
Citation: Chen, Z.; Yan, J.; Ma, B.; Shi,

K.; Yu, Q.; Yuan, W. A Survey on

Open-Source Simulation Platforms

for Multi-Copter UAV Swarms.

Robotics 2023, 12, 53. https://

doi.org/10.3390/robotics12020053

Academic Editors: Goldie Nejat and

Beno Benhabib

Received: 22 February 2023

Revised: 19 March 2023

Accepted: 26 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Review

A Survey on Open-Source Simulation Platforms for
Multi-Copter UAV Swarms
Ziming Chen 1, Jinjin Yan 1,* , Bing Ma 1, Kegong Shi 1, Qiang Yu 1 and Weijie Yuan 2

1 Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
2 Department of Electrical and Electronic Engineering, Southern University of Science and Technology,

Shenzhen 518055, China
* Correspondence: jinjin.yan@hrbeu.edu.cn; Tel.: +86-153-2115-5969

Abstract: Simulation platforms are critical and indispensable tools for application developments of
unmanned aerial vehicles (UAVs) because the UAVs are generally costly, have certain requirements
for the test environment, and need professional licensed operators. Thus, developers prefer (or have)
to test their applications on simulation platforms before implementing them on real machines. In
the past decades, a considerable number of simulation platforms for robots have been developed,
which brings convenience to developers, but also makes them hard to choose a proper one as they
are not always familiar with all the features of platforms. To alleviate this dilemma, this paper
provides a survey of open-source simulation platforms and employs the simulation of a multi-copter
UAV swarm as an example. The survey covers seven widely used simulators, including Webots,
Gazebo, CoppeliaSim, ARGoS, MRDS, MORSE, and USARSim. The paper outlines the requirements
for multi-copter UAV swarms and shows how to select an appropriate platform. Additionally, the
paper presents a case study of a UAV swarm based on Webots. This research will be beneficial
to researchers, developers, educators, and engineers who seek suitable simulation platforms for
application development, (not only multi-copter UAV swarms but also other types of robots), which
further helps them to save expenses for testing, and speed up development progress.

Keywords: open-source; simulation platform; multi-copter UAV; swarm; modeling

1. Introduction

The unmanned aerial vehicle (UAV), also known as a drone, was originally developed
for military missions in the twentieth century because it has no human pilot, crew, or
passengers on board and can be used to conduct dull, dirty, or dangerous assignments [1].
Nowadays, the UAV has been widely utilized in various fields, e.g., aerial photography [2],
emergency rescue [3], item deliveries [4], policing and surveillance [5], science [6], inspec-
tions [7], and racing [8]. In recent years, applications of UAV are gradually shifting from
single to swarm, because compared with single UAVs, a swarm has obvious advantages,
such as flexibility, governance, control, scalability, extensibility, interoperability, integration,
and high fault tolerance [9–11].

Before implementing applications or algorithms on real machines, testing them on
simulators is a necessary step, because such a practice can aid in minimizing the potential
risks and expenses involved in real-world UAV testing and improving safety and produc-
tivity. For instance, it is critical to consider the costs and risks in a real environment when
hundreds or even thousands of UAVs will be involved. As we all know, a UAV is generally
costly [12], have certain requirements for the test environment [13], and need professional
licensed operators [14]. Due to the uncertainty of the applications or algorithms, UAV
could collide with each other, and even crash, which will bring in big security threat to the
experimenters once the test fails [15]. More importantly, it would be challenging to find a
suitable area for testing since there are more and more no-fly zones for UAVs based on the
air traffic control [16].

Robotics 2023, 12, 53. https://doi.org/10.3390/robotics12020053 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12020053
https://doi.org/10.3390/robotics12020053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-3140-3462
https://doi.org/10.3390/robotics12020053
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12020053?type=check_update&version=1


Robotics 2023, 12, 53 2 of 24

In the past decades, a considerable number of robot simulation platforms have been
developed. They have many aspects, such as built-in model libraries, physics engines, and
programming languages [17]. It makes it hard for developers to choose a proper simulation
platform as it is tedious to fully understand all the functions of various platforms or make a
choice by testing them one by one. For instance, some developers employ MATLAB or other
tool-kits for verification of a UAV platform [18,19]. Such platforms have poor visualization
performance; UAVs are only regarded as particles in the simulation process; no attitude
information of a UAV, no environment interaction, and no physics engines are involved.
Thus, they cannot simulate the friction, airflow, and other factors that should be considered
in the real environments, which inevitably reduces the accuracy of simulation [20]. To put
it differently, selecting a simulation platform that is suitable for the actual utilization of
UAVs is crucial for users. This enables them to test and verify the performances of UAVs
and adapt to various environments/conditions. However, for the time being, users are
confused about choosing a simulation platform to ensure that it caters to their needs and
delivers reliable solutions for their UAV applications, even though they could evaluate
their objectives and requirements.

Currently, there are some academic surveys on simulation platforms [21–23], but
these studies are focused on the introduction of the parameters of platforms, such as
sensors. Such information can be easily collected from the websites. In other words, these
studies are similar to a summary of the characteristics of the simulators, rather than a real
survey. Because, on the one hand, no analysis and comparison are conducted between
different simulation platforms; and on another hand, no investigations are presented on
the requirements of UAV swarm simulation.

To alleviate the above-mentioned dilemma, this paper presents a survey on com-
monly used open-source simulation platforms for multi-copter UAV swarms, including
Webots [24], Gazebo [25], CoppeliaSim [26], ARGoS [27], MRDS [28], MORSE [21], and
USARSim [29]. It should be noted that we suppose the platforms that can be tried or used
for free for non-commercial purposes (e.g., education use) are also open-source. The contri-
bution of this survey is that it presents detailed comparisons of the simulation platforms
in the field of UAVs swarm, rather than just listing parameters of simulators, which can
directly help researchers, developers, educators, and engineers in seeking a appropriate
simulation platform(s) for application developments, especially for the UAVs swarm. The
remainder of this paper is organized as follows. The next section introduces and compares
the seven open-source simulators. Section 2 describes the concerns for selecting proper sim-
ulation platforms for multi-copter UAVs swarm. Section 3 demonstrates a use case based
the selected platform—Webots, and finally presented the experimental results. Section 4
concludes the whole work.

2. Seven Widely Used Open-Source Platforms

The history of simulation platforms can be traced back to the 1980s. Since then,
computer-aided design (CAD) software packages became capable of robot simulations [17],
such as XAnimate [30], SAMMIE [31], and GraspIt! [32]. After a decade, emulation plat-
forms are showing increasingly diverse capabilities. For instance, the Player Project [33],
the modular robot simulation platform for humanoid robots [34], PhysX physics engine,
and OpenGL-based simulation platform [35–37]. In the last few years, a growing number
of open-source simulation platforms have been released, including Simbad [38], Open Dy-
namics Engine (ODE) [39], and Carnegie Mellon Robot Navigation Toolkit (Carmen) [40].
These open-source platforms offer several advantages over earlier platforms developed by
research institutions, including built-in robotic libraries, sophisticated physical environ-
ment simulation, and user manual support. These features make open-source simulation
platforms more accessible to researchers and developers worldwide.

In this paper, we have chosen to focus on seven widely used open-source simulation
platforms, including Webots, Gazebo, CoppeliaSim, ARGoS, MRDS, MORSE, and USAR-



Robotics 2023, 12, 53 3 of 24

Sim. The motivation for this selection is that we found that these seven platforms have a
large user base, and can satisfy the testing requirements of most researchers and developers.

2.1. Webots

Webots, developed by Cyberbotics Company [24], is an open-source simulation plat-
form, which can simulate three-dimensional agents (models). This platform is highly
compatible with the mainstream operation systems, such as Windows, Linux, MAC OS. It
can support C, C++, Java, Python, MATLAB and other programming languages [41]. The
simulation of a UAV in a jungle by Webots is shown in Figure 1.

Figure 1. Simulation of a UAV by Webots.

Webots includes a variety of built-in agents (models) such as wheeled robots, un-
derwater robots, UAVs, pedestrians, humanoid robots, and bionic robots. These agents
can be easily customized by developers with enriched attributes such as shape, material,
and color. Additionally, developers can create their own models by using other tools.
For instance, Webots can import files in VRML97 format, which can be produced using
SolidWork [42]. Developers also can easily obtain the parameters of the agents, such as
motor speed, accelerometer, camera screen, and other such parameters of the robot, via its
interface. Webots also includes a range of sensors that are commonly used in robots, such
as distance sensors, cameras, gyroscopes, and LIDARs. Moreover, Webots is capable of
supporting the Robot Operating System (ROS) [22], an open-source framework that assists
researchers and developers in creating and reusing code across various robotics applica-
tions. Additionally, Webots allows for the simulation of physical properties such as gravity,
illumination, density, and friction coefficients. To simulate collision and dynamics, Webots
uses an open-source physical simulation engine known as the Open Dynamics Engine
(ODE). This engine facilitates the simulation of rigid body dynamics and collision systems,
bringing the simulations closer to realism and greatly enhancing their reliability [43].

In addition to its reliable updates and maintenance, Webots has a thriving community
and official technical support. The platform is widely used for simulation and control
of UAV, offering numerous examples and tutorials for UAV simulation, as well as sup-
port for popular open-source flight control systems such as ArduPilot [44]. There is also
an abundance of open-source tutorials available to developers who wish to learn from
them. Because of its rich functionality and diverse development environments, more than
two hundred universities and research centers use this platform to test applications and
algorithms [45]. For example, it can be utilized to evaluate the performance and reliability
of UAVs swarm algorithms, such as obstacle avoidance algorithms [46].



Robotics 2023, 12, 53 4 of 24

2.2. Gazebo

Gazebo, developed by Dr. Andrew Howard from the University of Southern California
in 2002 [25], is a widely used open-source simulation platform in scientific research and
engineering, particularly due to its close integration with ROS. Typically, it is used in
conjunction with ROS, as Gazebo-ROS [47], to simulate complex robot systems, especially
robot swarms [48].

