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A Survey on PageRank
Computing
Pavel Berkhin

Abstract. This survey reviews the research related to PageRank computing. Compo-
nents of a PageRank vector serve as authority weights for web pages independent of
their textual content, solely based on the hyperlink structure of the web. PageRank
is typically used as a web search ranking component. This defines the importance
of the model and the data structures that underly PageRank processing. Computing
even a single PageRank is a difficult computational task. Computing many PageRanks
is a much more complex challenge. Recently, significant effort has been invested in
building sets of personalized PageRank vectors. PageRank is also used in many diverse
applications other than ranking.

We are interested in the theoretical foundations of the PageRank formulation, in the
acceleration of PageRank computing, in the effects of particular aspects of web graph
structure on the optimal organization of computations, and in PageRank stability. We
also review alternative models that lead to authority indices similar to PageRank and
the role of such indices in applications other than web search. We also discuss link-
based search personalization and outline some aspects of PageRank infrastructure from
associated measures of convergence to link preprocessing.

1. Introduction

The tremendous popularity of Internet search engines presents a striking example
of a successful fusion of many developments in different areas of computer science
and related fields from statistics to information retrieval to natural language
processing. One of the most difficult problems in web search is the ranking of
the results recalled in response to a user query. Since contemporary web crawls
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discover billions of pages, broad topic queries may result in recalling hundreds of
thousand of pages containing the query terms. Only a few dozens of the recalled
pages are actually presented to the user. Moreover, these results are presented
in order of relevance. A variety of ranking features are used by Internet search
engines to come up with a good order. Some of the query-independent features
are based on page content. Some utilize the hyperlink structure of the web.

The ascent of Google to prominence is to a certain degree associated with the
concept of a new relevance feature of the second kind, PageRank. PageRank as-
signs authority weights to each page of a web graph based on the web hyperlink
structure. It is based on an assumption that authoritative pages usually contain
links to good pages, therefore endorsing them in a degree inversely proportional
to the number of their out-links. This fundamental assumption is not always true
in practice partly because good pages may erroneously link to bad ones, partly
because they have a natural tendency to emphasize pages within their own sites,
and partly because of the consistent efforts of malicious sites containing spam.
While this affects its usefulness, PageRank remains an important relevance fea-
ture when combined with other ranking components. Many issues are related to
PageRank computing: from filtering, weighting, and compressing the link data
to the most advantageous modification of the underlying model to finding fast
methods of computing its solution.

PageRank is based on a random surfer model [Page et al. 98] and may be
viewed as a stationary distribution of a Markov chain. The PageRank solution
is a principal eigenvector of a linear system that can be found via the power
method. We discuss this model and some technical modifications (teleportation
mechanism) needed to safeguard the existence of a solution and the convergence
of an iterative process in Section 2.

The sheer size of the World Wide Web presents a challenge to PageRank com-
puting. Different developments to speed-up the power method include extrapola-
tion, adaptive, and block structure methods. PageRank can also be reformulated
in terms of a linear system. Linear systems have a rich arsenal of fast iterative
methods. The effective solution of PageRank depends on a special enumeration
of its nodes corresponding to a DAG structure. We discuss effective procedures
for PageRank computing and its stability with respect to changes in the web
graph and in the teleportation coefficient in Section 3.

Simultaneously with the random surfer model, a different but closely related
approach, the HITS algorithm [Kleinberg 99], was invented. This algorithm
results in two authority vectors. PageRank results in one. More importantly,
HITS is designed to work at query time, while PageRank is precomputed in
advance of its utilization in a search. HITS, its modifications, and other later
models leading to a concept of authority weights defined on a directed graph
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such as, for example, SALSA, as well as the use of such weights in applications
other than web search relevance ranking are surveyed in Section 4.

The PageRank vector serves as only one of the many relevance features for
ranking web search results. Generic PageRank corresponds to a uniform tele-
portation. In principle, PageRanks with different teleportations can be used. A
nonuniform teleportation makes sense, since it leads to a topical or user-specific
personalized PageRank [Page et al. 98, Haveliwala 02b]. Computing many such
PageRanks is difficult, but in some cases it may be significantly optimized. Re-
cent results in personalized PageRank are presented in Section 5.

Remarkable efforts have been made to facilitate the PageRank computing in-
frastructure. They range from special means to estimate PageRank convergence,
to web graph analysis, to special data compression techniques. We present them
in Section 6.

2. Definitions and Fundamentals

In this section we formally define PageRank and consider the theoretical foun-
dations for its existence and for the convergence of the power iteration.

2.1. Definitions

The PageRank vector (PageRank citation ranking weight) was introduced in
[Page et al. 98] and [Brin and Page 98]. It assigns to pages authority scores that
are higher for pages with many in-links from authoritative pages with relatively
few out-links. Let W (G,L) be a directed graph with vertices (or nodes) G that
are web HTML pages and directed edges L that are hyperlinks. The edges L

can be associated with a n × n sparse adjacency matrix that we denote by the
same symbol L, where n = |G| is the number of web pages. An element Lij is
equal to 1 if a page i has a link i → j to a page j and is equal to 0 otherwise.
The out-degree of a node i is the number of outgoing links, deg(i) =

∑
j Lij . All

the definitions can be generalized to a weighted directed graph, in which case
Lij ≥ 0. A transition matrix is defined as Pij = Lij/deg(i) when deg(i) > 0.
For such i it is row-stochastic, meaning that i-row elements sum to one. We set
Pij = 0 when deg(i) = 0.

Consider the following random surfer model. A surfer travels along the directed
graph. If at a step k he is located at a page i, then at the next step k + 1 he
moves uniformly at random to any out-neighbor j of i. Obviously, pages can be
considered as n states of a Markov chain with a transition matrix P . Given a
distribution p(k) =

(
p
(k)
i

)
of probabilities for a surfer to be at a page i at a step
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k, the probability for being at a page j on the next step is proportional to

p
(k+1)
j =

∑
i→j

p
(k)
i /deg(i) =

∑
i
Pijp

(k)
i or p(k+1) = PT p(k). (2.1)

(If all pages have out-links, p
(k+1)
j is indeed a probability distribution.) An equi-

librium state of transformation (2.1) correctly reflects our modeling objectives.
The more incoming links a page has, the higher its importance. The importance
of a page j is also proportional to the importance of its in-neighbors and in-
versely proportional to the neighbor’s out-degrees. This motivates the following
definition.

Definition 2.1. A PageRank vector is a stationary point of the transformation (2.1)
with nonnegative components (a stationary distribution for a Markov chain)

p = Ap, A = PT . (2.2)

Since we are interested in a probability distribution, the sum of the p-components
is assumed to be one. We use an L1 norm ‖x‖ =

∑ |xi| as our standard norm.

This definition has a problem. Matrix P has zero rows for dangling pages
(pages that have no outgoing links), since for them deg(i) = 0, while a Markov
chain transition matrix has to be row-stochastic. Dangling pages serve as sinks
or attractors: some p-volume comes to them but then cannot leave. Different
remedies have been explored. One approach [Page et al. 98, Section 2.7] suggests
getting rid of dangling pages. The rationale is that these pages do not influence
any other pages. Notice that deleting dangling pages generates new dangling
pages. Another alternative considered in that paper is to renormalize PT p(k+1)

so that it remains a probability distribution to compensate for sinks. The authors
of [Kamvar et al. 03b] consider adding deleted dangling pages on final iterations.
Still another option advocated by [Jeh and Widom 02b] is to add a self-link to
each dangling page and, after computation, to adjust the constructed PageRank.
Another approach [Bianchini et al. 03] suggests introducing an ideal page (sink)
with a self-link to which each dangling page links. Along a similar line, see [Eiron
et al. 04]. The most widely used device [Page et al. 98, Haveliwala et al. 03b,
Kamvar et al. 03c, Langville and Meyer 05] modifies the matrix P by adding
artificial links that uniformly connect dangling pages to all G pages. Let v be a
distribution, for example, v = e, e = en = (1/n, . . . , 1/n), and let d be a dangling
page indicator, di = δ(deg(i), 0). Here, as usual, δ(a, b) = 1 when a = b and is
zero otherwise. Consider the matrix

P ′ = P + d · vT . (2.3)
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Rows corresponding to dangling pages are changed to v. The trick is popular
since, as we will see shortly, it is also useful in a general situation of nondangling
pages and is easy to compute. Aside from a particular approach, the decisive fact
is that there are many dangling pages to deal with. (In reality, on a Yahoo! web
graph from data collected in August, 2004, and consisting of billions of pages,
more than 60% of pages have not been crawled, and therefore, these pages are
dangling for sure. Around 14% of actually crawled pages are also dangling. In a
corresponding host graph 62% of the pages are dangling pages.)

When does the stationary point in (2.2) exist and when does the process in
(2.1), called the power method or power iteration, converge to the solution? For a
nonnegative row-stochastic matrix P independent of the initial distribution p(0)

(elements are nonnegative and sum to one), the power method converges to a
principal eigenvector p of A, p has positive elements, and the principal eigenvalue
λ1 = 1 is simple as long as two conditions are satisfied:

1. The graph W (G,L) is strongly connected, meaning that there is a directed
path from each node to any other node.

2. The graph W (G,L) is aperiodic, meaning that for any pages i and j there
are paths from i to j (with whatever repetitions) of any length l except for
a finite set of lengths.

While Condition 2 is guaranteed for the web, Condition 1 is routinely violated.
For example, there are many pages without in-links. To satisfy both conditions,
the trick used for dangling pages is repeated: the matrix is modified to

P ′′ = cP ′ + (1 − c)E, E = (1, . . . , 1) · vT , 0 < c < 1. (2.4)

Here all rows of E coincide with v. The transformation (2.4) conserves the
stochastic property (it transforms a probability distribution into another proba-
bility distribution). According to (2.4), from a nondangling page a surfer follows
one of the local out-links with probability c and jumps to some j ∈ G with
probability (1 − c)vj . For this reason, v is known as a teleportation vector. A
uniform v = e is usually employed, resulting in a uniform PageRank. However,
in a personalization context nonuniform jumps are used. Consequently, v is also
known as a personalization vector. Different recipes for choosing c range from
0.85 [Page et al. 98, Kamvar et al. 03b] to 0.99 [Haveliwala et al. 03b, Kamvar
et al. 03c]. Values 0.85–0.9 are used in practice.

