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Abstract: The aim of this article is to provide a survey on the most popular modeling approaches for PMAs (pneumatic muscle 

actuators). PMAs are highly non-linear pneumatic actuators where their elongation is proportional to the interval pressure. During the 

last decade, there has been an increase in the industrial and scientific utilization of PMAs, due to their advantages such as high strength 

and small weight, while various types of PMAs with different technical characteristics have appeared in the literature. This article will: 

(a) analyse the PMA’s operation from a mathematical modeling perspective; (b) present their merits and drawbacks of the most 

common PMAs; and (c) establish the fundamental basis for developing industrial applications and conducting research in this field. 
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1. Introduction

Over the years, researchers have used various types 

of actuators on their industrial, robotic and automation 

applications. Hydraulic, electric, magnetic and 

pneumatic actuators are some of the commonly utilized 

types, with respect to the application’s characteristics, 

function and limitations. During the last decade, there 

has been an increase in the use of pneumatic actuators 

in the industrial and medical areas, mainly due to their 

advantages such as low power to weight ratio, high 

strength and small weight [1]. 

Pneumatic muscle actuator [2], also known as the 

McKibben PAM (pneumatic artificial muscle) [3-6], 

fluidic muscle [7] or a biomimetic actuator [8], was 

first invented in 1950s by the physician, Joseph L. 

McKibben and was used as an orthotic appliance for 

polio patients [3]. PMAs are well suited for the 

implementation of positive load feedback, which is 

known to be used by animals. They present smooth, 

accurate and fast response and also produce a 

significant force when fully stretched. Moreover, 
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PMAs are lightweight, which is a particularly useful 

feature when working with applications that place 

restrictions on the weight of the equipment e.g., mobile 

robotic applications [9]. 

Until now PMAs were commonly used in areas like 

those of medical, industrial and entertainment robotics. 

Specifically, PMAs have been widely used in 

rehabilitation engineering as an actuator in orthotic 

exoskeleton appliances [10-12]. Artificial muscles 

have also been used in biomimetic robotics [13, 14] and 

for the development of artificial fine-motion limbs [13, 

15]. PMAs can also be found in manufacturing, 

laboratory and aerospace applications [16]. 

Typical manufacturing of a PMA can be found as a 

long synthetic or natural rubber tube, wrapped inside 

man-made netting, such as Kevlar, at predetermined 

angle. Protective rubber coating surrounds the fibber 

wrapping and appropriate metal fittings are attached at 

each end. PMA converts pneumatic power to pulling 

force and has many advantages over conventional 

pneumatic cylinders such as high force to weight ratio, 

variable installation possibilities, no mechanical parts, 

lower compressed air consumption and low cost [17]. 

When compressed air is applied to the interior of the 
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rubber tube, it contracts in length and expands radially. 

As the air exits the tube, the inner netting acts as a 

spring that restores the tube in its original form. This 

actuation reminds the operation of a single acting 

pneumatic cylinder with a spring return, while this 

reversible physical deformation during the contraction 

and expansion of the muscle results in linear motion. 

Recently PMAs have found significant medical 

applications [18-20] as PMA actuator resembles the 

function of a human muscle, and thus has been given 

the name pneumatic artificial muscle [4, 21]. It should 

be noted that the most significant advantage of utilizing 

PMA in control applications, is that for their position 

control, only one analog variable needs to be controlled, 

while for the same operation with a pneumatic cylinder, 

two analog variables need to be controlled (one for 

each chamber). As a result in the case of a pneumatic 

cylinder, it is more difficult to find an equilibrium 

between the two gauge pressures in the chambers, that 

it is for the case of PMAs. 

As this type of actuators is becoming increasingly 

popular, many alternative types of PMAs have 

appeared in the scientific literature that differs in their 

mechanical construction and in the mathematical 

model describing their principal operation. Until now, 

except from the Festo AG Company’s PMAs [4, 

22-24], there has not been standardized and 

commercial versions of PMAs and in applications 

containing such actuators, is of paramount importance 

to: (1) choose PMA that fits the application, and (2) 

utilize the correct mathematical PMA model. The high 

non-linearities due to: (1) the existence of the 

pressurized air; (2) the elastic-viscous material; and (3) 

the geometric features of PMA, are the first problem 

that a control engineer will have to deal with in order to 

derive and utilize a proper PMA mathematical model. 