Gazebo is compatible with Windows, Mac OS, Ubuntu, and other Linux distributions.
It supports applications and algorithms developed in C, C++, and Python. Gazebo also
offers a range of physical simulation engines, including ODE, Bullet [49], Simbody [21],
and Dynamic Animation and Robotics Toolkit (DART) [50]. This enables the platform
to simulate physical properties such as friction, gravity, and lighting [51]. Additionally,
Gazebo can provide high-quality lighting and texture simulations by using its use of the
Object-Oriented Graphics Rendering Engine (OGRE). Figure 2 illustrates the main interface
and a simulation example of Gazebo.

Figure 2. The main interface and a simulation example of Gazebo.

Gazebo comes with various built-in robot models, mainly wheeled and flying robots
such as TurtleBot, PR2, and iRobot Create. The default model is relatively simple but
suitable for complex validation calculations [23]. With ROS integration, this platform
supports motion path planning. Sensors such as laser radar, monocular, stereo, RGB-D,
and infrared sensors can also be simulated. Developers can customize plug-ins for robots
and sensors using plug-in functions, including GUI, system, sensor, world, model, and
visual. The sensor plug-in is used to model laser radar and infrared sensors. Additionally,
the internal data of Gazebo can be directly accessed by its application program interface
(API). Gazebo also offers cloud simulation, enabling developers to run projects on an online
server [52].

The user operability of Gazebo is relatively poor. It can be difficult to install, and has a
high threshold for users [17]. Built-in models are accessed online instead of locally, resulting
in longer loading times or failure to load when the internet is unstable. Moreover, the built-
in models are not well classified, making it difficult for users to locate the desired models
quickly. Developers cannot edit models using this platform; they need to use 3D modeling
software (such as Blender, SketchUp) and learn an XML-based SDF specification [52].
However, Gazebo can support for mainstream open-source flight control systems, such
as PX4 and ArduPilot, which are widely used on real UAVs, has attracted researchers to
evaluate the performance and reliability of UAV control algorithms, such as UAVs swarm
validation and visual target tracking [53,54].

In short, the advantage of Gazebo is its close connection with the ROS, which maxi-
mizes the use of advantages of ROS. Additionally, its built-in models are accessible online,



Robotics 2023, 12, 53 5 of 24

providing developers with unrestricted access. However, the downside is that poor net-
work connectivity can make it difficult for developers to connect to the server and load
the models.

2.3. CoppeliaSim

CoppeliaSim is a powerful simulation platform for robots, formerly known as V-
rep [26]. It supports ODE, Bullet, Vortex, and Newton physics engines, allowing for the
simulation of dynamic scenarios such as collisions, rolling, gravity, and other physical
factors [55,56]. Other than that, this platform is able to simulate dynamic particles such
as jet engines, water jets, and propellers [57]. Its distributed architecture allows for scene
object association or an unlimited number of scripts [58], and it supports applications
or algorithms developed using C, C++, Python, Java, LUA, Matlab, or Octave. The con-
ventional API is written in C or LUA. CoppeliaSim is highly portable, performs well on
Windows, Mac OS, and Linux systems, and has kinematics solver and data visualization
functions [56,59].

CoppeliaSim offers a variety of built-in agent models, such as biped, wheeled, bionic,
flying, hexapod, and others. The user-friendly interface (Figure 3) allows developers to
easily select appropriate models. Additionally, the platform supports importing models
in mainstream formats such as URDF, COLLADA, DXF, OBJ, STL, and glTF. There are
six options for developing applications or algorithms, including embedded script, plugin,
add-on, ROS node, remote API, and node talking TCP/IP. CoppeliaSim also provides
various sensors for detecting distances, visuals, and pressures. Each type of sensor has
different variants; for instance, proximity sensor includes ray-type, randomized ray-type,
pyramid-type, cylinder-type, disk-type, and cone-type; vision sensors are divided into
orthogonal projection-type and perspective projection-type [60,61]. These sensors can meet
the needs of most developers. Furthermore, this platform has rich development resources
such as a large number of tutorials, API documents for developers, and an official forum. It
is still frequently updated and released, making it a great tool for developers working with
robotics simulations.

Figure 3. The main interface and a simulation example of CoppeliaSim.

To put it simply, this platform offers a rich selection of built-in models that can fulfill
most simulation requirements. It also provides various UAV models, including multi-copter
UAVs, with high realism and flexibility, enabling users to simulate different UAV behaviors
and motion modes. To enhance UAV behavior simulation, CoppeliaSim allows users to
incorporate different sensors such as cameras, LIDAR, GPS, and inertial navigation systems
that provide perception and navigation capabilities to help UAVs perform tasks better. With



Robotics 2023, 12, 53 6 of 24

the powerful physics engine, users can simulate various physical effects and model UAV
behavior more realistically. In simulations of UAVs swarm, communication and coordina-
tion between UAVs are crucial. This platform enables users to set communication protocols
and frequencies between UAVs, simulating information exchange and collaborative actions.
On the basis of network simulation, researchers can better understand and study UAVs
swarm behavior. Many researchers currently use this platform to simulate and verify UAVs
swarm algorithms such as entrapping multiple targets [62], formation control [63], and
collaborative transportation [64]. However, due to the high accuracy and precision of the
built-in models, they may not be suitable for simulating large numbers of swarms [23].

2.4. ARGoS

ARGoS is a simulation platform developed by the European Union as part of the
Swarmanoid project. It is designed to support large-scale robot simulations, and provides a
flexible and modular architecture that enables researchers to experiment with a wide range
of algorithms and scenarios. ARGoS integrates several engines, including ODE-based
3D dynamics engine, 3D particle engine, Chipmunk-based 2D dynamics engine, and 2D
dynamics engine [27]. It also comes with a built-in LUA script editor that allows researchers
to easily create and modify simulation scenarios. While ARGoS lacks a scene editor, its
modular architecture and built-in scripting capabilities enable researchers to customize and
manipulate the simulation environment through custom scripts. The platform supports
Ubuntu/Kubuntu, OpenSuse, and Mac OS, but does not currently support Windows [65].
Figure 4 illustrates the main interface of this platform and a simulation example based on it.

Figure 4. The main interface and a simulation example of by ARGoS.

The most significant feature of ARGoS is its ability to divide the simulation space
into independent subspaces, and each is controlled by a separate physics engine. This
enables concurrent execution of multiple simulations, resulting in significant reductions in
processing time [27]. Additionally, the platform has a multi-threaded structure that includes
master and slave threads. The master thread assigns the task of updating a single plug-in,
such as a sensor, actuator, or physics engine, to the slave thread, which effectively employs
multi-core processors to significantly improve computing performance, particularly for



Robotics 2023, 12, 53 7 of 24

multi-robot or swarm simulations. ARGoS can support the simulation of thousands of
robots simultaneously, saving 40% of time compared to the two-dimensional dynamic
verification of 10,000 robots [27].

The robot library comprised ARGoS relatively limited and includes only a few simple
models such as e-puck, eye-bot, Kilobot, marXbot, and spiri robots. These robots can be
programmed using LUA script or C++, but mesh importing is not supported, and the
object representation is encoded with OpenGL [66]. While ARGoS does provide an official
technical support forum and manuals for developers, the update frequency is not very
high, and the development tutorial resources are not extensive.

In summary, ARGoS is a powerful simulation platform that is particularly well-suited
for simulating robot swarms, especially when large numbers of robot models need to be
generated and involved. It has been widely adopted for simulating swarm foraging robots
due to its ability to simulate large-scale swarms of robots quickly [67]. This feature is
also applicable to simulating UAVs swarms, where ARGoS is better suited for simulating
large-scale swarms of UAVs compared to high-precision simulation of individual UAVs.
However, ARGoS still has room for improvement. Its robot library needs to be enriched,
and its poor cross-platform performance cannot be ignored. Additionally, 3D mesh models
are currently not supported, which limits its use in certain applications. Despite these
limitations, nonetheless, ARGoS remains a valuable tool for researchers in swarm robotics
and related fields.

2.5. MRDS

The full name of MRDS is Microsoft Robotics Developer Studio, which is a 3D robot
simulation platform designed and developed by Microsoft [28]. Figure 5 shows an outdoor
scene simulated by MRDS. In addition to CPU, MRDS can also leverage other independent
floating-point processors such as GPU and PPU for computation, making it capable of
completing intensive computing-based simulations [68]. The platform is based on Physx
Engine, which is commonly used on various simulation platforms for modeling rigid
bodies and liquids [35,69,70].

MRDS can only be used on the Windows operating system, and the applications or
algorithms for MRDS can be developed by VPL, C#, Visual Basic, Jscript, or Python [41].
Although MRDS is not an open-source platform, it can be used free of charge for non-
commercial purposes. It uses decentralized software services (DSS) and concurrency
and coordination runtime (CRR) to improve the performance of multi-line programming
capabilities and to reuse the multi-core capabilities of processors [71]. This means that each
service component can operate independently without synchronizing, allowing visual and
acoustic services to be delivered independently without interruption. Even if one of the
sensors fails, other functions will continue to operate normally. Unfortunately, this platform
only provides limited robot models, such as iRobot, Lego NXT, and MobileRobotics, and it
cannot support path planning [72]. The tutorials and development resources for MRDS are
also very limited. Furthermore, the platform has not been updated for a long time, and its
maintenance is becoming more and more difficult.

To be brief, the Physx Engine integrated into MRDS provides significant advantages
to this platform, particularly in simulating harsh environments, such as sand. Additionally,
the decentralized framework enhances its robustness and fault tolerance; even if one sensor
fails, other robot functions can continue to operate normally. Users can leverage the Visual
Simulation Environment (VSE) tool in MRDS to create and modify UAV models to suit their
needs. Within VSE, users can design and adjust the physical entities, sensors, behaviors,
and more of the UAV before controlling them with MRDS services. However, the platform
has shortcomings such as limited built-in models, variable cross-platform performance,
and maintenance challenges.



Robotics 2023, 12, 53 8 of 24

Figure 5. An outdoor scene simulated by MRDS.