The original P is sparse. We still can benefit from this fortunate fact after
the transformations (2.3) and (2.4), since the multiplication with matrix P ′′

can be carried out [Kamvar et al. 03c] in terms of the original P : the vector



�

�

“imvol2” — 2005/7/13 — 12:33 — page 78 — #6
�

�

�

�

�

�

78 Internet Mathematics

y = Ax = P ′′T x can be computed by the following code:

y = cPT x,

γ = ‖x‖ − ‖y‖,
y = y + γv.

(2.5)

General information related to PageRank can be found in a survey article
[Langville and Meyer 04a]. It contains some explanatory examples corresponding
to small graphs. Henzinger [Henzinger 00] also reviews related issues.

2.2. Related Theory

The Perron-Frobenius theorem for positive matrices is proved in [Axelsson 94,
Chapter 4]. Under Condition 1 of strong connectivity, it guarantees that λ1 is
simple and that the corresponding eigenvector has positive components. The
fact that the eigenvalue λ1 = 1 is a consequence of stochasticity. Condition 2
of aperiodicity relates not to the existence of a solution but to the convergence
of (2.1), which is not guaranteed in its absence. For example, for a strongly
connected two-node graph a ↔ b that does not satisfy the aperiodicity condition
(since all paths from a to b have odd lengths), the iterations (2.1) for p(0) =
(q, 1 − q) oscillate without convergence between p(0) and p(1) = (1 − q, q).

A matrix is reducible if after a permutation of coordinates into two nonempty
groups, first of size d and second of size n − d, it has a block triangular form

P =
(

P11 P12

0 P22

)
, (2.6)

where dim(P11) = d × d, dim(P22) = (n − d) × (n − d). It is called irreducible
otherwise [Axelsson 94, Definition 4.2, Theorem 4.2]. An adjacency matrix and a
transition matrix of a directed graph are irreducible if and only if the associated
graph is strongly connected [Axelsson 94, Theorem 4.3]. If the graph W is
not strongly connected, then factorization of its strongly connected components
(SCC) leads to a directed acyclic graph (DAG), discussed in Section 3.4. Every
DAG’s final node (i.e., having no out-links) corresponds to a SCC that serves
as an attractor in a corresponding Markov chain. In plain language all the p-
volumes gradually get sucked into such states. Condition 1 of strong connectivity
is necessary for the existence of a unique positive solution of (2.2). If P is
reducible, then the system (2.2) either has multiple positive solutions, if P12 = 0
(combinations of solutions for two blocks), or has no positive solution (since
p1 = PT

11p1 and P11 is not stochastic if P12 �= 0).
So far, we only know λ1. A less recognized fact is that eigenvalues of P ′ and

P ′′ are interrelated: λ1(P ′′) = λ1(P ′) = 1, λj(P ′′) = cλj(P ′) for j > 1 [Langville
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and Meyer 05]. In particular, the second eigenvalue λ2(P ′′) ≤ c. In reality, for
a web graph λ2(P ′′) = c. This amazing fact, first proven by [Haveliwala and
Kamvar 03], is important for extrapolation. It has the astonishing consequence
that a teleportation mechanism introduced to secure strong connectivity also
determines the convergence rate. The authors also prove that if

A = (cP ′ + (1 − c)E)T
, E = (1, . . . , 1) · vT , (2.7)

where P ′ is row stochastic and has at least two irreducible closed subsets, then
A has a second eigenvalue λ2 = c. The web graph W (G,E) has many strongly
connected components [Kumar et al. 00]. A proof can also be found in [Langville
and Meyer 05].

Further information about random walks on directed graphs can be found in
[Motwani and Raghavan 95, Ahuja et al. 93, Lovász 96]. Not all of the theory
is relevant to PageRank. The Markov model defined by a finite graph with a
moderate number of outgoing links has its own intrinsic features. It has been
observed [Page et al. 98] that the web graph is expanding, meaning that the
number of vertices reachable from a (not too large) subset exceeds by a factor
α the cardinality of the initial set. A graph has a high expansion factor if and
only if its principal eigenvalue is sufficiently larger than the second eigenvalue
(“eigenvalue gap”). A random walk on a graph is rapidly-mixing if iterations
converge in log (|G|) time, which in turn depends on the principal eigenvalue
separation.

As we explained, pages G can be viewed as Markov chain nodes with a transi-
tion matrix P . The theory of Markov chains includes the important concept of
ergodic states. Let N(i, k) be the number of times a surfer visited page i during
the first k steps. The solution of Equation (2.2) is related to N . When strong
connectivity and aperiodicity are in place, the Ergodic theorem [Motwani and
Raghavan 95, Theorem 6.2] says that each state is ergodic:

lim
k→∞

N(i, k)/k = pi.

The transition matrix P is related to an adjacency matrix L by the formula
P = D−1 · L, where a diagonal matrix D = {deg(i)} contains out-degrees.
Generalizations of this formulation are discussed in [Ding et al. 01]. Brandes
and Cornelson [Brandes and Cornelsen 03] present a general view of other similar
constructions for directed graphs; independently of PageRank that induces an
order over G, they also describe a method of spectral graph layout resulting in
another ordering of undirected graphs. The method relates to the important
concepts of the Laplacian matrix and the minimum energy state Fiedler vector.
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PageRank can be formulated in a form alternative to a spectral problem.
Since (1, .., 1)T p = ‖p‖ = 1, the PageRank vector, in addition to an eigensystem
p = Ap, A = P ′′T , also satisfies the equation

p = cP ′T p + (1 − c)v = cPT p + (1 − c + cs)v, (2.8)

where s = s(p) = dT · p is a “dangling sink.” The actual value of s affects the
solution only through rescaling it. Therefore, any s, for example, s = 0 (that
results in the spectral eigensystem solution in the absence of dangling pages),
can be used. This fact has important implications. We elaborate on this topic in
Section 3.5. Finally, modifying P ′ with teleportation can be avoided [Langville
and Meyer 05, Tomlin 03] if in (2.7) G is augmented with an additional ideal
sink node n + 1:

p̃ = P̃ p̃, P̃ =
(

cP ′ (1 − c)(1, . . . , 1)
vT 0

)
, p̃ =

(
p

(1 − c)

)
.

This construction is also useful in handling dangling pages [Eiron et al. 04, Lee
et al. 03].

2.3. Usage

The traditional application of PageRank is ranking web search results. The ap-
pealing quality of PageRank is that it is available in query time. Since PageRank
only uses web graph connectivity and is query-independent, it has to be blended
with other features, including query-dependent features. Along with PageR-
ank, another similar algorithm reviewed below and called HITS [Kleinberg 99]
works in query time. The benefits of PageRank are best for under-specified
(broad topic) queries, for example “University” [Page et al. 98]. In other words,
it is best for queries with very high recall based on a straightforward all-term
inclusion procedure. From an application standpoint, PageRank has some prob-
lems. For example, an artificially high rank is assigned to copyright warnings,
disclaimers, and highly interlinked mailing archives. Another problem is a po-
tential topic drift. Different remedies were suggested, starting with an insightful
article [Bharat and Henzinger 98] (which we get back to in the context of HITS).
The major issue is how to merge connectivity and content data. Internet search
engines blend PageRank with other relevance features using proprietary ranking
formulas and other techniques, and any statistics reflecting its significance in
this regard are not public. There is no certainty about the importance of per-
sonalized PageRank either, except for the fact that no other obvious link-based
personalization feature exists. HostRank, PageRank constructed over the host
graph, is another useful relevance feature.
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Algorithm 1. (Poor man’s PageRank algorithm.)
Input: Given a transition matrix P , a teleportation vector v, and a

coefficient c
Output: Compute PageRank p
begin

Initialize p(0) = v, k = 0
repeat

p(k+1) = cPT p(k)

γ = ‖p(k)‖ − ‖p(k+1)‖
p(k+1) = p(k+1) + γv
δ = ‖p(k+1) − p(k)‖
k = k + 1

until δ < ε

end
return p(k)

Before moving further we would like to present the reader with the “Poor
man’s PageRank algorithm” implementation of the power iteration that takes
(2.5) into account; see Algorithm 1.

3. Acceleration of Convergence

As we explained, our goal is to find a stationary point p for an eigensystem

p = Ap, A = P ′′T . (3.1)

We start with some distribution p(0) (e.g., p(0) = e) and use the power iteration

p(k+1) = Ap(k) (3.2)

to compute the eigenvector associated with the principal eigenvalue λ1 = 1.
According to (2.5), A-multiplication successfully exploits the sparse nature of
the transition matrix P (on average, there are between 7 and 20 out-links per
page depending on the pruning used) and thus, a major iteration has O(n)
computational complexity. This is good news; however, the graph size n is very
large. We use a simple L1 stopping criterion for transparency, but we will return
to this issue in Section 6.1.

Before we investigate more complex algorithms, what is the convergence rate
of the power iteration? We already know that λ1(P ) = 1, λ2(P ) = c. It is
easy to see that a convergence rate of the power iteration process for any P
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is λ2(P )/λ1(P ) or c in our case. We would like to provide somewhat simpler
reasoning specifically related to PageRank that leads to a slightly weaker result.
Following [Bianchini et al. 03], if we subtract from Equation (2.8), p = cP ′T p +
(1 − c)v, its iterative version (3.2), we get

p − p(k+1) = cP ′T (p − p(k)) = ck
(
P ′T )k (p − p(0)),

and hence, since ‖P ′T ‖ ≤ 1, the rate of convergence is bounded by c. The number
of iterations k ≈ log(ε)/ log(c) needed to achieve ε-accuracy is independent of
the graph.

Next we review different algorithmic methods to accelerate the power method
(3.2) and other methods of computing PageRank. In Section 6 we talk about
infrastructural means to achieve computational efficiently. Since a web graph is
volatile, there is a natural limit on how accurate we would like to be. Also, the
whole adventure with computing PageRank makes sense only if the ideal object
is stable. This is also one of our concerns in this section.

3.1. Extrapolation Methods

Extrapolation methods are based on the expansion of iterates p(k) in a series

p(k) = u1 + λk
2u2 + · · · + λk

mum + · · · , (3.3)

where terms um are (not orthonormal) eigenvectors of A (we utilize that λ1 = 1).
These methods try to improve approximation of the ideal solution u1 by p(k)

through clever suppression of the higher terms. More specifically, while com-
puting power iterations, from time to time, we construct a linear combination of
several iterates that exactly eliminates one or more harmonics after the very first
term and regard the remaining tail as approximately relatively small. In doing
so, we assume that 1 < λ2 ≤ λ3 ≤ . . . ≤ λm . . . and carefully analyze coefficients
of the first m terms in series (3.3). The constructed combination is used as a
closer starting point for further iterations.

