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The main purpose of this study is to review various swarm-inspired optimization
algorithms to discuss the significance of some established works in this area.
Accurate parameter estimation is required to guarantee proper modeling of
PEMFCs. However, because PEMFC models are complex, non-linear, and
multivariate, parameter estimation is quite difficult. To estimate the linear and
non-linear parameters of a PEMFC model in real time, this work investigates
PEMFC model parameters estimation methods with a focus on online
identification algorithms, which are thought of as the foundation of designing
a global energy management strategy. Various PEMFC models with various
classifications and objectives are initially addressed in this regard. The
parameters of two well-known semi-empirical models in the literature,
including 500W BCS PEMFC and the 6 kW NedSstack PS6 PEMFC have then
been identified using some potential swarm-inspired optimization algorithms for
practical applications, such that the TSD error for the NedStack PS6 and BCS
PEMFC based on the swarm-inspired optimization algorithms provide averagely
2.22 and 0.047, respectively. Finally, the obtained accomplishments and
upcoming difficulties are highlighted.
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1 Introduction

Today, population growth, growing demand for energy and the depletion of fossil
resources, global environmental concerns, and the growing need to use energy have led
researchers to look for more efficient and environmentally friendly methods of energy
production (Abdelkareem, Elsaid, et al., 2021). In this context, renewable energy
technologies have created new formats for the public use of renewable energy sources. A
fuel cell is a suitable option for power generation due to its characteristics such as high
efficiency, no noise, and no pollution (Wang, Wang et al., 2018). These batteries convert the
chemical energy contained in gases such as hydrogen directly into electricity without a
combustion process (Abdelkareem, Elsaid et al., 2021).

Fuel cells are widely used as environmentally friendly energy sources in the 21st century.
Fuel cell research is associated with significant growth due to economic imperatives (Arshad,
Ali et al., 2019). Fuel cells are one of the oldest energy conversion technologies. Fuel cells are
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good alternatives to conventional power generation methods for
small applications (Shao, Dodelet et al., 2019). Hydrogen and
hydrocarbons contain significant chemical energy compared to
ordinary batteries. Therefore, fuel cells are currently being
developed on a large scale to use multiple energies (Arshad, Ali
et al., 2019). Fuel cells generate electricity and heat during the
electrochemical reaction between oxygen and hydrogen in the form
of water.

Fuel cell technology is a promising alternative to fossil fuels for
providing energy in rural areas where there is no access to the public
electricity grid or where electricity cabling and transmission costs
are high (Ijaodola, El-Hassan et al., 2019).

These elements also are increasingly being used in grid-
connected systems to improve efficiency and reduce emissions
(Xu, Huang et al., 2022). By using the electricity produced by
PEMFCs to supplement existing grid power, grid operators can
reduce their reliance on traditional sources of energy while still
meeting demand (Sun, Li et al., 2022). Additionally, PEMFCs offers
a clean form of energy that emits zero carbon emissions, which can
help reduce a region’s overall air pollution levels (Ge, Yan et al.,
2022).

PEMFCs are highly efficient and cost-effective devices that
are ideal for grid-connected systems as they offer both energy
security and environmental benefits (Ge, Du et al., 2022). For
instance, because PEMFCs use hydrogen fuel, an intermittent
renewable resource, they can provide a reliable source of
electricity even when the Sun is not shining or the wind is
not blowing, helping to prevent brownouts or blackouts (Zhong,
Zhou et al., 2022). Additionally, since the only byproduct of
hydrogen fuel cells is water, they are one of the cleanest sources
of energy available (Li, Deng et al., 2022). With their high
efficiency, low emissions, and reliability, PEMFCs are rapidly
becoming the preferred choice for grid-connected systems.
Human:

In addition, applications with essential safety requirements for
electrical energy, such as uninterruptible power supplies (UPS),
power plants, and distributed systems, can use fuel cells as an
energy source (Prasad and Tripathi, 2021). Currently, fuel cell
systems are widely used in both small (Wang, Diaz et al., 2020)
and large-scale (Arsalis, 2019) applications, such as combined cycle
(CHP) power plants (Bornapour, Hemmati et al., 2020), mobile
phone power systems (Shi, Dai et al., 2021), laptop computers
(RavindranathTagore, Anuradha et al., 2019), and
communications equipment (Li, Deng et al., 2020). Despite all
the benefits of its use, there are some limitations to using fuel
cells. For example, the short life of fuel cells corresponds to the pulse
and impurity of the gas flow (Vichard, Harel et al., 2020). Fuel cells
generate electricity and heat through an electrochemical reaction,
which is a reverse electrolysis reaction (Zhang, Wang et al., 2023).
The main difference between different fuel cell designs is the
chemical properties of the electrolyte.

Fuel cells have different types according to temperature,
efficiency, applications and costs. Which are divided into six
main groups based on the choice of fuel and electrolyte: Alkaline
fuel cell (AFC) (Sun, Lin et al., 2018), phosphoric acid fuel cell
(PAFC) (Cheng, Zhao et al., 2021), Solid oxide fuel cell (SOFC)
(Tian, Yan et al., 2020), Molten carbonate fuel cell (MCFC) (Salehi,
Mousavi et al., 2019), and Proton exchange membrane fuel cell

(PEMFC) (Yu, Wang et al., 2019). Figure 1 shows the performance
of different fuel cells versus generating scale.

The main disadvantage of fuel cells is their high price. The high
price of platinum catalysts is one of many obstacles to building a
hydrogen infrastructure. The price of a fuel cell from a generator
motor of the same power is more than three times higher (Zhao, Tu
et al., 2021).