2.6. MORSE

MORSE (Modular Open Robots Simulation Engine) is a simulation platform devel-
oped based on Blender engine [21], which offers a realistic graphics environment that can
be used for testing and evaluating robots without any further modifications in real-life
scenarios [73]. The simulation engine utilizes the Bullet library to define physical properties
such as object shapes, mass, friction, boundary collision, and other physical factors. This
platform provides three types of robot components, namely, sensors, actuators, and robots.
Robots carry two components: sensors and actuators. The former is used for data collection,
while the latter is responsible for executing instructions. In addition, there are three compo-
nents related to environment interaction, including scenes, middlewares, and modifiers.
Scenes are simulated environments such as buildings, indoor environments, and jungles.
Middlewares are responsible for binding sensors and actuators. As the data generated by
sensors in simulation do not contain any noise, the modifier is used to simulate the noise
data to achieve an effect that is much closer to the real environment.

MORSE can be deployed on Linux, Windows, and Mac OS, but with a better support
for Linux. This platform generates simulation scenes using a set of Python classes called
Builder API, which provides a special internal language called domain-specific language
(DSL) [74]. This allows developers to use Python to configure MORSE, even if they are not
familiar with Blender. The built-in models contain agents such as iRobot ATRV unmanned
ground vehicle (UGV) and Yamaha RMAX UAV, which can be enriched by importing
Collada, DXF, 3DS Max, VRML, and other formats. MORSE also has built-in sensors such as
cameras, gyroscopes, GPS, accelerometers, thermometers, and lasers [73], making it suitable
for simulating realistic graphics. MORSE has unique advantages in human-computer
interaction and UAVs attitude simulation. It provides UAV models such as multi-copter
UAV in the model library. Users can define parameters such as the number of UAVs, their
positions, sensors, controllers, etc. by editing Python scripts. The platform also provides a
variety of simulation scenarios, such as the outdoor (environment), which meets the needs
of UAV simulation, and users can also model the environment based on it. Researchers use
MORSE to simulate UAVs, such as multi-UAV communication [75] and path planning [76,77].
The simulation of an UAVs swarm using MORSE is shown in Figure 6.



Robotics 2023, 12, 53 9 of 24

Figure 6. An UAVs swarm simulated by MORSE.

Unfortunately, the lack of updates since 2016 and limited community resources and
development tutorials make it challenging for developers to use MORSE effectively. Fur-
thermore, the absence of a graphical user interface and the requirement for developers to
be familiar with command line tools and the Blender engine can be a barrier to entry for
beginners. Additionally, MORSE lacks built-in algorithms such as path planning, which
can make it challenging for developers to use it for more complex projects. Overall, while
MORSE is not a good choice for entry-level developers due to its technical requirements
and limited support resources.

2.7. USARSim

USARSim is a simulation platform developed by the National Institute of Standards
and Technology in the USA for researching rescue robots and intelligence agents [29]. The
platform is based on the Unreal Engine 2.0 developed by Epic Games [78], which provides
high-quality 3D rendering capabilities using the PhysX physics engine. Applications and
algorithms can be developed using C, C++, Java [41], or the built-in Unreal Script language.
Control codes are developed using the GameBot interface, which is a communication
interface exclusive to the phantom engine. USARSim is compatible with Windows, Linux,
and Mac OS. An example of USARSim simulating UAVs can be seen in Figure 7.

The Mobility Open Architecture Simulation and Tools (MOAST) framework of US-
ARSim offers a range of hierarchical and modular controllers, interfaces, and tools that
provide motion generation, world modeling, and sensor information processing [79]. In
addition, USARSim includes two controllers, Pyro and Player [80]. Pyro is a controller for
AI exploration and robot development, which includes Python libraries, environments, a
GUI, and drivers. Player is a robot service that can control the robot and sensors, such as
touch sensors, lasers, and acoustics, in the simulation environment. Users can easily and
fully control the controller and actuator carried by a robot using Player.

USARSim supports eight types of ground robots, including P2AT, P2DX, ATRV-Jr,
Zerg, Tarantula, Talon, Telemax, and Soryu; four types of vehicles, namely, Hummer, Sedan,
SnowStorm, and Cooper; two bipedal robots, QRIO and ERS, a helicopter, and a submarine.
As USARSim is developed by using Unreal Engine 2.0, it has high-quality 3D capabilities.
Furthermore, it supports multiple types of UAVs, including multi-copter UAV, as well
as different sensors and controllers. It provides predefined scenarios such as buildings,
earthquake zones, and tunnels, while also allowing users to create custom scenarios.
Users can write their algorithms to control the UAV. Although USARSim was primarily
designed for search and rescue missions, it has also been used by many researchers for
UAV simulation, such as obstacle avoidance and navigation [81,82]. However, the robot



Robotics 2023, 12, 53 10 of 24

library is limited, and similar to MRDS, this platform has not been updated or maintained,
resulting in poor support for new types of robots and sensors. While there are some official
communities and manuals, community activity is weak, and tutorials are inadequate [21].

Figure 7. Simulation of UAVs by USARSim.

3. Selection of Simulation Platforms for Multi-Copter UAVs Swarm

This section provides an example of selecting a suitable simulation platform for the
development of multi-copter UAVs swarm. Firstly, a general list of seven platforms is
presented from the aspects of programming language, operating system (OS), physical
engine, and sensors (Table 1). Then, the requirements for multi-copter UAVs swarm
simulation are further refined into eight items. After comparing the eight items of the
seven platforms, it is concluded that Webots is the comprehensive optimal choice for the
simulation of multi-copter UAVs swarm.

3.1. The Requirements of Multi-Copter UAVs Swarm Simulation

Nowadays, UAVs swarm technology has been investigated in various applications,
such as capture [83], target searching [84], cooperative operation [85], path planning [86],
formation control [87], and artificial intelligence algorithms [88]. Having them in mind,
and considering UAVs are not always work in outdoors, a simulation platform should be
able to simulate other environments/scenarios, such as indoor, pipeline, forest, jungle, and
canyon. Moreover, a simulation platform should have a good performance on computation
when conducting simulations of multi-robot or swarm. Other than that, a platform should
support applications developed by multiple programming languages, have rich built-in
models, be compatible with multiple OS, have rich learning resources or technical support,
and be user-friendly. To specify the requirements, we refer to previous surveys and
summarize the following concerns [89,90].

• Multi-sensors. It can simulate the general sensors, such as GPS, radar, camera, sonar,
and inertial measurement unit (IMU).

• Built-in models. It should have commonly used built-in agents/robots, e.g., UAVs,
pedestrians, humanoid robots, unmanned underwater vehicles (UUV).

• Realism of the simulated environment. It can simulated both outdoor and non-
outdoor environments/scenarios, such as indoor, jungle, and pipeline. Moreover, the
simulation results should be as close as possible to the real environment. Meanwhile,
the simulated data can be directly applied to real UAVs.

• Computation performance and accuracy. It can make full use of the existing computing
resources to support a large number of UAVs swarm and a wide range of scenarios.
The simulation accuracy meets certain requirements.



Robotics 2023, 12, 53 11 of 24

• Multiple programming languages and OS. It can support a variety of mainstream
programming languages. Further, the developments can be directly transplanted to
real machines.

• Usability. It has rich documents, technical support, and friendly interfaces. More
importantly, it is easy to be reused (e.g., reuse the developed codes).

• Stability and maintenance. It is still being updated and maintained by developers
or communities.

• Have commonly used functions or applications. It can support or has built-in com-
monly used applications, such as path planning, artificial intelligence algorithm, etc.

Table 1. Main characteristics of the seven simulation platforms.

Programming
Languages OS Physics Engines Main Sensors Access Addresses (accessed on 28

March 2023)

Webots [91] C, C++, Java,
Python, MATLAB

Windows, Linux,
MAC OS ODE

Accelerometer, altimeter, compass,
GPS, gyroscope, distance sensor,
inertial unit, position sensor,
receiver, touch sensor, camera,
LIDAR, radar, rangefinder

https://cyberbotics.com

Gazebo [92] C, C++, Python Mac OS, Linux,
Windows

ODE, Bullet, Simbody,
DART

Laser sensor, camera, inertial
measurement, contact sensor, force
sensor, torque sensor

https://gazebosim.org/home

CoppeliaSim
[93]

C, C++, Python,
Java, LUA,
Matlab, Octave

Windows, Mac
OS, Linux

ODE, Bullet, Vortex,
Newton

Proximity sensors, Force sensors,
Vision sensors, Cameras https://www.coppeliarobotics.com

ARGoS [23] Lua, C++

Ubuntu,
KUbuntu,
OpenSuse,
Mac OS

ODE, 3D particle
engine, 2D-dynamics
open-source physics
engine library
Chipmunk,
2D-kinematics engine

https://www.argos-sim.info

MRDS [94]
VPL, C#, Visual
Basic, JavaScript,
Iron-Python

Windows PhysX engine

Analog sensor, Analog sensor, Array,
GPS, Contact sensors, Depth
Camera, Encoder, Sonar, WebCam,
SICK Laser Range Finder

https://learn.microsoft.com/en-us/
previous-versions/microsoft-roboti
cs/bb648760(v=msdn.10)

MORSE [95] Python Linux, Windows,
Mac OS Blender engine, Bullet

Accelerometer, Airspeed, Armature
Pose sensor, Barometer, Attitude
sensor, Collision, Battery sensor,
Depth camera, Generic Camera,
GPS, Gyroscope, Infrared Proximity
sensor, Laser Scanner Sensors,
Magnetometer, Odometry, Inertial
measurement unit, Radar Altimeter,
Thermometer sensor, Proximity
Sensor, Velocity

https://www.openrobots.org/mor
se/doc/stable/morse.html

USARSim
[96] C, C++, Java Windows, Linux,

Mac OS Unreal engine

State Sensor, Range sensor, Range
Scanner sensor, Odometry sensor,
GPS, INS, Encoder sensor, Touch
Sensor, RFID, Sound sensor,
Human-motion sensor, Robot
Camera, Omnidirectional Camera

https:
//sourceforge.net/projects/usarsim

3.2. Comparisons of the Seven Platforms
3.2.1. Multi-Sensors

A UAV typically consists of three key components: the main flight controller, IMU,
and navigation unit. The main flight controller is responsible for receiving and processing
signals from the ground control station, then outputting the corresponding PWM signals to
control the motors to execute specific actions. The IMU, which includes sensors such as
barometers, accelerometers, gyroscopes, and compasses, receives and measures the attitude
data of UAV. Finally, a navigation unit such as the global navigation satellite system (GNSS)
is typically carried to provide accurate positioning and navigation information for the UAV.