Kamvar, Schlosser, and Garcia-Molina [Kamvar et al. 03c] present a variety
of extrapolation methods. The simplest Aitken method aims at eliminating the
second sub-principal term. Setting m = 2 and truncating the tail (denoted by
“. . . ”), we get

p(k−2) = u1 + u2 + . . .

p(k−1) = u1 + λ2u2 + . . .

p(k) = u1 + λ2
2u2 + . . . .

(3.4)

These are three equations with three unknowns, and we can eliminate two of
them, u2 and λ2. This is what the Aitken method does. After an initial
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speedup, the acceleration is not significant. They also suggest a straightfor-
ward generalization—a quadratic extrapolation that is based on a similar set of
equations for m = 3,

p(k−3) = u1 + u2 + u3 + . . .

p(k−2) = u1 + λ2u2 + λ3u3 + . . .

p(k−1) = u1 + λ2
2u2 + λ2

3u3 + . . .

p(k) = u1 + λ3
2u2 + λ3

3u3 + . . . .

(3.5)

Based on some matrix algebra, the authors developed formulas to eliminate un-
knowns corresponding to the second and third terms. Both the Aitken method
and quadratic extrapolation are applied periodically within (3.2). Reported ex-
perimental speedup for quadratic extrapolation is 59%.

The presented extrapolation techniques were immediately superseded by an
elegant discovery: λ2 (P ′′) = c [Haveliwala and Kamvar 03] (see Section 2.2). The
rate of convergence ‖p(k+1) − p(k)‖/‖p(k) − p(k−1)‖ → |λ2/λ1| = c is confirmed
by experiments. In the Markov chain context, |λ1| − |λ2| = 1 − c is known as
stability. The authors also relate eigenvectors corresponding to λ2 = c to spam
detection. In extrapolation methods, knowing λ2 has a profound consequence:
we do not need to bother computing it in Equations (3.4) and (3.5).

Extrapolation methods developed in [Haveliwala et al. 03b] utilize this dis-
covery. Ad extrapolation starts with a representation similar to that in Equa-
tion (3.5) under the assumption that m = d + 1 and λj for j = 2 : d + 1 form a
system of d-roots of cd. This means, in particular, that λd

j = cd. For example,
for d = 2, λ2 = c and λ3 = −c. We see now that

p(k−d) = u1 + u2 + · · · + ud+1 + . . .

p(k) = u1 + λd
2u2 + · · · + λd

d+1ud + . . .
(3.6)

and, hence, the equation pnew = u1 = p(k)−cdp(k−d)

1−cd becomes a viable extrap-
olation. It is suggested to be used periodically in conjunction with the power
method (3.2). For c = 0.85 the best speedups correspond to d = 4 (25.8%) and
d = 6 (30%). In our experience this extrapolation works as predicted with large
graphs.

3.2. Adaptive Method

There is no need to compute PageRank components exactly. How much accuracy
is actually required is an intriguing question that we revisit in Section 6.1. What-
ever the required accuracy is, there is a disparity in the magnitudes of PageRank
components: authorities of pages differ dramatically, and most values are small
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(the lower bound (1 − c)/n is achieved on pages without in-links). A less trans-
parent observation is that small components converge much faster even when
measured on a relative scale εi(k) =

∣∣∣p(k+1)
i − p

(k)
i

∣∣∣ /p
(k)
i [Kamvar et al. 03a].

For example, the authors show that, on a graph of 280,000 nodes (3M links) for
c = 0.85, around 80% of PageRank components converged (εi(k) < ε = 10−3)
in less than 15 iterations and their average magnitude was 0.37 of the average
magnitude of the remaining components. The proposed acceleration, adaptive
method, simply stops iterating on already converged components.

Assume that p = (pN , pC) is a split of p into m not yet converged and (n−m)
already converged components. Let AN and AC be the corresponding m×n and
(n − m) × n submatrices of A. Then, we have

(
p
(k+1)
N

p
(k+1)
C

)
=
(

AN

AC

)
·
(

p
(k)
N

p
(k)
C

)
or

p
(k+1)
N = ANp(k)

p
(k+1)
C = p

(k)
C ,

(3.7)

where p
(k)
C ≈ ACp(k) and we only need to iterate over the nonconverged pN .

Here, dim(AN ) = m × n and dim(AC) = (n − m) × n. When m becomes
smaller, the size of AN becomes smaller as well, and many computations are
avoided. The modified algorithm presented in the paper actually deletes the
links corresponding to converged pages from a sparse matrix A. This means
decomposition AN = [ANN , ANC ].

The explicit reordering of A is important, and a smart strategy is used to
enable housekeeping. The savings are about 20% in overall time. Little hope for
the reordering of a several-billion-node web graph currently exists. This restricts
the application of this method to smaller graphs such as, for example, a host
graph. The adaptive method requires slightly more major iterations k to achieve
convergence.

3.3. Block Structure Method

The web has a particular structure. On the very primitive level, there are many
more links within the same domains (hosts) than between pages of different do-
mains (hosts). Kamvar et al. brilliantly exploit this idea [Kamvar et al. 03b].
The intuition behind the idea is that blocks roughly represent the whole graph,
but there are many fewer blocks than pages and they are more interconnected.
Therefore, computing “aggregate” PageRank is easy. If we are also able to ap-
proximate PageRank within blocks that is again a series of smaller problems,
then we may find a good starting point from which to ignite a full graph algo-
rithm. The authors compute PageRank via the algorithm blockRank in several
steps. A slightly updated version of this development is presented in Algorithm 2.
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Algorithm 2. (Block structure method (blockRank).)
Input: Given a graph W over nodes G =

⋃
GI , I = 1 : N ,

a teleportation vector v, and a coefficient c
Output: Compute PageRank p
begin

for I = 1 : N do
let PII be a transition matrix over block GI

for i ∈ GI set vI,i = vi/
∑

j∈GI
vj

lI = pageRank(PII , vI , vI)
end
for I = 1 : N do

ṽI =
∑

i∈GI
vi

for J = 1 : N do
L̃IJ =

∑
i∈I,j∈J Pij li

end
end
let P̃ be a transition matrix corresponding to weighted block structure L̃
b = pageRank(P̃ , ṽ, ṽ)
set s = (b1l1, b2l2, . . . , bN ln)
p = pageRank(P, s, v)

end
return p

We assume that a full graph W (G,L) is defined over nodes G that can be
divided into (disjoint) blocks GI , so that G =

⋃
GI , I = 1 : N (block indices are

denoted by capitals, I, J). Let pageRank(P, p(0), v) denote a general purpose
(eigensystem) PageRank-computing algorithm for a transition matrix P start-
ing with p(0), utilizing teleportation vector v, and using whatever acceleration
(Kendall distance (see (6.1)) is suggested as the stopping criterion).

The method starts with computing N local PageRanks lI . At the next step
we aggregate connectivity information to a block level introducing a weighted
directed graph structure L̃ on the set of blocks. A link from a block I to a block
J has weight L̃IJ =

∑
i∈I,j∈J Pij li combining links between their constituents

weighted by their local PageRanks. We now compute the BlockRank authority
vector b for a block-level transition matrix P̃ . Finally, a vector s that is a rough
approximation to full PageRank is assembled. It is used as the initial guess to
compute full PageRank.

This algorithm has many useful properties: (1) it does not need much accu-
racy in computing local PageRanks, (2) it allows obvious parallelization, (3) it
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may keep within-the-block and between-the-block connectivity data in the core
memory, and (4) it benefits from the fact that relatively few blocks change after
a subsequent crawl. We return to this method in the personalization context.

Similar ideas for computing HostRank are also advocated by [Broder et al. 04].
The context is reversed from constructing a good approximation s to be used
as the initial guess to considering s as a final object that is called HostRank.
Other host aggregations, in particular uniform lI , are suggested. The described
methodology has actually been tried on real-life AltaVista 2003 web data.

The block approach to PageRank performs well on large web graphs and,
probably, currently constitutes the most practical acceleration technique.

3.4. DAG Structure of the Web

A different, but related, block structure of the web is induced by general graph
factorization. Consider blocks equal to (disjoint) strongly connected components
(SCC) of W . Since strong connectivity is an equivalence relationship, we can
factorize G into some number q of super-nodes, each representing one SCC block.
The super-nodes form a directed acyclic graph (DAG). The DAG structure ef-
fectively defines a partial “flow” order on a super-graph. The largest central
SCC contains Yahoo!, MSN, and similar common sites. There are also preceding
super-nodes (that have paths leading to the central component) and succeed-
ing super-nodes (that have paths leading from the central component). So, the
blocked graph looks like a bow tie. Finding a set of all SCCs is related to a
depth-first search (DFS). In graph theory an indexation that enumerates nodes
within SCCs contiguously and SCCs themselves in increasing “flow” order is
known under the term topological sort. For insights on out-of-core memory DFS,
see [Chiang et al. 95].

Under such enumeration (corresponding to a permutation of the original P ),
we get a block upper triangle representation

P =

⎛
⎜⎜⎝

P11 P12 . . . P1q

P22 . . . P2q

. . . . . .
Pqq

⎞
⎟⎟⎠ . (3.8)

It establishes a relation between strong connectivity and irreducibility (see (2.6)):
matrix P is irreducible if and only if there is a single SCC (q = 1). The corre-
sponding partitioning of PageRank p leads to significant improvements [Arasu
et al. 02]. Equation (2.8) has the form

p = cPT p + b, b = const · v. (3.9)
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Contrary to some references, const �= (1 − c) but depends on a sink term in
Equation (2.8). This does not matter, since the solution will only differ by
a scalar. In view of (3.8), Equation (3.9) can be cast as a system of linear
equations, j = 0 : q,

pj = cPT
jjpj + fj , fj = bj + cPT

1jp1 + · · · + cPT
j−1,jpj−1. (3.10)

We do not know how this method performs in practice on large graphs.

3.5. Spectral and Equation Solvers

So far we tried to accelerate the solution of the spectral problem for eigensys-
tem (3.1) with λ1 = 1. Meanwhile, Equation (3.9) reformulates a problem in
terms of a linear system:

(1 − cPT )p = b (= const · v). (3.11)

We would like to reflect briefly on this simple fact. While solving eigensys-
tem (3.1) is based on the simple iterative procedure (3.2), analogous simple
iterations

p(k) = cPT p(k−1) + b, (3.12)

known as the Jacobi method, can be used to find a solution of the linear system
(3.11). While eigensystem formulation of PageRank is well studied, finding an
effective solution of the linear PageRank equation (3.11) is a relatively new field.