For specific applications, polymer electrolyte membrane fuel
cells (PEMFCs) are preferable to other types. The reasons for their
preference are their low operating temperature (60°C–80°C), which
enables quick start-up and fast response to the load, and the use of
solid polymer, which makes it easy to assemble and transport the
fuel cell (Sapkota and Aguey-Zinsou, 2023). These advantages make
the PEMFCs to become the best choice for an alternative power
source for transportation and concentrated power systems.
Therefore, achieving an optimal PEMFC design is an important
issue in recent years (Fathy, Rezk et al., 2023). In the development of
PEMFC technology, modeling is a key factor. Modeling of PEMFCs
may be used for a variety of purposes. Table 1 indicates some
applications of PEMFC onboard.

Today, there are two methods for analyzing the performance of
the PEMFC. One is the use of laboratory equipment and the other
is mathematical modeling. It is very difficult to accurately measure
the spatial and temporal concentration of elements, temperature,
and current density for a better understanding of fuel cell
performance (Zhao, Mao et al., 2020). In recent decades, many
modeling improvements have been made, mainly in the form of
numerical simulations, and fewer analytical studies have been
conducted.

In recent years, many efforts have been made to achieve the
optimal design of the PEMFC system. Although most of these
studies have made a significant contribution to the description of
PEMFC literature, e.g., the formulation of PEMFC models with
different levels of complexity and the development of different
optimization techniques, most of them limited to a single design
goal (Blal, Benatiallah et al., 2019). Various studies have been
conducted to optimize performance considering price, durability,
and pollutant emission as design goals. In addition, some items
aimed at optimizing a target for a specific part of the PEMFC system
(Pashaki and Mahmoudimehr, 2023). The electrode-membrane
assembly, electrode, bipolar plates, permeation layer, cathode and
air diffuser, and a layer of catalyst presented (Lim, Majlan et al.,
2021). However, the results of these studies can be misleading
because the interaction between the different targets has not been
taken into account (Zhang, Liu et al., 2019). Moreover, the
incompatibility of the objectives can determine that the optimal
solver is the most interesting.

By the way, it has been suggested to use identification algorithms
to address the issues brought on by deterioration, aging, and
changing operating conditions (Zakaria, Kamarudin et al., 2023).
It should be noted that carefully selecting an identification method is
just as crucial as selecting a model because it can enhance the model
and even make up for its deficiencies in specifics and considerations
(Chen, Badji et al., 2022).

In this review paper, the objective is to thoroughly evaluate the
various methods and approaches used for parameter estimation of
the PEMFCs based on the swarm-Inspired optimization algorithms.
We will assess and compare the strengths and weaknesses of each
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approach and provide an overall assessment of the current literature
on the subject. We aim to identify which methods are most effective
for different applications and explain why, to provide valuable
insights for practitioners.

2 Problem statement

The PEMFC systems convert chemical energy into electrical
energy. The fuel is applied at a specific pressure to the anode part of
the fuel cell until the catalytic layer is reached (Rezk, Olabi et al.,
2022). The other part of the fuel cell is referred to as the cathode. The
chemical reaction begins in the catalytic layer and produces both
protons and electrons, but the electrolyte only allows for proton
transport until it reaches the catalytic layer of the cathode (Zhao and
Li, 2019). In another area of the fuel cell, up until the electrolyte, the
flow of oxide allows for the production of liquid water, liquid
oxygen, and residual heat. Figure 2 indicates the chemical
reaction of the PEMFC (Ang, Salem et al., 2022).

FIGURE 1
Efficiency of the different fuel cells vs. generating scale.

TABLE 1 Some applications of PEMFC on-board.

Application Method Power Objective Contribution References

Hybrid power sources
(HPSs)

Real-Time Optimization 6 kW System efficiency, fuel
consumption efficiency, and fuel

economy

Evaluating HPS in space applications (Bizon, 2019)

Electric vehicle ANFIS 1.26 kW Optimize MPPT controller Using Neurofuzzy system for MPPT (Reddy and
Sudhakar, 2019)

Laptop Computer PID control 100 W Keep the load voltage at a desirable
level

Proposing real-time optimization strategy (Yalcinoz and
Alam, 2007)

Stationary power
generator

Thermo-economic
model

5 kW Distributed generation, Net
metering

Low sensitivity to market price fluctuation (Wu, Zhu et al.,
2020)

Telecommunication Micro-grid 100 kW Backup power system Using a backup power system for
telecommunications application

(Ma, Eichman et al.,
2018)

Lightweight vehicles DC-DC converter and a
central controller

2 kW Improve Dynamic performance
and Transient response

Dynamic performance analysis for the
lightweight electric vehicle application

(Tang, Yuan et al.,
2011)

FIGURE 2
Chemical reaction of the PEMFC (Ang, Salem et al., 2022).
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As can be observed from Figure 2, the overall chemical reaction
can be defined as follows:

O2 + 2H2 → 2H2O +Heat + Electricity (1)
Such that, on the anode side,

H2 → 2H+ + 2e− (2a)
And in the cathode side,

4H+ + O2 + 4e− → 2H2O (3a)
The Nernst-Plunk equation is used to determine the fuel cell

voltage in the absence of voltage loss. However, after deducting the
voltage losses from the output voltage, the terminal voltage will not
match the open circuit voltage because of the voltage drops
occurring in the fuel cell (Valdes-Lopez, Mason et al., 2020).
They are the ohmic voltage drop (VΩ), the activation voltage
drop (Vact), and the concentration voltage drop (Vcons). A
typical polarization curve of a single cell operating at a
temperature of about 70°C and normal atmospheric pressure is
shown in Figure 3.

