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Abstract: Artificial Intelligence (Al) models are being produced and used to solve a variety of
current and future business and technical problems. Therefore, AI model engineering processes,
platforms, and products are acquiring special significance across industry verticals. For achieving
deeper automation, the number of data features being used while generating highly promising and
productive AI models is numerous, and hence the resulting AI models are bulky. Such heavyweight
models consume a lot of computation, storage, networking, and energy resources. On the other
side, increasingly, AI models are being deployed in IoT devices to ensure real-time knowledge
discovery and dissemination. Real-time insights are of paramount importance in producing and
releasing real-time and intelligent services and applications. Thus, edge intelligence through on-
device data processing has laid down a stimulating foundation for real-time intelligent enterprises and
environments. With these emerging requirements, the focus turned towards unearthing competent
and cognitive techniques for maximally compressing huge AI models without sacrificing AI model
performance. Therefore, AI researchers have come up with a number of powerful optimization
techniques and tools to optimize AI models. This paper is to dig deep and describe all kinds of model
optimization at different levels and layers. Having learned the optimization methods, this work has
highlighted the importance of having an enabling AI model optimization framework.

Keywords: artificial intelligence; AI model optimization; edge AI; federated learning; optimization
methods for edge AI; energy efficient methods for edge AI

1. Introduction

The Internet of Things (IoT) has grown rapidly and generates a huge amount of data.
Depending upon the domain and application, say, for example, smart traffic application,
smart home, smart city, smart transport, etc., the acquired data are required to be processed
immediately to produce meaningful insights and actionable decisions. In these cases,
sending data to a centralized server and analyzing the data at the server involves greater
latency [1] which even prohibits the real purpose of the application itself. Cloud computing
is not adequate to meet the diverse needs of data analysis of today’s intelligent society, and
so edge computing has evolved [2,3]. Edge computing has brought the processing of data
to the point of acquisition by pushing applications, storage, and processing power away
from the centralized data center and to the edge itself [4].

Centralized processing requires a massive amount of need to be transferred to the
cloud for analysis. This not only requires more network bandwidth but also consumes time.
Thus, it seriously suffers from latency, bandwidth-related issues, and huge transmission
energy, which cannot be tolerated in applications involving augmented reality, video
conferences, streaming applications, etc. However, in reality, every network has limited
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bandwidth. In addition, when data are transmitted to the cloud, it inherently prohibits the
real-time analysis of data. However, many applications are in need of real-time analysis.
For example, in the case of the healthcare domain, consider the case of a vital parameter-
monitoring system that monitors parameters related to, say, COVID-19. Despite sending
the monitored data to a centralized cloud server to which the physician or hospital is
connected, which upon receiving the data, will analyze the health conditions of the patient,
the monitoring system itself should be equipped with processing capability so that it can
produce actionable and meaningful insights without latency. In addition, it itself will direct
the required action and prevents the transfer of data to a centralized infrastructure. In
scenarios where the analysis in edge becomes necessary, it should be conducted at the edge
itself without centralized analytics.

Further, the need for analysis at edge devices becomes very crucial in applications
involving augmented reality, video conference, streaming applications, games, Content
Delivery Networks (CDN), remote robotics-based surgery, product inspection, preventive
maintenance, autonomous car, Industrial Internet of Things, smart power distribution,
security related applications are in a compelling need of analysis at the edge. Another im-
portant aspect is with respect to the security and privacy of the data. In certain applications,
such as the financial domain, the data at the edge needs to be kept in itself to maintain
security and privacy. Moreover, in certain other applications, data optimization is required.
In a nutshell, several applications are in need of analysis of data near the data source itself.

Having understood the need for analysis at the edge, the next question comes to
one’s mind is that how to process them. Obviously, the amount of data involved in
many domains is large, and it keeps on becoming massive. So, to handle massive data
efficiently and automatically in less time, Artificial Intelligence (AI) based algorithms are
mandatorily required. However, the creation, training, and execution of AI algorithms
require substantial processing power, storage, and a huge amount of data for learning.
In particular, the recent introduction of deep neural networks consists of hundreds of
billions of parameters that require high processing power and storage. Two aspects, namely,
training and inference of the models to be considered seriously. First, an AI model needs
to be trained by a labeled dataset. Bigger datasets for the training phase cause explosive
growth in processing, storage, and energy consumption. In addition, training takes place
initially or intermittently. Once the model is trained, it’s ready to find meaningful patterns
in new data. This process is called inference. The inference is a continuous activity, and it
involves fewer data but consumes energy continuously.

Despite the compelling needs of Al in edge devices, training and executing AI models
on edge devices is really challenging due to the following reasons

• Edge devices are limited in their hardware capabilities with respect to processing
power and memory, network bandwidth

• The devices are limited network bandwidth.
• Edge devices are often battery-operated and low-power devices
• The resources of edge devices do not scale as cloud resources, and edge resources are

heterogeneous, which may degrade the service quality [5]
• Accomplishing collaboration among heterogeneous devices is difficult [6]
• Original private data cannot be used for model optimization. Distribution of computa-

tion to devices is also limited by limited communication resources of the devices [7]

AI models have the potential for huge carbon footprints. In order to make them energy
efficient, it is necessary to bring in a stream of optimizations in hardware, software, and
data usage. Architectures for artificial intelligence in combination with the Internet of
Things are required to be established. The training and inference phases of AI models
require the cooperation of specialized hardware designs, appropriate architecture selection
and model optimization, and other optimization methods [8].

In this context, the research question of this review paper is to analyze the publications
relevant to optimization methods for artificial intelligence-based models to be trained and
executed in edge computing environments and present the meaningful inference drawn
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from the analysis in a categorical manner so that the readers can perceive the existing
methods with more clarity. Thus, the scope of the work is set to investigate the publications
relevant to optimization methods of AI models for edge computing.

The organization of the paper is as follows. Section 2 highlights various edge AI use
cases. Section 3 briefly describes the method used for this survey. Section 5 shows various
categories of optimization methods. Different categories are illustrated in Sections 5–10.
Section 11 compares the present work with the existing survey, and Section 12 concludes
the work while highlighting the challenges.

2. Motivating Use Cases of Edge AI

Real-time analysis and decision making without latency—In contrast to cloud Al,
edge AI can provide many benefits to the healthcare domain. For example, consider an
individual is taking up his routine exercising. His vital parameters, namely pulse rate,
blood glucose level, and blood pressure, are being monitored by wearable sensors and got
updated in the edge application running on his mobile. Here, the mobile is the edge device,
and it analyses the monitored parameters with the help of an artificial intelligence-based
model, and it immediately takes the decision according to the analysis done, without
sending the data to any other central server such as a cloud. The emphasis is that without
any latency, the data are analyzed locally, and the decision is taken immediately. This is
more important in the case of the healthcare domain, as the vital parameters are out of the
normal threshold ranges. In such instances, immediately, the edge application intimates
the physician and books the ambulance to a hospital.

Edge AI in Remote robotics surgery—In medical exigency, robotics surgery would be
carried out under the supervision of a surgeon from remote. In this situation, the robots
are fully equipped with AI-based models, and it performs the concerned surgery with
guidance and conversation with a remote physician. The key point to be noted here is that
the evolving 5G communication makes surgery easy and safe.

Edge AI integrated into cameras in airport security systems—When the video cameras
installed in airports are integrated with video analytics applications, say, for example,
detection of terrorist attacks, the attacks can be detected without latency. In conventional
security applications, a series of video cameras capture the video of what is happening in
the airport to cloud servers where AI-based models would run to detect or predict terrorist
attacks. When the video analytics models run in the camera itself, based on the seriousness
of the analysis, the device (i.e., video camera) makes a call to the police immediately to
avoid the escape of any detected terrorist.

Edge AI in predictive maintenance—In manufacturing and in similar other sectors,
predictive maintenance is used to determine potential faults and abnormalities in processes.
Conventionally, heartbeat signals which exhibit the healthiness of various sensors and
machines are continuously collected and sent to a centralized cloud setup where AI-
based analytics would be carried out to predict the faults. However, nowadays, the loT
devices themselves are equipped with AI models to predict the possibility of faults, and
immediately with no latency proper maintenance process will be carried which ultimately
leads to increased production with reduced cost.