The connection between (normalized) eigensystem PageRank pE and linear
PageRank pL is defined by the formula

pL =
1 − c

c · sink(p) + 1 − c
pE . (3.13)

Linear PageRank pL has an application advantage: it depends linearly on the
teleportation vector, while traditional eigensystem PageRank pE does not. As a
consequence, it is easy to construct linear combinations of, for example, topic-
specific PageRanks that are crucial in personalization.

Linear systems have a rich arsenal of different iterative methods [Axelsson 94].
The simplest ones, Jacobi and Gauss-Seidel, were successfully tried for Equa-
tion (3.9) [Arasu et al. 02, Del Corso et al. 04]. The Jacobi method is already
defined by (3.12). The Gauss-Seidel method is similar, but it reutilizes already
computed components:
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p
(k+1)
i = (1 − c)vi + c

∑
j<i

aijp
(k+1)
j + c

∑
j>i

aijp
(k)
j . (3.14)

Thus, the representation (3.8) becomes very useful: many terms in Equa-
tion (3.14) vanish. In numerical experiments Gauss-Seidel saves up to 40% of it-
erations, though it has overhead costs. It has an important advantage of working
in place. In experiments it works fine with large graphs. However, Gauss-Seidel
has one disadvantage: it is very hard to parallelize.

Two other simple splitting methods are the successive overrelaxation method
(SOR), which depends on a parameter ω, and the similar symmetric successive
overrelaxation method (SSOR), both known to be faster than Gauss-Seidel. For a
detailed description of their application to finite Markov chains, see [Stewart 99].
For general information see [Axelsson 94, Chapters 5–7] and [Golub and Loan 96].
One important practical observation that is more about art than about science
is that performance of these methods depends on the enumeration order, and
there is experimental evidence that (3.8) is beneficial. The feasibility of SOR for
a small W is numerically proven, since a good ω of the form 1 + ε can be found.
Existence of a good ω for large web graphs with more than five to ten million
nodes is questionable.

It follows from Equation (3.11) [Haveliwala et al. 03a] that p = const · (1 −
cPT )−1v = Qv. Here, (1 − cPT ) is diagonally dominant and invertible. When
v has only one nonzero element, p coincides with a column of the matrix Q.
So, in principle, Q contains full information for personalization (see Section 5).
Computing Q in practice is, of course, infeasible.

3.6. Advanced Numerical Linear Algebra Methods

While previous sections were either dealing with straightforward acceleration of
the power method or with traditional methods for linear PageRank formulation
related to it, here we review a few approaches that substantially deviate from
this paradigm. Indeed, PageRank represents a huge but standard instance of
computing a stationary distribution for an irreducible Markov chain that, in
turn, is an instance of a general eigensystem problem, which, as we explained,
can be translated into a linear system formulation. Recently, an interest in
applying modern numerical linear algebra methods to PageRank has emerged.
At this moment it is too early to judge how they will perform on real-life web
graphs. Since the reviewed methods are based on complex constructions that
are beyond the scope of our presentation, we provide no details. The reader can
find explanations and further tips in the references mentioned below.

A comprehensive review of numerical methods related to finding stationary
distributions of Markov chains can be found in [Stewart 99]. Along with iterative
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methods, finding equilibrium can be performed by direct methods. A direct
projection method for finding Markov chain stationary distribution is presented
in [Benzi 04].

In Section 3.3, the block structure method was considered. The idea of ag-
gregating different states (pages in our cases) in several subgraphs is very well
known in the theory of computing stationary distributions for Markov chains
under the name of aggregation/disaggregation method. Its iterative analog was
applied to PageRank [Langville and Meyer 04b]. The method is equivalent to
the preconditioning of the power method by LU factorization. Extensive analy-
sis of the convergence properties of this algorithm has been done by [Ipsen and
Kirkland 04]. We do not know how it performs on real web graphs. Lee, Golub,
and Zenios [Lee et al. 03] study the performance on relatively large web graphs
of a two-stage decomposition technique related to an aggregation of dangling
pages (corresponding to (3.8) with q = 2). In the language of Markov chains,
the property of having upper triangular form is called lumpability. The authors
report that the algorithm converges in 20% of the original running time.

The Krylov subspace for a matrix A is defined as

Kk(A, v) = span
{
v,Av,A2v, . . . , Ak−1v

}
.

Modern numerical linear algebra uses these subspaces in different advanced iter-
ative procedures; [Golub and Greif 04] applies different versions of a celebrated
Arnoldi algorithm, which is an instance of such a procedure. The Arnoldi al-
gorithm and its variations (e.g., combination with SVD) are used to find the
rank-one subspace of I −P ′′T . This insightful report also studies dependency of
PageRank on the teleportation coefficient c (see Section 3.7).

Experiments with an application of other instances of Krylov subspace meth-
ods GMRES, BiCG, and BiCGSTAB to linear system PageRank can be found
in [Gleich et al. 04]. In many cases these methods outperform the power method
and the Jacobi method by 50%, even though their convergence is not stationary,
meaning that between iterations the errors behave erratically. Experiments also
showed that the convergence of these methods degrades less than the conver-
gence of the power method with a reduction in teleportation when c → 1. The
big advantage of these methods is that they are parallelizable. Parallel versions
have been benchmarked on several web graphs. For another effort to parallelize
PageRank, see [Manaskasemsak and Rungsawang 04].

3.7. Sensitivity Analysis

The teleportation parameter is something that we added to the model for purely
technical reasons. When teleportation gradually decreases (c → 1), the negative
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effects of spam decrease as well, but so does the convergence rate. For this reason
it is important to find the dynamics of PageRank p(c) as a function of c [Golub
and Greif 04]. Linear system PageRank satisfies the equation

p = cPT p + (1 − c)v. (3.15)

We would like to find p′ = ∂p/∂c. Differentiating with respect to c, we get

p′ = cPT p′ + PT p − v,

or after substituting PT p from Equation (3.15), we get

p′ = cPT p′ + (p − v)/c = cPT p′ + (1 − c)v̂, v̂ = (p − v)/ (c(1 − c)) .

This elegant formula shows that p′ satisfies the same linear system as PageRank
itself for the right-hand side v̂. So, (1) stability decreases when c → 1, and
(2) the components that deviate the most from the teleportation vector suffer
the highest instability.

Any web graph is only an approximate snapshot of reality that depends on
many factors from crawler performance and configuration to a setting of para-
meters defining link pruning to an actual constant appearance of new pages and
a decay of old ones. Therefore, computed PageRank is defined over volatile data,
and its stability with respect to changes in an underlying web graph becomes a
very important consideration that makes or breaks its practical ranking utility.
It is also very important computationally, since there is no point in iterating
trying to attain accuracy beyond the natural bounds of sensitivity.

The stability of PageRank with respect to small perturbations in the structure
of a graph W is studied in [Ng et al. 01b, Ng et al. 01a]. They prove a bound
on the change in PageRank caused by a change of links touching (coming to or
from) a subset of pages C:

‖p̃ − p‖ ≤ 2
1 − c

EC , EC =
∑

i∈C
pi.

The authors also analyze the HITS algorithm (see Section 4.1) and provide ex-
amples that demonstrate that PageRank is more stable than HITS. They show
that the sensitivity of HITS depends on eigengap, which is the difference be-
tween the principal and second eigenvalues of LT L, where the matrix L is the
adjacency matrix of a subgraph associated with the HITS algorithm.

Similar results regarding robustness of PageRank are reported in [Bianchini
et al. 02, Bianchini et al. 03]. The authors studied subsets (communities) of
pages and found useful representations for the quantity EC introduced above
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that they called the “energy” of C. They got a slightly better bound

‖p̃ − p‖ ≤ 2c

1 − c
EC .

The next stage in sensitivity research is presented in [Borodin et al. 01] and
[Lempel and Moran 03]. In addition to a L1 stability, these papers also study rank
stability, which is the stability of indices not with respect to changes in weights
but with respect to changes in induced rankings. Ranking measures (for example,
(6.1)) are explained in Section 6.1. The authors analyze several models other than
PagRank (like, for example, HITS and SALSA) that are introduced in the next
section. Their (mostly negative asymptotic) results concerning stability and rank
stability were obtained under certain special conditions on graph topology and
were formulated as estimates in terms of a number of altered links.

From a practical standpoint, a number of altered links is a less attractive
measure than the weighted measure EC utilizing page importance (for exam-
ple, crawlers that are mostly responsible for web graph perturbation distinguish
between “important” and “unimportant” pages, and EC provides a convenient
abstraction for this). Further improvement to stability estimates in terms of a
weighted measure was achieved by [Lee and Borodin 96]. The authors prove that
it is enough to take into account only the weights of a “forward” subset F ⊆ C

of pages whose out-links (not in-links) have been changed:

‖p̃ − p‖ ≤ 2c

1 − c

∑
i∈F

pi.

A number of interesting results are obtained in [Chien et al. 01]. In addition
to sensitivity analysis, the authors try to address the problem of incremental re-
computing of PageRank after small perturbations (evolution) in the web struc-
ture. Adding some edges results in a new matrix P̃ = P + E. The authors
rigorously analyze the problem of inserting a single link. The suggested method
is to (1) isolate a subgraph W1, where the influence of a change is significant,
from the total web graph; (2) collapse the remaining nodes of W\W1 into a
heavy supernode Ω; and (3) compute an approximate PageRank on this new
graph structure W1 + Ω.

Constructing a subgraph can be outlined as follows: assign a unit weight to a
node i of a newly inserted link i → j, and propagate this weight from i trans-
ferring c/deg(i) to each out-link including j. After several steps of the breadth-
first-search (BFS) algorithm, retain the accessed nodes with a total weight above
a prescribed threshold. Transition probabilities to/from the supernode also have
instructive definitions. For example, the transition term from a supernode Ω to
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a node j ∈ W1 is defined in terms of uniform PageRank p as

PΩj =
1
Q

∑
i∈Ω

piPij , Q =
∑

i∈Ω
pi.

In practice, each crawl results in new IDs for all pages. Finding related IDs is a
major problem. A much more humble suggestion is to simply initialize a small
portion of outstanding pages with their former PageRank values, distributing
the rest of the authority uniformly.

4. Other Approaches

Along with the random surfer model, other usages of hyperlink data were sug-
gested for the purpose of computing the authority weight of a web page. His-
torically, [Larson 96] was one of the first to apply ideas of bibliometrics to the
web. An even earlier pre-Internet attempt to utilize graph structure was done by
[Frisse 88]. Another approach [Carrière and Kazman 97] suggests characterizing
a page by the number of its in-links and introduces the concept of a neighborhood
subgraph. A major boost in the context of web search relevance is associated
with the appearance of the HITS algorithm. We survey it and other similar algo-
rithms in this section. We also review applications of PageRank beyond ranking
the web pages.

