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Abstract This paper is the second part of a comprehensive survey on routing prob-
lems involving pickups and deliveries. Basically, two problem classes can be dis-
tinguished. The first part dealt with the transportation of goods from the depot to
linehaul customers and from backhaul customers to the depot. The second part now
considers all those problems where goods are transported between pickup and de-
livery locations, denoted as Vehicle Routing Problems with Pickups and Deliveries
(VRPPD). These are the Pickup and Delivery Vehicle Routing Problem (PDVRP
– unpaired pickup and delivery points), the classical Pickup and Delivery Problem
(PDP – paired pickup and delivery points), and the Dial-A-Ride Problem (DARP
– passenger transportation between paired pickup and delivery points and user in-
convenience taken into consideration). Single as well as multi vehicle mathematical
problem formulations for all three VRPPD types are given, and the respective exact,
heuristic, and metaheuristic solution methods are discussed.

Keywords Pickup and delivery vehicle routing · Pickup and delivery problem ·
Dial-a-ride problem · Transportation · Survey

Zusammenfassung Der vorliegende Artikel ist Teil II einer umfassenden Über-
blicksarbeit in zwei Teilen über pickup and delivery Probleme. Grundsätzlich können
zwei Problemklassen unterschieden werden. Der erste Teil dieser Arbeit beschäf-
tigte sich mit dem Transport von Gütern von einem Depot zu Auslieferungs-Kunden
(linehaul customers) und von Rückladungs-Kunden (backhaul customers) zu ei-
nem Depot. Der zweite Teil behandelt nun all jene Probleme, die sich mit dem
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Transport zwischen Abhol- und Auslieferungsorten befassen, im Folgenden als
Vehicle Routing Problems with Pickups and Deliveries (VRPPD) bezeichnet. Diese
Problemklasse umfasst das Pickup and Delivery Vehicle Routing Problem (PDVRP),
ungepaarte Abhol- und Auslieferungsorte, das klassische Pickup and Delivery
Problem (PDP), gepaarte Abhol- und Auslierferungsorte, und das Dial-A-Ride
Problem (DARP), Personentransport zwischen gepaarten Abhol- und Ablieferungs-
orten unter Berücksichtigung von serviceorientierten Kriterien. Die jeweiligen Pro-
blemtypen werden zuerst anhand von mathematischen Einfahrzeug- und Mehr-
fahrzeugproblemformulierungen definiert. Im Anschluss werden die in der Literatur
beschriebenen Lösungsmethoden diskutiert.

Schlüsselwörter Tourenplanung · Vehicle Routing mit Pickups und Deliveries ·
Dial-a-Ride Problem · Überblicksartikel

1 Basic definitions

The aim of this paper is to present a classification scheme as well as a comprehen-
sive survey on pickup and delivery problems and their variants. Part I of this survey
presented all problem types belonging to the class of Vehicle Routing Problems with
Backhauls (VRPB), where goods are transported from a depot to linehaul customers
and from backhaul customers to a depot. Furthermore, the motivation for this sur-
vey was given. Part II covers all problem types where goods are transported between
pickup and delivery locations, referred to as Vehicle Routing Problems with Pickups
and Deliveries (VRPPD).

The two pickup and delivery problem classes as well as their subclasses are de-
picted in Fig. 1. The gray part was discussed in part I of this survey. The numbers
indicated in the boxes specify the sections covering the respective problems. The first
two indicators refer to the modeling part while the last refer to the sections on solution
methods.

Fig. 1 Pickup and delivery problems. The numbers indicated refer to the sections covering the respective
problems
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1.1 VRPPD subclass definitions

The class we denote VRPPD refers to problems where goods are transported from
pickup to delivery points. It can be further divided into two subclasses. The first sub-
class refers to situations where pickup and delivery locations are unpaired. A homo-
geneous good is considered. Each unit picked up can be used to fulfill the demand
of any delivery customer. In the literature mostly the single vehicle case is tack-
led, denoted as capacitated traveling salesman problem with pickups and deliveries
(Anily and Bramel 1999), One-Commodity Pickup and Delivery Traveling Salesman
Problem (1-PDTSP) (Hernández-Pérez and Salazar-González 2003), and traveling
salesman problem with pickup and delivery (Hernández-Pérez and Salazar-González
2004a). Since also a multi vehicle application has been reported in the literature (see
Dror et al. 1998) we will denote this problem class as Pickup and Delivery Vehicle
Routing Problem (PDVRP) and Pickup and Delivery Traveling Salesman Problem
(PDTSP), in the multi and in the single vehicle case, respectively.

The second VRPPD subclass comprises the classical Pickup and Delivery Prob-
lem (PDP) and the Dial-A-Ride Problem (DARP). Both types consider transportation
requests, each associated with an origin and a destination, resulting in paired pickup
and delivery points. The PDP deals with the transportation of goods while the DARP
deals with passenger transportation. This difference is usually expressed in terms
of additional constraints or objectives that explicitly take user (in)convenience into
account. The single vehicle variant of the PDP has also been referred to as pickup-
delivery traveling salesman problem (Kalantari et al. 1985) and the multi vehicle case
as vehicle routing problem with pickup and delivery (Derigs and Döhmer 2008).
However, a majority of the work published denotes this problem class as Pickup and
Delivery Problem (PDP) (see e. g. Dumas et al. 1991; van der Bruggen et al. 1993).
We will follow this naming. Dial-a-ride problems are also mostly referred to as such.
However, some authors, such as Toth and Vigo (1996), denote the same problem as
the handicapped persons transportation problem. The dynamic version is also referred
to as demand responsive transport (compare e. g. Mageean and Nelson 2003). We de-
note the single vehicle case of the PDP as SPDP, the single vehicle case of the DARP
as SDARP.

1.2 Limitations

In the field of transportation two problem classes can be distinguished: full-truck-
load problems and less-than-truck-load problems. Full-truck-load problems deal with
vehicles of unit capacity as well as unit demand or supply at every customer lo-
cation. In case of paired pickup and delivery locations, no other customer can be
visited between a pickup and its associated delivery location (see Archetti and Sper-
anza 2004; Coslovich et al. 2006a; Currie and Salhi 2003,2004; de Meulemeester
et al. 1997; Doerner et al. 2001; Fleischmann et al. 2004; Gronalt et al. 2003; Gronalt
and Hirsch 2007; Imai et al. 2007; Jordan and Burns 1984; Jordan 1987; Powell
et al. 1995,2000a,2000b; Regan et al. 1996a,1996b,1998; Russell and Challinor 1988;
Wang and Regan 2002; Yang et al. 1998;2004; etc.).
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Furthermore, there exists a problem class that is by definition not part of the full-
truck-load class, since vehicles with capacity two are considered. However, these
problems are strongly related to the full-truck-load category since they originate from
the same application area (container dispatching). The aim of this paper is to present
a concise classification scheme and survey limited to vehicle routing problems in-
volving pickup and delivery operations where the routing and not the scheduling as-
pect is of predominant importance. Therefore, full-truck-load dispatching approaches
as well as approaches strongly related to this class (see e. g. Archetti et al. 2005;
le Blanc et al. 2006) will not be covered in this article. Also literature on sequencing
problems, e. g. arising at intermodal stations, involving gantry crane pickup and deliv-
ery operations (compare e. g. Böse et al. 1999,2000; Gutenschwager et al. 2003) will
not be part of this survey.

1.3 Structure of the survey

The remainder of this paper is organized as follows. First, in order to clearly define
the different VRPPD types, consistent mathematical problem formulations for the
single and for the multi vehicle case are given. Then, solution methods are discussed
in subsections devoted to the corresponding problems. In each of these subsections
exact, heuristic, and metaheuristic solution methods are presented. Also related work
will be mentioned. Section 4 gives an overview of existing benchmark instances for
the different problem classes as well as some information regarding best known solu-
tions. Concluding remarks and possible directions for future research are provided at
the very end of this survey.

2 Mathematical problem formulation

In the following section consistent mathematical problem formulations will be pre-
sented. First, the notation used throughout the survey is given. After that two basic
problem formulations are introduced, one for the single and one for the multi vehicle
case. These are adjusted to the unpaired pickup and delivery problem, the classical
pickup and delivery problem, and the dial-a-ride problem, respectively.

Note that the mathematical models are only given for definition purposes, regard-
less the strength of their LP relaxations or whether they were used in the context of
additive bounding, branch and cut algorithms, or Lagrange relaxations. We refer the
interested reader to the work summarized in the sections on exact solution procedures
for additional information concerning these aspects. All problems defined are NP-
hard as they generalize the well-known Traveling Salesman Problem (TSP) (Garey
and Johnson 1979).