The terminal voltage of a fuel cell can be obtained using the
following equation by taking these voltage drops into account:

E � Enernst − VΩ − Vact − Vcons (2b)
where, Enernst specifies the cells’ mean thermodynamic potential
which indicates the reversible voltage (Nernst voltage) and has been
given below:

Enernst � 0.5 × R × T × F−1 PH2 × P
1
2
O2

( ) + E0

−λe × τes × τes + 1( )−1 × I s( ) − δT (3b)
where, E0 describes the standard reference potential [E0 � 1.229V
(Lazarou, Pyrgioti et al., 2009)], δ signifies the experimental constant
(V/K), T determines the fuel cell temperature, F describes the
Faraday constant and is equal to 96.487 kC/mol, τe � 80s
[Shakhshir, Gao et al., 2020), λe defines a constant factor (here, λe �
3.3Ω (Shakhshir, Gao et al., 2020)], and PH2 and PO2 determine, in
turn, the partial pressures of hydrogen and oxygen (Pa).

If the number of cells (n) is more than one, the voltage stack
(Vstack) has been achieved as follows:

VT � n × E (4)
A fuel cell’s ideal operating voltage for all attracted currents from

the cell is close to 1.2 V. In reality, the fuel cell can only receive a
higher level of this voltage when there is no voltage drop in the
system, which is not possible (Celik and Karagöz, 2020). To create an
effective device design, all model parameters must be precisely set.
The best estimate of the PEMFC model is a crucial task in general.

So, one of the main objectives of this work is to find the ideal
value of the structure’s E0. Although the literature specifies the
values of τe and λe, there is still a lot of room for interpretation. This
served as further inspiration for us to focus on improving the
estimate of these two variables. Electricity passing through a
substance with low conductivity is related to ohmic resistance. In
the word of Eq. 2a, it is possible to model the activation voltage drop
of a PEMFC mathematically as follows:

Vact � β1 + β2 × T + β3 × T × ln CO2( ) + β4 × T × ln I( ) (5)
where, i stands for the coefficient number, an βi defines the
coefficient number in the model that is usually achieved pseudo-
empirically, I dignifies the fuel cell’s current, and CH2 and CO2 are
the concentration of hydrogen at the anode side (mol. cm−3) and the
cathode/gas interface concentration (mol. cm−3) for oxygen and are
achieved by the following equations:

CH2 � PH2

10.9 × e
77
T( ) × 10−7 (6)

CO2 � pO2 × 5.08 × 108 × e
−498
T( )[ ]−1 (7)

That is accomplished with metaheuristic algorithms in the best
possible way. The ohmic resistance has to do with electricity moving
through a material with low conductivity. This can be stated as
follows:

RΩ � Rt + Rm (8)
The equivalent resistance of the plate collector in this instance,

which is passing protons and electrons over the membrane, is

FIGURE 3
Single cell polarization curve.
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specified byRt. The membrane resistance, Rm, is calculated using the
formula below and is assumed in this study to be 300 µΩ.

Rm �
181.6 × l × 1 + 0.03 × I

A + 0.062 × I
A( )2.5 × T

303( )2[ ]
A × φ − 0.634 − 3I

A( ) × e 4.18×Tc−30
Tc( ) (9)

where, φ denotes a variable quantity related to relative humidity, l
denotes the stack’s thickness (in millimeters) and the ratio of the positive
electrode gas stoichiometry to membrane age was less than 23 (San
Martin, Zamora et al., 2010). Due to the mass concentration drop, the
reactant concentration on the surface of the electrodes is decreased.
Below describes the formulation of the concentration loss model.

Rcons � B × I−1 × ln
Il

Il − I
( ) (10)

where, B denotes an experimental coefficient that the cell’s operating
circumstances allow it to achieve. Another term that is taken into
account in this study as an optimization parameter is this value.

VC � Ract + Rcons( ) × I − C ×
dVc

dt
( ) (11)

The non-linear nature of this component makes its value
unclear. For optimal selection the best value for it, this parameter
is therefore also taken into consideration.

Current limitation (Il) is a further factor to take into account
when enhancing the model. According to the (Spiegel, 2011), this
parameter is defined as follows.

Il � τ−1 × Nr × F × d × Cb (12)
where,Nr signifies the needed value for the electrons in the reaction,
τ specifies the diffusion layer thickness, d defines the well-organized
diffusion coefficient during the reaction, and Cb represents the bulk
concentration.

3 A survey of modeling of the PEMFCs

As illustrated in Figure 4, the existing PEMFC models in the
literature may be divided into three groups: white box, black box,

and grey box models (Tsalapati, Johnson et al., 2021), sometimes
referred to as mechanistic or theoretical models, are made up of
algebraic and differential equations that are based on the
principles of fluid mechanics, electrochemistry, and
thermodynamics.

They have diverse geographic dimensions and are intended to
examine a variety of phenomena, like catalyst employment,
polarization impacts, and water management. Blackbox models,
in contrast to Whitebox models, are derived from observations
and do not examine the specifics of physical interactions inside the
PEMFC (Zhao, Mao et al., 2020). Blackbox models are extremely
intriguing for online applications, such as cars, because of how little
computing work is required. Yet, when faced with novel operational
situations, these models’ uncertainties grow. Fuzzy logic, artificial
neural networks, and their combinations are thought to be the most
common methods for creating PEMFC black box models (Qaiser,
Asghar et al., 2021). Greybox models, often referred to as quasi-
models, present a respectable middle ground between complication
and clarity.