4.1. HITS Algorithm: Hubs and Authorities

A framework similar to PageRank computing introduced in [Kleinberg 99] has
several distinctive features: (1) it works with a web subgraph specific to a par-
ticular query, rather than with a full graph W ; (2) it computes two weights,
authority weight xi and hub weight yi, for each page instead of one PageRank
weight; and (3) it allows clustering of results for multi-topic or polarized queries
such as “jaguar” or “abortion.”

A subgraph used in the computations is constructed as follows. The top t

(around 200) results recalled for a given query are picked according to a text-
based relevance criterion. This is a root set. All pages pointed by out-links of a
root set are added, along with up to d (around 50) pages corresponding to in-
links of each page in a root set (some hubs have enormous amounts of in-links).
The result is a focused (or neighborhood or augmented) subgraph corresponding
to a query. One of the goals is to allow the engine to report highly relevant pages
that do not even contain the query term.

The authority weight of a page is an aggregated significance of the hubs that
point to it (“beauty lies in the eye of the beholder”), while the hub weight of
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a page is an aggregated significance of authorities to which it points. After
initialization, the authority weight vector x and the hub weight vector y are
subjected to an iterative process (L is an adjacency matrix)

x̄
(k+1)
j =

∑
i→j

y
(k)
i = LT y(k), x(k+1) = x̄(k+1)/

∥∥∥x̄(k+1)
∥∥∥

2
(4.1)

ȳ
(k+1)
i =

∑
i→j

x
(k)
j = Lx(k), y(k+1) = ȳ(k+1)/

∥∥∥ȳ(k+1)
∥∥∥

2
(4.2)

including some renormalization (on this occasion in L2, ‖x‖2
2 =

∑
x2

i ). The limit
weights are principal eigenvectors of symmetric matrices: LT L for the authority
vector x and LLT for the hub vector y. Matrix LT L is called a co-citation matrix,
since its (i, j) element (LT L)ij =

∑
k LkiLkj is equal to the number of pages k

jointly pointing to i and j. Matrix LLT is called a bibliographic coupling matrix
(see [Lempel and Moran 00, Section 2], for references). The process (4.1)–(4.2)
converges under the mild assumption that the principal eigenvalue of LT L is
simple.

Distinguishing between hubs and authorities is a wonderful concept. From
a graph theoretic standpoint, the introduced framework relates to a bipartite
graph. From an algebraic standpoint, it relates to symmetric matrices rather
than to a nonsymmetric matrix P involved in a random surfer model. This
explains why subgraph computation is possible—there are no irreducibility and
aperiodicity requirements. Computing in a subgraph is a powerful option that
allows all kinds of speedups. If there is a subset of highly interlinked pages i

(presumably on a single topic), the i-components of principal eigenvectors will be
large, while other page components will be small, and so, the principal eigenvec-
tors identify the prevailing topic. This is a fortunate scenario. In the unfortunate
scenario we have “topic drift.” PageRank, since it operates on a full web graph,
is generally considered (maybe more and maybe less correctly) more immune to
this problem.

Unlike in the case of the random surfer model, nonprincipal eigenvectors have
meaning in HITS. While the coordinates of principal eigenvectors are all positive,
subprincipal eigenvectors have both positive and negative components. Pages
corresponding to several highest magnitude positive and negative components
of a few subprincipal eigenvectors may relate to distinct topics, especially for
polarized queries such as “abortion.”

At IBM’s Almaden Research Center the ideas of Kleinberg were implemented
into the HITS (Hyperlink-Induced Topic Search) algorithm [Gibson et al. 98].
The authors analyze the dependency of the results (e.g., top 10 authorities and
top 10 hubs) on a root set of size R and on a number of iterations N . Full con-
vergence happens at N = 50, but a smaller number of iterations (up to N = 10)
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actually works well. Principal and nonprincipal eigenvectors and correspond-
ing communities have been considered, and a parallel between HITS and latent
semantic indexing [Hofmann 99] has been pointed out. HITS works best for
queries representing broad topics and in situations where the amount of relevant
pages and their hyperlinks is the largest. It has a tendency to generalize a topic.
It is easier to spam HITS than PageRank, since a page can always link to great
pages and, thus, to increase its hub score. It is trickier for a page to manipulate
its own authority score, since linking to a page from a few obscure pages does
not help. There is no clarity about industrial anti-spam methods for PageRank.

Further development of HITS relates to the algorithm ARC (Automatic Re-
source Compiler) [Chakrabarti et al. 98b], which qualifies hyperlinks with nonuni-
form weights. Specifically, given a link i → j, it considers the text in the vicinity
of the <href> tag of a referring page i. Different B-sized windows are examined.
The text within the <href> tag is called an anchor text. The authors extend
it by several characters before and after to an extended anchor text. Instead of
having uniform connectivity, different edges are assigned different weights wij

proportional to a number of term matches between the B-window and the query
string. Now the process (4.1)–(4.2) is augmented with the edges’ weights.

Still another attempt to improve HITS is described in the excellent paper
[Bharat and Henzinger 98]. It also joins connectivity information with an IR
measure of text similarity. The authors try to rectify three problems: (1) many
documents on one host pointing to one page on another host that promotes
the hub weights of the referring pages, (2) automatically generated links, and
(3) topic drift related to well-connected pages not very relevant to the original
query. Remedies include demoting the weights of the links from a single host to
a single page on another host and pruning pages based on their similarity with
the query. The usual IR-cosine similarity is considered as a page weight along
with several strategies of pruning. When computing term-similarity, the authors
do not use a query string but a query extension (its concatenation with the first
1,000 words of pages in a root set). For a related topic of search in context and
query extension, see [Finkelstein et al. 02]. For IR issues see [Baeza-Yates and
Ribeiro-Neto 99].

The idea of weighted edges in the HITS algorithm is further advanced in
[Chakrabarti et al. 98a]. Though this development deals with more general
entities than HTML pages, in this survey we only concentrate on hyperlinks
weighting. Weights—affinities—take into account three factors: (1) the default
value for any link, (2) whether the source or the destination falls within the
root set, and (3) the contribution of every term of a query string. Among
other interesting observations are the facts that hubs have only relative value,
and so hubs covered by other hubs can be omitted, and that many hubs have
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heterogeneous collections of links that have to be distinguished (in this regard,
see [Bar-Yossef and Rajagopalan 02]).

Different improvements, such as the ones described above, resulted in a project
called CLEVER that is an extension of HITS [IBM 99].

Finally, the probabilistic foundations of HITS and, in particular, the PHITS
algorithm are discussed in [Cohn and Chang 00]. PHITS is based on latent
semantic indexing (LSI) [Hofmann 99]. An LSI assumption of the existence of k

unknown (latent) concepts leads to another development [Achlioptas et al. 01].
In principle, a page importance as an authority or as a hub can be conditioned
by each of the k topics leading to n × k authority and hub matrices x and y.
Using the distributions of terms per topic and a distribution of topics per query,
the authors develop the SP algorithm that is a k-dimensional latent semantic
analysis version of HITS.

In pre-Internet times, concepts similar to hubs and authorities (of index and
reference nodes) were suggested in [Botafogo et al. 92]. Another early develop-
ment belongs to Frisse [Frisse 88]. He suggests to increase a page’s relevance
if pages to which it links are relevant to a query. His paper is also interesting
in another regard: the importance of a node representing a piece of medical in-
formation is combined from (1) the importance of its forward links and (2) its
term-relevance to a query. Therefore, this development already combines link-
based and textual relevance. Many ideas similar to PageRank and to HITS are
suggested in the Social Network analysis literature. References can be found in
the Status or Rank Prestige (Section 5.3) and the Correspondence Analysis (Sec-
tion 8.6) sections of the monograph, Social Networks. Methods and Applications
[Wasserman and Faust 94].

4.2. Random Walk Models for Hubs and Authorities

The SALSA (Stochastic Approach for Link-Structure Analysis) algorithm, intro-
duced in [Lempel and Moran 00, Lempel and Moran 01], utilizes a random walk
on two sides of a bipartite graph, authorities (pages with nontrivial in-degree)
and hubs (pages with nontrivial out-degree), associated with the query subgraph
similar to HITS. To define, for example, the authority random walk, consider
transitions consisting of double moves, first back from i and then forward to j:

aij =
∑

k→i,k→j

1
in-deg(i)

1
out-deg(k)

.

It is shown that for an irreducible component the solution can be found in a closed
form of a normalized in-degree. The generalization is made for weighted links.
The authors report that, in comparison with HITS, SALSA is less vulnerable
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to the tightly knit community (TKC) effect that occurs when a small number of
links are strongly interconnected.

A very appealing attempt was made to provide a model for hub/authority
vectors that incorporates teleportation [Rafiei and Mendelzon 00]. For example,
the authors consider a transformation

x
(k+1)
j = c

∑
i→j

y
(k)
i /out-deg(i) + (1 − c)vj/2.

This opens a venue for personalization under the favorable conditions of working
in a small subgraph and dealing with a symmetric matrix. While the authors
start with the intent of adding teleportation to the HITS framework, due to the
presence of a denominator out-deg(i), they essentially reintroduce SALSA with
teleportation. SALSA with teleportation has the distinction of being rediscov-
ered in [Ng et al. 01a] under the name Randomized HITS.

4.3. Other Models

Here, we briefly survey some other interesting ideas representing diverse theo-
retical developments in the field.

A major shortcoming of HITS, a potential “topic drift,” has led to many ef-
forts. Some of them are described in the previous subsections, but some went
further in the direction of changing the basic underlying model. Borodin et al.
carefully analyze both HITS and SALSA and suggest a number of modifica-
tions [Borodin et al. 01, Borodin et al. 05]. One proposition is, for example, to
still compute the authority score xj as a sum of hub scores yi over all i → j

but, when computing the hub scores yi, to only retain pages j corresponding to
the K currently highest authorities. Here, K is an algorithm parameter. The
motivation is the fact that mediocre authorities are not actually clicked on in
“real search” and, therefore, should not count. The resulting algorithm is called
Hub-Threshold HITS. The authors also investigate a Bayesian approach to esti-
mate the probability of the link i → j. In addition to the Hub-Threshold HITS
and the Bayesian algorithm, the authors suggest other algorithms to construct
authority vectors on directed graphs, including the HITS-SALSA “hybrid,” the
Hub-Averaging algorithm, the Authority-Threshold algorithm, and the Simpli-
fied Bayesian algorithm. They analyze stability and rank stability, mentioned
previously, along with other mathematical properties of these algorithms.