PMAs can be addressed in the literature with 

different names, like fluidic muscle [25-27], air muscle 

[28, 29], pneumatic muscle actuator [29], fluid actuator 

[24], fluid-driven tension actuator [4], axially 

contractible actuator [30, 31], tension actuator [32, 33], 

PPAM (pleated pneumatic artificial muscle) [34, 35], 

biomimetic actuator [34], BPA (braided pneumatic 

actuator) [36-40], paynter hyperboloid muscle [27, 41, 

42], ROMAC (robotic muscle-like actuator) muscle 

[34, 42], and yarlott netted muscle [7, 42, 43]. Typical 

types of PAMs and the corresponding naming are 

depicted in Fig. 1. 

The aim of this article is to provide an up-to-date 

literature review of the various manufacturing types of 

PMAs and their operation, while focusing on analysing 

the most popular and functional mathematical models 

of PMAs that can be found in the scientific literature. 

The survey, in this promising technology of PMAs, 

will also provide a wide set of the most important 

references in this field that could be further 

investigated by the interested readers. 

This article is organized as follows. In Section 2, the 

basic PMA’s principles of operation are presented. The 

most significant modeling approaches for PMAs are 

presented in Section 3. Finally, some conclusions are 

drawn in Section 4. 

2. Principles of Operation 

The basic principles of the PMA’s operation can be 

categorized in two cases: (1) under a constant load and 

with varying gauge pressure, and (2) with a constant 

gauge pressure and a varying load. To illustrate this 

operation, a PMA of an arbitrary type is considered 

[34]. In the first case (Fig. 2), PMA is fixed at one end 

and has a constant mass load hanging from the other 

side. The pressure difference across the membrane, i.e., 

its gauge pressure, can be increased from an initial 

value of zero. At zero gauge pressure the volume 

enclosed by the membrane is minimal minV  and its 

length maximal maxl . If the actuator is pressurized to 

some gauge pressure 1P , it will start to bulge and at the 

same time develop a pulling force that will lift the mass 

until the equilibrium point where the generated force 

will equal to the mass weight Mg . 

At this point the PMA’s volume will have been 

increased to 1V  and its length contracted to 1l .  
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Fig. 1  Various types of PMAs: (a) McKibben 

muscle/braided muscle; (b) pleated muscle; (c) yarlott 

netted muscle; (d) ROMAC muscle; and (e) paynter 

hyperboloid muscle. 
 

 

Fig. 2  PMA operation at constant load. 
 

Increasing the pressure further to 2P  will continue this 

process, until the gauge pressure reaches the maximum 

allowable value maxP . During this type of operation 

PMA: (1) will shorten its length by increasing its 

enclosed volume, and (2) will contract against a 

constant load if the pneumatic pressure is increased. 

The second type of PMA’s operation, which is the 

case of operation under constant gauge pressure, is 

depicted in Fig. 3. In this case, the gauge pressure is 

kept at a constant value P, while the load is decreasing, 

driving the PMA to inflate and decrease its initial 

length 3l . If the load is completely removed, the 

swelling goes to its full extent, at which point the 

volume will reach its maximum value maxV , the length 

of its minimal value minl , and the pulling force will 

drop to zero. PMA will not be able to contract beyond 

 

Fig. 3  PMA operation at constant pressure. 
 

this point and it will operate as a bellows at shorter 

lengths, generating a pushing instead of pulling force. 

During this type of operation PMA: (1) will decrease its 

length at a constant pressure if its load is decreased, and 

(2) its contraction has an upper limit at which it 

develops no force and its enclosed volume is maximal. 

For these two principal operations, it should be 

highlighted that for each pair of pressure and load, 

PMA has an equilibrium length. This characteristic is 

in a total contrast to the operation of a pneumatic 

cylinder where the developed actuation force only 

depends on the pressure and the piston surface area so 

that at a constant pressure, it will be constant regardless 

of the displacement [1]. 