2.1 Notation

n . . . number of pickup vertices
ñ . . . number of delivery vertices; in case of paired pickups and

deliveries n = ñ
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P . . . set of backhauls or pickup vertices, P = {1, . . . , n}
D . . . set of linehauls or delivery vertices, D = {n +1, . . . , n + ñ}
K . . . set of vehicles
qi . . . demand/supply at vertex i; pickup vertices are associated with

a positive value, delivery vertices with a negative value;
at the start depot 0 and the end depot n + ñ +1 the demand/supply
is zero, q0 = qn+ñ+1 = 0

ei . . . earliest time to begin service at vertex i
li . . . latest time to begin service at vertex i
di . . . service duration at vertex i
Li . . . maximum ride time of user i
ck

ij . . . cost to traverse arc or edge (i, j ) with vehicle k
tk
ij . . . travel time from vertex i to vertex j with vehicle k

Ck . . . capacity of vehicle k
T k . . . maximum route duration of vehicle/route k

Note that this notation is valid for the symmetric and for the asymmetric case.
In the symmetric case tk

ij = tk
ji and ck

ij = ck
ji , arc (i, j ) and arc ( j, i) could thus

be modeled by one edge. Consequently, fewer variables would be needed. How-
ever, since we focus on problem definition and not on computational efficiency,
we refrain from presenting these variants here. VRPPD are modeled on complete
graphs G = (V, A) where V is the set of all vertices V = {0, n + ñ +1}∪ P ∪ D,
and A the set of all arcs. For practical reasons the arc set can be reduced to
A = {(i, j ) : i, j ∈ V, i �= n + ñ +1, j �= 0, i �= j}.

During the optimization process some or all of the following decision variables are
determined, depending on the problem considered.

xk
ij . . . =

{
1, if arc (i, j ) is traversed by vehicle k

0, else
Qk

i . . . load of vehicle k when leaving vertex i

Bk
i . . . beginning of service of vehicle k at vertex i

Note that vehicle dependent start as well as end vertices can easily be introduced into
the model. However, for the sake of simplicity we will not consider this extension in
our formulation.

In the single vehicle problem formulation the superscript k can be omitted, result-
ing in the parameter coefficients cij , tij , C, T and the decision variables xij, Qi, Bi .

2.2 Single vehicle pickup and delivery problem formulations

The single vehicle model for the different VRPPD is based on an open TSP formu-
lation. For any subset S ⊆ V , let A(S, S̄) = {(i, j ) ∈ A : i ∈ S, j /∈ S}. Then, the open
TSP formulation is

min
∑

(i, j )∈A

cij xij (1)
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subject to: ∑
i:(i, j )∈A

xij = 1 ∀ j ∈ V \ {0} , (2)

∑
j:(i, j )∈A

xij = 1 ∀i ∈ V \ {n + ñ +1} , (3)

∑
(i, j )∈A(S,S̄)

xij ≥ 1 ∀S ⊆ V \ {n + ñ +1} , S �= ∅, (4)

xij ∈ {0, 1} ∀(i, j ) ∈ A. (5)

The objective function (1) minimizes total routing cost. Equalities (2) and (3) en-
sure that each vertex is visited exactly once. Constraints (4) present one of several
possibilities to ensure route-connectivity. For other options we refer to part I of this
survey.

2.2.1 PDTSP

Here it is assumed that every unit picked up can be used to satisfy every delivery cus-
tomer’s demand. Similar to the TSPMB, described in part I of this survey, vehicle
loading constraints have to be amended to formulation (1)–(5),

xij = 1 ⇒ Qj = Qi +qj ∀(i, j ) ∈ A, (6a)

max {0, qi} ≤ Qi ≤ min {C, C +qi} ∀i ∈ V. (6b)

In difference to the TSPMB the initial load of the vehicle is free here (see Hernández-
Pérez and Salazar-González 2004a). Furthermore, the PDTSP (PDVRP) is the only
VRPPD class where equality is needed in (6a), for all other problem types a “≥” sign
would suffice.

2.2.2 SPDP

The SPDP considers situations where pickup and delivery vertices are paired, i. e.
n = ñ. In the literature it is common to refer to such a vertex pair as a request, indexed
by i = 1, ..., n with i being the origin or pickup point and n + i the corresponding
destination or delivery point. To ensure that every destination is only visited after its
origin, in addition to (1)–(3), (5), and (6), precedence constraints are needed which
are usually modeled via time variables,

Bi ≤ Bn+i ∀i ∈ P, (7)

xij = 1 ⇒ Bj ≥ Bi +di + tij ∀(i, j ) ∈ A. (8)

Constraints (7) state that every origin is to be visited before its destination and (8) en-
sure that time variables are consistent with travel and service times. Note that (8) also
guarantee that short cycles are avoided and therefore inequalities (4) are not needed,
given that (tij +di) > 0 for all (i, j ) ∈ A.
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2.2.3 SDARP

The SDARP deals with the transportation of people. Problems of this kind arise, e. g.,
in connection with the transportation of handicapped or elderly persons. Another
possible application is, however, the transportation of perishable goods, that also re-
quires maximum ride time limits. In addition to the basic model, given in (1)–(3) and
(5)–(8), user inconvenience must be considered. This can be handled by another term
in the objective function or by additional constraints. Here we choose to formulate
a maximum user ride time limit,

Bn+i − (Bi +di) ≤ Li ∀i ∈ P. (9)

2.2.4 Time window constraints

Constraints referring to the compliance with Time Windows (TW),

ei ≤ Bi ≤ li ∀i ∈ V, (10)

can be added to all of the above formulations. In the context of passenger transporta-
tion TW are usually present.

Note that the above formulations are not linear due to constraints (6a) and (8).
These can be linearized using a big M formulation (cf. Cordeau 2006).

2.3 Multi vehicle pickup and delivery problem formulations

The basic model for multi vehicle pickup and delivery problems is an adapted three
index vehicle routing problem formulation of the one proposed in Cordeau et al.
(2002, p. 158f.) for the VRPTW.

min
∑
k∈K

∑
(i, j )∈A

ck
ij x

k
ij (11)

subject to: ∑
k∈K

∑
j:(i, j )∈A

xk
ij = 1 ∀i ∈ P ∪ D, (12)

∑
j:(0, j )∈A

xk
0 j = 1 ∀k ∈ K, (13)

∑
i:(i,n+ñ+1)∈A

xk
i,n+ñ+1 = 1 ∀k ∈ K, (14)

∑
i:(i, j )∈A

xk
ij −

∑
i:( j,i)∈A

xk
ji = 0 ∀ j ∈ P ∪ D, k ∈ K, (15)

xk
ij = 1 ⇒ Bk

j ≥ Bk
i +di + tk

ij ∀(i, j ) ∈ A, k ∈ K, (16)

xk
ij = 1 ⇒ Qk

j = Qk
i +qj ∀(i, j ) ∈ A, k ∈ K, (17)

max {0, qi} ≤ Qk
i ≤ min

{
Ck, Ck +qi

} ∀i ∈ V, k ∈ K, (18)

xk
ij ∈ {0, 1} ∀(i, j ) ∈ A, k ∈ K. (19)
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The objective function (11) minimizes total routing cost. Constraints (12) state that
every vertex has to be served exactly once. Equalities (13) and (14) guarantee that
every vehicle starts at the depot and returns to the depot at the end of its route. Note
that this does not mean that every vehicle has to be used. A vehicle may only use
the arc (0, n + ñ +1), i. e. it does not leave the depot. Flow conservation is ensured
by (15). Time variables are used to eliminate subtours in (16), given that (tk

ij +di) > 0
for all (i, j ) ∈ A. Constraints (17) and (18) guarantee that a vehicle’s capacity is
not exceeded throughout its tour. It should be noted that this formulation requires
the introduction of additional decision variables, Qk

i , corresponding to the total load
of vehicle k at vertex i. These variables are not needed to formulate the basic VRP
but are essential for its extension to a pickup and delivery problem. In VRP formu-
lations inequalities similar to (17) are sometimes used to ensure route connectivity
(accomplished by (16) in the above formulation). Furthermore, in (17) equality is
only needed for the PDVRP (PDTSP). For all other VRPPD types it can be replaced
by “≥”.

Non-linear constraints, given in (16) and (17), can be linearized using a big M
formulation (cf. Cordeau 2006).

2.3.1 PDVRP

The special characteristic of the PDVRP is that every unit picked up can be used
to satisfy every customer’s demand. The above formulation (11)–(19) already is an
appropriate formulation for the PDVRP. No additional adaptations are needed.