Some previous studies have investigated the types of sensors required for UAVs [22].
Based on the sensors commonly equipped on UAVs and previous surveys, we consider
the following five types of sensors to be important for UAVs swarm: GNSS, radar, camera,
sonar, and IMU (Table 2). In the table, ‘Yes’ or ‘No’ indicates whether the sensor is supported

https://cyberbotics.com
https://gazebosim.org/home
https://www.coppeliarobotics.com
https://www.argos-sim.info
https://learn.microsoft.com/en-us/previous-versions/microsoft-robotics/bb648760(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/microsoft-robotics/bb648760(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/microsoft-robotics/bb648760(v=msdn.10)
https://www.openrobots.org/morse/doc/stable/morse.html
https://www.openrobots.org/morse/doc/stable/morse.html
https://sourceforge.net/projects/usarsim
https://sourceforge.net/projects/usarsim


Robotics 2023, 12, 53 12 of 24

or not by a particular platform, while ‘NaN’ indicates that there is no information available
regarding support for that sensor. We also propose a ’Score’ column to evaluate the level of
support for multiple sensors, with a higher score being awarded for platforms that support
more sensors. In this scoring system, a ‘+’ symbol adds one point to the score, while a ‘−’
symbol represents a score of zero. The meaning of the symbols in the following sections is
the same.

Table 2. Multi-sensors in the seven simulation platforms.

Platforms GNSS Radar Camera Sonar IMU Score

Webots Yes Yes Yes Yes Yes ++
Gazebo Yes Yes Yes Yes Yes ++

CoppeliaSim Yes Yes Yes Yes Yes ++
ARGoS NaN NaN NaN NaN NaN −
MRDS Yes NaN NaN Yes NaN +

MORSE Yes Yes Yes No No +
USARSim Yes No NaN NaN NaN −

3.2.2. Various Types of Built-in Models

In general, UAVs are designed to fly in outdoor environments, but they may also
need to operate in non-outdoor environments, such as indoor areas [97], jungles [98], and
pipelines [99]. One notable feature of non-outdoor environments is that GNSS signals may
be weak or even unavailable, which means that UAVs cannot rely on GNSS for positioning
and navigation. In simulations, the main difference between outdoor and non-outdoor
environments is whether the UAV carries GNSS sensors. If a GNSS sensor is loaded, the
simulated environment can be regarded as outdoor; otherwise, it is considered non-outdoor.
In addition to the environment type, the shapes of terrain and obstacles are also different
between outdoor and non-outdoor scenarios. For instance, in indoor scenes, developers can
create different shapes of obstacles without considering their appearance, color, material,
and other information. However, if cameras on UAVs are used to detect the surroundings,
developers need to add textures to the obstacles to make the model closer to the real
world. Thus, simulation platforms need to support textured scenarios. Other than the
environments, a simulation platform should also have general built-in agents/robots, such
as UAVs, pedestrians, and humanoid robots.

In short, the ability of a simulation platform to simulate different environments de-
pends on its built-in models. Moreover, the simplicity of the platform’s modeling method
determines the threshold of development and the efficiency of modeling. One of the easiest
ways is to provide a user-friendly interface that allows developers to directly drag and
drop models into the simulation environment [52]. The comparison of different platforms
on the built-in models and ease of the modeling process is shown in Table 3.

Table 3. Richness of built-in models and ease of modeling process.

Platforms Richness of Built-in
Models

Ease of Modeling
Process Score

Webots Good Good ++
Gazebo Medium Medium +

CoppeliaSim Good Good ++
ARGoS Poor Medium −
MRDS Poor Medium −

MORSE Good Poor +
USARSim Poor Medium −

3.2.3. Realism of Simulated Environment

The realism of the simulated environment is another critical aspect of simulation
platforms because real-world environments involve physical factors such as air density,



Robotics 2023, 12, 53 13 of 24

wind speed, gravity, friction, and more [100]. Thus, physical engines are developed, and
their richness determines the realism of simulated environments.

To evaluate the ability of platforms to create realistic simulations, we investigate
the physical engines used by each platform. The most widely used physical engines
in simulation platforms are ODE, Bullet, PhysX, Unreal, and Blender. While ODE may
not be as good as Bullet and PhysX in simulating collisions, it has better constraint and
stacking stability. ODE also does not simulate friction as well as Bullet, but it is slightly
better than PhysX in this aspect [101]. PhysX engine is excellent at collision detection and
stacking stability, but it falls short in simulating friction. Although the Blender engine
is not designed for simulation platforms, it can achieve advanced graphical details [73].
ODE has good documentation support and a stable API, but Bullet does not, and its API
often changes [102]. Because there is no clear distinction between the advantages and
disadvantages of each engine, and all seven platforms have their own physical engines, we
consider all platforms to have the same score.

3.2.4. Computation Performance and Accuracy

The computational performance of simulation platforms is one of the major concerns
for developers, especially when it comes to swarm simulations. Among the seven platforms,
ARGoS is more suitable for simulating swarms compared to Gazebo and CoppeliaSim.
CoppeliaSim is known to consume the most computing resources [23], while MORSE is
more efficient than Gazebo for large-scale robot environment simulations [103]. In the
comparison of the average CPU efficiency load among Webots, Gazebo, CoppeliaSim,
and MORSE, Webots was found to be the best performing simulation platform. On the
other hand, Gazebo has the lowest CPU efficiency, while the performance of MORSE and
CoppeliaSim is similar [104]. However, it is worth noting that if Webots, USARSim, or
Gazebo is used to simulate more than a dozen robots, it may become slower than on a
physical robot [27].

When it comes to accuracy, taking the IMU simulation as an example, CoppeliaSim
has the smallest error, followed by Gazebo, and MORSE has the worst performance. As
stated on their official website, the authors do not consider MORSE as a physically accurate
simulator [105]. Webots is similar to CoppeliaSim in terms of IMU angular velocity accuracy,
but it lags behind in IMU linear acceleration accuracy [104]. While the Unreal engine of
USARSim offers better image quality, its physical simulation performance is not good,
making it unsuitable for accurate physical simulation [79,106]. The accuracy of MRDS in
purely longitudinal motion and trajectory tracking simulations is not as good as the ODE
engine [107]. For accurate physical simulation, it is recommended to use the ODE engine
simulator rather than MRDS. While ARGoS offers the best computational performance, its
simple model makes it difficult to use for high-precision simulation experiments. Table 4
shows the scores for the computational performance and accuracy of the seven platforms.

Table 4. The performance and accuracy of the seven platforms.

Platforms Computation
Performance Accuracy Score

Webots Good Good +++
Gazebo Poor Good +

CoppeliaSim Medium Good ++
ARGoS Good Poor +
MRDS Poor Medium −

MORSE Medium Medium +
USARSim Medium Medium +

3.2.5. Multiple Programming Languages and OS

One of the most significant considerations for developers when choosing a simulation
platform is its ability to support multiple programming languages. If programming lan-



Robotics 2023, 12, 53 14 of 24

guage in the simulation platform does not match that of real robots, developers will have
to translate it, which can increase their workload. For instance, Python is widely used in
deep learning (DL) and machine learning (ML) applications [108]. Therefore, developers
proficient in Python who want to simulate DL and ML algorithms or applications are likely
to avoid choosing a platform that does not support Python. Additionally, a simulation
platform that supports multiple mainstream programming languages can facilitate the
process of transplanting simulated results to real machines, making it an attractive option
for developers.

In addition, different developers prefer to or are familiar with different OS, and
transferring knowledge from one type of OS to another can be time-consuming. Thus, the
type of OS supported by a simulation platform also affects the preferences of developers,
since programming languages are usually matched or associated with OS. We make scores
on the two aspects together (Table 5).

Table 5. Comparison of multiple programming languages and cross-platform of the seven platforms.

Platforms
Multiple

Programming
Languages

Cross-Platform Score

Webots Good Good ++
Gazebo Good Good ++

CoppeliaSim Good Good ++
ARGoS Poor Poor −
MRDS Good Poor +

MORSE Poor Good +
USARSim Medium Good +

3.2.6. Usability

The usability of simulation platforms is determined not only by their features but also
by technical support factors such as official manuals, user guides, open-source projects,
maintenance, and update frequency. Developers need to become familiar with the interface
and framework of platforms before using, making these resources critical. Simulation
platforms with active technical communities and development projects tend to be more
popular among developers [90]. When facing complex technical issues, developers require
adequate technical support to quickly solve problems. Table 6 displays the scores of
technical supports and communities.

Table 6. Scores of technical supports and communities.

Platforms Official Manual Technical Supports/
Communities Score

Webots Yes Good +
Gazebo Yes Good +

CoppeliaSim Yes Good +
ARGoS Yes Medium −
MRDS Yes Medium −

MORSE Yes Medium −
USARSim Yes Medium −

3.2.7. Stability and Maintenance

The ongoing updating and maintenance of a simulation platform is crucial because
new versions are typically developed to address bugs and stability issues in older versions.
In the update log of CoppeliaSim, for example, each new version fixes previous errors
and instabilities [109]. Continuous maintenance can improve the stability of simulation
platforms, which further helps to ensure reliable simulation processes.



Robotics 2023, 12, 53 15 of 24

In addition, robots are constantly being updated and replaced with newer models,
which makes it crucial for simulation platforms to keep pace with these changes. If
a simulation platform is rarely updated or has stopped receiving maintenance, it will
eventually become unstable and fall behind in terms of compatibility with new robot
models. This means that its simulation results cannot be used to test and evaluate new
robots effectively. Table 7 lists the maintenance and update status of seven simulation
platforms. It should be added that although the three platforms (MRDS, MORSE, and
USARSim) are no longer being updated, many researchers continue to use them [110–112],
which is why we still consider them in this survey.

Table 7. The stability and maintenance of the seven platforms.

