
A Survey on Reconfigurable Accelerators for Cloud
Computing

Christoforos Kachris
Institute of Communication and Computer Systems (ICCS/NTUA)

Athens, Greece

Dimitrios Soudris
National Technical University of Athens (NTUA)

Athens, Greece

Abstract—Data centers are experiencing an exponential in-
crease in the amount of network traffic that they have to sustain
due to cloud computing and several emerging web applications.
To face this network load, large data centers are required
with thousands of servers interconnected with high bandwidth
switches. Current data center, based on general purpose pro-
cessor, consume excessive power while their utilization is quite
low. Hardware accelerators can provide high energy efficiency
for many cloud applications but they lack the programming
efficiency of processors. In the last few years, there several efforts
for the efficient deployment of hardware accelerators in the data
centers. This paper presents a thorough survey of the frameworks
for the efficient utilization of the FPGAs in the data centers.
Furthermore it presents the hardware accelerators that have
been implemented for the most widely used cloud computing
applications. Furthermore, the paper provides a qualitative
categorization and comparison of the proposed schemes based
on their main features such as speedup and energy efficiency.

Index Terms—reconfigurable computing, hardware accelera-
tor, cloud computing, FPGAs, data centers.

I. INTRODUCTION

Emerging web applications like cloud computing and Big
Data Analytics (BDA) have increased significantly the work-
load on the data centers during the last years. According to
the Cisco Global Cloud Index Report [1], the annual global
data center IP traffic will reach 10.4 zettabytes (863 exabytes
[EB] per month) by the end of 2019, up from 3.4 zettabytes
(ZB) per year (287 EB per month) in 2014. That is translated
to a compound annual growth rate (CAGR) of 25% from 2014
to 2019. Based on the same report, by 2019, 83% of all data
center traffic will come from the cloud and 4 out of 5 data
center workloads will be processed in the cloud. The data
growth outperforms even Moores law. The data deluge gap
has started becoming obvious over the last 5 years [2].

In the early technology nodes, going from one node to the
next allowed for a nearly doubling of the transistor frequency,
and, by reducing the voltage, power density remained nearly
constant. With the end of Dennards scaling, going from one
node to the next still increases the density of transistors,
but their maximum frequency is roughly the same and the
voltage does not decrease accordingly [3]. As a result, the
power density increases now with every new technology node.

This work has received funding from the European Union Horizon2020 pro-
gramme under grant agreement No 687628 VINEYARD: Versatile Integrated
Accelerator-based Heterogeneous Data Centers. www.vineyard-h2020.eu

The biggest challenge therefore now consists of reducing the
power consumption per mm2. The failure of Dennard scaling,
to which the shift to multicore chips is partially a response,
may soon limit multicore scaling just as single-core scaling
has been curtailed [4]. This issue has been identified in the
literature as the dark silicon era in which some of the areas
in the chip are kept powered down in order to comply with
thermal constraints [5][6].

A solution that can be used to overcome this problem is the
use of application-specific accelerators [7]. The use of highly
specialized units designed for specific workloads can greatly
advance server processors and can also increase significantly
the performance of data centers given a fixed power bud-
get. Recent studies have shown that FPGA-based application
acceleration can achieve up to 25× better performance per
watt and 50-75× latency improvement compared to CPU/GPU
implementations for data center applications [8].

In the last couple of years there are several reconfigurable
architectures that have been proposed for the acceleration
of cloud computing applications in data centers. This paper
presents a thorough survey of the FPGA-based accelerators
for cloud computing that have been recently presented in the
research literature. The paper first gives an overview of the
cloud computing workload in modern data centers and the
characterization of these applications based on widely used
data center benchmarks. Section III presents the frameworks
that have been presented for the efficient deployment and
virtualization of the FPGA-based hardware accelerators. Sec-
tion IV presents the main hardware accelerators that have
been presented for several widely used cloud computing
applications like MapReduce, Spark, Memcached, Databases,
etc. Finally, Section V presents a quantitative and qualitative
comparison of the proposed hardware accelerators in terms of
speedup, energy efficiency and power consumption. he main
contributions of this paper are the followings:

• Analysis on the cloud computing application and appli-
cation characterization

• Survey of the frameworks for the efficient deployment
and virtualization of hardware accelerators in data centers

• Survey of hardware accelerators for the most widely used
cloud computing applications such as MapReduce, Spark,
Memcached, etc.