Edge AI in quality assurance—Existing cameras and devices are incorporated with
intelligent state-of-art neural network-based video analytics models, which are capable of
executing Trillions of Operations Per Second. These devices have higher computer vision
and scan a single product or huge batches of products at a time and find out faulty products
with accuracy exceeding human capability. In addition to product inspection, edge devices
are also equipped with relevant models for continuous and detailed factory monitoring. In
addition, the complete assembly line of factories is thoroughly inspected by the installed
cameras towards production with zero defects as shown in Figure 1.
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Figure 1. Block diagram of edge AI-based defect detection. Figure 1. Block diagram of edge AI-based defect detection.

Edge AI and mobile augmented reality—Mobile augmented reality applications have
to process huge amounts of data that arrive from various devices such as a camera, OPS,
and other video and audio data within the stipulated latency of around 15 to 20 milliseconds
in order to show the augmented reality to the user [9]. The next generation IoT devices
are equipped with reinforcement learning-based Al models implemented with the help
of customized processors and 50 communication technologies. The combination of edge
Al and the next-generation IoT enables practical implementation and brings in a more
autonomous nature along with real-time analysis of the edge devices themselves. This
combination will not only reduce the latency but also conserves energy.

Edge AI in drone applications—In contrast to traditional PID-based drone flights,
which have limitations on the number of parameters and hence tend to break more often
under situations that were not taken into the design, deep neural networks are trained
with several example situations and simulated situations consisting of several disturbances,
the AI-powered drone flight becomes easier. AT-powered drones are used for many
applications such as (i) delivery of medicine to COVID-19 infected cases, (ii) delivery of
food packets to affected people during natural disasters such as storms, (iii) tracking of
vehicles, (iv) traffic monitoring, (v) air, noise, pollution monitoring, (vi) monitoring and
exploring dangerous areas.

3. Review Method

Publications relevant to the objective of the paper have been collected from different
data sources, namely Springer, IEEE, Elsevier, PubMed, Scopus, arXiv, MDPI, Hindawi,
IEEE Access, etc., by using keyword querying method using the Google search engine. The
resulting data are called the first dataset. Grey literature and publications irrelevant to the
current objective have been excluded from the first dataset. This gives a second dataset.
Another search has been performed from the cited publications of the second dataset, which
would be combined with the final dataset. The above steps have been iterated for different
keywords, including “optimization methods for edge AI”, “AI optimization methods for
edge computing”, “AI model optimization techniques for edge computing”, “specialized
hardware for edge computing”, etc., as shown in Figure 2.
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4. Categorization of Optimization Methods

The details of the publications retrieved are shown in Table 1. Publications that lie
outside the research question of the present work have been eliminated. i.e., the publica-
tions which have a broad scope and are relevant to general edge computing or machine
learning, or general deep learning architectures and do not deal with the optimization
aspect have been excluded. A final data set consisting of 107 publications has been taken up
for analysis.

Table 1. Details of publications retrieved.

S. No. Description Count

1 Total number of publications collected from different electronic databases 129

2 Publication with broad scope related to generic edge computing publications 9

3 Publications related to machine learning concept but not dealt with edge 7

4 Publications related to general DNN architecture and not
handled optimization 6

5 Number of publications relevant to the current scope 107

Short overview of the publications considered for the study is given in Table 2. The
broad category of the publications along with their specific focus are given in Table 2.



Sensors 2023, 23, 1279 6 of 33

Table 2. Short overview of the relevant publications.

References Broad Category Specific Focus

[1–4] Need for edge computing

Emphasize the need for processing at edge devices to meet the needs of
applications which cannot tolerate latency, high bandwidth and transmission
energy related issues.
Emphasize the need for real time analysis data in applications such as
autonomous cars, video analytics, streaming applications, applications having
augmented reality, remote robotic based applications, etc.

[5–8] Challenges in equipping edge
devices with AI Describe the hardware and energy constraints associated with edge devices

[9] Edge AI use cases

[10–18] Hardware optimization

Deep neural network models have become inevitable in many applications
which involve face recognition, object detection, image classification, etc.
Specialized processors and accelerators are mandatory for creating, training
and deploying deep learning models in edge devices
The publications discuss about the evolution of processors and accelerators
including Field Programmable Gate Array (FPGA) and Application Specific
Integrated Circuit (ASIC).

[19–35]
Discuss about distributed federated learning, its types, issues such as
non-Independent Identically Distribution of data and how to resolve such
issues

[36,37] Discuss about the difficulty in the direct implementation of deep learning
models and propose deep transfer learning as an alternate

[38–43]

Training

To enable training with small data sets in edge devices, knowledge distillation
method is discussed

[44–49]

Model Optimization

Discuss about different levels of pruning namely neuron pruning, connection
pruning, filter pruning, channel pruning in deep neural network towards
compressing the model size

[50–57] Discuss about the quantization of 32 bit floating bit weight into 8 bit integers
and also about low bit quantization

[58–62] Sharing of weights with mapped level so that number of bits to be stored
would be reduced

[63,64] Discuss about matrix decomposition where a method of working with low
ranked matrices rather than the high dimensional original matrix

[65] While computing gradient descent, stochastic gradient descent method is
employed to reduce the size

[66,67] Discuss about gradient scaling where the 32 bit gradient values are scaled to
short integers

[68] Need for Hyperparameter Optimization(HPO) for achieving efficient models
[69] Hyperparameter tuning through Gradient based optimization
[70,71]

Hyper parameter tuning
HPO tuning through population based training

[72–75]

Energy efficient methods

Network Architecture Search
[76,77] Algorithm-accelerator code sign
[78–83] Memory optimization
[84–92] Energy efficient communication methods
[93–96] Communication efficiency with gradient descent
[97,98] Gradient checkpointing
[99,100] Shared memory concept
[101–107] Review publications Reviews on edge intelligence and challenges

With careful manual scanning of the publications, they are categorized as given
in Figure 3.
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In addition, the above categorization can be visualized, as in Figure 4, by placing
it against the corresponding layers of the inherent technology stack, which is inherently
associated with any AI-based application. The relevant publications fall into majors and
subcategories, as shown in Figure 5.
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5. Hardware Optimization

The hardware layer is the core layer for optimization because it only decides the
computer, memory, storage, and networking capabilities of an application. The compute
capability of an application is decided by the processor. Traditional processors were de-
veloped as general purpose Central Processing Units (CPU) which are primarily designed
for sequential programming with few cores. CPUs have the highest Floating Point Opera-
tions per Second and large memory capacity. CPUs work based on the fetch-and-execute
model according to Von Neumann architecture, wherein an instruction fetch cannot occur
at the same time as an execution of data operation, causing instructions to be executed
sequentially. Although in multi-core processors, the above concept is forbidden by sharing
the data among several cores, the latency got increased. CPU processors are suitable for
training small models with small batch datasets. However, the computation time of CPUs
becomes prohibitively large for large dimensional data. Major producers of CPUs include
Intel, AMO, Samsung, IBM, HP, etc.

Applications such as object recognition and text classification involve high-dimensional
data. In addition, the neural network architectures also evolved with an increased number
of layers to perform the task at hand with minimal error. Accuracy in applications such
as image recognition and speech recognition has been achieved with Graphical Process-
ing Unit (GPU) at the cost of huge resources and high energy consumption. A GPU has
thousands of processors, and it breaks down complex problem into several tasks and
solves them in parallel. With the help of parallel computing on its thousands of millions
of processors, GPUs can perform graphics processing, video processing, machine learn-
ing, matrix computations, etc., with high throughput. GPUs are faster than CPUs. For
example, from comparative performance analysis on a system for the classification of
web pages using a Recurrent Neural Network as described in [10], the performance of
the Tesla k80 GPU is found to be 4–5 times faster than the Intel Xeon Gold 6126 CPU.
In GPU, parallelism is brought through software with two different techniques, Single
Instruction Multiple Threads (SIMT) and Single Instruction Multiple Data (SIMD). GPUs
are programmed in languages such as CUDA and OpenCL and hence provide limited
flexibility when compared to CPUs. Major producers of GPU include Nvidia, ARM,
and Broadcom.