Platforms Still Being Updated Year of the Last
Updating Score

Webots Yes 2022 [113] +
Gazebo Yes 2020 [114] +

CoppeliaSim Yes 2022 [109] +
ARGoS Yes 2022 [115] +
MRDS No 2014 [108] −

MORSE No 2016 [116] −
USARSim No 2013 −

3.2.8. Have Commonly Used Functions and Applications

Last but not least, the availability of commonly used functions and applications in
a simulation platform is another crucial factor for developers to consider, because they
want to focus their efforts on the specific issues they need to address rather than on a
platform itself. For example, ROS is widely used in robot development, as it provides
developers with access to many basic robot functions. Specifically, ROS can improve code
utilization and enable developers to make the best use of their code [117]. This simplifies the
development process by allowing developers to focus on the application layer. Therefore,
the ability of a simulation platform to support ROS is an important criterion to consider
when selecting a platform.

In addition, in recent years, as artificial intelligence (AI) algorithms such as reinforce-
ment learning and deep learning have advanced, developers have begun to consider whether
a simulation platform can support these algorithms as a critical factor in their selection
criteria. Therefore, the ability of a simulation platform to support commonly used functions
and applications is reflected in its support for ROS and AI algorithms (see Table 8).

Table 8. Support of ROS and AI algorithms.

Platforms ROS and AI
Algorithms Reference Score

Webots Yes [22] +
Gazebo Yes [23] +

CoppeliaSim Yes [23] +
ARGoS Yes [118] +
MRDS No − −

MORSE Yes [73] +
USARSim Yes [119] +

3.3. A Case Study of Multi-Copter UAVs Swarm Based on Webots

Table 9 provides an overall comparison of the seven simulation platforms. Based on
the scores, Webots is highly recommended for simulating multi-copter UAVs swarm. This
platform offers a range of built-in sensors for UAVs, including accelerometers, compasses,
GPS, gyroscopes, inertial sensors, cameras, LIDARs, and altimeters. Since it has built-in DJI
Mavic Pro model, developers can easily obtain data on motor speed, gyroscope readings,



Robotics 2023, 12, 53 16 of 24

GPS coordinates, and other relevant information via the interface. The parameters of
the built-in models are fully aligned with the physical models, making it easy to transfer
simulated data to a physical UAV and ensuring the reliability of the simulation results.

Table 9. Overall comparisons of the seven simulation platforms.

Platforms Multi-
Sensors

Built-in
Model
Library

Physics
Engine

Computation
Performances
and Accuracy

Programming
Language

Cross-
Platform Usability Being

Updated
ROS and AI
Algorithms

Overall
Scores

Webots ++ ++ + +++ + + + + + 13
Gazebo ++ + + + + + + + + 10

CoppeliaSim ++ ++ + ++ + + + + + 12
ARGoS − − + + − − − + + 4
MRDS + − + − + − − − − 3

MORSE + + + + - + − − + 6
USARSim − − + + + + − − + 5

The case study here is to simulate a swarm with three UAVs (DJI Mavic 2 Pro) in an
urban environment. The whole process includes six steps:

1. Create project and world files. To create a new simulation environment, start by
clicking on “Wizards” in the top menu bar and selecting ‘New Project Directory’.
Then, enter the name of the project and choose a storage location. Once done, click on
‘File’ and select ‘New World’ to begin setting up the simulation.

2. Designing the simulation environment. We firstly created an urban environment.
To do this, navigate to the ‘Scene Tree’ and click on ‘Add New’. From there, select
‘PROTO nodes (Webots Projects)’ > ‘floors’ > ‘Floor(solid)’ to import the ground
node. Adjust the ‘size’ parameter in the node to modify the size of the ground,
and reset the material by clicking on ‘appearance’. Delete the original material and
select the ground material from ‘PROTO nodes (Webots Projects)’ > ‘appearances’ >
‘Soil(PBRAppearance)’. Then, add obstacles including buildings, roads, and traffic
by selecting ‘PROTO nodes (Webots Projects)’ > ‘objects’. To add a UAV, navigate to
‘rbots’ > ‘dji’ > ‘mavic’ > ‘Mavic2Pro(Robot)’ and add it to the simulation. Give it a
name like ‘leader’. We also can add other vehicles and humans by selecting ‘vehicles’
and ‘humans’, respectively. The designed urban environment can be seen in Figure 8.

Figure 8. The urban environment designed by Webots.

3. Set UAV models. Continuing from the previous step, we created two additional
‘Mavic2Pro’ models identical to the first one, and named them as ‘follower’. After that,



Robotics 2023, 12, 53 17 of 24

we selected the ‘leader’ UAV node and right-click on ‘bodySlot’ > ‘Add New’ > ‘Base
node’ > ‘Emitter’ to add a communication transmitter. Then, we selected ‘Receiver’ as
the communication receiver on the ‘follower’ UAVs. We also set the communication
distance, noise, channels, and any other parameters required for communication
between the UAVs.

4. Set up controllers. Click on the ‘Wizards’ option in the top menu bar and select
‘New Robots Controller’. Choose the Python programming language as the controller
language. Name the first controller as ‘leader control’, and similarly create the second
controller called ‘follower control’. Write the control algorithm code, which includes
UAV motion control, communication, sensor definition, and other necessary functions.

5. Set simulation parameters and start the simulation. In the ‘Scene Tree’, navigate to
‘WorldInfo’ and set the simulation parameters such as ‘basicTimeStep’ and ‘FPS’. We
set the ’basicTimeStep’ to 64 and ’FPS’ to 60. After saving the project, click on the
‘Run the simulation in real-time’ button located at the top of the interface to start
the simulation. Once the simulation starts, we can see the UAVs swarm moving in
the environment Figure 9. These UAVs can take off, land, and move forward and
backward simultaneously.

6. Debug the simulation and show results. Based on the simulation results, we can mod-
ify the controller code and the simulation environment. This may involve tweaking
the parameters or algorithms used in the controller code, changing the obstacles or
adding new elements to the environment. Use the ’Show Robot Window’ feature to
observe the sensor parameters of the UAV during the simulation. This allows us to
gather data on the performance of the UAV in the environment. We can observe sensor
parameters such as GPS, Gyro, InertialUnit, etc. Analyze the sensor data obtained
during the simulation to refine the control algorithm and improve the performance
of UAVs. Use the GPS data obtained during the simulation to analyze the UAV’s
movement and improve its navigation capabilities. We visualized the GPS data and
plotted it to gain insights into the UAV’s movement patterns (Figure 10).

Figure 9. Multi-copter UAVs swarm simulated by Webots.



Robotics 2023, 12, 53 18 of 24

Figure 10. GPS simulation data in Webots.

3.4. Discussion

The above example shows how to make UAVs swarm simulations based on Webots.
In addition to the Mavic2Pro UAV models, developers can import new (custom) models
using VRML files. Developers can also add other sensors to their UAV models and develop
their own controllers to achieve specific goals.

Other than the Webots, there are two suboptimal platforms for this case: ARGoS and
MORSE. As mentioned in Section 2.4, ARGoS has significant advantages in simulating
swarms with a large number of robots. If primary concern of a developer is simulating a
large swarm, then ARGoS is a suitable choice. However, it should be noted that ARGoS has
some drawbacks, including poor built-in models and sensors, limited technical support,
and fewer available models compared to Webots. If a user does not require a large-scale
simulation but needs high-precision simulation, it is not recommended to use the ARGoS.
In such cases, Webots or CoppeliaSim will be a better choice as they offer more robust
modeling and simulation capabilities.

MORSE provides many built-in sensors for UAVs, including accelerometer, flight
speed sensor, an attitude sensor, barometer, magnetometer, IMU, odometer, and radar.
It also contains a cloud platform unit, quad-rotator dynamic controller, rotator attitude
motion controller, and rotator speed motion controller. In the simulation, UAVs have
detailed representations instead of particle-like models used in some other platforms.
However, one of the main disadvantages of MORSE is that it only supports Python and
has limited technical resources. Additionally, it lacks graphical interfaces, which requires
developers to have a good understanding of command-line interfaces and the Blender
engine, increasing the learning curve for beginners. Moreover, MORSE is no longer being
updated or maintained, which makes it less recommended for developers who want to
build a long-term project. Therefore, we recommend developers to carefully consider their
specific requirements before choosing a simulation platform, as each platform has its own
strengths and weaknesses.



Robotics 2023, 12, 53 19 of 24

4. Conclusions

This paper provides a comprehensive review of seven open-source simulation plat-
forms commonly used for simulating multi-copter UAV swarms, including Webots, Gazebo,
CoppeliaSim, ARGoS, MRDS, MORSE, and USARSim. After reviewing the basic features
of them, we presented the requirements of multi-copter UAVs swarm simulation, and
then conducted a detailed analysis, proposed our own evaluation criteria, and finally com-
pared of each platform from eight aspects: (i) multi-sensors; (ii) various types of built-in
model libraries; (iii) realism of the simulated environments; (iv) computation performance
and accuracy; (v) multiple programming languages and OS; (vi) usability; (vii) stability
and maintenance; and (viii) commonly used functions or applications. Such a survey
provides scientific researchers, developers, and users with a reference when choosing
a simulation platform. Based on our evaluation, we conclude that Webots is the most
suitable platform for simulating multi-copter UAV swarms, and we provide specific steps
and simulation results to validate the effectiveness of the swarm control algorithm in an
urban environment.

This research is of great value to researchers, developers, educators, and engineers
who are seeking appropriate simulation platforms for their application developments, not
only for multi-copter UAV swarms but also for other types of robots. Proper platforms can
help them save expenses on testing and speed up the development progress. However,
it should be noted that there have been few recent review papers on this topic, so some
of the literature cited in this paper may be outdated, and some simulation platforms are
updated frequently, which may lead to some discrepancies between our research and the
current state of the platforms. Therefore, developers should follow the latest versions of
the platforms to ensure their research and applications are up to date.