So far in dealing with a page, we only considered its immediate predecessors
and successors. Distant nodes project their influence indirectly through a surfing
process. Mathematically, it corresponds to a first-order Markov model. A model
that directly takes into account more distant relatives with progressive damping
factors is also possible (see [Kleinberg 99, Section 5.1.1]). For example, Marchiori
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[Marchiori 97] considers the influence of whole paths π = . . . → i3 → i2 → i1 → j

pointing to j via the formula

y[j] =
∑

π∈Π(j)
F · x[i1] + F 2 · x[i2] + F 3 · x[i3] + . . . ,

where Π(j) is a set of paths pointing to j and F is a factor, 0 < F < 1. One of
the earliest authority measures ever is the Katz index [Katz 53]

yj =
∑

k≥1

∑
i
F kLk

ij ,

where Lk is the kth power of the adjacency matrix. Keeping only one term
(k = 1) of this index, we get the sum of the elements of a column of the adjacency
matrix

∑
i Lij known as In-Degree, probably the simplest authority index of all.

Unfortunately, it is extremely sensitive to spam.
The idea of a hub was further developed by [Bharat and Mihaila 01] into the

concept of an expert page: a page specifically created to direct users towards
resources, or operationally, a page about a certain topic having links to many
non-affiliated domains.

Ding et al. attempt to find a framework unifying the PageRank and HITS
models [Ding et al. 01]. Both PageRank and HITS become two extreme cases
in continua of algorithms that depend on the normalization used to produce a
transition matrix P from an adjacency matrix L (no normalization in HITS,
dividing by deg(i), P = D−1 · L, in PageRank).

Another approach to PageRank computing is advocated in [Abiteboul et al. 03].
It is also applicable in conjunction with focused crawling and online, when the
whole web graph is not yet constructed. The authors prove that it is not nec-
essary to visit each page once per iteration. Instead, it is possible to focus
on important pages as soon as each page is visited frequently enough! Two
numbers, cash ci and history hi, are associated with each page i. They are
initialized to 1/n and 0. At each iterative step some page i is selected (with
unequal but positive probability). Then, its history is accumulated and its cash
is distributed and reset. (The overall cash is preserved, but the overall his-
tory H = h1 + · · · + hn increases.) Under broad assumptions, it is proved that
the estimates (hi + ci)/(H + 1) or simply hi/H converge to PageRank. This
significant computational development is presented in Algorithm 3 (On-Line Im-
portance Computing), where for simplicity we assumed that a graph is strongly
connected.

Tomlin starts with the observation that a random surfer model is a special
case of a network flow problem on a directed graph [Tomlin 03]. Imagine that a
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Algorithm 3. (OPIC.)
Input: Given link data L
Output: Compute PageRank p
begin

Initialize ci = 1/n, hi = 0, H = 0
repeat

select i randomly with non-zero probability
hi+ = ci

for each i → j do
cj+ = ci/deg(i)

end
H+ = ci

ci = 0
until converged
for each i do

pi = (hi + ci)/(H + 1)
end

end
return p

pij fraction of users follows from i to j during a time unit, so that total incoming
j-traffic is Pj =

∑
i→j pij . For simplicity we will assume strong connectivity. In

the random surfer model we explicitly set pjk = Pj/deg(j). In a network flow
framework, all we have to satisfy is the conservation requirement: for each j

incoming and outgoing traffic coincides, i.e.,

Pj =
∑

i→j
pij =

∑
j→k

pjk. (4.3)

As soon as constraints consisting of the conservation requirement (4.3) and a
normalization requirement

∑
ij pij = 1 are satisfied, we are free to chose any p.

Following the famous publication [Jaynes 57], it is suggested to maximize the
entropy −∑ij pij log(pij) subject to introduced constraints. A standard matrix-
balancing algorithm for maximum entropy problems is considered. Still another
attempt to build PageRank subject to certain constraints (of desirability for
certain pages to have particular PageRank) is presented in [Tsoi et al. 03].

Four different modifications to the PageRank model take page decay (link
rot) into consideration [Eiron et al. 04]; see also [Bar-Yossef et al. 04]. The
guiding principle of this development is to reduce the PageRank of pages having
links to bad pages (e.g., 404 HTTP return code). For example, a “push-back”
modification returns a fraction of a current bad page PageRank value to its
contributors. It is shown that, algebraically, it means that a usual transition
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matrix P is multiplied on the right by some row-stochastic matrix B. Another
simpler suggestion, the “self-link” algorithm, is to introduce self-links that are
followed with some page-dependent probability γi inversely proportional to the
number of bad out-links. A self-link always promotes a page authority.

Xi et al. concentrate on the generalization of underlying data [Xi et al. 04].
While previous models worked with web hyperlinks, the authors add into play
users (social network) and, in principle, other objects of different types. While
links between objects of the same type, intra-links, were traditionally used to
build authority vectors on directed graphs, now we also have inter-links that link
objects of different types. They suggest a framework, link fusion, incorporating
different authority weights, one per type, that are reinforced through both intra-
and inter-links.

4.4. Other Applications

The outstanding popularity of PageRank in web search ranking naturally sug-
gested its use in other contexts. In order to keep our focus on the major ap-
plication of scoring web page authorities, we only briefly review some of them.
Many other examples can be found in the extensive literature on random walks
and Markov chains.

It is appropriate to start with two applications of PageRank in web search
technology itself other than for ranking search results. The first application
deals with the important topic of spam, pages that try fraudulently to mislead
search engines about their importance. Among others, spam practices include
adding to a page some good unrelated content (sometimes in invisible font) to
increase its coverage and creating artificial pages that link to a spam target.
Since the smallest PageRank of a page i equals cvi = c/n under the assumption
of uniform teleportation, creating M supporting links immediately guarantees a
score of at least m = Mc/n for a spam page (actually 1/(1−c2) times more when
a spam target links back to supporting pages). A judicial use of trusted pages
to which to teleport instead of uniform teleportation is suggested in [Gyöngyi
et al. 04b]. The resulting PageRank is called TrustRank. It can be used in spam
detection [Gyöngyi et al. 04a] through careful approximation of m (effective
mass) with the linear combination of PageRank and TrustRank.

Another important problem in web search is deciding on what to crawl. Näıve
crawling of everything is infeasible and has no point since certain sites can be
crawled almost indefinitely. Therefore, crawlers are designed to pay more atten-
tion to some pages than to others. They do so based on importance metrics as-
sociated with each of the existent pages [Cho and Garcia-Molina 00]. PageRank
constitutes a valuable instance of such a metric. Topic-specific PageRank may
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serve as an importance metric for a focused crawler [Chakrabarti et al. 99, Abite-
boul et al. 03].

A Trust Network is a directed weighted graph of users where an edge i → j

with weight sij represents the trust (agent) i has to j. For our purpose, semantics
and application of trusts are not important. In particular, we will assume that
0 ≤ sij ≤ 1. It is important that trusts reflect a local ith viewpoint of its out-
neighbors, and furthermore it is very desirable to have global reliability weights
of a distant j. For example, a recommender system would weight different jth
ratings according to their reliability. Reliability could be i-personalized (one-
node teleportation) or uniform (uniform teleportation). Restricting ourselves to
a uniform case, we can define global reliability by using a random surfer model,
in which a surfer moves from agent i to agent j with probability sij/

∑
i→k sik.

The resulting PageRank is introduced in [Kamvar et al. 03d] under the name
EigenTrust. A personalized analog is also very beneficial in a recommender
system.

PageRank has been used recently in the context of keyword searching in re-
lational databases when a user does not know its schema [Bhalotia et al. 02]
without any query language. A proposed technique is called BANKS (Browsing
and Keyword Searching). It models database tuples as nodes and cross refer-
ences between them as edges. PageRank naturally appears in this context to
weight nodes. Along similar lines, a database graph corresponding to a relational
database and a set of queries is introduced in [Geerts et al. 04]. The objective
is to show only the most significant tuples. In a huge database, this objective
cannot be served by the traditional ORDER BY operator. The paper contains
a significant technical apparatus that is beyond our scope. Briefly, two database
tuples i and j are linked, i → j, with respect to the set of queries if j is a valid
target for a query with sources i. Now, a random walk can be defined, and
PageRank or HITS can be constructed.

To further illustrate applications of a random surfer model, we point out two
examples. The first example is learning word dependencies in natural language
processing [Toutanova et al. 04]. The second example is the problem of rank
aggregation. When one has multiple partial orderings over a set of indices 1:n, it
is desirable to find a permutation that minimally violates the given orderings. An
example application is relevance in meta-search. One elegant way to solve this
problem is to associate it with the problem of a random walk over 1:n. Dwork
et al. suggest several such models [Dwork et al. 01]. For example, starting at
i, with equal probability select one of the given partial orders, and then with
probability 1/(k+1) move to one of the k indices preceding i in this partial order
or stay at i. The resulting PageRank provides a score that is used to construct
aggregated order.
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5. Personalization and PageRank Sets

Among the many approaches to customization of search such as, for example,
those based on user profiles, we deal in this section with personalization that
utilizes PageRank.

Computation of PageRank is fundamentally an offline process. In this regard
it has an advantage over the HITS algorithm performed online, since its query
time is small. On the other hand, while HITS depends on a particular query,
PageRank is query-blind. It relies on nothing particular to an individual search.
The idea of using a nonuniform teleport to personalize PageRank was proposed
early in [Brin and Page 98, Page et al. 98]. Adequate technology to implement
this idea was developed gradually. For an overview of many personalization
efforts, see [Haveliwala et al. 03a].

5.1. Topic-Sensitive PageRank

The idea of a topic-sensitive PageRank is developed in [Haveliwala 02b]. To
compute topic-sensitive PageRank, a set of top topics Tj from some hierarchy
(16 topics from ODP in this study) are identified, and instead of the uniform
personalization vector v in (2.4), a topic specific vector v(j),

v(j)i = 1/|Tj |, if page i belongs to topic Tj , and v(j)i = 0 otherwise, (5.1)

is used for teleportation leading to the topic-specific PageRank p(j).

To ensure irreducibility, pages that are not reachable from Tj have to be
removed. (Another solution would be to allow a mixture with a small fraction
of the uniform teleportation distribution.)

With respect to the usage of topic-sensitive PageRank, two scenarios are dis-
cussed. In the first scenario, the appropriate topic is deduced from the query. In
the second scenario, some context is provided. When the topic is deduced from
the query, we set probabilities

P (Tj |query) ∝ P (Tj)
∏

terms ∈ query
P (term|Tj). (5.2)
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A (soft) query-specific PageRank is now defined as a blend of topic-specific
PageRanks

pi =
∑

j
P (Tj |query)p(j)i.