Though GPUs serve as a better choice for executing complex AI models, recent appli-
cations are driven by the loT, and implementing AI solutions with GPU becomes infeasible
in IoT devices [11,12]. Specialized hardware designs using Field Programmable Gate Array
(FPGA), Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP) [13],
and Tensor Processing Units (TPU) have opened up alternate hardware optimization tech-
niques for implementing AI models in edge devices. Field Programmable Gate Array
(FPGA) is used to develop customized architecture for specific applications and thus gives
high performance at low cost and low power consumption when compared to CPU and
GPU. FPGA consists of up to millions of logic blocks, memory cells, and specialized 1/0 and
Digital Signal Processing (DSP) blocks which can be programmed to implement a specific
function in terms of logical operations. Typically, the required application has to be coded
in Register Transfer Language (RTL), which will then be compiled by RTL compilation
tools such as Synplify from Synopsys. The output is called netlist, which represents the
application in terms of connections between the logic blocks. The netlist passes through
two more steps called placement and routing, which appropriately implement the con-
nections required on the hardware. The steps involved in the FPGA workflow are shown
in Figure 6.

Another desirable feature of FPGA is that it is reconfigurable so that a variety of
applications can be implemented on FPGA [14]. The reconfiguration is at first stored
in an off-chip non-volatile memory, and it becomes effective during its write to static
RAM [15].
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Application Specific Integrated Circuit (ASIC) refers to more specialized hardware
designed for a specific purpose. When compared to FPGA, ASIC is not reprogrammable.
However, ASIC is more energy efficient than FPGA. In addition, the size of ASIC is smaller
when compared to FPGA. However, it consumes time to design ASIC. It is comparatively
expensive. Different types of ASIC include Tensor Processing Unit (TPU), Vision Processing
Unit (VPU), and Neural Processing Unit (NPU).

TPU is an Application Specific Integrated Circuit specially designed for matrix com-
putation with extreme parallelism and with high throughput via open-source machine
learning software such as Tensorflow. It is specially optimized for the deep neural network.
Producers of TPU are Google, Coral, and Hailo. Further, the evolution of TPUs can be
visualized in four generations [16]. The first-generation TPU is a CISC processor, and the
complex instructions are executed by Matrix Multiplier Unit. This TPU works on 8-bit inte-
ger operations, and this kind of TPU is more suitable for inference. The second-generation
TPU works on floating point operations. The second-generation TPU can be used to im-
plement both model training and model inferencing. Further, the third-generation TPU
is more powerful than its predecessors and has high throughput. An important aspect
of TPC is that the unit will not follow the fetch and execute model as CPU. However, the
CPU based host will fetch the instruction and load it in TPU for execution. Its focus is
fully on matrix computations involved in the neural network. Another key point to be
noted is that the above-said TPUs are typically used in cloud infrastructure, whereas the
edge TPU (4th generation TPU) are designed specifically for edge devices where the neural
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network-based models are run on the top of light weight machine learning frameworks
such as TensorFlow Lite.

VPU facilitates computer vision-based inferences in edge devices with high power
efficiency without compromising high performance. For example, Intel’s Neural Comput-
ing Stick 2 (NCS 2) is optimized by minimizing the data movements using programmable
computation strategies on a workload-specific hardware accelerator, Intel’s Movidius Myr-
iad X VPU. Vision processing units are designed specifically to process visual or image
data acquired by edge devices such as cameras. These low power consuming (around 2
to 3 watts) units are typically programmed for object recognition and facial recognition
applications implemented with the Google TensorFlow framework.

NPU is having data-driven parallel computing architecture designed to process mas-
sive multimedia data such as video and images for specific applications. NPU architecture is
dedicated to energy-efficient deep neural networks [17] having diverse hardware-software
co-optimization schemes for inference with low power consumption. The small form
factor of NPU makes it useful in many applications deployed in cell phones, such as smart
security cameras, gesture-controlled autonomous drones, and industrial machine vision
equipment. For a quick reference, the power consumption, prediction error, and throughput
are different processors compared in Table 3.

Table 3. Comparison of power consumption, prediction error, and throughput of different processing units.

Type of Processing Unit Power Consumption
(in Watts) Prediction Error in (%) Throughput (in Giga Operations per

Second (GOPS))

GPU >102 <1 103 Giga Operations Per Second

CPU 102 Around 1 1 to 10 Giga Operations Per Second

FPGA <10 >1 and ≤10 10 to 100 Giga Operations Per Second

ASIC <1 ≥101 10 to 100 Giga Operations Per Second

Edge TPU ** 2 W * Accuracy is 0.77% when
compared to 96% of GPU 4 trillion operations per second

VPU <1 W *** 32% with throughput 3
times higher over one trillion operations per second

NCU <1 W **** Quantization error 0.81% 11 trillion operations per second

* https://www.springml.com/blog/machine-learning-on-tensor-processing-unit/ (accessed on 30 December
2022); ** https://cloud.google.com/tpu/docs/tpus (accessed on 30 December 2022); *** https://viso.ai/edge-ai/
vision-processing-unit-vpu-for-inference/ (accessed on 30 December 2022); **** [18].

6. Learning-Related Strategies
6.1. Federated Learning

Federated learning is a distributed, and collaborative learning method that allows
different edge devices with different datasets to work together to train a global model. In
this learning, a single global model is stored in a centralized cloud infrastructure. At first,
the global model is shared with devices with initial weights. Now the edge device collects
the real-time data and trains the model locally with the new data for one or several iterations
in order to update the weights so that the loss function is minimized [19]. The updated
weights are sent to a centralized server. Here the data are not sent to the centralized server.
Only the weights are sent to the server with encryption [4]. The centralized server receives
the updated weights from several edge devices. It computes the average of updated
weights, and then it updates the weights of the global model. Then the global model is
again shared with edge devices. The concept of federated learning is shown in Figure 7.
Federated learning could cater to the needs of modern IoT-based applications and turns
out to be the basis for next-generation artificial intelligence [20].

https://www.springml.com/blog/machine-learning-on-tensor-processing-unit/
https://cloud.google.com/tpu/docs/tpus
https://viso.ai/edge-ai/vision-processing-unit-vpu-for-inference/
https://viso.ai/edge-ai/vision-processing-unit-vpu-for-inference/
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As discussed above, in centralized learning, the server sends a model, which initially
gets trained in the server, to edge devices. In an edge device, the model gets training
with local data, and the updated model parameters are sent to the server. In this way, the
server aggregates all the parameters and resends the updated model to devices. In the case
of decentralized, federated learning such as Peer-to-Peer [22] or in a ring topology [23],
in addition to training the model with local data, each device performs the updating of
parameter values with a Gossip algorithm [24,25]. As multiple devices are involved in
training the model simultaneously, the training time is reduced [26]. Moreover, in federated
computing, privacy and security of data are maintained [27]. Federated learning is more
appropriate for utilizing low-costing machine learning models on devices and sensors [28].

As far as the data in different clients are homogeneous in which the feature space of
local data in participating clients is the same, updating the global model with updated
weights of clients would be easy, and such data federated learning is called horizontal
learning, and it leads to an effective global solution [29]. However, updating the global
models becomes a challenge when the data in devices are of the kind non-Independent
and Identically Distributed (non-IID) which makes the convergence of the global model
becomes difficult [30]. This issue can be resolved by developing a personalized local model
for each client [31], and then the personalized local models can be merged into a shared
global model with the help of the Bayesian fusion rule, as discussed in [32,33]. In another
research work [34], a branch-wise averaging-based aggregation method has been proposed,
which guarantees convergence of the global model. In another work [35], feature-oriented
regulation method has been proposed to establish a firm structure information alignment
across collaborative models.

Federated learning is of two kinds, centralized [21] and decentralized (Figure 8).
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6.2. Deep Transfer Learning (DTL)

Edge devices such as IoT, webcam, robots, intelligent medical equipment, etc., are very
useful for many healthcare applications during a pandemic, say, for example, COVID-19.
Both shortages of reliable datasets, limited hardware, and power support of edge devices
prohibit the usage of deep learning models in them. However, in Deep Transfer Learning
(DTL), the knowledge of an already learned model is used to solve a new task, as in
Figure 9. DTL significantly reduces training time and the requirement of resources for a
target domain-specific task for a fixed feature extraction or fine-tuning [36,37].
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Figure 9. Deep transfer learning.