2.3.2 PDP

Here every pickup point is associated with a delivery point and therefore n = ñ. In
addition to (11)–(19), two more sets of constraints are needed. First, both origin and
destination of a request must be served by the same vehicle,∑

j:(i, j )∈A

xk
ij −

∑
j:(n+i, j )∈A

xk
n+i, j = 0 ∀i ∈ P, k ∈ K. (20)

Furthermore, delivery can only occur after pickup, i. e.

Bk
i ≤ Bk

n+i ∀i ∈ P, k ∈ K. (21)

2.3.3 DARP

To extend the multi vehicle PDP to the multi vehicle DARP, again, as in the single
vehicle case, constraints related to user inconvenience need to be added. As for the
single vehicle version, we will restrict this requirement to adding maximum user ride
time constraints to formulation (11)–(21):

Bk
n+i − (Bk

i +di) ≤ Li ∀i ∈ P, k ∈ K. (22)
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2.3.4 Additional constraints

Two more sets of constraints can be added to all of the above problem classes. These
are time window and maximum route duration restrictions,

ei ≤ Bk
i ≤ li ∀i ∈ V, k ∈ K, (23)

Bk
n+ñ+1 − Bk

0 ≤ T k ∀k ∈ K. (24)

3 Solution methods for VRPPD

In the following section an overview of the different solution methods for the PDVRP,
the PDP, and the DARP are presented. Solution methods classify into exact, heuris-
tic, and metaheuristic approaches. A description of the benchmark instances used is
given in Section 4. For references to general information on the solution concepts
applied, we refer to the first part of this paper. Another survey on different solu-
tion methods can be found in Berbeglia et al. (2007). Because of maximum paper
length restrictions, it was not possible to describe all the work published in detail.
An overview of the proposed methods is given in tabular form. Only contributions
we considered especially important, for recency or originality reasons, are described
in further detail. These are marked by an asterisk in the different tables. Solution
methods are ordered chronologically within the tables, according to single and multi
vehicle approaches. Further details on solution algorithms are given in the same
order.

3.1 Unpaired pickups and deliveries

The PDVRP, i. e. the problem class where every good can be picked up and trans-
ported anywhere, did not receive as much attention in the literature as the other
problem classes. Moreover, most of the literature is restricted to the PDTSP. There-
fore, with the exception of Dror et al. (1998), all the solution methods presented are
only applicable to the one vehicle case. To the authors’ knowledge no metaheuristic
approach for the PDTSP has been proposed until today.

3.1.1 Exact methods

The only exact method proposed for the problem at hand was introduced in
Hernández-Pérez and Salazar-González (2003,2004a). It is a branch and cut al-
gorithm. To speed up the algorithm construction and improvement heuristics are
applied. They are used to obtain feasible solutions from the solution of the LP relax-
ation at the current node. The construction heuristic is an adaptation of the nearest
insertion algorithm. It is improved by 2-opt and 3-opt exchanges (Lin 1965). The test
instances solved are adaptations of the ones used in Mosheiov (1994) and Gendreau
et al. (1999), containing up to 75 customers.
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3.1.2 Heuristics

A special case of the PDTSP is considered in Chalasani and Motwani (1999); the
number of goods to be picked up is equal to the number of goods to be delivered; the
demand (supply) at every delivery (pickup) location is equal to one. This problem is
an extension of the swapping problem where the vehicle’s capacity is also set to one.
Chalasani and Motwani propose an approximation algorithm with a worst case bound
of 9.5. They use Christofides’ heuristic (Christofides 1975) to construct two traveling
salesman tours, one containing only pickup locations, and one containing only de-
livery locations. These two tours are then combined by means of decomposition and
matching. Anily and Bramel (1999) devise a polynomial time iterated tour matching
algorithm for the same problem.

Two heuristic methods can be found in Hernández-Pérez and Salazar-González
(2004b). The first algorithm is of the construction-improvement type, using a greedy
construction procedure, improved by 2-opt and 3-opt exchanges. The second heuris-
tic is based on incomplete optimization; the branch and cut procedure, described in
Hernández-Pérez and Salazar-González (2004a), is used on a reduced number of vari-
ables associated with promising edges. Random instances with up to 500 customers
are solved.

An approximation algorithm on a tree graph is developed in Lim et al. (2005). It is
based on a recurrent construction process and has a worst case bound of 2.

The PDTSP on a tree and on a line is also subject to investigation in Wang et al.
(2006). They propose an O(|V |2/ min{C, |V |}) algorithm for the line case. The unit
capacity as well as the uncapacitated version can be solved in linear time. On a tree
an O(|V |) algorithm is devised for the case of unit capacity and an O(|V |2) algorithm
for the uncapacitated case.

Finally, Dror et al. (1998) propose a heuristic algorithm for the application of the
multi vehicle PDVRP to the redistribution of self-service cars. It is related to Dijk-
stra’s algorithm (Dijkstra 1959). Also other solution approaches are briefly discussed.

3.2 The static pickup and delivery problem

Solution methods for the classical pickup and delivery problem (PDP), where every
transportation request is associated with a pickup and a delivery point, are pre-
sented in this section. Lokin (1978) was the first to discuss the incorporation of
precedence constraints into the traditional TSP, needed to formulate the PDP. The
first attempt to generalize the PDP in unified notation was proposed in Savels-
bergh and Sol (1995), covering all possible versions of the PDP, including the dial-
a-ride problem. They also provide a brief overview of existing solution methods
until 1995. Mitrović-Minić (1998) presents a survey on the PDP with Time Win-
dows (PDPTW). An early survey on vehicle routing problems already including
the PDP is given in Desrochers et al. (1988). Cordeau et al. (2004) review demand
responsive transport, covering PDP and DARP. A review of recent work focusing
on exact approaches is given in Cordeau et al. (2007). Further surveys on solution
methods can be found in Assad (1988), Desaulniers et al. (2002), and Desrochers
et al. (1988). In the following paragraphs the various solution techniques for the
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static PDP are summarized according to exact, heuristic, and metaheuristic ap-
proaches.

3.2.1 Exact methods

A number of exact solution procedures have been presented for the static PDP. In
Table 1 the different techniques are briefly described. The literature reference, ob-
jective(s), and additional constraints considered, are given. Furthermore, either the
benchmark instances used, or the size of the largest instance solved to optimality,
in terms of number of requests, are provided. Entries marked by an asterisk are de-
scribed in further detail below.

Ruland and Rodin (1997) present a branch and cut algorithm to solve the SPDP.
It includes cutting plane generation in the bounding phase as well as a greedy route
construction procedure to generate the first upper bound.

A branch and bound algorithm for the single vehicle PDPTW with Last-In-First-
Out (LIFO) loading, i. e. goods have to be delivered in the reverse order they were
picked up, is reported in Cordeau et al. (2006). They propose three mathematical

Table 1 Exact methods for the static PDP

Reference Type Obj. Con. Algorithm Bench./Size

The single vehicle case

∗ Ruland and – min. RC – branch and cut up to 15 req.
Rodin (1997) algorithm, greedy

route construction
∗ Cordeau et al. – min. RC TW, LIFO branch and bound up to 51 req.
(2006) algorithms

The multi vehicle case

∗ Kalantari et al. – min. RC – extension of branch up to 15 req.
(1985) and bound algorithm

of Little et al. (1963)

Desrosiers and – min. RC TW study of constr. shortest –
Dumas (1988) path problem, column

generation, heur.
∗ Dumas et al. HF, MD min. RC TW column generation, up to 19 req.
(1991) constr. shortest path

subproblems

Sigurd et al. (2004) MD min. RC TW column generation up to 205 req.
Lu and Dessouky – min. RC soft TW branch and bound, up to 25 req.
(2004) valid inequalities
∗ Ropke and – min. RC TW branch and cut and RCL07,
Cordeau (2006) price algorithm partly LL01
∗ Ropke et al. – min. RC TW 2 branch and cut RCL07
(2007) algorithms

Bench. = Benchmark, Con. = Constraints, constr. = constrained, heur. = heuristic(s), HF = Heteroge-
neous Fleet, LIFO = Last-In-First-Out, MD = Multi depot, Obj. = Objective(s), RC = Routing Cost,
req. = requests, TW = Time Windows; The respective benchmark instances are described in Section 4.
Entries marked by an asterisk (∗) are described in further detail in the text.
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problem formulations and various valid inequalities. These are based on existing in-
equalities for PDP and new problem specific ones.

The first exact solution method applicable to both the single as well as the multi
vehicle case dates back to Kalantari et al. (1985). The branch and bound algorithm
described is an extension of the one developed by Little et al. (1963).

A column generation approach is elaborated in Dumas et al. (1991). They consider
heterogeneous vehicles, time windows as well as multiple depots. The constrained
shortest path problems are solved by means of a forward dynamic programming al-
gorithm.