Maintaining about one hundred topic-sensitive PageRanks is feasible. While the
described approach provides for personalization indirectly through a query, user-
specific priors (e.g., directly selected by a user) can be taken into account in a
similar fashion. Overall, in different demo versions this type of personalization
is used the most, which indirectly confirms its practical usefulness.

5.2. Block Personalization

If we restrict personalization preferences to domain (host) blocks, the blockRank
algorithm provides clear opportunities. Following [Kamvar et al. 03b] and using
the notation of Section 3.3, we utilize equations

b = pageRank(P̃ , ṽ, ṽ), (5.3)

p = pageRank(P, s, v). (5.4)

Personalization is achieved by using nonuniform teleportation v. Here, the con-
struction of ṽ (from v by aggregation) and of an initial guess s for the overall
process (from b and local PageRanks) remains the same as in the blockRank
algorithm. What is different is the nonuniform choice of teleportation vector
v. Picking an arbitrary v is infeasible; therefore, only N degrees of freedom
are allowed: instead of v, we deal with an N -dimensional personalization vN .
The surfer travels over the web and from time to time teleports to one of the
hosts (home pages) proportionally to distribution vN . Computing personalized
blockRank b this way is much easier than computing p, since N << n. A full
teleportation vector is defined as v(j) = vN (J)p(j|J), and a conditional proba-
bility p(j|J) can be identified with components of the Jth local PageRank lJ(j).

Though a few iterations to approximate p in (5.4) would suffice, even that is
not feasible in query time for a large graph. On the other hand, this development
is very appealing since block-dependent teleportation constitutes a clear model.

5.3. Scaled Personalization by Jeh and Widom

We now describe the outstanding results of [Jeh and Widom 02b]. The authors
developed an approach to computing Personalized PageRank vectors (PPV).
Each PPV is a solution of the equation (in this subsection we use notation
C = 1 − c for consistency with the paper)

p = (1 − C)PT p + Cv, (5.5)
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where the personalization vector v relates to user-specified bookmarks with
weights. More specifically, v is a linear combination of some elementary vec-
tors xa(i) = δai (each teleporting to a single “bookmark” page a)

v =
∑

a
gaxa.

If, for example, ga = 1/n, we get v = e, and p is a uniform PageRank. The
authors suggest a framework that, for bookmarks a belonging to a highly linked
subset of hub pages H, provides a scalable and effective solution to build PPV.
Let ra = (ra(b)) be a solution of Equation (5.5) corresponding to a basis v = xa.
A general PPV can be expanded in a linear sum of such basis vectors ra. We
would like to provide some intuitive justifications before diving into technical
details. The presented framework shares three common practices: (1) it leverages
already precomputed results, (2) it provides cooperative computing of several
interrelated objects, and (3) it effectively encodes the results. The precomputed
objects constitute what is called the hub skeleton. They can be leveraged in
computing any PPV, since a general PPV projection on a hub can be subtracted
and what remains is “simpler” and sparse. To build a projection, the authors
express PPV as sums over all the passes connecting two pages: an origin a and
a destination b. Longer passes contribute more to a concept of expected P -
distance, but they affect the result less, which brings us to a modified concept of
an inverse P -distance. Now we summarize the major achievements of the paper.

• Consider the concept of expected distance defined as

d(a, b) =
∑

t:a→b
P [t]l(t). (5.6)

Here, t =< t0, t1, . . ., tk > varies among all paths or tours from t0 = a to
tk = b (tj �= b for j < k) with potential cycles, length l(t) = k. P [t] =∏

j=0:k−1 1/deg(j) is the probability of a tour t according to the uniform
random walk model. We set d(a, b) = ∞ if there is no tour from a to b,
and we set d(a, a) = 0. The expected distance is the average number of
steps that a random surfer takes to get from a to b for the first time. By
modifying (5.6) the authors prove that the basis vectors can be expressed
in terms of inverse P -distance

ra(b) =
∑

t:a→b
P [t]C(1 − C)l(t). (5.7)

• Instead of storing n elements of ra, a sparse partial vector ra−rH
a that has

many zeros can be stored. Here rH
a is defined as in (5.7), but only tours

touching H are used. A tour t touches H if tj ∈ H for some 0 < j < k; in
particular, such tours are at least 2-long. For large, highly linked H most
tours touch it, and so a partial vector is sparse.
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• To restore ra = (ra − rH
a ) + rH

a , the last term is required. It is shown that
only a hub skeleton that is the array of values of ra(h) over hub pages is
needed for this. Beautifully,

rH
a =

1
C

∑
h∈H

(ra(h) − Cxa(h))(rh − rH
h − Cxh). (5.8)

• Let O(i, a) be out-neighbors of a, i = 1 : deg(a). From a page a the surfer
moves with probability (1 − C)/deg(a) to each of O(i, a). The following
decomposition theorem is proved:

ra =
1 − C

deg(a)

∑
i=1:deg(a)

rO(i,a) + Cxa.

It states that the a-view of the web is an average of O(i, a)-views of the
web for out-neighbors endorsed by a plus extra self-importance.

• The decomposition theorem is instrumental in computing ra. Several ap-
proximate iterative procedures are suggested. They are used to compute
(a) the partial vectors ra−rH

a , a ∈ H, (b) the hub skeleton {ra(h)|a, h ∈ H},
and (c) the web skeleton {ra(h)|a ∈ G,h ∈ H}.

5.4. Query-Dependent PageRank

Richardson and Domingos suggest a personalization process that actually mod-
ifies the random surfer model [Richardson and Domingos 02]. Their Intelligent
Surfer takes query q into account:

p
(k+1)
j = c

∑
i→j

Pq(i → j) · p(k)
i + (1 − c)P ′

q(j). (5.9)

Let Rq(j) be a measure of relevance between a query q and a page j (TF/IDF
similarity can be used). The authors suggest using

Pq(i → j) =
Rq(j)∑

i→k Rq(k)
, P ′

q(j) =
Rq(j)∑

k∈G Rq(k)
.

Here, both the link weights and the teleportation distribution are defined in
terms of the relevance between page content and a query. So, the constructed
term-dependent PageRanks are zero over the pages that do not contain the
term. Based on this observation, the authors elaborate on the scalability of their
approach. Though computing billions of link weights Pq(i → j) is not easy, the
idea of blending IR methods into a random walk model is appealing (see also
[Chakrabarti et al. 98b, Brin and Page 98]). For the opposite trend of leveraging
connectivity data in an IR setting, see [Jeh and Widom 02a].
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5.5. Personalization in HITS

Personalization of PageRank has a clear input: the personalization (telepor-
tation) vector v. As we explained in Section 4.2, [Rafiei and Mendelzon 00]
extends the concept of teleportation to authority/hub setting (the authors talk
about HITS, but actually it is SALSA). Though they work with a uniform v,
their approach, in principle, can be used for personalization.

Chang et al. have been interested in customization [Chang et al. 00]. They
present a way to personalize HITS by incorporating user feedback on a particular
page j. One way of doing this is simply to raise page j’s authority and to
distribute it through the propagation mechanism. This, however, runs into the
trouble of an abnormal increase of closely related pages (a phenomenon known as
nepotism). Instead, the authors suggest an elegant way to increase the authority
of a page j indirectly through a small change in the overall graph geometry that
is consistent with user feedback and is comprehensive in terms of effects on other
pages. To do so, notice that an authority vector x is a fixed point of the following
transformation:

x̄j =
∑

k,i
LkiLkjxi.

Our goal is to increase its jth component. Its gradient grad (x̄j) = {∂x̄j/∂Lki} =
{Lkjxi} can be used to adjust elements Lki of the original adjacency matrix

L̄ = L + γ · grad (x̄j) .

For small γ, Taylor’s formula guarantees consistency with feedback (the authors
suggest renormalizing L̄, which would also allow for negative feedbacks). So
HITS is invoked twice: first, to compute x and, second, to compute x̄ after a
matrix L is updated. The study is performed not for a query search but on
an online index Cora of computer science literature. Among other difficulties,
implementing this idea for a query search would require inclusion of a page j

into a query subgraph.

6. Nuts and Bolts

Computational challenges and the application importance of PageRank led to
many special developments facilitating its computation beyond just accelerating
its convergence. Those developments are surveyed in this section. In practice,
infrastructural issues such as, for example, fast access to link data or appropriate
pruning of links are most important in speeding up the computation of PageRank
and getting useful results.
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6.1. Stopping Criteria

The essential question for PageRank computing is how far we would like to
iterate. Since our goal is to rank pages, there is no sense to iterate beyond
the accuracy that establishes a linear order over the pages (we will see shortly
that even this is too restrictive). While the simplest stopping criterion for the
iterations (2.1) is ‖p(k+1) − p(k)‖ < ε in L1 norm, a more relevant one would be
based on an estimation of how the resulting ranking is affected.

The ranking order defines a permutation σ over the pages. Let σ(i) be the rank
of page i (the smaller the better). Classic dissimilarity measures between two
ranking orders [Dwork et al. 01] include Kendall tau K distance and Spearman’s
footrule F distance

K(σ1, σ2) = # {(i < j) | sgn ((σ1(i) − σ1(j))/(σ2(i) − σ2(j)) = −1} , (6.1)

F (σ1, σ2) =
∑

i
|σ1(i) − σ2(i)|. (6.2)

Both distances can be normalized, since the maximum values for K and F are
n(n− 1)/2 and 2 �(n + 1)/2 �(n − 1)/2�, respectively. The introduced concepts
have probabilistic significance. For example, Kendall tau distance defines the
probability for a random pair of pages to be reversed by two rankings. It al-
ternatively can be interpreted as a maximum likelihood. Asymmetric measures
penalizing top results’ distortions are used in proprietary software. Ranking
measures of controlling convergence have been used in actual numerical stud-
ies [Haveliwala 99, Kamvar et al. 03b, Kamvar et al. 03c]. The authors report
a good correlation between a simple L1 convergence and a rank convergence.
Our experiments confirm this result, but they also show that at some moment
rank convergence reaches its saturation, while L1 convergence monotonically
improves. Therefore, monitoring of a simple L1 convergence is only good in a
certain range. Even more important in the evaluation of rank convergence is
the issue of rank stability discussed in Section 3.7. There is no benefit in iterat-
ing beyond a bound imposed by rank stability. We do not know of any studies
clarifying this point.