In contrast to conventional machine learning, where learning takes place in isolation,
transfer learning uses knowledge learned from other existing domains while learning for a
new task. Transfer learning is of two types, homogeneous and heterogeneous. In homo-
geneous transfer learning, the source and target domains are the same. It means that the
feature space is the same, whereas, in heterogeneous transfer learning, the feature space is
not the same. Different methods, namely, instance-based methods, feature-based methods,
parameter-based methods, and relation-based methods, are being used for homogeneous
transfer learning, whereas for heterogeneous domains, only feature-based methods are
being used. There are two types of methods, namely asymmetric feature transformation
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and symmetric in heterogeneous transfer learning. In asymmetric transfer learning, one of
the domains is transformed into the other, and this method is found to be effective when
both domains share the same label space. In symmetric transfer leaning, both domains are
transformed into a common feature space.

6.3. Knowledge Distillation

Large machine learning models have millions of parameters associated with them,
which makes the deployment of the model in edge devices infeasible. So, the knowledge
gained from large models is transferred to small models which run on edge devices. Here,
the large models serve as the teacher model, and the small model is such as the student
model. The teacher model refers to a larger model, and it alone gets pre-trained. The learned
knowledge from the teacher model is transferred to the student model through knowledge
distillation, as in Figure 10. The knowledge distillation helps in improving the accuracy of
the student model despite the constrained hardware [38]. Different knowledge distillation
techniques, namely response-based distillation, where the prediction performance of output
layers of the teacher model and student model are compared using a loss function which
shows the difference between the models and the loss function is minimized so that the
accuracy of student model approaches that of the teacher model. In contrast to response-
based distillation, in feature-based distillation teacher model distills the intermediate
features of the student model. Here, the position of distillation is moved prior to the
output layer [39,40]. Here the student mimics by minimizing the loss function that is
computed according to the intermediate layers. Relation based distillation is one in which
the difference between the relationship between different feature maps is captured as a
gram matrix, and the corresponding loss function is minimized. The student model reduces
the computation cost and memory usage [41].
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Figure 10. Knowledge distillation.

In addition, knowledge distillation is also used to tackle the problems, namely, het-
erogeneity in the local data of different devices and heterogeneity in the architecture of
the models in edge devices. Federated learning can be implemented through knowledge
distillation, as discussed in [42,43].
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7. Model Optimization Methods

In the fields of computer vision, natural language processing, video analytics, etc.,
deep neural networks are being used in innovative and impactful ways. However, the
computational resources required for implementing neural networks are on the higher
side. Further on, the energy consumption of these architectures is also high, while the heat
dissipated by them into the environment is hugely damaging. Deploying such features-rich
DNNs in the Internet of Things (IoT) edge devices is beset with a number of technical
challenges and concerns due to the limited hardware and power resources in edge devices.
Thus, DNN models ought to be optimized in order to substantially reduce the usage of
huge computational resources.

7.1. Pruning

Larger models require more memory and more energy, are hard to distribute, and
consume long computation time. Pruning is used to produce models having a smaller size
for inference. With reduced size, the model becomes both memory efficient and energy
efficient and faster at inference with minimal loss. Pruning is implemented by removing
unimportant connections or neurons, as in Figure 11.
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Figure 11. Pruning of connections and neurons.

Pruning is of two kinds. Unstructured pruning simply removes neurons, whereas
structured pruning removes neurons and their respective connections, weights, and chan-
nels [44]. Weights with very small values may be pruned. For example, in [45], the authors
reduced the number of parameters of AlexNet from 61 million to 6.7 million and of VGG-
16 from 138 million to 10.3 million, both with no accuracy loss by pruning unimportant
connections along with fine tuning of weights. Some of the parameters in the network
are redundant and do not contribute anything great to arrive at the output. When one
computes the rank of the neurons in a network according to how much they contribute,
then the low-ranking neurons can be removed from the network. This results in a smaller
and faster network. In Ref. [46], the layer-wise pruning method has been proposed in
which two neurons produce highly correlated outputs, then the outputs are pruned to one,
and the error due to the pruning of the neuron is corrected by the method of least square.
One key point to be noted here is that the removal of neurons or connections or weights
based on their magnitude will lead to changes in the structure of deep neural networks. In
contrast to such pruning, filter-based pruning will achieve acceleration but not by changing
the structure of the deep neural network, which get supported by commercially available
off-the-shelf deep learning libraries, as discussed in [47]. In this work, the authors have
obtained a ‘thin network’ by pruning the unimportant filters. Moreover, pruning of a filter
in the ith layer leads to the removal of the corresponding channel in the (I + 1)th layer, as in
Figure 12. So, filter pruning and channel pruning [48] are correlated [49]. Pruning can be
evaluated in terms of model size, accuracy, and computation time.
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7.2. Quantization

Fundamentally, quantization refers to reducing the precision of weights, parameters,
biases, and activations so that they occupy less memory and the size of the model would be
reduced. In an artificial neural network, weights are 32-bit floating-point values. Consider
a neural network with millions of parameters. Here, the memory requirement to store
millions of 32-bit floating point values is too high to get accommodated in edge devices. So,
the 32-bit floating point values are converted into typically 8-bit integers. During quantiza-
tion, the range of parameters or weights must be scaled to the 8-bit integer range (i.e., −127
to +127). This process is called scale quantization. In addition to scale quantization, the
data for quantization has to be grouped, called quantization granularity. I.e., whether the
quantization is going to be applied per channel (in 3D input) or per row, or per column
(2D input).

In Ref. [50], the authors demonstrated that the accuracy of the deep neural network
is not influenced when the 32-bit floating point values of weights are trimmed to 16-bit
fixed point numbers when image classification has been performed using the MNIST
database [51] and CIFAR10 database [52]. In other research work such as [53,54], where
the layer-wise weights and inner products are approximated from 32-bit floating point
values are quantized into very low binary values, say −1 and +1, and then the quantization
error is minimized by comparing the original and quantized models. Towards correction,
the proximal Newton algorithm has been proposed in [55] and an alternate method [56]
where the authors encode the loss difference due to approximation in the loss function
by associating explicit loss-aware quantization with an incremental strategy, as discussed
in [57]. In this incremental strategy, the layer weights are split into two portions, weights
of one portion are first approximated to low bit values, whereas the weights of the other
portion are kept with the original 32-bit floating bit number and retrained to minimize the
quantization loss due to the first portion. The groupwise quantization and retraining are
iterated to minimize the loss in accuracy.

In general, the quantization process is employed after training the model (called post-
training quantization). Then weights and activations of the trained models are quantized
and embedded into the model. Now, this model has to be evaluated for its accuracy, as
quantization is associated with inherent accuracy loss. The accuracy loss can be resolved
using different methods such as partial quantization, quantization-aware training, and
learning quantization parameters. In partial quantization, quantization is employed only
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for a few layers so that the accuracy of the model is maintained. Similarly, during post-
training quantization method, the accuracy of the model may not be sufficient enough
for the given task. The model with quantized weights is retrained or tuned to tune the
accuracy to the desired level, as shown in Figure 13. Similarly, during training, different
quantization parameters, namely scale value, range value, and zero point extra, are learned,
which will be used to fine-tune the model for its required accuracy.
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7.3. Weight Sharing

As discussed in [58], there is much redundancy among the weights of a neural network,
and this proves that a small number of weights are enough to reconstruct a whole network.
In the weight-sharing method, the number of effective weights that are required to be
stored is reduced by having multiple connections in a neural network share the same
weight [59]. The weight sharing may be based on a random method or HashedNet in
which the weights are grouped according to a Hash function [60,61]. The concept of weight
sharing is exemplified in Figure 14.
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Consider a layer in the neural network that has 4 input neurons and 4 output neu-
rons. The weight matrix of this layer is 4× 4. There are 16 weights, and each weight is
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represented using 32 bits. Now the number of bits required to store the 16 weights is
16 × 32 = 512 bits. Now, weight sharing groups the weights in buckets or clusters share
the same value. Consider that the 16 weights share 4 shared values (in the example, there
are 16 weight values, 1,2,3 up to 16. Now, consider that the 16 values are grouped into 4
clusters or groups, for example, group-1 (1,2,3,4), group-2 (5,6,7,8), group-3 (9,10,11,12),
and group-4 (13,14,15,16). Now, consider that each weight is replaced by the group aver-
age. Then the shared weights would be 2.5, 6.5, 10.5, and 14.5. Moreover, at least two-bit
indexing is required to point to the 4 shared weight values, as shown in Figure 14. Then,
the original weight values are replaced by the indexes of the shared weights, and the
shared weights are stored with 32-bit representation. Here, to represent 4 shared weight
values, 2-bit indexes are required. Now, the number of bits involved in this example is
4 × 32 + 16 × 2 = 160 bits. In addition to weight sharing, the shared weights may further
be compressed using Huffman coding [62] during storage.