Ropke and Cordeau (2006) introduce a branch and pricing algorithm with add-
itional valid inequalities. The elementary constrained shortest path problem with time
windows, capacity, and pickup and delivery restrictions is the natural pricing problem
of the PDPTW. It is solved by means of a label setting shortest path algorithm. Valid
inequalities are added in a branch and cut fashion; their impact on the structure of the
pricing problem is discussed.

A branch and cut algorithm departing from two different 2-index PDPTW formu-
lations is studied in Ropke et al. (2007). Formulation one makes use of time variables.
In formulation two time related constraints are modelled by means of infeasible path
inequalities. The latter formulation proves more efficient when used as a basis for the
branch and cut algorithm. New valid inequalities to strengthen the proposed formula-
tions are also discussed.

3.2.2 Heuristics

Heuristics for the static PDP have first been proposed in the 1980s. Table 2 gives
an overview of the various heuristic solution techniques developed since then. In-
formation concerning the type of problem considered, objective(s) used, additional
constraints, the type of algorithm proposed as well as either the benchmark instances
solved or the largest instance considered for testing purposes is given.

Sexton and Choi (1986) use Bender’s decomposition procedure to solve the static
SPDP approximately. Initial solutions are constructed using a space-time heuristic.
The route improvement phase is based on Bender’s decomposition. As soft time win-
dows are considered, the objective function takes into account the total operating time
as well as time window violation penalties.

A construction-improvement heuristic algorithm for the static SPDP is discussed
in van der Bruggen et al. (1993). First, a feasible initial solution is constructed. Then,
this solution is improved by exchange procedures maintaining feasibility at all times.

Renaud et al. (2000) also propose a construction-improvement algorithm for the
same problem. They use a double insertion construction heuristic improved by dele-
tion and re-insertion (4-opt* (Renaud et al. 1996)).

Renaud et al. (2002) present seven different perturbation heuristics to generate
near optimal solutions for the static SPDP. In all seven implementations, first, an ini-
tial solution is computed which is improved by a 4-opt** heuristic, an adaptation
of the 4-opt* heuristic, such that precedence constraints are respected at all times.
Then, a perturbation scheme is applied (instance, algorithmic or solution perturb-
ation), followed by a post-optimization phase. The last two steps are repeated until
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Table 2 Heuristics for the static PDP

Reference Type Obj. Con. Algorithm Bench./Size

The single vehicle case

∗ Sexton and – min. RC, soft TW heur. algorithm using up to 17 req.
Choi (1986) min. TWV Bender’s decomposition
∗ Van der Bruggen – min. RC TW variable depth-search up to 50 req.
et al. (1993) based algorithm
∗ Renaud et al. – min. RC – 2-phase algorithm. (1) RBO00
(2000) double insertion (2)

deletion and re-insertion
(4-opt*)

∗ Renaud et al. – min. RC – 7 perturbation heur. RBO00
(2002) (instance, algorithmic,

solution perturbation)

The multi vehicle case

Shang and transf. min. UC soft TW concurrent insertion, SC96
Cuff (1996) mini-clustering

algorithm

Lim et al. (2002) – min. NV, TW squeaky wheel LL01
min. RC, optimization1

min. RD
∗ Xu et al. (2003) HF, min. RC mTW, column generation up to 500 req.

HG RD, based heur.
LIFO

Mitrović-Minić trans- min. RC TW cheapest insertion, local up to 100 req.
and Laporte ship- search improvement
(2006) ment
∗ Lu and – min. RC TW construction heur. based LL01
Dessouky (2006) on distance increase,

TW slack reduction,
visual attractiveness

Thangiah and transf., min. UC TW (Shang and Cuff 1996) SC96
Awan (2006) split plus improvement heur.

Bench. = Benchmark, Con. = Constraints, heur. = heuristic(s), HF = Heterogeneous Fleet, HG = Het-
erogeneous Goods, LIFO = Last-In-First-Out, MD = Multi Depot, NV = Number of Vehicles, Obj. =
Objective(s), req. = requests, RC = Routing Cost, RD = Route Duration, split = split deliveries, (m)TW
= (multiple) Time Windows, TWV = TW Violation, transf. = transfers between vehicles, UC = Unsat-
isfied Customers; The respective benchmark instances are described in Section 4. Entries marked by an
asterisk (∗) are described in further detail in the text.
1 i. e. an iterative procedure based on an insertion algorithm. It prioritizes requests that caused difficulties
in previous iterations.

a stopping criterion is met. The best results are obtained with the solution perturbation
scheme.

Xu et al. (2003) propose a column generation based heuristic algorithm for the
multi vehicle case. They consider several additional constraints, such as multiple time
windows at pickup and delivery locations, loading restrictions, compatibility of goods
and vehicles as well as driver working hours. The column generation master problem
can be solved using a commercial LP solver. The resulting subproblems are solved by
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means of two heuristics, called merge and two-phase, i. e. merging trips and greedy
deletion and insertion of requests.

Lu and Dessouky (2006) elaborate on a construction heuristic. It does not only in-
corporate distance increase into the evaluation criterion but also time window slack
reduction as well as visual attractiveness (referred to as crossing length percentage).

3.2.3 Metaheuristics

Table 3 gives an overview of the different metaheuristic solution methods proposed
for the static PDP. For each reference the same information as in the previous tables
is provided.

A variable neighborhood search for an extension of the SPDP is discussed in
Carrabs et al. (2007). The problem tackled includes a further constraint regarding
rear loading, i. e. items can only be delivered in a LIFO matter. Eight different con-
struction techniques are used to generate an initial solution. The neighborhoods are
defined by couple exchange, block exchange, relocate-block, 2-opt-L (2-opt consid-
ering only LIFO-feasible arc exchanges) and multi-relocate operators.

Li and Lim (2001) develop a tabu embedded simulated annealing approach for the
PDP. Pickup and delivery pair swap neighborhoods are defined. These are based on
a shift, an exchange, and a rearrange operator. The first two define the neighborhoods
searched by the metaheuristic, the third is used for postoptimization purposes.

Pankratz (2005b) proposes a grouping genetic algorithm for the PDP. It differs
from traditional genetic algorithms in that a group-oriented genetic encoding is used.
The encoding used by Pankratz (2005b) corresponds to the cluster of requests form-
ing a route. The routing aspect, not comprised in the encoding, is added while
decoding the chromosome.

Ropke and Pisinger (2006a) present an adaptive large neighborhood search algo-
rithm for the PDPTW. Multiple depots as well as the existence of service times can
be handled by the approach at hand. In Pisinger and Ropke (2007) and Ropke and
Pisinger (2006b) the proposed method is used to solve VRP and VRPB instances
by transforming them into rich PDPTW. We refer to part I of this survey for further
details on this solution procedure.

A two-stage hybrid algorithm for the static PDPTW is presented in Bent and van
Hentenryck (2006). The first phase uses simulated annealing to decrease the num-
ber of vehicles needed. The second phase consists of a large neighborhood search
algorithm in order to reduce total travel cost.

Derigs and Döhmer (2008) discuss an indirect (evolutionary) local search heuristic
for the same problem. In indirect search solutions are encoded such that the prob-
lem of securing feasibility is separated from the metaheuristic search process. Here
a greedy decoding is used.

3.2.4 Summary

Summarizing, the largest static PDP problem instance solved to optimality with
a state-of-the-art method comprises 205 requests (Sigurd et al. 2004). However, the
size of the largest instance solved is not always a good indicator; tightly constrained
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Table 3 Metaheuristics for the static PDP

Reference Type Obj. Con. Algorithm Bench./Size

The single vehicle case

Landrieu et al. S min. RC TW (probabilistic) up to 40 req.
(2001) tabu search
∗ Carrabs et al. – min. RC LIFO variable neighborhood up to 375 req.
(2007) search

The multi vehicle case

Nanry and S min. RC, TW reactive tabu search, NB00
Barnes (2000) min. TWV, insertion and swap

min. LV neighborhoods

Jung and – min. RC, TW genetic algorithm up to 30 req.
Haghani (2000) min. TWV

Lau and Liang – min. RC TW tabu search, adapted adapted
(2001, 2002) (Nanry and Barnes 200) (Solomon,

neighborhoods 1987), NB00
∗ Li and Lim S min. NV, TW tabu embedded NB00, LL01
(2001) min. RC, simulated annealing

min. RD,
min. WT

Schönberger reject max. profit TW hybrid genetic adapted
et al. (2003) req. algorithm NB00