3. Modeling Approaches 

In recent years, there has been quite a lot of activity 

regarding the mathematical modeling of PMAs. The 

aim of such a model is to relate the pressure and length 

of the pneumatic actuator to the force it exerts along its 

entire axis. In the process of deriving a proper PMA 

model, variables such as pulling force, actuator’s 

length, air pressure, diameter and material properties, 

play a major role in the PMA dynamical behavior and 

this is why the mathematical models aim to describe 

the relationships between these factors. Understanding 

those relationships is of paramount importance in every 

application that consists of PMAs and especially if the 
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main goal is to control its overall function (mainly the 

length of actuation). Unfortunately, PMAs evidence 

strong non-linear force-length characteristics that make 

it more difficult to control them and obtain the 

demanded performance features [33, 44]. In the 

following subsections an analysis to the most common 

and valuable PMA’s models will be presented. 

3.1 Geometrical Model of PMA 

The original method of modeling was based on the 

geometry of PMA, an approach that has not been very 

useful for predicting the dynamical characteristics of 

PMAs because their parameters are not easily 

measured during actuation. Thus, various different 

geometrical models were proposed to describe the 

behavior of PMA. Among these models, the Chou and 

Hannaford model [45] and the Tondu and Lopez model 

[46] have been widely used. 

The Chou and Hannaford model is the simplest 

geometrical model for a static performance of a PMA. 

The proposed model is valid under the following 

assumptions: (1) the actuator is cylindrical in shape; (2) 

the threads in the sheath are inextensible and always in 

contact with the outside diameter of the latex bladder; 

(3) frictional forces between the tubing and the sheath 

and between the fibers of the sheath are negligible; and 

(4) latex tubing forces are negligible. 

With this approach the PMA actuator can be 

modeled as a cylinder, depicted in Fig. 4, with a length 

L, thread length b, diameter D, and number of thread 

turns n. The angle  is defined as the angle of the 

threads with the longitudinal axis [47]. 

When the PMA actuator inflates, D and L change, 

while n and b remain constant, while the expressions 

for the PMA’s length and diameter can be formulated 

as: 

sin
cos ,L b D b

n
           (1) 

By combining Eq. (1) the thread length can be 

calculated as: 
1/2

2 2 2 2b L D n           (2) 

 

Fig. 4  Simplified geometrical model of PMA. 
 

Eq. (2) is referred in the literature as the geometric 

relationship for PMA, while its volume is provided by: 

3 2

2

cos sin

4

b
V

n
          (3) 

Utilizing the energy conservation principle, PMA 

simple geometric force gF  can be calculated as the 

gauge pressure multiplied by the change in volume 

with respect to length (this model can also be found in 

[47]): 

2
2

2

2

3 1

4
g

L
pb

b
F

n
        (4) 

Another simple and widely-used geometrical model 

of PMA is that of Tondu and Lopez [46]. Based on this 

approach and by: (1) utilizing similar geometric 

description of the muscle [45]; (2) assuming 

inextensibility of the mesh material; and (3) angle 

changes during the alteration of PMA’s length, the 

following expression of the contraction force F 

generated by the muscle, as a function of the control 

pressure P and the contraction ratio , based on the 

theorem of virtual work , is deduced [46, 48, 49]: 

2 2

0( , ) (1 )F P r p    (5) 

where: 

0

2 2

0 0 0

1 3 1
, 0 �

tan s
,

in
max

l

l
 (6) 

In Eqs. (5) and (6), 0r  is the nominal inner radius, l 

is the length of the muscle, l0 is the initial nominal 

length, P is the pressure and 0 is the initial angle 

between the membrane fibres and the muscle axis, 

while this model can also be found in Ref. [21]. 
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A disadvantage of the model is that its design is 

based on the hypothesis of a continuously 

cylindrical-shaped muscle, whereas it takes a conic 

shape at both ends when it contracts. Consequently, the 

more the muscle contracts, the more its active part 

decreases. This phenomenon results in the actual 

maximum contraction theoretically being smaller than 

that expected from Eq. (5) [50]. These models still 

have limitations in predicting the behavior of PMA in 

no-load conditions. However, there is a major 

phenomenon which Tondu and Lopez [46] considered 

to improve Eq. (5), which is the addition of an 

empirical correction factor k to account for an end 

deformation of PMA: 