7.4. Matrix Decomposition

Matrix decomposition is a mathematical technique in which complex matrix oper-
ations are performed on the constituent matrices (decomposed matrices) rather than on
the original matrix. There are various methods. Namely, Lower Upper (LU) decomposi-
tion, which is used to decompose square matrices, QR decomposition, which is used to
decompose any rectangular matrices and Cholesky decomposition is for square symmetric
matrices. Matrix decomposition is also called matrix factorization, and it gives a more
compact representation of a full matrix in hand. Matrix factorization reduces the number
of operations on a full matrix, say A of dimension (m × n) where ‘m’ denotes the number
of rows, ‘n’ denotes the number of columns, into a decomposed representation UVT, where
the matrix U having dimension (m × d) and matrix V has dimension (n × d). Here, ‘d’
denotes the embedding dimension. With this factorization, it is understood that the number
of operations with full matrix A, say, O(nm) reduced to O((n + m) d), and d is much smaller
than m and n. Thus, matrix factorization helps in reducing the size of the model at hand.

In Ref. [63], matrix decomposition has been employed for the weight matrix between
the hidden and output layer with the intention to arrive at low-rank weight matrix, which
in turn speeds up the performance of the neural network. In contrast to the above work
where the matrix factorization is employed in the hidden to output later, in [64], the authors
employed the matrix factorization method in the first forbidden layer with an intension to
produce low-rank weight matrix, which helps in reducing the model parameters signifi-
cantly. In addition, the authors could achieve a 75% reduction in parameters without any
loss in performance.

7.5. Stochastic Gradient Descent (SGD)

In a neural network, the goal of gradient descent is to minimize the cost function,
which represents the difference (i.e., error value) between the predicted value and the
actual value of the output by updating the values of weights and bias. This method takes
the initial values of the parameters and updates the values with calculus-based operation
such that the cost function becomes minimum. Two components are involved in gradient
descent optimization, namely, cost function and learning rate. The learning rate is the
step size with which the parameters are updated. If it is too large, it may overlook the
minimum. If it is too small, it may require many iterations to reach the minimum value
for the cost function. There are different kinds of gradient descent algorithms being used,
including batch gradient descent, stochastic gradient descent, and mini-batch gradient
descent. Batch gradient descent sums the error for each data in the training dataset and
updates the parameters of the model only after determining the error values of all the
data in the dataset. In the stochastic gradient descent method, the method updates the
weights and biases after finding out the error value for each data item. Since this method
involves only one data item, the memory requirement for this optimization approach is
small and fits as a natural choice for deploying neural network models in edge devices [65].
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In contrast to the above two methods, the mini-batch gradient method, method splits
the training dataset into several mini-batches and updates the weights and biases after
each mini-batch.

7.6. Gradient Scaling in Network Quantization

As mentioned earlier, in a deep neural network, weights and biases are typically
quantized from their 32-bit floating point representation to 8-bit fixed format representation.
Moreover, further acceleration of the models is being obtained using still lower 4-bit or 2-bit
binary formats in which multiplication and addition operations use XNOR and bit count
operations. Despite the quantization of weights and bias in the forward pass of the neural
network, more training time is consumed in the GEneral Matrix Multiplication (GEMM)
computations of the backward pass of the neural network. In order to make the GEMM
efficient, the full length 32-bit floating point representation is quantized into 4-bit floating
point representations. This reduces memory space and enhances performance.

In Ref. [66], the authors have scaled gradient values into 4-bit floating point represen-
tations, in addition to the 4-bit integer quantization of weights and bias parameters. With
the proposed method, the have obtained a significant acceleration greater than 7× over the
existing 16-bit floating point representation. This novel method enabling 4-bit training of
deep learning models can be used across many domains.

In Ref. [67], an elementwise gradient scaling technique is used, which adaptively
scales up or down the given gradient using Hessian information for backpropagation and
achieves more stability and accuracy of the model.

7.7. Regularization

When a deep neural network model is developed for a purpose, underfitting or
overfitting issues may arise. Overfitting of the model occurs when the developed model
learns more about the training data, and it works very well with training, but it will not
produce the same performance when the new unseen dataset is given. This is because the
model learns too much about the particulars of training data. Regularization is a technique
used to resolve the issue of overfitting by reducing the magnitude of features.

There are different regularization techniques, L1 regularization (Lasso), L2 regular-
ization (Ridge), and dropout. Consider that the cost function of a model is represented as
given in (1)

cos t_ f unction = loss + regularization_term (1)

Here, the loss refers to the difference between the actual and predicted values for a
single input data item, whereas the cost function refers to the sum of loss for all the data
items present in the entire training dataset.

For the L1 technique, the cost function is expressed as in (2)

cos t = loss + λ×
n

∑
i=1
|wi| (2)

Here, λ is called the regularization parameter and λ > 0. This regularization is used
to reduce the complexity of a model. The key point with the L1 regularization technique is
that the technique takes absolute weights, which implies that a weight value can take zero
value. That is, some of the features can be completely removed. Thus, the L1 regularization
technique is used for both feature selection and reducing overfitting issues.

In the L2 technique, the cost function is expressed as in (3)

cos t = loss + λ×
n

∑
i=1

w2
i (3)

Here, the cost function is altered by a penalty term which is computed by multiplying
λ by the sum of the squared weight of the individual features. Here, the penalty term
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regularizes the coefficients of the model and thereby reduces the complexity of the model.
Both in Ll and L2, the final value of wi is not only influenced by the model and data but
also by a predefined parameter λ which is independent of the model and data. Thus, we
can prevent overfitting if we set an appropriate value of λ, though too large a value will
cause the model to be severely under fitted.

Drop-out regularization is another technique employed on any non-output layer of a
deep neural network to handle overfitting issues. In this method, during training, some
layer outputs are dropped out. A term called threshold retention probability is used to
specify the probability that a neuron is not dropped. For example, if the threshold retention
probability is set as, say, 0.9, if a neuron has a retention probability that is less than 0.9,
then it will be dropped. In addition, retention values for neurons are set using a random
generator. It means that the neurons are dropped at random. This technique is specifically
used during the training of a model in order to make the model more robust against
fluctuations in the training data. So, when some neurons are dropped out during training,
then during testing or inference, there would exist more connections in the succeeding
layer, i.e., neurons in the subsequent layer get more excited or more activated, which also
should be compensated.

8. Hyperparameter Tuning

In machine learning, there are two types of parameters, namely model parameters,
and hyperparameters. In a deep neural network, weight and bias refer to model parameters
that are computed from training data, whereas a hyperparameter, say, the learning rate is a
hyperparameter that will be tuned to obtain the model’s optimal performance. Different
hyperparameter tuning methods are classified in Figure 15.
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Tuning hyperparameters becomes necessary [68] both in the complex model, where
many hyperparameters are required to be tuned, and in a lightweight model, each parame-
ter has to be tuned strictly to a particular range. Training-related hyperparameters, such
as the batch size of the data and learning rate, influence the speed of convergence, and
structured-related hyperparameters decide the model learning capacity.

In general, hyperparameter optimization can be formulated as in (4).

x∗ = min f (x) (4)

In (4) f (x) denote the objective function used for determining optimal values for
hyperparameters. It may be such as Root Mean Square Error (RMSE) expression, and
it needs to be minimized. x∗ denotes the optimal values of the given hyperparameters,
denoted by, say x. In addition, the objective function may be of maximizing type also.