• Classification and quantitative and qualitative comparison
of the proposed frameworks



Cloud 
Applications

Batch

Data Analytics Mahout

In-Memory 
Analytics

Spark Mlib

Graph 
Analytics

GraphX

Streaming

Data Caching Memcached

Data Serving Cassandra

Media 
Streaming

Nginx

Web Search Solr, PageRank

Web Serving
Nginx-

Memcached-
MySQL

Throug.Latency CT

 





 

 

 

 

 

Application Example
CPU Mem Disk Netw

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑ ↑

↑ ↑ ↑

Performance Resources

Fig. 1. Categorization of cloud applications, performance metric for each
application and typical resource requirements in terms of CPU, Memory, Disk
I/O and Network I/O

II. CLOUD APPLICATION CHARACTERIZATION

In order to design efficient hardware accelerators for the
data centers, a clear and in-depth understanding of the of
the cloud application is required. In this section we present
the type of cloud applications and the main characteristics
of these applications. In [9], the CloudSuite Benchmark has
been introduced that investigates the workload characteristics
of cloud applications. In this testbench several applications
have been examined. The cloud applications can be divided
into two broad categories:

• Batch processing applications (Offline): In this case,
the applications process high volumes of data that have
been collected and stored in the data centers. Usually
there are several complicated processing that needs to
be done in the data. The main performance metric in
these applications is the throughput and the completion
data. In this category belongs several applications like
Data Analytics, In-Memory Data Analytics and GraphX
Analytics.

• Streaming processing applications (Online): In this
case, the applications process high volume of streaming
data and usually the processing that needs to be done in
these cases is simpler than in the case of batch processing
applications. The main performance metric in these ap-
plications is the latency (i.e. N-th percentile latency). In
this category falls several applications like Data Caching,
Data Serving, Media Streaming, Web Search, and Web
Serving.

Figure 1 depicts the classification of the cloud application
and typical frameworks that are used for each applications.
For each application there are different performance metrics.
For example for batch applications the most important metric
is the throughput in terms of operations per second and the
completion time (CT) for a task. The figure shows also if
the application is mainly CPU-intensive, memory-intensive,
Disk I/O-intensive and/or Network I/O-intensive. Each of these
application may have specialized libraries for specific cloud
applications.

One of the widely used framework for data analytics is

Apache Spark. Spark [10] has been adopted widely in recent
years for big data analytics by providing a fault-tolerant, scal-
able and easy to use in-memory abstraction. IBM has recently
presented the SparkBench benchmark [11]. Sparkbench covers
4 main categories of applications: machine learning, graph
computation, SQL query and streaming applications. The
performance of each application depends on several factors
such as the number of the worker nodes, the size of the
tasks allocated in the workers, etc. However, there are some
common features for each category that was examined in the
SparkBench. For example, the machine learning workloads
have intensive CPU demand. The CPU demand for graph
computation applications varies from low to high depending
on the workload, while the Streaming and the SQL application
have relatively light CPU demand. On the other hand, the
graph computation and the streaming applications seems to
be mainly memory intensive.

In [12], a detailed study on the characteristics of the Data
Analytics workload from CloudSuite benchmark is presented.
The method of the analysis that is performed is threefold, cov-
ering the system, the applications and the micro-architecture
level. The paper reveals that most of the Data Analytics
workloads suffer from overhead related to managing the data
rather than accessing the data. For example, the hash key index
is found to be a key performance limiter. This study verifies
as in the previous case that the big data analytics (BDA)
applications are mainly CPU-bounded rather than memory or
I/O-bounded.

In [13], an analysis has been performed of in-memory data
analytics cloud applications. The study shows that the in-
memory applications have different characteristics from other
data analytics applications like Hadoop and HPC benchmarks.
In-memory workloads have good memory bandwidth utiliza-
tion and high disk I/O requests. Furthermore, Spark workloads
have more sequential burst access which translates to high
CPU utilization.

In [14], an additional study on the data analytics appli-
cations is performed. The papers performs a blocked time
analysis for quantifying performance bottlenecks. According
to this study, data analytics applications are CPU-bounded
and not I/O bounded. Even for some database applications, it
is found that queries are more CPU bound than I/O bound.
That means that tasks are more likely blocked waiting on
computation to complete rather than waiting for disk I/O.

Finally in [15], a benchmark suite is presented that covers
broad application scenarios in the domain of cloud computing
and includes diverse and representative data sets. The bench-
mark consists of 19 benchmarks on big data applications.
According to this study big data applications have very low
operation intensity, which measures the ratio of the total
number of instructions divided by the total byte number of
memory accesses.

III. PROGRAMMING FRAMEWORKS

The use of heterogeneous systems comes at a significant
cost: the increase in programming complexity. To overcome



this problem, new programing frameworks must be developed
that hide the complexity of the heterogeneous systems without
affecting the overall system performance. The programming of
the FPGAs can be overcome by using High Level Languages
such as OpenCL or C [16][17][18][19]. However, there are still
several issues that needs to be resolved on deploying the FP-
GAs in the data centers. For example, the main issues are the
virtualization and the partitioning of the hardware resources,
the configuration of the FPGAs, and the scheduling of the
hardware accelerators based on the applications requirements.
In the last couple of years, there are several research efforts
towards an efficient framework for the deployment of the
FPGAs in the data centers.