These models illustrate the fundamental electrochemical
properties of PEMFCs and are based on physical relationships
that are confirmed by experimental evidence (polarization curve).
Energy management design is one of the fascinating real-world uses
for grey box PEMFC models. The physical understanding offers
important details on polarization curve effects including cell
reversible voltage, activation drop, ohmic loss, and concertation
overvoltage, which are crucial for determining if the results are
relevant. A quick synopsis of the PEMFC models addressed is
provided in Table 2.

Grey and black box models appear to be the most appropriate
types for control and energy management reasons in light of the
previously stated models. The next part offers a full analysis of the
identification techniques used for PEMFC models’ parameter
estimates, which are based on grey- and black-box models.

The accuracy of PEMFC models may be dramatically improved
and the absence of details can bemade up for by correctly identifying
the parameters. However, due to their intricate characteristics, the
PEMFC models’ parameter estimate is extremely difficult. To
optimize and identify the parameters of a PEMFC model, various
methods were reported in the literature. Due to the complexity of
these systems, most of them are solved recently by metaheuristics
algorithms. Some of these works can be considered as bird mating
optimizer (Askarzadeh and Rezazadeh, 2013), flower pollination
optimization algorithm (Askarzadeh and Rezazadeh, 2013),
developed Krill herd optimization algorithm (Guo, Dai et al.,
2020), improved seagull optimization algorithm (Cao, Li et al.,
2019).

4 Model parameters estimation based
on metaheuristic

The values of the model parameters, such as Rc, ζ1, ζ2, ζ3, ζ4, B,
λ, Q, must be established to construct a mathematical model of
PEMFC based on the electrochemical process described above. The
key limitations are, however, that:

1. Model parameters are unknown

FIGURE 4
PEMFC models categories.
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2. Model parameters differ significantly with each operating state
and affect the quality of the V-I curves;

3. Model parameter values are not listed in the manufacturer’s
datasheet.

Parameter identification is a crucial, challenging activity that is
extremely complicated. As a result, to make things simpler, the
choice of the fuel cell model parameter has beenmade as a numerical
optimization issue that can be resolved using the optimization
approach. The unknown PEMFC model parameters have been
essentially determined using a variety of optimization
approaches, including AI techniques. Additionally, the difficulty
of estimating unknown model parameters using data from
datasheets or experimental I-V data is known as the Fuel cell
model parameter estimation problem. The objective function is
often the Root Mean Square Error (RMSE) between the empirical
and simulated data, i.e.,

MSE � 1
N

∑N
j�1

Vj
out − V j

exp( )2 (13)

where, N describes the sample data quantity of the empirical data,
and Vj

out and V j
exp specify, in turn, the output voltage for empirical

and model data. The PEMFC’s basic modeling procedure is depicted
in Figure 5 as a representation.

To identify the linear and non-linear parameters of an
electrochemical PEMFC model without being trapped in local
optima, many articles have presented metaheuristic-based
optimization strategies (Yang, Wang et al., 2020). The bulk of the
metaheuristic-based approaches is surprisingly based on the semi-
empirical model presented by Amphlett et al., which can adequately
mimic the behavior of the PEMFC (Wilberforce, Rezk et al., 2023).
The central concept of all of this research is to study the impact of
the metaheuristic approaches on estimating the physical parameters
of the static semi-empirical PEMFC model.

5 A review of some newest swarm-
inspired algorithms utilized for model
parameters estimation

Finding the most suitable solution that satisfies the problem’s
constraints and criteria is the basic goal of optimization [4; 26]. A
function known as a fitness (cost) function is used to compare many
possible solutions to a problem to choose the best one.

TABLE 2 Different types of the PEMFC models.

Features White box (mechanistic) Grey box (semi-empirical) Black box

Experimental data
dependency

Low Average High

Computational time effort High Average Low

Precision High Satisfactory Satisfactory

Granularity High Average Low

Physical insight High Satisfactory Very low

Application area Cell-level understanding, Emulators design, Diagnosis
purposes

Energy management, Control, Diagnosis
studies

Energy management, Control, Diagnosis
studies

Online applicability Not applicable OK OK

FIGURE 5
Basic modeling of the parameter estimation for a PEMFC.
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Depending on the problem’s nature will determine how to select
a fitness function. One of the frequent objectives of improving
transportation networks, for instance, is to reduce spent time or
cost. The main goal of optimization is to choose the design
parameters so that they minimize or maximize the objective
function. Several optimization methods have been used for this
purpose. In recent years, the use of metaheuristic algorithms as
efficient optimization methods has been considered in various
problems. Meta-heuristic algorithms show different efficiency in
solving different problems. Ameta-heuristic algorithmmay perform
better than other algorithms for solving a specific problem and show
a weaker performance in another problem.

The idea behind a metaheuristic algorithm is to present an
adequate solution to a problem in a reasonable amount of time,
and an exploratory algorithm may not be the best solution to a
problem, but it may be the closest solution. Metaheuristic
algorithms can be combined with optimization algorithms to
improve algorithm efficiency. A metaheuristic is a combination
of heuristics designed to find, generate, or select each exploration
at each step and provide a good solution to an optimizable
problem. Metaheuristic algorithms assume some assumptions
about the optimization problem to be solvable. Metaheuristic
algorithms are algorithms that are usually inspired by nature,
physics, and human life and are used to solve many optimization
problems.