Grid search performs an exhaustive search on the hyperparameter set and range given
by a user so that the optimal values that yield the highest accuracy are obtained. Since the
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method works in a brute-force search manner, to include all possible combinations, the
computing resources required for this search are heavy. When limited search space is given,
this method becomes more appropriate. In contrast to the grid search method, the random
search method determines an optimal set of hyperparameters by randomly selecting the
values within the search space given. The random is typically performed till the desired
accuracy is obtained. In addition, this method is adopted as a first-level optimization to
find out the range of hyperparameters, and then they will be fine-tuned. Both grid search
and random search suffer from one limitation the method does not consider the previously
evaluated values when trying to find new values for the hyperparameter set.

In contrast to the grid and random searches, the Bayesian optimization method takes
into consideration the previously calculated /past values while attempting to find the new
values for hyperparameters. The Bayesian model, first, builds a surrogate probability model
of the form p(y|x ) where y denotes the probability score for the given hyperparameters,
denoted by, say x. i.e., the surrogate objective function is a high dimensional mapping of
hyperparameters to the probability of a score on the objective function. It finds the optimal
x for which the score is maximum. Now, these values will be used in the true objective
function. The results of the true objective function are updated to the surrogate, and the
above process is repeated until the desired accuracy is obtained. Further, the method
chooses the next set of hyperparameters with the help of the selection function, which is of
the form, as shown in (5).

fy∗(x) =

y∗∫
−∞

(y∗ − y)p(y|x)dy (5)

Also, the Bayesian optimization method is formulated as Sequential Model-based
Optimization. There are different types of surrogate functions, such as the Gaussian
process, Random Forest Regression, and Tree Parzen Estimator (TPE). The Bayesian method
finds optimized hyperparameters with fewer evaluations compared to gird or random
search methods.

Gradient-based optimization is used to optimize several parameters simultaneously
based on the computation of gradient with respect to hyperparameters [69]. In this work,
the authors presented a method that simultaneously tunes the hyperparameters by back-
propagating the gradient through Cholesky decomposition and back-substituting the model
parameters. This has reduced the mathematical computation involved in tuning signifi-
cantly to a measure of about (s3/3) operations in cases where the training criterion (which
is continuous and differentiable with respect to model parameters and hyperparameters) is
a linear function of model parameters such as linear regression.

In the population-based training method, a population of neural networks is trained
using randomly selected hyperparameters simultaneously, and at the end of, say, ‘m’
iteration, the performance of the networks has been computed based on, say, for example,
loss function. Then the hyper parameters of the best-performing network will be used
by the population for further exploration of fine-tuning the hyperparameters. i.e., within
the population, the training is not independent. A network is allowed to copy the hyper
parameters of the best-performing network and to continue its further hyperparameter
tuning. It this way, it is a combination of parallel search and sequential optimization [70,71].

With respect to tools for optimizing the hyperparameters of the models, the following
are some of the important ones.

• Scikit-learn has implementations for grid search and random search.
• Scikit-optimize uses a Sequential model-based optimization algorithm to find optimal

solutions for hyperparameter search problems in less time.
• Different libraries, namely, BayesianOptimization, GPyOpt, and Hyperopt, are some

of the implementations available in Python for optimizing hyperparameters of models
using the Bayesian optimization method.
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# BayesianOptimization tool implemented in Python. This tool finds out the
optimal hyperparameters with two important functions, (i) objective function
and f(x), in which x denote a set of hyperparameters used to optimize f(x). In
addition, in most of the models, the inputs and outputs of the model are known.
(ii) acquisition function, which is based on the Gaussian process model, which
serves as a surrogate for f(x), used to determine new values of x.

# GPyOpt is another Python implementation of Bayesian optimization used to
automatically configure the models.

# Hyperopt is a Python library for serial and parallel optimization over search
spaces, designed with three algorithms, namely random search, TPE, and
adaptive TPE.

• Keras library is used to determine the optimized hyperparameters such as kernel size,
filters, number of neurons in each layer, and learning rate for deep learning models
from the given range of the hyperparameters. Internally, it uses random search and
grid search methods.

• Ray Tune uses the power of distributed computing to speed up hyperparameters
with different population-based training methods. In addition, it supports different
machine learning frameworks such as TensorFlow, Sklearn, PyTorch, etc.

• Optuna—To facilitate the users while defining search space for hyperparameters in
large-scale applications, Optuna provides an input facility that dynamically constructs
the search space in contrast to other tools where the search space is statically given.
The tool has random search, grid search, Bayesian optimization based on Gaussian
process or Tree-structured Parzen Estimator and Covariance Matrix Adaption - Evolu-
tion Strategy based method, etc., for identifying the optimized values. Another unique
feature of Optuna is that it provides different algorithms such as asynchronous succes-
sive halving algorithm, hyperband algorithm, median pruning algorithm, threshold
pruning algorithm, etc., which allow the users to customize their requirements. The
tool is installed in Python.

• Metric Optimization Engine (MOE) is more suitable when the objective function
is a black box, the derivatives are unavailable, or any other internal knowledge is
not available.

• Spearmint determines optimal hyperparameters using Bayesian optimization, and it
automatically adjusts the number of parameters to minimize the objective function in
fewer runs.

• Sigopt provides high customizable search spaces and multimetric optimization with
sophisticated tuning options.

When hyperparameters of a model are optimized, there are chances that the tuned
model may be affected by overfitting (the model learns too much from the training dataset,
and the variance is high) of underfitting (the model has not learned enough from the
dataset and the bias value is high) issues. In general, though the lowest bias and lowest
variance are desired, one cannot be lowered without increasing the other, which is called a
bias-variance trade-off. So, hyperparameters are tuned for an optimal trade-off between
bias and variance. Again, the chosen optimal hyperparameters are required to be validated
with the K-fold cross-validation method. Since K-fold cross-validation divides the dataset
into K folds and uses data that belong to (K-1) number of folds for training the model
with data of kth split as testing data, repeating the above procedure K times and finally
averaging the model performance, the issues of overfitting and underfitting are getting
eliminated. When hyperparameters are optimized for a given dataset, the model may over
perform well only for the considered training data.

9. Energy Efficiency Techniques

Basically, power refers to the rate at which energy is consumed over time. In edge
AI, energy per inference and the maximum number of inferences per second are used
as energy and power metrics. In general, edge devices are battery-operated devices that
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store the total energy (capacity) in the battery, and the capacity of the battery is specified
using a metric called mW-H (milliWatt Hours). For example, consider a 12 V battery
with a specification of 100 AH (Ampere-Hour). Now the battery capacity is calculated as
12 V × 100 Ah = 1200 WH. It implies that the battery can deliver 1200 Watts in one hour
before its discharge. Moreover, assume that the battery is giving power to an IoT device
that consumes 2 W in one hour. Then the battery can power the device for 600 h. Power (in
Watts) is expressed as Energy (in Joules) consumed in one sec. Power efficiency is measured
as the unit of performance per unit of power consumed.

The power efficiency of an edge device that performs inference tasks is computed
as the number of inferences per second (IPS) per Watt. Similarly, the power efficiency of
another device that is used for, say, an image recognition application is computed as the
number of Frames per Second (FPS) per Watt. The power efficiency of a processor can
be measured as Terra Operations per Second (TOPS) per Watt. While designing neural
network-based applications for edge devices, the supply voltage and clock speed of the
processors should be taken into account. The power consumed is directly proportional
to the square of the supply voltage. The speed of the application needs to be optimized
without necessarily increasing the supply voltage.

Secondly, as far as energy and power optimization methods are concerned, edge
devices should be capable of consuming less energy for inference tasks. Moreover, the
inferencing task should be carried out only when it is actually required. Here, the power
consumption for performing maximum inferences/second is computed as given in (6).

Pmax−in f erences = (Maximum_number_o f _in f erences/second)× (Energy/in f erence) (6)

Thirdly, as mentioned above, the inferencing task should be performed only when it
is actually required. So, there would be another power term, called static power which is
required to keep the edge device in normal functioning mode. So, the total power required
would be as in (7)

Ptotal = Pstatic + Pmax−in f erence (7)

9.1. Neural Architecture Search (NAS) and Hardware-Aware NAS

NAS is one of the model compression techniques used for computer vision tasks [72,73].
Basically, NAS is an algorithm-based technique used to find an optimal neural network
architecture automatically to resolve the problem at hand with good accuracy, minimum
time, and cost. The technique has three entities in it, search space, search strategy, and
performance estimation. The search strategy selects an architecture from the search space
which contains many possible architectures for the given problem in hand (here, human
intervention is involved in inputting the relevant architectures) and determines its perfor-
mance. Basically, the evaluation of the model involves the application of the model on a
dataset for its training and validation [74]. The major advantage of NAS is that it takes
small datasets and, with limited search, space helps to obtain a better model in a quick
time. In the earlier NAS, the method automatically searches for an efficient deep neural
network architecture for the given problem but without taking into account the hardware
characteristics while finding out the DNN architecture, whereas the hardware-aware NAS
searches for efficient DNN architecture, taking into account the hardware characteristics,
say for example GPU [75].

