dij(X)

pij

)2

=
∑
i<j

p−1
ij

(
pij − dij(X)

)2

, (32)

which is similar to the raw Stress. The objective of Sammon mapping is somehow sim-
ilar to elastic scaling. In [Jourdan and Melangon 2004] the authors proposed MULTI-
SCALE loss function which can be written as

ξm =
n∑

j=i+1

log2

(
dij(X)

pij

)2

, (33)

which tries to minimize the relative error logarithmically. In most of the above tech-
niques weights wij are specified on the basis of some formal considerations. One way to
choose wij is to equalize it with reliability of the proximity information, which means
that more reliable proximities are given more weight while unreliable proximities have
less weight.

4.4. Isomap
Isomap is also a dimensionality reduction technique which maps the high dimensional
structures into low dimensional space [Tenenbaum et al. 2000]. Isomap is the exten-
sion of MDS such that it considers the practical geodesic distances instead of the Eu-
clidean distances between each pair of the points in the configuration. In Isomap, first
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of all the geodesic distances are computed between each pair of points to construct a
graph G. In graph, there is a link between point i and j if the geodesic distance gij is
smaller than the threshold ε, gij < ε, and the value of this edge is equal to gij . Once the
value for each vertex is computed the shortest path distances to every other point in
the configuration is computed using Floyd Warshall algorithm. Once the distances for
each pair of points are available, a low dimensional embedding of the points is needed
to be find out. The possible loss function for Isomap is defined as

ξi =
∑
i 6=j

(gij − dij)2. (34)

The geodesic distance with respect data set D, a distance d(u, v) and neighborhood k
as [Bengio et al. 2003]

D̄(a, b) = min
p

∑
i

d(pi, pi+1) (35)

where p is the sequence of length l ≥ 2 with p1 = a, pl = b, pi ∈ D∀i ∈ (2, ..., l −
1) and (pi, pi+1) are k nearest neighbors. The length l is free in minimization. The
Isomap algorithm gets the normalized matrix M from which the embedding is derived
by transforming the raw pairwise distance matrices. The matrix Mij = D̄2(xi, xj) of
squared geodesics distances with respect to the dataD is computed first, then distance-
to-dot product transformation is applied to this matrix as

M̄ij = −1

2

(
Mij −

1

n
Si −

1

n
Sj +

1

n2

∑
k

Sk

)
(36)

where Si =
∑
jMij .

4.5. NMDS
Non-metric MDS (NMDS) and CMDS, tries to compute the coordinates of the objects
in m-dimensional space, such that the proximities matches the inter-point distances.
[Zhang and Cheng 2010; Nhat et al. 2008; Xin et al. 2009]. The foundation of NMDS is
motivated by two drawbacks of CMDS [Guttman 1968b]:

— Define a function explicitly such that the given dissimilarities are transformed into
distances.

— Object configuration is restricted to be determined in Euclidean geometry.

Basically NMDS demands a less constrained relationship between the proximities and
the distances. Consider a function f which is monotonically increasing, such that dij =
f(δij), generates a set of distances dij from the given proximities δij . The function f
works in such a fashion that δij < δrs for f(δij) < f(δrs). The input data to the NMDS
is matrix of dissimilarities

D = |δij | (37)

where dij is the dissimilarity matrix of i and j.
NMDS depends on the rank order of the proximities rather than its true values,

therefore it is ordinal in nature and also called ordinal MDS.
Hence, the distance of the final configuration should be in same rank order as the

original data. Therefore, the purpose of NMDS is to find the configuration of points
whose distances reflect as near as possible the rank order of the data.
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Table IV. Comparison of MDS Techniques

MDS
Tech-
niques

Linear/
Non-
Linear

Closed
form/ No-
Closed
form

Complexity Stress Application

PCA Linear
[Chen-
gan Guo
and Zeng
2013]

Closed form O(N2)
[R. Leszek
and Zurada
2010]

High (1) Scientific visualization
[Cheng 2006], (2) Pattern
Recognition [Thomas Vill-
mann and Seiffert 2008],
(3) Localization (4) Ecol-
ogy [Janzekovic and No-
vak 2012], (5) Psychologi-
cal Structure [Schinka and
Velicer 2013], (6) Data Ex-
ploration [Zuur et al. 2009]
and Testing Structural Hy-
pothesis [Yamamoto et al.
2014]

CMDS Linear
[Werner Du-
bitzky
and
Berrar
2007]

Closed form O(N3)
[Pawliczek
and
Dzwinel
2013; Tzeng
et al. ]