Swarm intelligence is inspired by the collective behavior of
decentralized, self-organizing natural or artificial systems. This
concept is used in work with artificial intelligence. Swarm
intelligence systems usually consist of a set of simple agents or
bodies that locally interact with each other and with the
environment. Inspiration often comes from nature, especially
biological systems. Agents follow very simple rules, and while
there is no central control structure that dictates how individual
agents should behave, local and somewhat random interactions
between these agents lead to “intelligent” globally behaving
agents. Include ant colonies, bee colonies, flocks of birds, eagle
hunting, animal husbandry, bacterial growth, fish schools, and
microbial intelligence.

The candidates are considered as solutions in the search space of
the objective problem in SI algorithms, and the candidates are varied
and self-organizing during the evolutionary process and may learn
from each other to update their solutions. Swarm intelligence
algorithms are often used in combination with other algorithms
to reach an optimal solution or to avoid a locally optimal solution. In
the following, some newest swarm intelligence algorithms like the
Bi-subgroup optimization algorithm (Chen, Pi et al., 2022), the
improved Salp Swarm Algorithm (Sultan, Menesy et al., 2020), the
improved chicken swarm optimization algorithm (Wang, Huang
et al., 2022), artificial bee colony differential evolution optimizer
(Hachana and El-Fergany, 2022), that were utilized for PEMFC
stacks model identification, have been explained in details.

5.1 Bi-subgroup optimization algorithm

5.1.1 Flower pollination algorithm
The best individual and the best historical position in the swarm

are the two vectors used in PSO’s population evolution to pull every

individual for updating (Diab and El-Sharkawy, 2016). Everyone
uses the same updating strategy. However, the majority of SI
algorithms do not take into account the hierarchical organization
of people. The flower pollination algorithm (FPA)’s search
procedure is deliberately segmented, in comparison to the PSO’s.

The FPA is s swam intelligence global optimization algorithm
that is inspired by the flower pollination process features. This
process is divided into the following four ideal guidelines
(Mohammadzadeh and Gharehchopogh, 2021).

Guideline 1: Cross-pollination by pollinators like birds is
considered a phase of global pollination, and the pollinators fly
with a gentle touch.

Guideline 2: Local pollination is considered to occur when
neighboring flowers self-pollinate.

Guideline 3: The reproducing rate, which is directly correlated
with the comparable level of the two concerned flowers, is
considered the floral constancy.

Guideline 4: Using a switch probability, both global and local
pollination is carried out.

The FPA has both a worldwide and local pollination operator,
following the aforementioned requirements. Each pollen item is
considered as a solution in the FPA, and the solutions are given
random vector initializations in the search space that is possible. As
an introductory formula, consider the following:

xi � x-+σ �x − x-( )
i � 1, 2, . . . , N (14)

where, σ describes a d-dimensional random value between 0 and 1,
N defines the population quantity.

Pollinators like birds, which have a very wide range of
movement and can transport pollen over great distances, play an
important role in the worldwide pollination process. Rules 1 and
3 are so developed as follows:

xt+1
i � xt

i + γL γ( ) gbest − xt
i( ) (15)

where, xti defines the ith solution for iteration t, γ specifies a step
factor, L(γ) defines the flight feature of birds that can be assumed as
a changing step factor, gbest signifies the global best position.

By assuming L bigger than 1, we have the:

L ~
λΓ λ( ) sin πλ/2( )

π

1
s1+λ

, (16)

where, Γ(λ) describes the conventional gamma function, s≫ s0 > 0,
and s0 � 0.1 such that s is defined by two gaussian distributions as
follows:

s � U

V| | 1λ, U ~ N 0, σ2( ), V ~ N 0, 1( )

σ2 � Γ 1 + λ( )
λΓ 1+λ

2[ ]
sin πλ/2( )
2 λ−1( )/2

⎡⎢⎣ ⎤⎥⎦ 1
λ

(17)

where, N(0, σ2) indicates the standard normal distribution and
denotes the normal distribution with a mean value of 0 and
variance σ2.

Pollen is transmitted to a nearby neighbor if the pollination
activities involve local pollination, and the model may be
constructed using Guideline 2 and Guideline 3 as follows:
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xt+1
i � xt

i + ψ xt
j − xt

k( )
j, k ∈ 1, 2, . . . , N( ) (18)

where, ψ specifies a d-dimension random variable between 0 and 1,
xt
j and xtk describes the pollen that was chosen at random from

several flowers on the same plant.
The FPA’s primary disadvantage is that the precise transfer

probability is determined manually, and this uncertainty
significantly reduces the optimization impact.

5.1.2 Subgroup optimization algorithm
The BSOA uses a hierarchical framework to split all persons into

two subgroups. Diverse methods were used to update these
subgroups. Particularly, solution candidates are graded following
how fit the general population is. The grouping made up of people
who are more physically fit is known as the advanced subgroup,
whereas the subgroup made up of those who are less physically fit is
known as the backward subgroup (Chen, Pi et al., 2022). The
backward subgroup is created, and it is updated using Eq. 15.

This means that individuals with low fitness should perform
Levy flights to the population’s ideal positions and investigate
novel solutions in objective space. By rewriting Eq. 18 as Eq. 19
for the advanced subgroup, we enhance it by adding the guidance
of the random person and the difference vector between the ideal
location and the present position. A uniformly distributed
random number between 0 and 1 is represented by the symbol
as follows:

xt
i � xt

i + 1 − ϵ( ) gbest − xt
i( ) + ϵ xt

j − xt
k( ) (19)

The goal of the advanced subgroup is to share knowledge and
find fresh local solutions. Throughout the population’s cyclical
history, members of these two subgroups have been in continual
contact with one another, making it easier to focus on finding
specific people and effectively ensuring the population’s variety.