Author Contributions: Concept and methodology, J.Y., Z.C. and B.M.; formal analysis, Z.C. and J.Y.;
investigation, Z.C., J.Y. and B.M.; resources, J.Y.; writing–original draft preparation, Z.C. and J.Y.;
writing–review and editing, J.Y., Q.Y. and W.Y.; visualization, Z.C. and K.S.; supervision, J.Y.; project
administration, J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: The financial support for this work comes from the Fundamental Research Funds for the
Central Universities (3072022FSC0401), Research on 3D path planning for low-speed miniature UAV
swarms (KY00220023/005).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tice, B.P. Unmanned aerial vehicles: The force multiplier of the 1990s. Airpower J. 1991, 5, 41–55.
2. Zhou, X.; Zhang, X. Individual tree parameters estimation for plantation forests based on UAV oblique photography. IEEE Access

2020, 8, 96184–96198. [CrossRef]
3. Panda, K.G.; Das, S.; Sen, D.; Arif, W. Design and deployment of UAV-aided post-disaster emergency network. IEEE Access 2019,

7, 102985–102999. [CrossRef]
4. Chen, Y.; Chen, M.; Chen, Z.; Cheng, L.; Yang, Y.; Li, H. Delivery path planning of heterogeneous robot system under road

network constraints. Comput. Electr. Eng. 2021, 92, 107197. [CrossRef]
5. Wu, J.; Wang, H.; Zhang, M. Urban crowd surveillance in an emergency using unmanned air vehicles. J. Guid. Control Dyn. 2020,

43, 838–846. [CrossRef]
6. Fladeland, M.; Sumich, M.; Lobitz, B.; Kolyer, R.; Herlth, D.; Berthold, R.; McKinnon, D.; Monforton, L.; Brass, J.; Bland, G.

The NASA SIERRA science demonstration programme and the role of small—Medium unmanned aircraft for earth science
investigations. Geocarto Int. 2011, 26, 157–163. [CrossRef]

7. Khaloo, A.; Lattanzi, D.; Cunningham, K.; Dell’Andrea, R.; Riley, M. Unmanned aerial vehicle inspection of the Placer River Trail
Bridge through image-based 3D modelling. Struct. Infrastruct. Eng. 2018, 14, 124–136. [CrossRef]

8. Moon, H.; Martinez-Carranza, J.; Cieslewski, T.; Faessler, M.; Falanga, D.; Simovic, A.; Scaramuzza, D.; Li, S.; Ozo, M.; De Wagter,
C.; et al. Challenges and implemented technologies used in autonomous drone racing. Intell. Serv. Robot. 2019, 12, 137–148.
[CrossRef]

9. Ordoukhanian, E.; Madni, A.M. Toward development of resilient multi-UAV system-of-systems. In Proceedings of the AIAA
SPACE 2016, Long Beach, CA, USA, 13–16 September 2016; p. 5414.

10. Tang, J.; Duan, H.; Lao, S. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive
review. Artif. Intell. Rev. 2022. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2994911
http://dx.doi.org/10.1109/ACCESS.2019.2931539
http://dx.doi.org/10.1016/j.compeleceng.2021.107197
http://dx.doi.org/10.2514/1.G004088
http://dx.doi.org/10.1080/10106049.2010.537375
http://dx.doi.org/10.1080/15732479.2017.1330891
http://dx.doi.org/10.1007/s11370-018-00271-6
http://dx.doi.org/10.1007/s10462-022-10281-7


Robotics 2023, 12, 53 20 of 24

11. Wang, R.; Du, J.; Xiong, Z.; Chen, X.; Liu, J. Hierarchical collaborative navigation method for UAV swarm. J. Aerosp. Eng. 2021,
34, 04020097. [CrossRef]

12. Sørensen, L.Y.; Jacobsen, L.T.; Hansen, J.P. Low cost and flexible UAV deployment of sensors. Sensors 2017, 17, 154. [CrossRef]
[PubMed]

13. How, J.P.; Behihke, B.; Frank, A.; Dale, D.; Vian, J. Real-time indoor autonomous vehicle test environment. IEEE Control Syst.
Mag. 2008, 28, 51–64. [CrossRef]

14. Rao, B.; Gopi, A.G.; Maione, R. The societal impact of commercial drones. Technol. Soc. 2016, 45, 83–90. [CrossRef]
15. Bu, Q.; Wan, F.; Xie, Z.; Ren, Q.; Zhang, J.; Liu, S. General simulation platform for vision based UAV testing. In Proceedings of the

2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2512–2516.
16. Altawy, R.; Youssef, A.M. Security, privacy, and safety aspects of civilian drones: A survey. ACM Trans. Cyber-Phys. Syst. 2016,

1, 1–25. [CrossRef]
17. Castillo-Pizarro, P.; Arredondo, T.V.; Torres-Torriti, M. Introductory survey to open-source mobile robot simulation software. In

Proceedings of the 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, Sao Bernardo do Campo, Brazil,
23–28 October 2010; pp. 150–155.

18. Dierks, T.; Jagannathan, S. Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 2009,
21, 50–66. [CrossRef] [PubMed]

19. Zeng, Y.; Xu, X.; Zhang, R. Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Trans. Wirel.
Commun. 2018, 17, 2233–2246. [CrossRef]

20. Bell, N.; Yu, Y.; Mucha, P.J. Particle-based simulation of granular materials. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 29–31 July 2005; pp. 77–86.

21. Cook, D.; Vardy, A.; Lewis, R. A survey of AUV and robot simulators for multi-vehicle operations. In Proceedings of the 2014
IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, 6–9 October 2014; pp. 1–8.

22. Collins, J.; Chand, S.; Vanderkop, A.; Howard, D. A Review of Physics Simulators for Robotic Applications. IEEE Access 2021, 9,
51416–51431. [CrossRef]

23. Pitonakova, L.; Giuliani, M.; Pipe, A.; Winfield, A. Feature and performance comparison of the V-REP, Gazebo and ARGoS
robot simulators. In Proceedings of the Annual Conference Towards Autonomous Robotic Systems, Bristol, UK, 22 July 2018;
pp. 357–368.

24. Michel, O. Cyberbotics Ltd. Webots™: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5. [CrossRef]
25. Rivera, Z.B.; De Simone, M.C.; Guida, D. Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines

2019, 7, 42. [CrossRef]
26. Rohmer, E.; Singh, S.P.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326.
27. Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle, F.; et al.

ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 2012, 6, 271–295. [CrossRef]
28. Jackson, J. Microsoft robotics studio: A technical introduction. IEEE Robot. Autom. Mag. 2007, 14, 82–87. [CrossRef]
29. Zhibao, S.; Haojie, Z.; Sen, Z. A robotic simulation system combined USARSim and RCS library. In Proceedings of the 2017 2nd

Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, China, 16–18 June 2017; pp. 240–243.
30. Marhefka, D.W.; Orin, D.E. XAnimate: An educational tool for robot graphical simulation. IEEE Robot. Autom. Mag. 1996, 3, 6–14.

[CrossRef]
31. Case, K.; Porter, M. SAMMIE, a computer-aided ergonomics design system. Engineering 1980, 21–25.
32. Miller, A.T.; Allen, P.K. Graspit!: A versatile simulator for grasp analysis. In Proceedings of the ASME International Mechanical

Engineering Congress and Exposition, Orlando, FL, USA , 5–10 November 2000; American Society of Mechanical Engineer: New
York, NY, USA, 2000; Volume 26652, pp. 1251–1258. [CrossRef]

33. Gerkey, B.; Vaughan, R.T.; Howard, A. The player/stage project: Tools for multi-robot and distributed sensor systems. In
Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003; Volume 1,
pp. 317–323.

34. Shimizu, M.; Takahashi, T. Simulation platform for performance test for robots and human operations. In Proceedings of the 2011
AAAI Fall Symposium Series, Francisco, CA, USA, 7–11 August 2011; pp. 61–66.

35. Glette, K.; Hovin, M. Evolution of artificial muscle-based robotic locomotion in PhysX. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 1114–1119.

36. Maciel, A.; Halic, T.; Lu, Z.; Nedel, L.P.; De, S. Using the PhysX engine for physics-based virtual surgery with force feedback. Int.
J. Med. Robot. Comput. Assist. Surg. 2009, 5, 341–353. [CrossRef] [PubMed]

37. Marcu, C.; Lazea, G.; Robotin, R. An OpenGL application for industrial robots simulation. In Proceedings of the 2006 IEEE
International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 25–28 May 2006; Volume 2,
pp. 254–259.

38. Hugues, L.; Bredeche, N. Simbad: An autonomous robot simulation package for education and research. In Proceedings of the
International Conference on Simulation of Adaptive Behavior, Rome, Italy, 25–29 September 2006; pp. 831–842.

39. Yıldırım, Ş.; Arslan, E. ODE (Open Dynamics Engine) based stability control algorithm for six legged robot. Measurement 2018,
124, 367–377. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0001216
http://dx.doi.org/10.3390/s17010154
http://www.ncbi.nlm.nih.gov/pubmed/28098819
http://dx.doi.org/10.1109/MCS.2007.914691
http://dx.doi.org/10.1016/j.techsoc.2016.02.009
http://dx.doi.org/10.1145/3001836
http://dx.doi.org/10.1109/TNN.2009.2034145
http://www.ncbi.nlm.nih.gov/pubmed/19963698
http://dx.doi.org/10.1109/TWC.2018.2790401
http://dx.doi.org/10.1109/ACCESS.2021.3068769
http://dx.doi.org/10.5772/5618
http://dx.doi.org/10.3390/machines7020042
http://dx.doi.org/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1109/M-RA.2007.905745
http://dx.doi.org/10.1109/100.511779
http://dx.doi.org/10.1109/MRA.2004.1371616
http://dx.doi.org/10.1002/rcs.266
http://www.ncbi.nlm.nih.gov/pubmed/19449317
http://dx.doi.org/10.1016/j.measurement.2018.03.057


Robotics 2023, 12, 53 21 of 24

40. Montemerlo, M.; Roy, N.; Thrun, S. Perspectives on standardization in mobile robot programming: The Carnegie Mellon
navigation (CARMEN) toolkit. In Proceedings of the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2436–2441.

41. Staranowicz, A.; Mariottini, G.L. A survey and comparison of commercial and open-source robotic simulator software. In
Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments, New York, NY,
USA, 25–27 May 2011; pp. 1–8.