High (1) Scientific Visualization
[Ghodsi 2006], (2) Pattern
recognition [Hancock and
Vento 2003], (3) Local-
ization, (4) Psychological
structures [Jaworska and
Chupetlovska-Anastasova
2009], (5) Data Explo-
ration [Filzmoser and
Hron ] and (6) Ecology
[Greenacre and Primicerio
2013]

GMDS Non-
Linear

No-closed
form

O(N2logN
[Sahillioglu
and Yemez
2011]

Low (1) Scientific Visualization
[Lezoray and Grady 2012],
(2) Pattern recognition
[Bronstein et al. 2006b],
(3) Localization

NMDS Non-
linear

No-closed
form

O(N
√
N)

[Tzeng et al.
]

Higher (1) Psychological struc-
tures [Jaworska and
Chupetlovska-Anastasova
2009], (2) Data Exploration
[Naud and Duch 2000],
(3) Testing Structural Hy-
pothesis [Kruskal 1964a]
(4) Ecology [Greenacre and
Primicerio 2013]

Isomap Non-
linear

No-closed
form

O(N2logN+
N2D)
[Burges
2005]

Low (1) Scientific Visualization
[Ghodsi 2006], (2) Pattern
recognition [Yang 2002]
(3) Data Exploration [Lim
et al. 2003]
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Fig. 2. Stress of MMDS, NMDS and Isomap

5. COMPARISON OF VARIOUS MDS TECHNIQUES
In this section, different MDS techniques are compared. It is mentioned earlier that
GMDS is simply an extension of CMDS, in which target space is an arbitrary smooth
non-Euclidean space. GMDS is used in the situation when the dissimilarities are dis-
tances on a surface and the target space is another surface. It allows to find the mini-
mum distortion embedding of one surface into another surface[Bronstein et al. 2006b].
Isomap is also an extension of CMDS, but it uses geodesic distances as an input matrix
to MDS [Zhang 2007]. The WMDS generalizes the distance model so that numerous
matrices could be assumed to be distinguished from each other in a systematically
non-linear or monotonic ways. The WMDS incorporates a model to account for indi-
vidual difference in the fundamental perceptual or cognitive process that generate the
responses [Young 2013]. The weight in WMDS is given on the basis of distance mea-
surement, i.e., if estimated distance have high error, then less weight is given and vice
versa [Zhang 2007]. We have compared the MDS techniques according to their stress
function using linear data, the performance of metric and non-metric is shown in Fig.
2. Total 30 nodes are considered, in which 27 nodes are randomly distributed in the
area of 10m×10m, while 3 nodes are considered as anchor nodes with known position.
Fig. 2 clearly shows that the performance of MMDS is better than NMDS technique. In
Fig. 2 MMDS refers to CMDS and GMDS. It is shown that the stress function of MMDS
is less than NMDS. As in MMDS, actual distances are used while in NMDS the rank
is used as input data. In Isomap and WMDS, stress will be the same as of MMDS due
to the fact that both techniques use euclidean distances as an input matrix.

The comparison of all techniques using non-linear toy data is shown in Fig.3. It
shows the effect of different types of MDS on the selected non-linear data. As seen in
the figure, GMDS and Isomap preserve the given (non-linear) data in the output mostly
due to the fact that those techniques use geodesic distances. However, the performance
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Fig. 3. Comparison of Different MDS techniques with non-linear data

of GMDS is better than Isomap though both of them are using geodesic distances. The
performance of CMDS and PCA is also shown, which clearly indicates that both are
worse than GMDS and Isomap due to the fact that CMDS and PCA are designed to
work better when the given data is embedded linearly in the observation space.

Furthermore, different models of MDS are compared in Table IV-E in terms of the
linearity/non-linearity, closed form solution, complexity, stress and corresponding ap-
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plications. In which, N is the number of points and D is the number of dimensions.
It is clear from Table. IV-E that PCA and CMDS are linear techniques, which have
closed form expressions, while GMDS, NMDS and Isomap are non linear techniques
and their closed form expressions do not exist. The complexity of each MDS technique
is also shown along with their corresponding stress. As shown in the table, many appli-
cations use PCA and CMDS, while rest of MDS techniques are used by limited number
of applications.

6. CONCLUSIONS
In this survey paper we have provided an overview of well known multidimensional
scaling techniques, namely classical MDS and non-metric MDS and their real world
applications. We have briefly discussed several other techniques based on CMDS, that
is, the weighted MDS, generalized MDS, and Isomap. We have also discussed in detail
the input data for each technique, which is a major part for any all the MDS methods.
Furthermore the loss functions for each MDS technique is devised and all the MDS
methods are compared.
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