2 2

0( , ) (1 )F P r P k     (7) 

where again: 0 max and max is provided from: 

max (1/ )(1 / )k         (8) 

Inserted in this way within the considered static 

model, the parameter k does not modify the value of the 

maximum force given at zero contraction ratio. This is 

in concordance with the conducted experiment since 

PMA has a cylindrical shape only when its contraction 

ratio is zero. Furthermore, the parameter k allows 

adapting the model maximum contraction ratio given 

by Eq. (8) to the experimental data. Thus, it tunes the 

“slope” of the considered static model. 

In addition it has established two options for the 

selection of the parameter k : (1) a constant value 

which may vary depending on the material that the 

muscle is made of, and (2) the parameter k depends on 

the pressure in the muscle at any given time. It has been 

observed in Refs. [45, 46] that during operation there is 

a force/displacement hysteresis in the muscles caused by 

friction between the braid stands. Chou and Hannaford 

[45] produced a model including an experimentally 

obtained force offset which was added to calculate 

forces during muscle contraction and subtracted during 

extension. Tondu and Lopez [46] took this concept 

further by attempting to quantify the offset force by 

modeling the friction. Although the model produced 

was more accurate than that of Chou and Hannaford, it 

still relied on a degree of experimental data. In Ref. 

[51], Chou and Hannaford proposed that physical 

configuration and the behavior of PMA hinted the 

variable stiffness similar to spring-like characteristics. 

In Ref. [52], more realistic muscle geometry has 

been utilized, in order to model the muscle’s true form, 

by taking into consideration the irregular shape of the 

end sections during inflation. The proposed geometry 

includes a frustum cone that models each end section 

and a cylinder to model the muscle middle section. The 

middle-section geometry is governed by the 

deformation of the braid and its relationship is based on 

the form already shown in Fig. 4. With respect to the 

geometrical model depicted in Fig. 5, L is the overall 

muscle length, LL is the horizontal length of the cone, 

LZ is the cone generator length,  is the frustum-cone 

angle of the muscle ends, Lm is the middle-section 

length, D is the middle section diameter and d is the 

end-fixture diameter. 

All parameters are a function of the muscle-contracted 

length, except LZ that is determined experimentally based 

on the muscle end diameter and maximum contracted 

diameter. The relationships between the muscle diameter 

D and the muscle middle-section length Lm are again 

provided by Eq. (1), where b,  and n were previously 

described in Fig. 4. By utilizing Eq. (1), the braid angle is 

eliminated and the braid diameter is calculated by: 

2 2 1/2( )mb L
D

n
           (9) 

During contraction, the cone base diameter expands 

beyond the end-fixture diameter. The cone horizontal 

length LL is: 
 

 

Fig. 5  Geometrical model of PMA. 
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2 2 1/2( ( / 2 / 2) )L zL L D d     (10) 

Finally, the total muscle length is: 

2m LL L L            (11) 

If the muscle is assumed cylindrical, its length can be 

expressed by: 
2 2 1/2( ( ) )L b nD         (12) 

Another method of PMA modeling that can be found 

in literature is Biomimetic [34]. Due to the similarities 

between PMAs and biological muscle, this method 

attempts to apply models from biological muscle to 

PMAs [17]. 

3.2 Phenomenological Biomimetic/Biomechanical 

Model 

The classic configuration of a PMA consists of a 

composite material that is made from a rubber mold 

with embedded structural fibers. When PMA under 

pressure extends over a circumferential direction, 

creating a force reduction in the longitudinal direction. 

The primary focus of the previous research was the 

development of geometrical model describing the 

behavior of PMAs. More recently, a phenomenological 

approach to model accurately describes the dynamics 

of PMAs using a model with three elements. 