Beyond serving as a measure controlling PageRank convergence, Kendall tau
distance has another PageRank application. It is rooted in a desire to map
PageRank values into a finite set of values, one per range interval. Such a process
is called vector quantization. Its goal is to encode all the values of PageRank
(float-point numbers) by a relatively small number of indices. This allows for
a significant compression. Such compression is very important for a general-
purpose PageRank, but even more so for topic-specific PageRanks. As a result
of this lossy compression, some violations happen and Kendall tau distance can
be used to control the errors [Haveliwala 02a].
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A direct application of rank-based measures to PageRank is somewhat beyond
the point, since we are not in the business of establishing a linear order for the
web. What we actually need is an assertion that ranks within an “average” query
result set do not differ wildly [Haveliwala 99]. Result sets for an editorially se-
lected set of queries can be used to monitor convergence, averaging dissimilarity
measures imposed by PageRank over each result set. Moreover, in realistic rele-
vance analysis, even a whole recalled result set is too large. Correspondingly, it
is important to be able to compare just two top k lists τ1 and τ2 corresponding
to top results D1 and D2 for each order. Those can be different pages and [Fagin
et al. 03] analyzes this problem. For example, let σ � τ if τ is a restriction of σ.
For two top k lists τ1, τ2 we can set

Kmin(τ1, τ2) = min {K(σ1, σ2)| σ1 � τ1, σ2 � τ2} ,

where σ1, σ2 are defined on D = D1

⋃
D2. Assessing results on the top k lists

for a set of predefined queries appears to be practical and to reflect application
specifics. In reality, rank violations in the first few results have a much more
severe consequence for web search than rank violations down the tail. Putting
it together, a reasonable modification of, for example, (6.2) can be given by the
formula

F ′(σ1, σ2) =
∑

q∈Q

{∑
i∈R(q)

|σ1(i) − σ2(i)|/iγ
}

,

where a query q goes over a set of predefined queries Q, i enumerates pages
within query result sets R(q), and γ > 0 discounts results in the tail.

6.2. Computing Infrastructure

The major computational cost of PageRank is in matrix-vector multiplication.
To understand further reasoning, assume that links i → j are stored in an
“array” L that is sorted first by i and then by j, and consider Algorithm 4
which implements this operation. This implementation of a sparse multiplication
y = PT x accesses components xi and edges (i, j) in a natural order. Alas, vector
yj is accessed in a random fashion. When it does not fit in memory, disastrous
paging happens.

A straightforward improvement is suggested in [Haveliwala 99] and is presented
in Algorithm 5. Divide n nodes into β blocks of length n/β (the last one is
potentially smaller). Let b be a block index. Divide links L into β subsets
L[b] = {(i, j) : j ∈ block b}, each sorted first by i and then by j. As before, xi

and edges (i,j) are accessed in a natural order. In addition, components yj of
each block b are now in memory and no paging happens. There are different
flavors of this idea. Assuming that each time we read α sources i in memory,
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Algorithm 4. (Näıve matrix-vector multiplication.)
Input: Given x and array L = {(i, j)}
Output: Compute y = PT x
begin

for each j do
y[j] = 0

end
while L is not exhausted do

read a batch of (i, j) from L in memory
for each i in a batch do

z = 1/deg(i)
for each j such that (i, j) is in a batch do

y[j]+ = z · x[i]
end

end
end

end

and that the average deg(i) is d, we can estimate optimal β. We need space
α + n/β + α · d/β for (1) the sources x vector portion (α elements), (2) the
targets y vector portion (n/β elements), and (3) the L(b)− batch portion of
links (α · d/β), assuming average out-degree d. If the available memory is M ,
the constraint is

α + n/β + α · d/β ≤ M.

In the simplest case, α = n/β, which brings us to the condition 2n/β +nd/β2 ≤
M . Blocked algorithms are important. They provide for parallelization in an
industrial setting.

A different implementation of sparse multiplication, the sort-merge algorithm,
is suggested in [Chen et al. 02]. Each source page i impacts a destination page
j by amount w = xi/deg(i). The problem with Algorithm 4 is that while the
sources i come in order, the targets j come randomly. To avoid huge associated
I/O, the sort-merge algorithm saves packets that are target/impact pairs (j, w).
Over the span of a major iteration, packets are kept in a memory buffer. When
full, the buffer is compressed (j-aggregation) and if this does not help, it is
written to a disk. All the packets on disk are then sorted by destination j, and
only then accumulation happens.
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Algorithm 5. (Block matrix-vector multiplication.)
Input: Given x and β arrays L[b], b = 1 : β
Output: Compute y = PT x
begin

for b = 1 : β do
for j in block b do

y[j] = 0
end
while L[b] is not exhausted do

read a batch of (i, j) from L[b] in memory
for each i in a batch do

z = 1/deg(i)
for each j such that (i, j) is in a batch do

y[j]+ = z · x[i]
end

end
end

end
end

6.3. Hyperlinks

Hyperlinks have a very different nature [Bharat and Henzinger 98]. Usually links
corresponding to the same host (domain), called intrinsic or internal links, are
not very trustworthy and are either pruned or assigned smaller weights. Some
internal links (e.g., reference to a designer page, navigational links, copyright
warnings, or disclaimers) are simply useless. A finer extraction of still-useful
intrinsic links based on analysis of frames is possible. Sometimes the removal
of intrinsic links is blank wrong, as, for example, in the case of the GeoCities
site, where homepages with already sparse link structure are further pruned if
they point to each other. The rest of the hyperlinks are called transverse or
external links. There are different reasons for pruning some of these links as
well. Potential examples include advertisements, mass endorsement, and highly
interlinked mailing archives. Links, in principle, may have different nonnegative
weights [Kleinberg 99, Section 5.1.1], so that weight-proportional rather than
uniform distribution is used. In principle, a measure of page decay (link rot) can
be taken into account [Bar-Yossef et al. 04, Eiron et al. 04].

Though a full discussion of link filtering is beyond our scope, we would like to
point to the concept of nepotistic links that are created for reasons other than
target-page merit [Davison 00]. The author selects several attributes to be used
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in a machine learning procedure (C4.5) trained to predict nepotistic links. The
largest class of nepotistic links is link-based spam [Gyöngyi et al. 04b] discussed
in Section 4.4.

An effective web-link database with API appropriate for its surfing is known
as a connectivity server [Bharat et al. 98, Randall et al. 02]. The quality of a
connectivity server is crucial to PageRank. Contemporary information on this
subject is highly proprietary.

In Section 3.4, we introduced an upper triangular block representation for a
transition matrix. A proper web page enumeration is very important. An exten-
sive related study of web structure [Kumar et al. 00] reflects, in particular, on its
“bow tie” form with the diameter of central SCC. It also contains a large mate-
rial regarding power laws for the number of the in/out-links and for the number
of undirected/directed strongly connected components. In particular, the cen-
tral SCC at the time amounted to around 28% of the total pages. According to
[Broder et al. 00], its diameter is at least 28. There are also a number of discon-
nected components. This work was partly performed at AltaVista and has all
the traits of dealing with real data. An immediate application is the following:
if a personalized vector v contains few bookmarks, the PageRank for the pages
located up the stream of these bookmarks would be zero. Regarding information
on power laws for the Internet, also see [Faloutsos et al. 99]. For in/out-degree
power law distributions (exponents are 2.15/2.75), also see [Guillaume et al. 02].
More specifically, the numbers of pages with in-degree or out-degree j are pro-
portional to 1/jγ . A categorical distribution whose jth most likely outcome is
proportional to 1/jγ is also known as the Zipf distribution [Adler and Mitzen-
macher 01]. For a thorough introduction into the fundamentals of the power law,
see [Mitzenmacher 03].

Other statistics for different web graphs, including sizes of strongly connected
components, are presented in [Dill et al. 01]. Regarding distribution of PageRank
values, see [Pandurangan et al. 02]. Among other things, the authors present
web graph models that utilize PageRank: a new edge is generated by taking the
current PageRank into account.

In the study [Kumar et al. 99] different important topics, such as in/out-degree
distributions, different pruning strategies, and finding strongly interconnected
web communities, are considered. Around 20,000 of such are found. It also
addresses the phenomenon of mirrors and shingles (that is, almost identical
pages, see [Broder et al. 97]). Merging of such pages (duplicates) is ubiquitous
and very important.

On the duplicate hosts detection problem, see [Henzinger 03]. For an inverse
attempt to divide pages into pagelets based on analysis of frames, see [Bar-Yossef
and Rajagopalan 02]. An approach to study web structure that exploits both link
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structure and textual information (information foraging) is proposed in [Pirolli
et al. 96].

In reality, any static web graph only gives certain approximation to the real
web. Indeed, crawling of many sites is prohibited, while other sites can be crawled
indefinitely, and the crawler exercises certain heuristics to prevent this. Another
difficulty is related to database-driven dynamic pages. All these reasons lead
to the presence of many dangling pages (only a portion of which is genuinely
dangling). They constitute a web frontier, a term coined in [Eiron et al. 04].

6.4. Link Data Compression

Reading link data (matrix L) into memory is an expensive process, and it is
performed during each of many iterations. Therefore, potential compression of
this data can be beneficial [Randall et al. 02, Suel and Yuan 01]. One suggestion is
to exploit the closeness of many references: if a page has (sorted) links l1, . . . , lk,
(e.g., 1,000,007, 1,000,052, 1,000,108), then only the first link and the differences
dj= lj − lj−1 can be stored (e.g., 1,000,007, 45, 56). Other smart strategies are
also considered.

Another source of potential compressibility is identified in [Suel and Yuan 01].
Some pages have very high in-degree. In other words they use in-link data
disproportionally frequently. The authors suggest encoding the first highest q

in-degree pages by Huffman codes (see also [Adler and Mitzenmacher 01]).
An overview of web compression issues can also be found in [Witten et al. 99].

Unlike many other nice ideas, link compression is actually used in real connec-
tivity servers. Probably the most advanced compression rates of 3.08 bit per
link (2.89 bits per link for transposed graph) were achieved for a 118 M graph
with 1 G of links by [Boldi and Vigna 03]. It is not exactly clear how much such
compression rates degrade performance during the decoding stage.

7. Conclusions

The development of methods for the efficient computation of PageRank and
similar authority vectors over directed graphs is a vibrant area of contemporary
research. It has a grand application: search engine relevance and personalization.
This application explains a diffusion of ideas related to leveraging content-based
information into the austere formulation of random walks over a graph. PageR-
ank also has a grand challenge: being the largest matrix computation in the
world. This challenge dictates the emergence of structural and computational
methods coming from linear algebra and graph theory. We believe that these
trends will continue their momentum.
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