The BSOA has been extended to include the step of leaping out of
the local optimal solution to prevent the loss of population diversity and
inefficient iterative search time. If the algorithm does not update the
new solution at half the maximumnumber of iterations and the present
solution is not the ideal solution to the cost function, we believe that the
process looks to have converged prematurely.

Since we typically don’t know what the theoretically ideal
solution to the problem is, this strategy can efficiently employ
the search resources to increase the population’s capacity for
searching the solution space. We create new solutions at random
in the space of possible solutions using the following equation:

xi � �x − �x − x-( )r (20)

where, r is a random variable between 0 and 1.
Figure 6 shows the flowchart of the BSO algorithm.

5.2 Improved salp swarm algorithm

5.2.1 Salp swarm algorithm
SSA mimics the salp chain’s technique for looking for prey (Al-

Shabi, Ghenai et al., 2021). This behavior is mathematically

FIGURE 6
Flowchart of the BSO algorithm.
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expressed using two populations. The front of the chain is home to
the first population, known as the leader, and the second group,
known as the followers. The updating formula of the leading
position is as follows:

Xt
i � Fi + r1 Li + r2 Ui − Li( )( ), r3 < 0.5

Fi − r1 Li + r2 Ui − Li( )( ), r3 ≥ 0.5
{ (21)

where Fi describes the food location, which is the chain search’s
primary objective, and Xt

i specifies the leader’s current position in
the ith dimension. The salps are kept within the search space using
random values r1, r2, and r3, and the lower and upper bounds are Li
and Ui.

The balance between the stages of exploitation and
exploration must be reached when using metaheuristic
techniques; as a result, r1 is used during the iterative process
as follows:

r1 � 2e−
4k

kmax
( )2

(22)
where, K is the current iteration, k max determines the number of
iterations that may be made. r3 specifies a random switching
parameter, while r2 is utilized to adapt the movement toward the
meal. The leader uses the following formula to determine where the
followers should stand:

xl
i � 0.5 × xl

i − xl−1
i( ) (23)

Such that l≥ 2 and xl
i describes the i-dimensional slap position l,

5.2.2 Improved salp swarm algorithm
The SSA may experience various issues, much as any

metaheuristic optimization approaches, such as overflow during
the exploration phase, which may cause skipping a real solution and
becoming trapped on local optima (Mirjalili, Gandomi et al., 2017).
If the exploration and exploitation stages are not properly balanced,
this issue arises.

In the conventional salp swarm algorithm, r1 is in charge of
maintaining equilibrium between the stages of exploitation and
exploration, however, in the first iterations, the solutions are
updated far from the optimal location (food), when r1 should be
assisting with exploration at this point. Additionally; r2 aids in the
search for the ideal result. As a result, the result changes positions
and loses its characteristic throughout each iteration of the search.
To get over these issues, a modified version of SSA using crossover
and greedy selection is designed by Hamdy et al. (Sultan, Menesy
et al., 2020). For the leader, a modified search equation is used as
follows:

v1i �
xl
i,k + r1 r2x

l
i,pBest + xl

i,k( ) + r4 Fi − xl
i,k( ), r3 < 0.5

xl
i,k − r1 r2x

l
i,pBest + xl

i,k( ) + r4 Fi − xl
i,k( ), r3 ≥ 0.5

⎧⎨⎩ (24)

And:

vji � 0.5 × xl
i − xl−1

i( ) (25)

where, xl
i,pBest denotes the individual’s best performance at iteration

k, and vji denotes the recently updated vector.
Here, a crossover between the xji and xj

i is performed. This can
be formulated as follows:

ui � vji , ri ≤CO
xj
i , otherwise

{ (26)

where, ri is an arbitrary number that ranges from 0 to 1, and CO
describes the crossover rate. The crossover CR probability is set at
0 points in this study.

The greedy selection is another improvement. The updated
vector’s capacity to survive in the following iteration is tested
using this. The following comparison of the fitness of updated
and existing solution vectors can be used to complete this
process:

ui � ui,k, f ui,k( )≤f xi,k( )
ui,k, f ui,k( )>f xi,k( ){ (27)

where, f defines the objective function. Figure 7 shows the flowchart
of the ISS algorithm.

5.3 Artificial bee colony differential evolution
optimizer

The artificial bee colony differential evolution (ABCDE)
optimizer is a combination of the ABC algorithm and the
differential evolution (DE) optimizers; it mimics bee behavior
and their research technique to find the best honey source. The
bees (elements) communicate information on the quality of the
obtained sources using the DE mutation technique. Following
the first navigation, the bees are categorized into 3 groups:
scouts, observers, and leaders. The ABC optimizer’s
probability evaluation is used to classify the data. The
bystanders, who are directed by the leaders, utilize the honey
sources.

Simultaneously, using ABC’s crossover technique, the scout bees
investigate the remainder of the search space in search of more
appropriate honey sources. As a result, when the swarm is formed,
the bees begin exposing the search field using the search approach.
The search vector of each bee based on the other bees can be given as
follows:

Mi � Bbest + Q Br1 − Br2( ) + Q Br3 − Br4( ) (28)
Where, Br1, Br2, Br3, and Br4 are the position of the honey

sources for the bees with r1, r2, r3, and r4 indices, respectively. It
should be noted that the indices of these bees vary from i. Bbest is the
coordinates of the best source detected from the entire swarm, andQ
is a random factor between −1 and 1.