Caricato et al. MD min. mRD track parallel tabu search up to 50 req.
(2003) con-

tention

Ambrosini et al. – min. RC LIFO greedy randomized up to 100 req.
(2004) adaptive search (GRASP)
Creput et al. – min. NV, TW genetic algorithm LL01
(2004) min. RC combined with

local search
∗ Pankratz – min. NV, TW grouping genetic NB00, LL01
(2005b) min. RC algorithm
∗ Ropke and MD, S min. RC TW adaptive large LL01+
Pisinger (2006a) neighborhood search
∗ Bent and – min. NV, TW hybrid algorithm. (1) LL01+
van Hentenreyck min. RC simulated annealing (2)
(2006) large neighborhood search
∗ Derigs and – min. NV, TW indirect search LL01
Döhmer (2008) min. RC

Bench. = Benchmark, Con. = Constraints, LIFO = Last-In-First-Out, LV = Load Violation, MD =
Multi Depot, NV = Number of Vehicles, Obj. = Objective(s), RC = Routing Cost, (m)RD = (max-
imum) Route Duration, S = Service Time, TW = Time Windows, TWV = TW Violation, WT = Waiting
Time; The respective benchmark instances are described in Section 4. Entries marked by an asterisk (∗)
are described in further detail in the text.

problems are easier to solve than less tightly constrained ones. The benchmark data
set most often used to assess the performance of (meta)heuristic methods for the static
PDPTW is the one described in Li and Lim (2001) (LL01, LL01+, see Table 6). Re-
cent new best results have been presented in Ropke and Pisinger (2006a) and Bent
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and van Hentenryck (2006), two metaheuristic solution procedures. The metaheuris-
tic of Li and Lim (2001) still holds the best results for a part of the smaller instances.
However, also exact methods advanced; the more tightly constrained part of the LL01
data set has recently been solved by a state-of-the-art branch and cut and price algo-
rithm (Ropke and Cordeau 2006).

3.2.5 Related work

Pickup and delivery problems do not only arise in the context of vehicle routing but
also in ocean borne transportation. Christiansen and Nygreen (1998a) propose a com-
bined PDPTW and multi inventory model arising in the context of ship routing. It
is solved by means of column generation. Similar solution approaches are presented
in Christiansen and Nygreen (1998b) and Christiansen (1999). Column generation
is also used in Christiansen and Nygreen (2005), assuming uncertainties in sailing
times and considering inventory constraints to be soft. Another exact solution method
for the traditional PDPTW in ship routing is reported in Christiansen and Fagerholt
(2002). Brønmo et al. (2007) propose a multi-start local search heuristic. A relaxed
version of the multi-ship PDPTW, considering soft time windows, is tackled in Fager-
holt (2001). Fagerholt and Christiansen (2000a) study a combined ship scheduling
and allocation problem. Optimal solutions are computed for several real life cases.
The subproblem, a TSPTW with allocation and precedence constraints, of the com-
bined problem is studied by Fagerholt and Christiansen (2000b). For an extensive
survey on ship routing problems we refer to Christiansen et al. (2004).

An interesting extension of the PDPTW was proposed by Recker (1995), namely
the household activity pattern problem. It involves ridesharing as well as vehicle-
switching options. The objective is the minimization of household travel disutility.
Recker solved the problem defined by means of a genetic algorithm.

Research dedicated to polyhedral analysis is presented in Dumitrescu (2005) for
the SPDP. New valid inequalities are discussed. Combinatorially simple pickup and
delivery paths are studied in Lübbecke (2004). These are concatenations of several
short patterns. Each pattern consists of visiting at most two requests.

Gambardella and Dorigo (2000) elaborate on another problem related to the PDP,
namely the sequential ordering problem. Its objective is to determine a minimum
weight Hamiltonian path in a directed graph, with weights on arcs and vertices, re-
specting precedence constraints between vertices. In contrast to the PDPTW, one ver-
tex can have multiple predecessors. Gambardella and Dorigo (2000) propose an ant
colony optimization based approach to solve this problem. Other solution methods
involve, e. g. those of Escudero (1988) and Ascheuer et al. (1993).

3.3 Dynamic and stochastic pickup and delivery problems

Although many real world PDP are inherently dynamic, the dynamic version of the
PDP has not received as much attention as its static counterpart. The term dynamic
usually indicates that the routing and scheduling of requests has to be done in real
time; new requests come in dynamically during the planning horizon and have to be
inserted into existing partial routes. In general, the same objectives as for the static
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PDP are applied, i. e. the minimization of the total operating costs. Surveys on dy-
namic routing can be found in Ghiani et al. (2003) and Psaraftis (1988). In stochastic
variants of the PDP, information regarding a certain part of the data (e. g. vehicle
travel times) are only available in terms of probability distributions. So far, exact
procedures have not been used to solve dynamic or stochastic PDP. In the follow-
ing the different heuristic and metaheuristic methods proposed for the dynamic and
stochastic versions of the PDP are discussed.

3.3.1 Heuristics

Swihart and Papstavrou (1999) solve a stochastic SPDP. They assume that new
requests arrive according to a poisson process; pickup and delivery locations are uni-
formly distributed in the service region; and a single vehicle travels at constant speed
in the Euclidean plane. The objective minimized is the expected time the requests
remain in the system. They test three routing policies, a sectoring, a nearest neigh-
bor and a stacker crane policy. The stacker crane policy refers to grouping arriving
demands into contiguous sets of equal size and serving them according to the first-
come-first-serve rule. Lower bounds on the expected time a request remains in the
system under light and heavy traffic conditions are computed.

Three online algorithms (REPLAN, IGNORE, and SMARTSTART) for a single
server PDP are investigated in Ascheuer et al. (2000). The objective considered is
the completion time. In the literature the problem at hand is called online dial-a-
ride problem. However, the denotation dial-a-ride problem is not used in the same
way as defined in this survey. The term online is used whenever no request is know
in advance. By means of competitive analysis, i. e. the online (no knowledge about
the future) algorithm is compared to its offline (complete knowledge about the fu-
ture) counterpart (Van Hentenryck and Bent 2006; Jaillet and Stafford 2001), it can
be shown that REPLAN and IGNORE are 5/2 competitive, while SMARTSTART
has a competitive ratio of 2. Hauptmeier et al. (2000) discuss the performance of
REPLAN and IGNORE under reasonable load. Feuerstein and Stougie (2001) de-
vise another 2-competitive algorithm for the same problem. A probabilistic version is
investigated in Coja-Oghlan et al. (2005), the online problem minimizing maximum
flow time in Krumke et al. (2005).

The first heuristic for the dynamic multi vehicle PDP is proposed in Savelsbergh
and Sol (1998). Their solution methodology called DRIVE (Dynamic Routing of
Independent VEhicles) incorporates a branch and price algorithm based on a set
partitioning problem formulation. It generates approximate solutions via incomplete
optimization. The problem tackled is a ten days real life simulation. Up to 354 active
requests are considered at the various re-optimization runs.

Lipmann et al. (2004) study the influence of restricted information on the multi
server online PDP, i. e. the destination of a request is only revealed after the object
has been picked up. Competitive ratios of two deterministic strategies (REPLAN and
SMARTCHOICE) for the time window case are computed in Yi and Tian (2005).

An insertion based heuristic for the dynamic multi vehicle PDP is discussed in
Popken (2006). It is combined with different types of order circuity control in order
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to increase the efficient utilization of the vehicle’s capacity. Results for test instances
with up to 2500 initial orders are reported.

Fabri and Recht (2006) present an adaptation of a heuristic algorithm to the dy-
namic PDPTW. It was initially designed for the dynamic DARP by Caramia et al.
(2002). In contrast to Caramia et al., they allow vehicle waiting times. To enhance the
procedure an additional local search phase is introduced. This phase is initiated when-
ever a new request has been inserted and ends when the next request comes in. Fabri
and Recht (2006) report solutions to instances with up to 1000 requests, arriving at an
average rate of one request per minute.

Thangiah and Awan (2006) test their algorithm (see Table 2) also in a real-time
setting, considering up to 159 requests.

3.3.2 Metaheuristics

A population based metaheuristic approach, namely a hybrid genetic algorithm, for
the dynamic SPDP with TW is proposed in Jih and Hsu (1999). It is called hybrid, as
the genetic algorithm is combined with a dynamic programming algorithm. The data
sets used for testing purposes consist of up to 50 requests.

Early research on dynamic multi vehicle PDP is conducted in Shen et al. (1995)
and Potvin et al. (1995). Both articles focus on neural networks with learning capa-
bilities to support vehicle dispatchers in real-time. In Potvin et al. (1995) the neural
network based learning techniques are compared to a linear programming based
method. Real life data sets with 200 and 140 requests are used in Potvin et al. (1995)
and Shen et al. (1995), respectively, to assess the performance of their algorithms.
Potvin et al. (1995) conclude that the neural network performed better than the linear
programming model.