In the phenomenological model approach PMA is 

being considered as a parallel pattern that consists of a 

spring element, a damping element and a contractile 

element as it is presented in Fig. 6 [53]. The equation 

describing the motion for this model is: 

O PMA PMA O PMA PMA O PMA ceMX B X K X F L (13) 

where O PMAX  is the displacement of PMA, M  is 

the mass of moving parts, PMAB  is the damping 

coefficient, ceF  is the contractile force coefficient, 

PMAK  is the spring coefficient of PMA and L  is the 

external load. Because of the low mass system, the 

element M  is negligible [19]. 

In Eq. (13), ( ) cef t F L  can be defined as the 

function that produces the input and causes the system 

to become operational and thus Eq. (13) can be cast as: 

( )O PMA
PMA PMA O PMA

dX
B K X f t

dt
   (14) 

Spring Element “k”

Damping Element “B”

Contrac�ng Element “Fcc”

External 

Load “L”

+

x=0

 

Fig. 6  Phenomenological model of PMA. 
 

by dividing PMAK , Eq. (14) becomes: 

( )O PMAPMA
O PMA

PMA PMA

dXB f t
X

K dt K
    (15) 

and finally by substituting PMA

PMA

B
K

 and 

( ) PMA I PMAf t K X , where 
I PMAX  is the desired 

displacement of PMA, Eq. (15) becomes: 

O PMA
O PMA I PMA

dX
X X

dt
      (16) 

By taking the Laplace transform and setting the 

initial conditions to zero, the transfer function of the 

phenomenological model of PMA is derived as [53]: 

1

1

O PMA S

I PMA S

X

X S
            (17) 

3.3 Mathematical Model of the Curved PMA 

Another type of a popular PMA configuration is the 

curved PMA. Although several studies have been 

performed for deriving classical PMA models that well 

describe the classical PMA configurations such as 

Mckibben muscle, braided muscle and so on, there is a 

gap in modeling curved PMAs as they operate with a 

different principle. 

Schmidt [54] developed two approximate 

physics-based models: (1) the beam model; and (2) the 

membrane model for modeling the tube bending. These 
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two models may represent opposite ends of the process 

governing the mobility of the curved PMA. The beam 

model assumes that the power/torque output of the 

curved PMA rotary actuator is determined exclusively 

by elastic deformation without change in the internal 

volume of the curved part of PMA, while the 

membrane model makes the opposite assumptions. The 

curved PMA does not stretch, although the cross 

sectional shape deforms, thereby reducing the internal 

volume. 

The beam model treats PMA which is under pressure 

as a long, thin part, loaded in a single plane, and with a 

mechanical behavior governed by the elasticity and 

bending phenomena. The central idea of the above 

model is that the fabric can only support extensional 

stresses [50]. The relationship between the curvature of 

the beam, the applied moment ,M  the initial pressure 

P  and the radius of the beam r , can be expressed by 

the following equation: 

2 2

3

sin cos sin cos 2sin
2

sin cos

v

M Pr
(18) 

where  is the curved angle and v  is the Poisson’s 

ratio of PMA. 

The membrane model uses a principle that relates the 

time to apply the bending moment, the force applied at 

the ends of curved PMA and the PMA’s curved angle, 

when PMA is under pressure. The potential energy E  

of the curved PMA, with a volume V , an initial 

pressure P , a corresponding force F , a bending 

moment M , a curved angle , and a linear 

displacement d  along with the axis of the curved 

PMA (presented in Fig. 7) is given by [50] : 

E PV Fd M            (19) 

At the equilibrium point of the system the potential 

energy is minimized with: 

0
dE dV Fd

p M
d d d

    (20) 

When 0F  and 0d , the Eq. (20) becomes: 

dV
M p

d
              (21) 

 
Fig. 7  Curved PMA according to beam and membrane 

model.
 

Eq. (21) shows that the relationship between 

equilibrium bending moment and curved angle is being 

determined by the relationship between the internal 

volume of the tube and the curved angle: 

1B MM M M        (22) 

Eq. (22) presents the relationship between the 

previous two models by the introduction of a weight 

factor . When the actuator behaves as a beam model 

then 1  and when the behavior is close to the 

membrane model then 0. BM  represents the 

moment generated as the beam model and MM  

represents the moment generated as the membrane 

model. 