42. Guo, W.; Gao, Y.; Wang, Y. Design and realization of the interactive virtual laboratory based on VRML. In Proceedings of the 2012
2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April
2012; pp. 2510–2513.

43. Erez, T.; Tassa, Y.; Todorov, E. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May
2015; pp. 4397–4404.

44. ArduPilot Dev Team. SITL with Webots. Available online: https://ardupilot.org/dev/docs/sitl-with-webots.html (accessed on
12 March 2023).

45. Vajta, L.; Juhasz, T. 3D Simulation in the advanced robotic design, test and control. Int. J. Simul. Model. 2015, 4, 105–117.
[CrossRef]

46. Singh, A.; Jha, S.S. Learning safe cooperative policies in autonomous multi-uav navigation. In Proceedings of the 2021 IEEE 18th
India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–6.

47. Lei, Z.; Hao, L.; Yu-fei, L.; Shuai, Z. Study on Simulation Optimization of Gazebo Based on Asynchronous Mechanism. Comput.
Sci. 2020, 47, 593–598.

48. Kumar, A.S.; Manikutty, G.; Bhavani, R.R.; Couceiro, M.S. Search and rescue operations using robotic darwinian particle swarm
optimization. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics
(ICACCI), Udupi, India, 13–16 September 2017; pp. 1839–1843.

49. He, H.; Zheng, J.; Sun, Q.; Li, Z. Simulation of realistic particles with bullet physics engine. In E3S Web of Conferences; EDP
Sciences: Les Ulis, France, 2019; Volume 92, p. 14004.

50. Lee, J.; Grey, M.X.; Ha, S.; Kunz, T.; Jain, S.; Ye, Y.; Srinivasa, S.S.; Stilman, M.; Liu, C.K. Dart: Dynamic animation and robotics
toolkit. J. Open Source Softw. 2018, 3, 500. [CrossRef]

51. Mingo Hoffman, E.; Traversaro, S.; Rocchi, A.; Ferrati, M.; Settimi, A.; Romano, F.; Natale, L.; Bicchi, A.; Nori, F.; Tsagarakis, N.G.
Yarp based plugins for gazebo simulator. In Modelling and Simulation for Autonomous Systems. MESAS 2014; Hodicky, J., Ed.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8906, pp. 371–382. [CrossRef]

52. Comparative analysis between gazebo and v-rep robotic simulators. Semin. Interno Cognicao Artif.-SICA 2014, 2014, 2.
53. Bernardeschi, C.; Fagiolini, A.; Palmieri, M.; Scrima, G.; Sofia, F. Ros/gazebo based simulation of co-operative uavs. In

Proceedings of the Modelling and Simulation for Autonomous Systems: 5th International Conference, MESAS 2018, Prague,
Czech Republic, 17–19 October 2018; pp. 321–334.

54. Nguyen, K.D.; Nguyen, T.T. Vision-based software-in-the-loop-simulation for Unmanned Aerial Vehicles using gazebo and
PX4 open source. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi,
Vietnam, 20–21 July 2019; pp. 429–432.

55. Hummel, J.; Wolff, R.; Stein, T.; Gerndt, A.; Kuhlen, T. An evaluation of open source physics engines for use in virtual reality
assembly simulations. In Proceedings of the International Symposium on Visual Computing, San Diego, CA, USA, 3–5 October
2012; pp. 346–357.

56. Tursynbek, I.; Shintemirov, A. Modeling and simulation of spherical parallel manipulators in CoppeliaSim (V-REP) robot
simulator software. In Proceedings of the 2020 International Conference Nonlinearity, Information and Robotics (NIR), Innopolis,
Russia, 3–6 December 2020; pp. 1–6.

57. Obdržálek, Z. Mobile agents and their use in a group of cooperating autonomous robots. In Proceedings of the 2017 22nd
International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 28–31 August
2017; pp. 125–130.

58. Freese, M.; Singh, S.; Ozaki, F.; Matsuhira, N. Virtual robot experimentation platform v-rep: A versatile 3d robot simulator. In
Proceedings of the International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Darmstadt,
Germany, 15–18 November 2010; pp. 51–62.

59. Coppelia Robotics, L. Kinematics. Available online: https://www.coppeliarobotics.com/helpFiles/en/kinematics.htm (accessed
on 22 March 2022).

60. Coppelia Robotics, L. Proximity Sensor Types and Mode of Operation. Available online: https://www.coppeliarobotics.com/hel
pFiles/index.html (accessed on 22 March 2022).

61. Coppelia Robotics, L. Vision Sensor Types and Mode of Operation. Available online: https://www.coppeliarobotics.com/helpFil
es/index.html (accessed on 22 March 2022).

62. Wang, C.; Shi, Z.; Gu, M.; Luo, W.; Zhu, X.; Fan, Z. Revolutionary entrapment model of uniformly distributed swarm robots in
morphogenetic formation. Def. Technol. 2022. [CrossRef]

https://ardupilot.org/dev/docs/sitl-with-webots.html
http://dx.doi.org/10.2507/IJSIMM04(3)1.040
http://dx.doi.org/10.21105/joss.00500
http://dx.doi.org/10.1007/978-3-319-13823-7_29
https://www.coppeliarobotics.com/helpFiles/en/kinematics.htm
https://www.coppeliarobotics.com/helpFiles/index.html
https://www.coppeliarobotics.com/helpFiles/index.html
https://www.coppeliarobotics.com/helpFiles/index.html
https://www.coppeliarobotics.com/helpFiles/index.html
http://dx.doi.org/10.1016/j.dt.2022.08.015


Robotics 2023, 12, 53 22 of 24

63. Virbora, N.; Sokoeun, U.; Saran, M.; Channareth, S.; Saravuth, S. Implementation of Matrix Drone Show Using Automatic Path
Generator with DJI Tello Drones. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies
(ICEET), Kuala Lumpur, Malaysia, 27–28 October 2022; pp. 1–5.

64. Huang, K.; Chen, J.; Oyekan, J. Decentralised aerial swarm for adaptive and energy efficient transport of unknown loads. Swarm
Evol. Comput. 2021, 67, 100957. [CrossRef]

65. Pinciroli, C. ARGoS Core. Available online: https://www.argos-sim.info/core.php (accessed on 22 March 2022).
66. Allwright, M.; Bhalla, N.; Pinciroli, C.; Dorigo, M. Simulating multi-robot construction in ARGoS. In Proceedings of the

International Conference on Swarm Intelligence, Shanghai, China, 17–22 June 2018; pp. 188–200.
67. Lu, Q.; Fricke, G.M.; Ericksen, J.C.; Moses, M.E. Swarm foraging review: Closing the gap between proof and practice. Curr. Robot.

Rep. 2020, 1, 215–225. [CrossRef]
68. Matta-Gómez, A.; Del Cerro, J.; Barrientos, A. Multi-robot data mapping simulation by using microsoft robotics developer studio.

Simul. Model. Pract. Theory 2014, 49, 305–319. [CrossRef]
69. Wang, D.; Zhang, L.; Wang, M.; Xiao, T.; Hou, Z.; Zou, F. A simulation system based on ogre and physx for flexible aircraft

assembly. In Proceedings of the 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation,
Zhangjiajie, China, 15–19 July 2012; pp. 171–173.

70. Gechter, F.; Contet, J.M.; Galland, S.; Lamotte, O.; Koukam, A. Virtual intelligent vehicle urban simulator: Application to vehicle
platoon evaluation. Simul. Model. Pract. Theory 2012, 24, 103–114. [CrossRef]

71. Cepeda, J.S.; Chaimowicz, L.; Soto, R. Exploring Microsoft Robotics Studio as a mechanism for service-oriented robotics. In
Proceedings of the 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, Sao Bernardo do Campo, Brazil,
23–28 October 2010; pp. 7–12.

72. Michal, D.S.; Etzkorn, L. A comparison of player/stage/gazebo and microsoft robotics developer studio. In Proceedings of the
49th Annual Southeast Regional Conference, Kennesaw, GA, USA, 24–26 March 2011; pp. 60–66.

73. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular open robots simulation engine: Morse. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 46–51.

74. Echeverria, G.; Lemaignan, S.; Degroote, A.; Lacroix, S.; Karg, M.; Koch, P.; Lesire, C.; Stinckwich, S. Simulating complex
robotic scenarios with MORSE. In Proceedings of the International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, Tsukuba, Japan, 5–8 November 2012; pp. 197–208.

75. Casas, V.; Mitschele-Thiel, A. On the impact of communication delays on UAVs flocking behavior. In Proceedings of the 2018 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 67–72.

76. Casas, V.; Mitschele-Thiel, A. From simulation to reality: A implementable self-organized collision avoidance algorithm for
autonomous UAVs. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens,
Greece, 1–4 September 2020; pp. 822–831.

77. Dias, A.; Fernandes, T.; Almeida, J.; Martins, A.; Silva, E. 3D path planning methods for unmanned aerial vehicles in search and
rescue scenarios. In Human-Centric Robotics: Proceedings of the CLAWAR 2017: 20th International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines, Porto, Portugal, 11–13 September 2017; World Scientific: Singapore, 2018;
pp. 213–220.

78. Balakirsky, S.; Scrapper, C.; Carpin, S.; Lewis, M. USARSim: Providing a framework for multi-robot performance evaluation. In
Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, USA, 14–16 August 2006;
pp. 98–102.

79. Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and education. In
Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1400–1405.

80. Lewis, M.; Wang, J.; Hughes, S. USARSim: Simulation for the study of human-robot interaction. J. Cogn. Eng. Decis. Mak. 2007,
1, 98–120. [CrossRef]

81. Mendes, J.; Ventura, R. Safe teleoperation of a quadrotor using FastSLAM. In Proceedings of the 2012 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, TX, USA, 5–8 November 2012; pp. 1–6.

82. Drews, S.; Lange, S.; Protzel, P. Validating an active stereo system using USARSim. In Proceedings of the Simulation, Modeling,
and Programming for Autonomous Robots: Second International Conference, SIMPAR 2010, Darmstadt, Germany, 15–18
November 2010; pp. 387–398.