The first neighborhood based metaheuristic solution method for the dynamic multi
vehicle PDPTW is presented in Malca and Semet (2004). The neighborhood used
is of the request-to-vehicle-assignment type. To accelerate the search an elimination
matrix is used. It memorizes the compatibility of two requests. Thus, only promising
moves are considered. The proposed procedure is tested on some adapted instances of
Li and Lim (2001).

A two-phase solution procedure for the dynamic PDPTW is described in Mitrović-
Minić and Laporte (2004). In the first phase an initial solution is constructed via
cheapest insertion. This solution is improved by means of a tabu search algorithm. In
the second phase different waiting strategies are used to schedule the requests. The
waiting strategies tried are referred to as drive first, wait first, dynamic waiting, and
advanced dynamic waiting. They differ regarding the vehicle’s location when waiting
occurs. In the drive first strategy, the vehicle leaves every vertex as early as possible.
If it arrives too early at the subsequent stop it waits there until service is viable. When
using the wait first strategy, the vehicle leaves every vertex as late as possible with re-
spect to time windows of subsequent vertices. Dynamic waiting refers to a strategy
where customers are clustered according to time windows. The vehicle waits as long
as possible before moving on to the first customer of the next cluster. Advanced dy-
namic waiting denotes a strategy where waiting time before visiting the first cluster
depends on the latest possible time to begin service at the last cluster, without violat-
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ing time windows at intermediate clusters. Mitrović-Minić and Laporte (2004) report
solutions to problem instances with a total of up to 1000 requests, all occurring during
the service period. The results indicate that the advanced dynamic waiting strategy is
the most efficient.

Advanced dynamic waiting is also used by Mitrović-Minić et al. (2004) in a double
horizon based heuristic. The routing part is solved by means of a construction heuris-
tic improved by tabu search. Scheduling is conducted according to advanced dynamic
waiting. Routes are segmented. The first segment corresponds to the short term hori-
zon, the remainder of the route to the long term horizon. Also the case of several
depots is considered. Again instances with a total of up to 1000 requests are solved.

Gutenschwager et al. (2004) compare a steepest descent, a reactive tabu search,
and a simulated annealing algorithm. They solve the dynamic PDP on an electric
monorail system. The best results are obtained with the tabu search algorithm.

In Pankratz (2005a) a grouping genetic algorithm for the static PDP is embedded
in a rolling horizon framework in order to solve the dynamic PDPTW. It is tested on
data sets with different degrees of dynamism.

Another tabu search algorithm for the dynamic multi vehicle PDPTW was pro-
posed by Gendreau et al. (2006). It uses an ejection chain neighborhood (Glover
1996), i. e. one request is removed from its current route and inserted into another
route, forcing the ejection of a request on this route to a third route, and so on. A late-
ness criterion is incorporated into the objective function. To speed up the optimization
procedure a parallel implementation is conducted. The resulting program is tested on
simulations over 7.5 hours with 20 vehicles and 23 requests per hour, and over four
hours with ten vehicles and 33 requests per hour.

3.3.3 Summary

To summarize, over the last decades, in the field of dynamic PDP, a number of so-
lution procedures have been developed. However, the proposed algorithms cannot
be directly compared since, so far, no standardized simulation environment has been
used by more than one group of authors. Benchmark instances are available; e. g.
those used in Mitrović-Minić and Laporte (2004) and Mitrović-Minić et al. (2004),
see Section 4.

3.4 The static dial-a-ride problem

The dial-a-ride problem class has received considerable attention in the literature. The
first publications in this area date back to the late 1960s and early 1970s (cf. Re-
bibo 1974; Wilson and Weissberg 1967; Wilson et al. 1971; Wilson and Colvin 1977).
Surveys on solution methods can be found in Cordeau and Laporte (2003a,2007),
Cordeau et al. (2004), and Gendreau and Potvin (1998). Kubo and Kasugai (1990)
compare different local search based heuristic methods for the SDARP.

3.4.1 Exact methods

An early exact dynamic programming algorithm for the single vehicle DARP is in-
troduced in Psaraftis (1980). Service quality is taken care of by means of maximal
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position shift constraints compared to a first-come-first-serve visiting policy. The
largest instance solved comprises nine requests. In Psaraftis (1983b) a modified ver-
sion of the above algorithm is presented. Instead of backward recursion forward
recursion is used. Also time windows are considered.

A forward dynamic programming algorithm for the static SDARP is discussed
in Desrosiers et al. (1986). Possible states are reduced by eliminating those that are
incompatible with respect to vehicle capacity, precedence, and time window restric-
tions. User inconvenience in terms of ride times is incorporated into time window
construction, resulting in tight time windows at both, origin and destination of the
transportation request. The largest instance solved contains 40 transportation re-
quests.

Kikuchi (1984) develops a balanced LP transportation problem for the multi ve-
hicle case, minimizing empty vehicle travel as well as idle times and thus fleet size.
In a preprocessing step the service area is divided into zones, the time horizon into
time periods. Every request is classified according to an origin and a destination zone
as well as a departure and an arrival time period. An example with four zones is
presented.

Cordeau (2006) proposes a branch and cut algorithm for the static DARP. The al-
gorithm is based on a 3-index mixed-integer problem formulation. New valid inequal-
ities as well as previously developed ones for the PDP and the VRP are employed.
The largest instance solved to optimality comprises 36 requests. Two branch and cut
algorithms are described in Ropke et al. (2007). Instead of a 3-index formulation,
two more efficient 2-index problem formulations and additional valid inequalities
are used. A 96-request instance is the largest instance solved to optimality. Exten-
sions of the 3-index and the two 2-index based branch and cut algorithms (Cordeau
2006; Ropke et al. 2007) to the DARP with heterogeneous fleet and passengers are
discussed in Parragh et al. (2008).

3.4.2 Heuristics

Over the last decades, a large number of heuristic algorithms have been proposed for
the static DARP. Table 4 gives an overview of the various solution methods reported
in chronological order, divided into single and multi vehicle approaches.

A heuristic routing and scheduling algorithm for the SDARP using Bender’s
decomposition is described in Sexton and Bodin (1985a,b). The scheduling problem
can be solved optimally; the routing problem is solved with a heuristic algorithm.

One of the first heuristic solution procedures for static multi vehicle DARP is
discussed in Cullen et al. (1981). They develop an interactive algorithm that fol-
lows the cluster first route second approach. It is based on a set partitioning for-
mulation solved by means of column generation. The location-allocation subprob-
lem is only solved approximately. However, user related constraints or objectives
are not explicitly considered. The same applies to the work of Healy and Moll
(1995).

Jaw et al. (1986) propose a sequential insertion procedure. First, customers are
ordered by increasing earliest time for pickup. Then, they are inserted according to
the cheapest feasible insertion criterion. The notion of active vehicle periods used.
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Table 4 Heuristics for the static DARP

Reference Type Obj. Con. Algorithm Bench./Size

The single vehicle case

Psaraftis – min. RC – MST heur., local up to 50 req.
(1983a) interchanges

Psaraftis – min. RC – adapted 2-opt up to 30 req.
(1983c) and 3-opt
∗ Sexton and – min. CI DDT routing and scheduling up to 20 req.
Bodin (1985a, b) algorithm based on

Bender’s decomposition

Healy and – min. RC – 2-opt improvement, up to 100 req.
Moll (1995) optimizing/sacrificing

phases

The multi vehicle case

Stein (1978a, b) transfers min. RC TW cluster first route –
second

∗ Cullen – min. RC – cluster first route up to 50 req.
et al. (1981) second, column

generation

Roy et al. HF min. RC, TW parallel insertion up to 578
(1985a, b) min. CI req.

Bodin and – min. CI DDT cluster first up to 85
Sexton (1986) route second req.
∗ Jaw et al. – min. RC, TW, RT sequential feasible up to 2617
(1986) min. CI insertion algorithm req.

Alfa (1986) HF min. RC TW, RT adapted heur. of up to 49 req.
Jaw et al. (1986)

Psaraftis – min. RC, TW, RT comparison of Jaw’s –
(1986) min. CI heur. and

grouping-clustering-
routing heur.

Desrosiers MD min. RC TW mini-clustering up to 200
et al. (1988), algorithm, column req.
Dumas et al. generation
(1989)

Kikuchi and – max. NCS TW sequential insertion up to 200
Rhee (1989)

Desrosiers HF min. RC TW, RD improved mini- up to 2411
et al. (1991) clustering algorithm of req.