It is carried out whenever the search method for each bee is
determined. It enables speedy evolution and rapid examination. In
whichMi is compared to the finest global source identified to date as
judged by the following:

Bi � Mi, if OF Mi( )<OF Bi( )
Bi, otherwise

{ (29)

where,OF(Mi) describes the objective function based on the ith bee.
Likewise, OF(Mi) corresponds to the ith bee mutation vector.

Pi � OF Bi( )
∑NP

i OF Bi( ) (30)
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The leaders share their data with the scouts in order to
encourage them to conduct more accurate investigations. This is
resolved by selecting four random dimensions as indicated by

BS
i � BS

NP+1−i, if i≤ δ
BS
i , otherwise

{ (31)

where, S describes the indices vector of the randomly chosen
dimensions, and S1, S2, S3, and S4 describe the distinct elements
from seven dimensions due to the fuel cell parameter extraction
problem. δ defines the maximum number of leaders depending on
the selection factor Sf.

The ABCDE approach is designed in such a way that the search
vector (Mi) is run in a single independent loop for the whole swarm.
The probability analysis and crossover approach are then
implemented to optimize both the exploration and exploitation
operations. Then after, the search strategy is conducted again in
one other loop just as the first time. This approach allows the bees to

be framed from the first search strategy, which could be called the
test method, to the second search strategy, which could be termed
the training procedure. Figure 8 represents the flowchart of the
ABCDE algorithm.

6 Validation results of the comparative
SI methods for model parameters
estimation

Different methods have produced a wide range of simulation
results, which have been used to assess the viability and accuracy
of each technique for obtaining the PEMFC parameters. To
provide a proper verification among different swarm-based
metaheuristic algorithms, some highly accurate approaches of
this group, including the Bi-subgroup optimization algorithm
(Chen, Pi et al., 2022), improved Salp Swarm Algorithm (SSA),

FIGURE 7
Flowchart of the ISS algorithm.
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improved chicken swarm optimization algorithm (ICSO) (Wang,
Huang et al., 2022), artificial bee colony differential evolution
optimizer (ABC/DE) (Hachana and El-Fergany, 2022), bat-

inspired algorithm (BAT) (Yang, 2010), Firefly algorithm
(FFA) (Yang, 2010), and Multi-verse optimizer (MVO)
(Mirjalili, Mirjalili et al., 2016) are assessed.

FIGURE 8
Flowchart of the ABCDE algorithm.

TABLE 3 TSD assessment of the NedStack PS6.

Parameter BSO (Chen,
Pi et al.,
2022)

PSO
(Salim,
2019)

SSA ICSO (Sultan,
Menesy et al.,
2020)

ABC/DE (Hachana
and El-Fergany,
2022)

BA
(Yang,
2010)

FFA
(Yang,
2010)

MVO (Mirjalili,
Mirjalili et al.,
2016)

β1 −0.981 −0.931 1.199 1.120 −0.972 −1.03 −1.03 −1.03

β2 3.383 e-3 3.375e-3 3.417 e--3 3.550 e-3 3.349 e-3 3.34 e-3 2.96 e-3 3.34 e-3

β3 7.759 e-5 7.438e-5 3.600 e-5 4.614 e-5 7.911 e-5 6.52 e-5 3.86 e-5 4.14 e-5

β4 −9.540 e-5 −9.541e-5 −9.540 e-
5

−9.540 e-5 −9.543 e-5 −9.48 e5 −9.48 e-5 −9.48 e-5

λ 13.00 13.00 13.00 13.010 13.00 15.10 15.03 15.14

Rc 0.100 0.100 0.138 0.100 0.100 1.64 1.63 1.65

β 0.047 0.055 0.036 0.058 0.050 0.01 0.01 0.01

TSD 2.176 2.186 2.409 2.185 2.180 2.22 2.20 2.21
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To evaluate the effectiveness of the studied algorithms, two
distinct fuel cell modules-500 W BCS PEMFC and the 6 kW
NedSstack PS6 -are employed. The validation is performed into
two standard benchmark functions, including 500 W BCS PEMFC
and the 6 kW NedSstack PS6 PEMFC. MATLAB R2019b has been
used to validate the swarm-based metaheuristic algorithms.
100 iterations are performed to all of the algorithms to get a fair
estimation for the PEMFC. After 100 iterations, the objective
function’s IAE optimal value is discovered. Table 5 shows the
ideal PEMFC parameter values based on the comparative
algorithms.

6.1 Case study 1: NedStack PS6

The NedSstack PS6 contains a 6 kW rated power. This benchmark
primary data for the simulation is gathered from [7, 8], such that Ncells =
65, TPEM = 343 K, A = 240 cm2, l = 178 μm. Operating ranges for the
output voltage and current are [0, 225] A DC and [32, 60]V DC and
0.5 bar–5 bar, respectively. The comparison results of the Bi-subgroup
optimization algorithm (Chen, Pi et al., 2022), improved Salp Swarm
Algorithm (SSA), improved chicken swarm optimization algorithm
(ICSO) (Wang, Huang et al., 2022), artificial bee colony differential
evolution optimizer (ABC/DE) (Hachana and El-Fergany, 2022), bat-
inspired algorithm (BAT) (Yang, 2010), Firefly algorithm (FFA) (Yang,
2010), andMulti-verse optimizer (MVO) (Mirjalili, Mirjalili et al., 2016)
are indicated in Table 3. The final optimal values for the determined
PEMFC model based on the studied algorithms are provided here.