9.2. Algorithm-Accelerator Co-Design Method

In this method, AI algorithm designers and hardware developers work together to
determine the between optimization solutions. In this approach, both algorithm design
alternatives and accelerator design alternatives are tried simultaneously to achieve the
optimized solution, which has been discussed for the first time in [76]. Further differ-
ent, effective algorithm-accelerator co-design approaches have been discussed in [77].
The integrated approach of considering both algorithm and accelerator/hardware de-
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sign will bear the biggest benefit in energy consumption. Consider a matrix operation of
16 × 16 dimensions. This needs a corresponding memory block of the same dimension
in hardware also. Say in case the hardware dimension is not corresponding to 16 × 16;
rather, it says 8 × 8, then more cycles are required for performing the matrix operations,
which leads to inefficient implementation. So, if the hardware and software design are
taken together, it will lead to optimized computing and memory solutions. Ultimately,
energy consumption will also be optimized.

In addition, neural networks often depend on large vector-matrix multiplications,
and hence analog accelerators are well suited for this task. New hybrid chip designs,
combining analog accelerators and conventional digital accelerators, will allow us to
perform operations automatically on the particular processor that’s most suitable for the
task. The co-optimization of innovations in data usage, hardware, and software will bear
the biggest benefit in energy consumption. To create truly energy-efficient AI systems, we
thus need an integrated approach that tunes these innovations.

9.3. Memory Optimization

Toward providing energy-efficient mechanisms for edge AI, on one side, AI developers
are making efforts to optimize the models through various mechanisms such as pruning,
quantization, etc. On the other side, hardware development advances with modern circuit
design even beyond Moore’s Law. Despite the above efforts, still, power consumptions
need to be optimized as the number of IoT devices keeps on evolving very rapidly. In
edge AI, memory is the critical component that consumes more power. First, the full DNN
models do not get accommodated into the on-chip memory as their size is limited. So, the
system has to access off-chip DRAM access which has latency and energy requirements
higher than other computer operations [78]. To reduce DRAM access, layer partitioning
and scheduling has been discussed in [79]. The access time and energy spent for typical
DRAM access will vary based on the requested access met with row buffer hit (means
that the requested row is available in row buffer), row buffer miss (means that there is no
activated row in the buffer) or row buffer conflict (there is a row in the buffer but which is
different from the requested one).

Typically, DRAM consists of a channel, rank, chip, bank, row, and column, with each
bank, consisting of multiple sub-arrays, each sub-array local row buffer. The latency in
memory access can be reduced by reducing the row buffer miss and row buffer conflict or
by increasing the row buffer hit. In Ref. [80], the memory latency has been reduced by using
a DRAM data Mapping policy (DRMap) which achieves maximum row buffer hits while
exploiting bank-level parallelism and sub-array level parallelism. In Ref. [81], the authors
have discussed sub-array level parallelism in the same bank in three different DRAM
architectures, namely, SALP-1(in this architecture, pre-charging of sub-array is combined
for parallelism with activation of another sub-array), SALP-2(here, write-recovery latency
(which refers the time that must be elapsed between last write command to row and
pre-charging of it) is used for overlapping the activation of another sub-array) and SALP-
MASA(activation of multiple sub-arrays is performed simultaneously).

In addition, in another research work [82], layering partitioning and scheduling have
been proposed to minimize DRAM access. This method is based on the fact that CNN
processes the data sequentially in a layerwise manner, i.e., one layer at a time. Moreover,
the CNN processing of data in a particular layer can be perceived into two loops, namely
inner and outer, whereas the inner loop refers to the processing of a particular portion
of data that is currently in the on-chip, and the outer loop refers to the processing of the
subsequent portions of the data. Further, the data are partitioned into blocks that are of the
same size as on-chip memory. The outer loops are subsequently scheduled, and the number
of loops refers to the number of partitions. The outer loops are scheduled according to
the sequence. Here, whenever the subsequent operations share the same data, then the
data present in the on-chip memory itself will be reused for the subsequent operation
and thereby reducing the memory accesses. In another research work [83], an adaptive



Sensors 2023, 23, 1279 25 of 33

scheduling algorithm has been proposed that provides not only the dynamic partitioning
of data and its reuse but also considers the constraints of adjacent layers.

9.4. Energy-Efficient Communication Protocols

In general, performing an AI task on edge involves the transfer of information between
edge AI devices and edge service in multiple rounds. Federated learning is typically
employed in edge devices due to the fact that centralized learning is infeasible in edge
computing devices which have the inherent difficulty of limited computing power and
storage. Even with federated learning in which edges need to work only with their local
data, different optimization techniques are being used. In order to enhance the efficiency of
federated learning, first and second-order methods have been used in cases where gradient
information is available. In case the stochastic gradient is not available, the zero methods is
being used. In first-order learning, the loss function in any edge device is of the form given
in (8)

loss_ f unction, F(w) =
1
n

n

∑
i=1

f (wi, xi) (8)

where n denotes the number of samples available in the devices. Now, in each edge device,
the updated weight matrix is computed using the gradient of the loss functions, which is of
the form given in (9)

Wk+1 = Wk − η∇F(w) (9)

Here, η denotes the learning rate and ∇F(w) denotes the gradient of the loss function.
But the gradient method has the drawback of a slow convergence rate. It implies that

the communication of local gradients to the server needs to be carried out in
multiple rounds.

Computation and communication are heavy. Whereas the second order derivative
methods, which are of the form given in (10)

Wk+1 = Wk − η(∇2F(w))
−1∇F(w) (10)

Here, (∇2F(w))
−1 denote the inverse Hessian matrices (say H−1). This second order

derivative is the Newton method, and it required only a few iterations to obtain an updated
weight matrix. In addition, the size of Hessian matrices is large, and it is also optimized
using approximate inverse Hessian matrices [84,85]. Further, in case the gradient of the
loss function is not available in an edge AI-based application, then Zero order derivation,
only functional value will be used for updating the weight matrix [86]. In zeroth-order
methods, only functions are evaluated and not their gradients.

In addition to the above kind of optimizing computation and communication of
information, there are other optimization techniques that look into routing communica-
tion in a manner that makes the transfer energy efficient, as discussed in [87–89]. Blue-
tooth Low Energy (BLE) can provide wireless communications distances between 10 and
100 m [90]. Wi-Fi Hallow offers low power consumption (comparable with Bluetooth)
while maintaining high data rates and a wider coverage range [91]. ZigBee was conceived
to provide low energy consumption by being asleep most of the time and waking up
periodically. Moreover, it is easy to scale Zigbee networks and create mesh networks to
extend the IoT node communications range. Long-Range Wide Area Network technology
is used to deploy Wide Area IoT networks with low energy consumption. Even a cluster
head may be selected under diverse IoT devices of wireless sensor networks for reliable
and energy-efficient data transmission [92].

9.5. Communication Efficiency with Gradient Compression

Despite the implementation low power wireless protocols such as Bluetooth, Wi-
Fi, etc., edge devices are of weak communication capabilities. As mentioned earlier, in
federated learning, the edge devices compute the gradient and send the values to the server.
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In order to enhance the weak communication efficiency of devices, different methods
have been proposed to enhance the exchange efficiency. Either quantizing gradients to
lower bits or communication, the gradients which are greater than a given threshold will
enhance the communication efficiency [93]. In Ref. [94], the authors proposed a method to
reasonably select gradient values based on the information entropy of gradient distribution
which is regular and almost normal and filters the communication of gradient according to
the selection.