Desrosiers et al. (1988)

Potvin and – min. RC TW, RT constraint directed up to 90
Rousseau search (beam search) req.
(1992)
∗ Ioachim HF, min. NV, TW mini-clustering, up to 2545
et al. (1995) MD, S min. RC column generation req.

∗ Madsen et al. HF, S min. RC, NV, TW, RD, REBUS. insertion up to 300
(1995) TWT, DPS RT based algorithm req.
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Table 4 continued

Reference Type Obj. Con. Algorithm Bench./Size

Toth and HF min. RC TW, RT parallel insertion, TV96a
Vigo (1996) improved by trip

insertion, exchange,
double insertion, moves

∗ Borndörfer HF, min. RC TW, cluster first route up to 1771
et al. (1997) MD, S (RT), RD second, set partitioning, req.

branch and bound

Fu (2002a) HF, S min. RC, TW, RT parallel insertion, up to 2800
min. CI stochastic travel times req.

∗ Diana and – min. RC, TW, RT parallel regret up to 1000
Dessouky (2004) min CI, insertion heur. req.

idle times

Xiang et al. HF, S min. RC TW, RT, construction- up to 2000
(2006) RD, BR improvement; clustering req.

by TW, ideas of sweep
heur.; local search
improvement

Wong and HF, S min. RC, TW, RT, parallel insertion, up to 150
Bell (2006) min. CI RD improved by trip req.

insertion

Wolfler et al. – max. NCS, TW cluster first route up to 180 req.
(2007) max. SL second, assignment

heur., vertex
reinsertions

Bench. = Benchmark, BR = BReak Time between two trips, CI = Customer Inconvenience, Constr.
= Constraints, DDT = Desired Delivery Time, DPS = Deviation from Promised Service, HF = Het-
erogeneous Fleet, heur. = heuristic(s), MD = Multi Depot, NCS = Number of Customers Served, NV
= Number of Vehicles, Obj. = Objective(s), PoC = Position of Customer, RC = Routing Cost, RD =
Route Duration, req. = requests, TW = Time Windows, TWT = Total Waiting Time, RT = Ride Time,
S = Service time, SL = Service Level; The respective benchmark instances are described in Section 4.
Entries marked by an asterisk (∗) are described in further detail in the text.

An optimization based mini-clustering algorithm is presented in Ioachim et al.
(1995). It uses column generation to obtain mini-clusters and an enhanced initializa-
tion procedure to decrease processing times. As in Desrosiers et al. (1988) also the
case of multiple depots is considered.

A multi-objective approach is followed in Madsen et al. (1995). They discuss an
insertion based algorithm called REBUS. The objectives considered are the total driv-
ing time, the number of vehicles, the total waiting time, the deviation from promised
service times as well as cost.

A classical cluster first route second algorithm is proposed in Borndörfer et al.
(1997). The clustering as well as the routing problem are modeled as set partitioning
problems. The clustering problem can be solved optimally while the routing subprob-
lems are solved approximately by a branch and bound algorithm (only a subset of
all possible tours is used). Customer satisfaction is taken into account in terms of
punctual service. Customer ride times are implicitly considered by means of time
windows.
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A regret insertion algorithm for the static DARP is developed in Diana and
Dessouky (2004). First, all requests are ranked according to ascending pickup times.
Some swaps in this order are allowed, giving preference to requests that might be dif-
ficult to insert later on, regarding their spatial location. The first m requests are used
as seed customers, with m being the number of vehicles. All the remaining requests
are inserted following a regret insertion strategy (Potvin and Rousseau 1993). The re-
gret insertion based process is also subject to analysis in a study by Diana (2004); in
order to determine why the performance of this heuristic is superior to that of other
insertion rules.

3.4.3 Metaheuristics

Also metaheuristic solution methods have been developed for the static DARP.
Table 5 provides an overview of the different algorithms proposed. For each reference
the same information as in the previous tables is given. Toth and Vigo (1997) describe
a local search based metaheuristic, i. e. a tabu thresholding algorithm, for the static
multi vehicle DARP. It employs the neighborhoods defined in Toth and Vigo (1996).
Initial solutions are constructed using parallel insertion.

Cordeau and Laporte (2003b) develop a tabu search algorithm. Time windows are
considered at either origin or destination depending on the type of request (inbound or
outbound). The neighborhood used is defined by moving one request to another route.
The best possible move serves to generate a new incumbent solution. Reverse moves
are declared tabu. However, an aspiration criterion is defined, such that tabu moves
that provide a better solution, with respect to all other solutions already constructed
by the same move, can constitute a new incumbent solution.

3.4.4 Summary

State-of-the-art exact methods for the static DARP solve some instances with up to
96 requests to optimality (Ropke et al. 2007). However, the same limitation applies
as stated in Sect. 3.2.4, i.e. the size of the test instance is not a very meaningful in-
dicator; tightly constrained instances are easier to solve than those with less tight
constraints and no standardized data set has been solved by the proposed approaches.
In case of heuristic and metaheuristic methods, comparison becomes even harder
since a large part of the solution procedures developed are motivated by real world
problem situations. They differ regarding problem type (single and multi depot, ho-
mogeneous and heterogeneous fleet), constraints, and objective(s). Moreover, even
when the same data sets are used different objectives are considered (Cordeau and
Laporte 2003a; Jørgensen et al. 2007). Consequently, we can only state that in gen-
eral heuristic methods run faster whereas metaheuristics usually outperform basic
heuristic procedures with respect to solution quality.

3.4.5 Related work

Dealing with the transportation of people, especially handicapped or elderly, research
has also been dedicated to the comparison of dial-a-ride systems with other modes

1 3



104 S. N. Parragh et al.

Table 5 Metaheuristics for the static DARP

Reference Type Obj. Con. Algorithm Bench./Size

The multi vehicle case

Calorni et al. – max. NCS, RD simulated annealing up to 100
(1996) min. CI req.
∗ Toth and HF, MD min. RC TW, parallel insertion TV96a
Vigo (1997) RT algorithm, tabu

thresholding

Baugh et al. – min. NV, TW simulated annealing up to 300
(1998) min. RC, req.

min. CI

Uchimura et al. – min. RC RT, RD genetic algorithm 10 req.
(1999)
∗ Cordeau and S min. RC TW, tabu search CL03, up to
Laporte (2003b) RT, RD algorithm 295 req.

Aldaihani and mix min. RC, TW tabu search up to 155
Dessouky (2003) with min. CI req.

FRT

Ho and proba- min. RC TW, RT tabu search, hybrid adapted
Haughland bilistic GRASP-tabu search CL03
(2004)

Melachrinoudis HF, MD min. RC, TW tabu search up to 8 req.
et al. (2007) min CI

Rekiek et al. S, MD, min. NV, TW, grouping genetic up to 164
(2006) HF min. CI RT, VA algorithm req.

Jørgensen S min. RC, TW, genetic algorithm, CL03
et al. (2007) min. RT, RT, RD space-time nearest

min. neighbor heur.
TWV, ...

Parragh et al. S min. RC, TW, RT variable neighborhood Cor06+
(2007) min. mRT search, path relinking

Bench. = Benchmark, CI = Customer Inconvenience, Con. = Constraints, DDT = Desired Delivery
Time, FRT = Fixed Route Transit, HF = Heterogeneous Fleet, MD = Multi Depot, mRT = mean RT,
NV = Number of Vehicles, Obj. = Objective(s), RD = Route Duration, RT = Ride Time, RC = Rout-
ing Cost, S = Service time, TW = Time Windows, TWV = TW Violation, VA = Vehicle Availability;
The respective benchmark instances are described in Section 4. Entries marked by an asterisk (∗) are
described in further detail in the text.

of transportation. Early studies of dial-a-ride transportation systems are reported in
Carlson (1976) and Teixeira and Karash (1975). Elmberg (1978) tests a robot dis-
patcher dial-a-ride system in Sweden. Daganzo (1984) compares fixed route transit
systems with checkpoint dial-a-ride and door-to-door dial-a-ride systems. He con-
cludes that most of the time either a fixed route system or door-to-door transportation
is the appropriate choice. Belisle et al. (1986) investigate the impact of different op-
erating scenarios on the quality of transportation systems for the handicapped. More
recent studies comparing dial-a-ride and traditional bus systems by means of simula-
tion are reported in Noda et al. (2003) and Noda (2005). Shinoda et al. (2003) study
the usability of dial-a-ride systems in urban areas. Mageean and Nelson (2003) eval-
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uate telematics based demand responsive transport services in Europe. Palmer et al.
(2004) analyze the impact of management practices and advanced technologies in the
context of demand responsive transport systems. The impact of information flows,
e. g. the percentage of real time requests or the length of the interval between the ar-
rival of a new request and its requested pickup TW, is investigated in Diana (2006).
Diana et al. (2006) study optimal fleet sizes with respect to predetermined service
quality.