83. Yu, J.; Dong, X.; Li, Q.; Ren, Z. Distributed cooperative encirclement hunting guidance for multiple flight vehicles system. Aerosp.
Sci. Technol. 2019, 95, 105475. [CrossRef]

84. Zhou, Z.; Luo, D.; Shao, J.; Xu, Y.; You, Y. Immune genetic algorithm based multi-UAV cooperative target search with event-
triggered mechanism. Phys. Commun. 2020, 41, 101103. [CrossRef]

85. Jia, N.; Yang, Z.; Yang, K. An operational effectiveness evaluation method of the swarming UAVs air combat system. In MATEC
Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 277, p. 02010.

86. Sharma, A.; Shoval, S.; Sharma, A.; Pandey, J.K. Path Planning for Multiple Targets Interception by the Swarm of UAVs based on
Swarm Intelligence Algorithms: A Review. IETE Tech. Rev. 2022, 39, 675–697. [CrossRef]

87. Jia, Z.; Wan, Y.H.; Zhou, Y.J.; Jiang, G.P.; Zhang, D. Formation shape control of multi-UAV with collision avoidance. In Proceedings
of the 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanjing, China, 18–20 May
2018; pp. 305–310.

http://dx.doi.org/10.1016/j.swevo.2021.100957
https://www.argos-sim.info/core.php
http://dx.doi.org/10.1007/s43154-020-00018-1
http://dx.doi.org/10.1016/j.simpat.2014.10.003
http://dx.doi.org/10.1016/j.simpat.2012.02.001
http://dx.doi.org/10.1177/155534340700100105
http://dx.doi.org/10.1016/j.ast.2019.105475
http://dx.doi.org/10.1016/j.phycom.2020.101103
http://dx.doi.org/10.1080/02564602.2021.1894250


Robotics 2023, 12, 53 23 of 24

88. Akhloufi, M.A.; Arola, S.; Bonnet, A. Drones chasing drones: Reinforcement learning and deep search area proposal. Drones 2019,
3, 58. [CrossRef]

89. Craighead, J.; Murphy, R.; Burke, J.; Goldiez, B. A survey of commercial open source unmanned vehicle simulators. In
Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 852–857.

90. Ivaldi, S.; Padois, V.; Nori, F. Tools for dynamics simulation of robots: A survey based on user feedback. arXiv 2014,
arXiv:1402.7050.

91. Cyberbotics. Webots User Guide. Available online: https://www.cyberbotics.com/doc/guide/sensors (accessed on
8 January 2022).

92. Open Source Robotics Foundation. Category: Sensors. Available online: http://gazebosim.org/tutorials?cat=sensors (accessed
on 8 January 2022).

93. Coppelia Robotics, L. CoppeliaSim User Manual. Available online: https://www.coppeliarobotics.com/helpFiles/index.html
(accessed on 8 January 2022).

94. Microsoft Corporation. Robotics Common Overview. Available online: https://docs.microsoft.com/en-us/previous-versions
/microsoft-robotics/cc998481(v=msdn.10) (accessed on 8 January 2022).

95. Components Library. Components Library. Available online: https://www.openrobots.org/morse/doc/latest/components_lib
rary.html (accessed on 8 January 2022).

96. Wang, J. USARSim-Manual-3.1.3. Available online: https://sourceforge.net/projects/usarsim/files/Documentation/3.1.3/
(accessed on 28 March 2023).

97. Fei, W.; Jin-Qiang, C.; Ben-Mei, C.; Tong, H.L. A comprehensive UAV indoor navigation system based on vision optical flow and
laser FastSLAM. Acta Autom. Sin. 2013, 39, 1889–1899.

98. Dai, X.; Mao, Y.; Huang, T.; Qin, N.; Huang, D.; Li, Y. Automatic obstacle avoidance of quadrotor UAV via CNN-based learning.
Neurocomputing 2020, 402, 346–358. [CrossRef]

99. Bretschneider, T.; Shetti, K.R. UAV-based gas pipeline leak detection. In Proceedings of the ARCS 2015, Porto, Portugal, 24–27
March 2015.

100. Hentati, A.I.; Krichen, L.; Fourati, M.; Fourati, L.C. Simulation tools, environments and frameworks for UAV systems performance
analysis. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 25–29 June 2018; pp. 1495–1500.

101. Rönnau, A.; Sutter, F.; Heppner, G.; Oberländer, J.; Dillmann, R. Evaluation of physics engines for robotic simulations with a
special focus on the dynamics of walking robots. In Proceedings of the 2013 16th International Conference on Advanced Robotics
(ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–7.

102. Mouret, J.B.; Chatzilygeroudis, K. 20 years of reality gap: A few thoughts about simulators in evolutionary robotics. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; pp. 1121–1124.

103. Noori, F.M.; Portugal, D.; Rocha, R.P.; Couceiro, M.S. On 3D simulators for multi-robot systems in ROS: MORSE or Gazebo?
In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China,
11–13 October 2017; pp. 19–24.

104. Farley, A.; Wang, J.; Marshall, J.A. How to pick a mobile robot simulator: A quantitative comparison of CoppeliaSim, Gazebo,
MORSE and Webots with a focus on accuracy of motion. Simul. Model. Pract. Theory 2022, 120, 102629. [CrossRef]

105. Components Library. MORSE Limitations. Available online: https://www.openrobots.org/morse/doc/stable/what_is_morse.
html (accessed on 14 March 2023).

106. Qiu, W.; Yuille, A. Unrealcv: Connecting computer vision to unreal engine. In Proceedings of the Computer Vision–ECCV 2016
Workshops, Amsterdam, The Netherlands, 8–10 October 2016; pp. 909–916.

107. Torres-Torriti, M.; Arredondo, T.; Castillo-Pizarro, P. Survey and comparative study of free simulation software for mobile robots.
Robotica 2016, 34, 791–822. [CrossRef]

108. Li, S.; Wan, Y.; He, P.; Wang, C.; Sun, J.; Zhang, Y.; Li, X.; Xie, G. Heros: A simulation platform for heterogeneous robotic swarms.
In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 7223–7228.

109. Coppelia Robotics, L. CoppeliaSim Version History. Available online: https://www.coppeliarobotics.com/helpFiles/en/versio
nInfo.htm#coppeliaSim4.2.0 (accessed on 7 June 2022).

110. Gustiana, M.; Indrawaty, Y.; Febriandi, A. Perancangan Mobile Manipulator Robot Secara Simulasi Menggunakan Microsoft
Robotics Developer Studio. MIND (Multimed. Artif. Intell. Netw. Database) J. 2018, 3, 15–23. [CrossRef]

111. Askarpour, M.; Rossi, M.; Tiryakiler, O. Co-simulation of human-robot collaboration: From temporal logic to 3D simulation.
arXiv 2020, arXiv:2007.11737.

112. Hong, A.; Igharoro, O.; Liu, Y.; Niroui, F.; Nejat, G.; Benhabib, B. Investigating human-robot teams for learning-based semi-
autonomous control in urban search and rescue environments. J. Intell. Robot. Syst. 2019, 94, 669–686. [CrossRef]

113. Cyberbotics. Webots Homepage. Available online: https://www.cyberbotics.com (accessed on 12 December 2022).
114. Open Source Robotics Foundation. Gazebo Download. Available online: http://www.gazebosim.cn/download.html (accessed

on 8 January 2022).
115. Pinciroli, C. ARGoS Homepage. Available online: https://www.argos-sim.info/ (accessed on 7 June 2022).
116. Components Library. Latest News. Available online: http://morse-simulator.github.io/ (accessed on 8 January 2022).

http://dx.doi.org/10.3390/drones3030058
https://www.cyberbotics.com/doc/guide/sensors
http://gazebosim.org/tutorials?cat=sensors
https://www.coppeliarobotics.com/helpFiles/index.html
https://docs.microsoft.com/en-us/previous-versions/microsoft-robotics/cc998481(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/microsoft-robotics/cc998481(v=msdn.10)
https://www.openrobots.org/morse/doc/latest/components_library.html
https://www.openrobots.org/morse/doc/latest/components_library.html
https://sourceforge.net/projects/usarsim/files/Documentation/3.1.3/
http://dx.doi.org/10.1016/j.neucom.2020.04.020
http://dx.doi.org/10.1016/j.simpat.2022.102629
https://www.openrobots.org/morse/doc/stable/what_is_morse.html
https://www.openrobots.org/morse/doc/stable/what_is_morse.html
http://dx.doi.org/10.1017/S0263574714001866
https://www.coppeliarobotics.com/helpFiles/en/versionInfo.htm#coppeliaSim4.2.0
https://www.coppeliarobotics.com/helpFiles/en/versionInfo.htm#coppeliaSim4.2.0
http://dx.doi.org/10.26760/mindjournal.v3i1.15-23
http://dx.doi.org/10.1007/s10846-018-0899-0
https://www.cyberbotics.com
http://www.gazebosim.cn/download.html
https://www.argos-sim.info/
http://morse-simulator.github.io/


Robotics 2023, 12, 53 24 of 24

117. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.

118. Vardy, A. ARGoS-ROS. Available online: https://www.argos-sim.info/extensions.php (accessed on 7 June 2022).
119. Hao-Jie, Z.; Zhi-Bao, S.; Tian-Tian, Y. Design of Team Formation Simulation System for Unmanned Ground Vehicles Based on

USARSim and ROS. Acta Autom. Sin. 2021, 47, 1390–1400.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.argos-sim.info/extensions.php

	Introduction
	Seven Widely Used Open-Source Platforms
	Webots
	Gazebo
	CoppeliaSim
	ARGoS
	MRDS
	MORSE
	USARSim

	Selection of Simulation Platforms for Multi-Copter UAVs Swarm
	The Requirements of Multi-Copter UAVs Swarm Simulation
	Comparisons of the Seven Platforms
	Multi-Sensors
	Various Types of Built-in Models
	Realism of Simulated Environment
	Computation Performance and Accuracy
	Multiple Programming Languages and OS
	Usability
	Stability and Maintenance
	Have Commonly Used Functions and Applications

	A Case Study of Multi-Copter UAVs Swarm Based on Webots
	Discussion

	Conclusions
	References