Based on experimental results in Ref. [50], it was 

found that the actuator produces increased torque 

outputs by correspondingly increasing the curved angle, 

the internal air pressure, the internal radius, and 

decreasing the curvature of PMA. 

3.4 Empirical Model of PMA 

PMAs of different lengths and diameters can also be 

modeled by simplified empirical models. In this 

approach, initially PMA is considered to have the real 

length at zero gauge pressure or at atmospheric 

pressure without any load to pull, and a nominal length 

0L . When the air pressure P  inside PMA changes 

from low pressure 1P  to high pressure 2P , PMA 

contracts by moving towards a new equilibrium length 
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(Fig. 8a). In this modeling approach the maximum 

PMA’s length during contraction is depended on the air 

pressure and is called unstretched length and is being 

indicated as uL  and it can be proven [55] that uL  is 

changed according to the air pressure. As it is presented 

in Fig. 8b, PMA has the contractile tend to increase its 

length according to the power of attraction. If the 

instantaneous muscle length is L , the stretched length 

sL , can be defined as the difference between the 

instantaneous length and the un-stretched length. It 

should be noted that PMA has a certain working length 

for a given pressure. For example, the stretched length 

is zero when the air pressure inside PMA is the 

atmospheric pressure and the stretched length increases 

when the air pressure also increases. 

As cited in Refs. [55, 56], the functionalities of 

PMAs and of the mechanical springs, have fairly 

similar characteristics, when operated with or without 

pulling forces in working conditions. The natural 

mechanical operation of these two systems can be 

presented as is depicted in Fig. 9, where PMA and the 

mechanical spring exhibit similar behavior when a 

tensile force is being applied to them. Conventionally, 

the stiffness of the spring is fixed and depends on the 

material properties and geometry of the spring. On the 

other hand, the stiffness of PMA is variable and 

depends not only on the above properties but also on 

the air pressure inside PMA. 

Based on experimental observations [56], the pulling 

force acting on PMA can be modeled in the same way 

as force acting on a mechanical spring. The parameter 

of stiffness in a PMA can also be indicated as K  and 

is a function of the operating gauge pressure P  and 

the stretched length sL , defined as s uL L L , 

while the un-stretched length can be calculated as in Eq. 

(23) and by utilizing the least squares method to find 

the values of the constant parameters 1h , 2h , 0h : 
2

2 1 0uL h P h P h          (23) 

The elastic force generated by PMA is indicated as 

elasticF  and its relationship to the previous parameters 

,�sK L  is presented in Eq. (24): 

 
Fig. 8  Parameter of PMA: (a) initial and final length of 

PMA, and (b) length definition when PMA is extended by 

pulling force. 
 

 

Fig. 9  Diagram of PMA and spring system. 
 

,elastic s sF K P L L           (24) 

In Eq. (24), the stiffness K , explicitly has been 

considered as a second order polynomial of P  and 

sL , as it is presented in Eq. (25): 

2 2

3 2 1 0s sK c P c PL c L c       (25) 

where the parameters 1c , 2c , 3c , 0c  are constants 

and can be found from experimental data via applying 

the method of least squares [55, 56]. 

Higher degree polynomials can be further applied by 

utilizing the same approach, with respect to the desired 

precision requirement. From observation results 

showed in Refs. [55, 56], the stiffness value is 

increasing while the stretched length also increases for 

a given air pressure. However, it is observed that for a 

given stretched length, the stiffness decreases when the 

air pressure inside PMA also increases. On the other 

hand, the stiffness parameter K increases when the air 

pressure inside PMA is greater than a minimum 

pressure value. This unexpected non-linear behavior is 



A Survey on Pneumatic Muscle Actuators Modeling 

  

1450

produced as the effect of the complex PMA mechanical 

structure, the geometry, and elastic material itself. 

4. Conclusions 

In this article, a survey on the modeling approaches 

for PMAs has been presented. The most popular 

models of PMAs including: (1) the geometrical, (2) the 

phenomenological, (3) the curved, and (4) the 

empirical models have been presented and analysed 

towards their merits and disadvantages. A significant 

reference list has been provided as a basis for further 

studies and investigations in the most promising field 

of PMAs. 
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