Research has also been dedicated to possible ways of computation time reduc-
tion. Hunsaker and Savelsbergh (2002), e. g., propose a fast feasibility check for the
DARP. The proposed procedure can deal with time window, waiting time as well as
ride time restrictions. Castelli et al. (2002) discuss three algorithms granting 2-opt-
improvement feasibility.

A problem class related to the DARP is the car pooling problem. It consists of
finding subsets of employees that share a car, the path the driver should follow, and
possibly also who should be the driver. In contrast to the DARP either origin or des-
tination are the same for all users depending on whether the trip is from home to
the office or back. Two variants can be investigated, either one car pool for both
ways or differing to-work and from-work problems. Baldacci et al. (2004) propose an
exact as well as a heuristic procedure for this problem. A real life application is re-
ported in Wolfler Calvo et al. (2004). Maniezzo et al. (2004) propose an ant colony
optimization algorithm for the long-term problem.

3.5 Dynamic dial-a-ride problems

Less research has been dedicated to the domain of dynamic DARP. Again, the term
dynamic indicates that routing is done in real time; new requests pop up dynamically
during the day and have to be scheduled into existing routes. The different solu-
tion techniques developed are depicted in the following paragraphs. Predominantly
heuristic methods have been used to solve dynamic versions of the DARP.

3.5.1 Exact methods

Exact methods have not been explicitly developed for the dynamic DARP. A possible
reason is that, in the context of dynamic routing, the concept of “optimal solutions”
becomes debatable. However, in Psaraftis (1980) the static version of his algorithm is
adapted to the dynamic case.

3.5.2 Heuristics

Early heuristic algorithms for the dynamic DARP are discussed in Daganzo (1978).
Daganzo analyzes three different insertion algorithms. In the first the closest stop is
visited next. The second consists in visiting the closest origin or the closest destina-
tion in alternating order. The third only allows the insertion of delivery locations after
a fixed number of passengers have been picked up. Algorithm two results in higher
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waiting to ride time ratios than algorithm one. However, it will, in general, gener-
ate lower waiting times for equal ride times when compared to algorithm three.The
dynamic case of the multi vehicle DARP is also studied in Dial (1995). New trans-
portation requests are assigned to clusters according to least cost insertion. Routes are
then optimized using dynamic programming. Results for a real life problem instance
are reported.

Teodorovic and Radivojevic (2000) propose a two-stage fuzzy logic based heuris-
tic algorithm. The first approximate reasoning heuristic decides which vehicle a new
request is assigned to. The second heuristic handles the adjustment of the vehicle’s
route. Results for instances with up to 900 requests are reported.

Another cluster first route second algorithm is proposed in Colorni and Righini
(2001). Considering only the most urgent requests, the routing subproblems can be
solved to optimality with a branch and bound algorithm.

Caramia et al. (2002) use a dynamic programming algorithm to iteratively solve
the single vehicle subproblems to optimality. Results for instances with up to
50 clients per hour are reported.

Horn (2002a) provide a software environment for fleet scheduling and dispatching
of demand responsive services. The system can handle advance as well as immedi-
ate requests. New incoming requests are inserted into existing routes according to
least cost insertion. A steepest descent improvement phase is run periodically. Also
automated vehicle dispatching procedures, to achieve a good combination of efficient
vehicle deployment and customer service, are included. The system was tested in the
modeling framework LITRES-2 (Horn 2002b), using a 24-hours real life data set of
taxi operations with 4282 customer requests. Another simulation environment to test
solution methods for the dynamic DARP can be found in Fu (2002b).

Coslovich et al. (2006b) propose a two-phase insertion heuristic. A simple inser-
tion procedure allows for quick answers with respect to inclusion or rejection of a new
customer. The initial solution is improved by means of local search using 2-opt arc
swaps. Results for instances with a total of up to 50 (unexpected and expected) re-
quests are reported.

Xiang et al. (2008) propose a fast heuristic for the dynamic DARP. They con-
sider travel time fluctuations, absent customers, vehicle breakdowns, cancellation
of requests, traffic jams etc. To solve this complex problem situation the heuristic
proposed in Xiang et al. (2006) is adapted to the dynamic case. For testing pur-
poses several simulations under varying parameter settings are conducted. Up to
610 requests are considered with different proportions of them already known in
advance.

3.5.3 Metaheuristics

Metaheuristic solution methods have not been explicitly developed for the dynamic
DARP, since short response times are necessary in dynamic settings. Only one al-
gorithm developed for the static version has been used to solve the dynamic case.
The tabu search of Cordeau and Laporte (2003a) is adapted to the dynamic DARP
by means of parallelization (Attanasio et al. 2004). Different parallelization strategies
are tested on instances with up to 144 requests.
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3.5.4 Summary

To summarize, only a limited number of solution algorithms have been proposed for
the dynamic DARP. Most of them are based on repeated calls of static solution rou-

Table 6 Benchmark Instances for VRPPD

Literature Ref. Type Req. # Characteristics Abbr.

Schang and PDPTW, 159 1 real world data SC96
Cuff (1996) trans-

fers
Nanry and PDPTW 13-50 43 based on VRPTW instances NB00
Barnes (2000) (Solomon 1987), optimal solution

schedules by procedure of Carlton
(1995), customers randomly
paired

Renaud et al. SPDP 25-249 108 based on 36 TSPLIB instances RBO00
(2000) (Reinelt 1991), for each pickup

a delivery chosen among the 5 (10)
closest or all unselected
neighbors.

Li and Lim PDPTW 50 56 based on those of Solomon LL01
(2001) (1987), customers appearing on

the same route in a solution of
the VRPTW, using the solution
procedure of Li et al. (2001), were
randomly paired;

100- 298 extended data set LL01+
500

Toth and Vigo DARP 276- 5 real life data, Municipality TV96a
(1996) 312 of Bologna

Cordeau and DARP 24- 20 randomly generated around seed CL03
Laporte (2003b) 144 points, half of the requests have

a tight TW at the origin, half
a tight TW at the destination,
10 instances with narrow,
10 with wider TW.

Mitrović-Minić dyn. 100- 40 ten hours service period, –
and Laporte PDPTW 1000 60×60 km2 area, vehicle move
(2004) at 60 km/h, requests occur

according to a continuous
uniform distribution, no
requests are known
in advance

Cordeau (2006) DARP 16-48 24 randomly generated; 12 instances –
with C = 3, unit user demand and
L = 30; 12 instances with C = 6,
varying user demand and L = 60.

16-96 42 extended data set Cor06+
Ropke et al. PDPTW 30-75 40 randomly generated as described RCL07
(2007) in Savelsberg and Sol (1998).

# = number of instances, Abbr. = abbreviation used, bh. = backhaul customers, MD = Multi Depot,
Req. = approximate number of requests of each instance, SD = Single Depot, TW = Time Window
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tines. Comparison across the different methods proposed becomes a difficult task
since a majority of the work presented is motivated by real life applications. Con-
sequently, each solution methodology was tested on different data sets with varying
problem specific characteristics. Whenever a solution method originally developed
for the static case was used we refer to Sect. 3.4 of this survey for further details on
its performance in a static setting.

4 Benchmark Instances for VRPPD

Table 6 provides the interested reader with information on available benchmark in-
stances used in the literature. Column one gives the literature reference. Column
two through four state the problem type, the size of the different instances in terms
of number of requests per instance, and the number of instances provided. Then,
a brief description of the data set as well as the abbreviations used in this article are
given.

The data set predominantly used to asses the performance of PDPTW is the one
proposed by Li and Lim (2001). The latest new best results for both the primary and
the extended data sets can be found in Ropke and Pisinger (2006a) and Bent and van
Hentenryck (2006).

In contrast to the field of PDP, solution methods developed for the DARP have not
been tested on standardized benchmark instances. This might be due to the fact that
most methods vary considerably with respect to the constraints considered as well
as the objectives minimized. However, since data sets for rather standard problem
settings do exist now, this might change in the near future.

5 Conclusion

The solution methods presented in this paper are state-of-the-art in the field of
VRPPD. In line with the first part of this survey, we believe that future research will
involve the incorporation of additional real life constraints, the effects of dynamism,
and knowledge about future events, in terms of probability distributions. Moreover,
the DARP is, in contrast to many other routing problems, a natural multi-objective
problem. This aspect will also be part of future investigations.

We hope and trust that this survey will lead to future research in the area of vehicle
routing involving pickups and deliveries.
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