In Ref. [95], a method has been proposed for an efficient exchange of gradient in
distributed deep learning, where the transfer of gradient is delayed until an unambiguous
gradient having high amplitude and low variance is computed. In addition, the authors
found that the method had a high compression ratio while maintaining accuracy. In
another research work [96], the authors proposed a method for gradient compression in
which gradients are considered as random variables which are distributed according to
some sparsity-inducing distributions, and then they compressed the gradient based on a
threshold scheme that enables deep gradient compression while having lower computation
overhead and higher speed.

9.6. Gradient Checkpointing

In Refs. [97,98], a method called Gradient Check Pointing (GCP) has been used to
facilitate the training of edge devices having low memory with the image or video databases
whose input size and features are very large. With this method, during the forward pass,
only a subset of matrices/tensors called gradient checkpoints are stored in the memory.
During the backward pass, the required or missing tensors are computed with the required
reforward passes.

9.7. Shared Memory Concept

The dense convolutional architecture, in its naïve implementation, requires huge
memory [99]. Densenet involves a large number of concatenations and batch normalization
operations. The values are required to be stored contiguously to make the operations
efficient. This requires huge memory. In memory efficient implementation of densenet,
two techniques have been followed. (i) since the concatenation and batch normalization
operations do not consume much computation time, they have been recomputed whenever
they are required. The gradient also may be recomputed whenever it is required. (ii) the
memory space is shared for storing the outputs of concatenations. Similarly, in contrast to
deep networks, in an inception network, speed and accuracy are enhanced by using filters
of different sizes (say, for example, 1× 1, 3× 3 and 5× 5) at the same level, which makes
the network wider rather than deeper. Then the outputs of different filters are concatenated
after max pooling and then given to the next inception layer. Secondly, implementing filters
of size N × N as (1× N) and (N × 1).

Normally, in the deep neural network, convolutional operations are performed over
all the input channels. For example, consider an input of size (D f × D f ) and M chan-
nels. Consider a filter of size Dk × Dk is employed over all M channels, then the number
of multiplication operations in one channel would be Dk × Dk, and for M channels, it
would be Dk × Dk × M. Now the filter is moved over the input features both horizon-
tally and vertically, say for Dp times, then the number of multiplications would become
Dk×Dk×M×Dp×Dp. Moreover, if there are N filters, then the number of multiplications
in a normal CNN is Dk × Dk ×M× Dp × Dp × N.

In contrast to normal CNN operations, in mobile net, operations are performed in two
steps. Firstly, the depth-wise separable convolution operation is formed to only one channel
at a time, and secondly, pointwise convolutional operations are performed following the
depthwise operation.

In depth-wise convolution, the operation is performed over one channel at a time,
and the kernel size is Dk × Dk × 1. Now the filter is moved over the input features both
horizontally and vertically, say for Dp times, then the number of multiplications would
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become Dk × Dk × Dp × Dp. Now for M channels, the number of operations would be
Dk × Dk × Dp × Dp ×M. After depthwise convolution operation, with the filter size 1× 1
and for M channels, the filter size is 1× 1×M. N such filters are required. When this filter
is applied for Dp times both horizontally and vertically, the number of operations would
be M× Dp × Dp × N. The total_number_of_operations and reduction_ratio are obtained as
given in (11) and (12) [100]

total_number_operations = Dk × Dk × Dp × Dp ×M + M× Dp × Dp × N (11)

reduction_ratio =
Dp × Dp ×M(Dk × Dk + N)

M× Dp × Dp × Dk × Dk × N
=

1
N

+
1

Dk × Dk
(12)

10. Delineating the AI Model Optimization Framework

In the software industry, different frameworks are being widely used for significantly
moderating development, deployment, and management complexities. Software engi-
neers and architects have been leveraging many enabling frameworks in order to speed
up software production to streamline and simplify business fulfillment. In short, any
complicated activity is substantially made simple through the smart usage of appropriate
frameworks. The same is true in the context of edge AI also. In the recent past, the process
of AI model generation has been picking up as there are several sophisticated business
tasks getting resolved through pioneering AI models. However, producing path-breaking
AI models is neither straightforward nor simple. AI model engineering is definitely a
complicated activity. Going forward, AI models are being evaluated, retrained, optimized,
deployed, and observed to keep up their performance in production environments. In
short, AI model engineering comprises many tough tasks. However, brute-force AI model
production results in verbose AI models. That is, the computational, memory, storage, and
network bandwidth requirements go up considerably with heavyweight AI models. For
training, testing, and retraining purposes, AI models consume a lot of IT resources. It is
crucial to have a facilitating framework for optimization methods for edge AI with the
following components

• AI-specific processing units
• AI Model Optimization Techniques (Pruning, Quantization, etc.)
• Architecture-centric Learning Techniques (centralized and decentralized architectures)
• Hybrid Approaches (Federated learning is fused with knowledge distillation, etc.)
• Hyperparameter Optimization (HPO) Tuning Toolsets
• Energy-efficiency Methods

This paper has detailed each of the above enablers to enlighten our esteemed readers.
Based on the problem at hand and the target fixed, the way forward is being facilitated
through this facilitating framework.

11. Related Survey Works

There are some survey works related to optimization methods of edge AI. However, the
perspective and focus of the survey vary considerably. For example, the research work [101]
conducted an extensive survey of an end-edge-cloud orchestrated architecture for flexible
AI of Things. The research work [102] discusses the confluence of edge computing and
artificial intelligence by segmenting it into two categories, viz., intelligence-enabled edge
computing and artificial intelligence on edge. Similarly, the research work [11] has a
specific focus on hardware and software optimization for DNN. The survey [4] explores the
optimization methods for edge networks. The survey [3] provides an overview of recent
progresses in machine learning in the domain of IoT. In Ref. [7], the authors performed a
survey with a specific focus on AI hardware platforms and software packages. In Ref. [40],
a more focused survey on knowledge distillation has been carried out. In Ref. [103], the
authors reviewed the motivation for AI running at the edge and discussed architectures,
frameworks, and emerging key technologies for deep learning models towards training and
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inferencing at the edge. The works [19,20,25,26] presented a survey with a specific focus
on federated learning. Optimization methods for scheduling computation offloading are
reviewed in [104]. In contrast to the above survey, the present survey presents an elaborate
survey on optimization methods for edge AI with a holistic view.

12. Conclusions

To optimally run AI models in the IoT edge devices in order to fulfill the long-pending
demand of realizing real-time insights, state-of-the-art AI model optimization techniques
are emerging and evolving fast. In this paper, the authors have identified and illustrated the
proven and potential methods with the aim of making edge devices equipped with artificial
intelligence-based models. The combating techniques for surmounting the challenges
and concerns associated with edge AI implementation are discussed in this paper. In
addition to AI model optimization approaches such as pruning, quantization, knowledge
distillation, and their combination, there are endeavors for bringing the much-required
optimization through hardware accelerators and AI-specific processing units. Federated
learning through centralized and decentralized architectural patterns and styles is being
presented as a viable model optimization technique. Finally, hyperparameter optimization
(HPO) tuning methods and toolsets have been flourishing in the recent past as a way
of bringing deeper and more decisive automation in fine-tuning AI models. As widely
known, compression is a double-edged weapon. Thus, enabling compression without
compromising model performance is the need of the hour. The need for a facilitating
framework to implement the required optimization method in a customized manner
according to the application at hand is highlighted.

Through this survey, it is ascertained that edge devices can be equipped with artificial
intelligence to deliver low latency and reliable functions at low power consumption. Despite
the advancements in edge AI, real challenges are associated with it its implementation.
First, the cost is one of the major challenges associated with the implementation of edge
AI. IoT technology requires fast and revolutionary innovation to bring down the cost
associated with the design, development, installation, and usage of IoT sensors [105].
Another important challenge is with respect to security and privacy. Lightweight, reliable
encryption techniques are required for edge devices, and such solutions should be efficient
enough to be integrated with an edge, 5G, and other emerging technologies [106]. Bringing
ubiquity in edge AI is really a challenge. AI-based edge solutions should be made very
flexible as well as plug and play so the users are not required to be technologically literate.
Moreover, the data in edge devices are highly heterogeneous, and integration of data is
a big challenge. In the future, edge devices will be the key enabler for sixth-generation
communication networks [107] where the latency is less than 1 ms. Edge and edge AI
have to meet the global coverage needs of 6G. These challenges create future directions
of research.
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