Table 4 shows the Elapsed Time for the cutting-edge techniques
on the 6 kW NedStack PS6. As can be seen, all of the swarm-based
technique provides feasible results for the identification. However,
there needs a balance between the accuracy and the elapsed time for
this purpose.

6.2 Test case 2

The BCS PEMFC is another PEMFC benchmark system for
the methods’ assessment. This benchmark provides a rated power
of 500 W and a maximum current of 30 A. BCS Technologies is an
American company, that manufactures this kind. The operational
ranges for the partial pressures of hydrogen and oxygen are 1 atm
and 0.2075 atm, respectively, and more information for an
accurate simulation of this model may be found in (Corrêa,
Farret et al., 2004), where TPEM � 333K, A � 64 cm2, l � 178,
and Ncells � 32.

Table 5 shows the Elapsed Time for the cutting-edge techniques
on the BCS PEMFC. As can be seen, all of the swarm-based
technique provides feasible results for the identification.
However, there needs a balance between the accuracy and the
elapsed time for this purpose.

Table 6 indicates the Elapsed Time for the cutting-edge
techniques on the BCS PEMFC. As can be observed, all of the
swarm-based technique provides feasible results for the
identification. However, there needs a balance between the
accuracy and the elapsed time for this purpose.

TABLE 4 The Elapsed time for the state-of-the-art methods on the NedS stack PS6.

Algorithm BSO (Chen,
Pi et al.,
2022)

PSO
(Salim,
2019)

SSA ICSO (Sultan,
Menesy et al.,
2020)

ABC/DE (Hachana
and El-Fergany,
2022)

BA (Yang,
2010)

FFA
(Yang,
2010)

MVO (Mirjalili,
Mirjalili et al.,
2016)

Elapsed
time (s)

4.31 2.4 10.13 7.03 5.30 3.65 4.40 3.81

TABLE 5 TSD validation for the BCS PEMFC.

Parameter CFSO FSO GA (El-Fergany,
2017)

GHO
(El-Fergany,

2017)

SSO
(El-Fergany,

2018)

BA (Yang,
2010)

FFA
(Yang,
2010)

MVO(Mirjalili,
Mirjalili et al., 2016)

β1 −0.790 −0.8542 −1.023 −0.984 −0.853 −0.84 −0.84 −0.85

β2 4.810e-
3

4.811 e-
3

4.811 e-3 2.811 e-3 4.811 2.58 2.49 2.60

β3 9.412e-
5

8.943 e-
5

8.200 e-5 5.341 e-5 9.433 e-5 7.83 8.01 8.04

β4 −1.93e-
4

−1.93e-
4

−1.93 e-4 −1.358 e-4 −1.920 e-4 −15.5 −14.6 −15.2

λ 23.000 23.000 23.000 19.428 23.000 13.8 14.2 14.03

Rc 0.312 0.312 0.315 0.746 0.350 8.07 7.97 8.04

β 0.016 0.018 0.017 0.012 0.016 0.05 0.05 0.05

TSD 0.011 0.012 0.015 0.012 0.083 0.080 0.079 0.084

Frontiers in Energy Research frontiersin.org12

Razmjooy 10.3389/fenrg.2023.1148323

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1148323


Similar to case study 1, the findings demonstrate a favorable
fitting of the empirical voltage model and the data, which was
accomplished using the swarm-based methods. They also
demonstrate appropriate accuracy in locating the optimal values
for the seven unknown parameters.

Figure 9 represents the TSD bar plot of the two benchmarks
studied based on investigated swarm-based methods.

As can be observed from Figure 9, the superiority of the
algorithms in two different cases are different. The reason is that
due to the random nature of these swarm-based methods, the results
in different runs can be changed. Unless a mean value of the
methods is considered. Also, as can be observed, the efficiency of
an algorithm for a case study is completely different from
another one.

7 Conclusion

A PEMFC is an electrical generator that uses electrochemistry.
To match its V-I and P-I characteristic curves under various
operating situations, it has a non-linear model with seven
parameters that characterize its performance and operation in
governing equations. This study focuses on new swarm-based
algorithms from BSO, PSO, SSA, ICSO, ABC/DE, BA, FFA, and
MVO and enhances them such that they may be used to precisely
extract seven unknown parameters from the PEMFC non-linear
model. The fitness function is shown by the TSD between the actual
and ideal models to confirm the proper values of unknown model
parameters for addressing the optimization issue. The used methods

verified excellent agreement between calculated and measured data
under various operating situations, satisfying good performance for
all investigated fuel cell stacks. Compared to the outcomes of other
algorithms from the literature, the BSO, PSO, SSA, ICSO, ABC/DE,
BA, FFA, and MVO have satisfied the most optimal solution in a
better computing approach.
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TABLE 6 The Elapsed time for the state-of-the-art methods on the BCS PEMFC.

Algorithm BSO (Chen,
Pi et al.,
2022)

PSO
(Salim,
2019)

SSA ICSO (Sultan,
Menesy et al.,
2020)

ABC/DE (Hachana
and El-Fergany,
2022)

BA (Yang,
2010)

FFA
(Yang,
2010)

MVO (Mirjalili,
Mirjalili et al.,
2016)

Elapsed
time (s)

3.82 5.17 3.65 7.20 4.15 3.48 4.19 3.52

FIGURE 9
TSD bar plot of the two benchmarks, including (A) NedStackPS6 and (B) BCS PEMFC studied based on investigated swarm-based methods.
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