A. FPGAs in the Cloud, IBM

In [20], a general framework is proposed for integrating
FPGAs into the cloud by IBM. The framework proposes an
accelerator pool (AP) that abstracts FPGA as a consumable
resource while avoiding hardware dependencies of current
FPGA technologies. In the AP abstraction, each FPGA has
several pre-defined accelerators slots in which the hardware
accelerators can be mapped. By utilizing the partial recon-
figuration mechanism of the FPGAs, each slot can be con-
sidered a virtual resource that can be assigned for specific
tasks. A cloud tenant can submit either pre-defined hardware
accelerators that are hosted in central repository or can submit
his own designs. However, in the latter case the cloud owner
should perform the synthesis, place and route and generate the
bitstreams for the FPGA slots. A prototype of the framework
is implemented on an x86-based Linux-KVM environment
with attached FPGAs and deployed in a modified OpenStack
cloud environment. Four different accelerators are used for
prototyping: Encryption (AES), Hashing (SHA), Stereo match-
ing and Matrix-Vector Multiply. The performance evaluation
shows that proposed framework allows the efficient utilization
of the FPGA resources by the cloud tenants with less than 4
microseconds latency overhead of the visualization.

B. Virtualized Hardware accelerators, University of Toronto

In [21], a novel approach for integrating virtualized FPGA-
based hardware resources into cloud computing systems with
minimal overhead. The proposed framework allows cloud
users to load and utilize hardware accelerators across multiple
FPGAs using the same methods as the utilization of Virtual
Machines. The reconfigurable resources of the FPGA are
offered to the users as a generic cloud resources through
OpenStack. An agent is introduced in this framework that
implements the resource management of the OpenStack. The
proposed framework splits the FPGA into several reconfig-
urable regions, each of which is managed a s single resource.
Therefore, instead of a single FPGA bitstream, a collection
of partial reconfigurable bitstreams corresponding to the user
hardware is passed to the agent. Again, as in the case of the
IBM, the cloud provider must generate the partial bitstream
for each accelerator and for each partially reconfigurable slot

since the current technology requires specific bitstreams for
each region of the FPGA.

C. FPGAs in Hyperscale Data Centers, IBM Zurich

In [22], a framework is proposed by IBM Zurich that allows
cloud users to combine multiple FPGAs in the programmable
fabric. This allows cloud operators to offer an FPGA to
users in a similar way as a standard server. In the proposed
framework multiple user applications can be hosted on a
single physical FPGA, somehow similar to multiple VMs
running on the same hypervisor. Each user can get a partition
of the entire user logic and uses it to implement its own
applications. This partitioning is achieved by utilizing partial
reconfiguration. With partial reconfiguration it is possible to
dynamically reconfigure a portion of the FPGA while the rest
of the regions remain untouchable. The proposed architecture
has been integrated into the OpenStack framework and allows
the renting of the FPGA resources on the cloud. The same
architecture also allows the possibility to distribute their appli-
cations on a large number of FPGAs through an FPGA fabric.
The integrated framework with multiple FPGAs is compared
with a typical data center based on commodity processors.
It is shown that if each system is based on 2048 module the
FPGA-based system can provide 958 TFLOPS compared with
the 442 TFLOPS offered by the commodity processors.

D. RC3E:Reconfigurable Cloud Computing Environment

In [23], a cloud hypervisor is proposed by Technical Univer-
sity of Dresden that integrates virtualized FPGA-based hard-
ware accelerators into the cloud environment. The hypervisor
allows users to implement and execute their own hardware
designs on virtual FPGAs. The hypervisor has access to a
database containing all physical and virtual FPGA devices
in the cloud system and their allocation status. Each device
is assigned to its physical host system (node). The user can
allocate a complete physical FPGA, which has to be marked
separately in the device database or can allocate portion of
the vFPGA. In the case of vFPGA allocation, the configu-
ration is performed by utilizing partial reconfiguration (PR).
The proposed framework supports the required security by
protecting the device files using access rights. This additional
virtualization layer allows concurrent users to interact with
their allocated devices without influencing each other.

E. Virtualized FPGA accelerators, University of Warwick

In [24], a novel framework is presented that integrates
reconfigurable accelerators in a standard server with virtual-
ized resource management and communication. The proposed
framework integrates a PCIe based FPGA board into a stan-
dard data center server. The FPGA is partitioned into separate
accelerator slots. Accelerator functions are either stored in
a library on the host machine as partial bitstreams or can
be uploaded by the user. In this framework, a hypervisor is
implemented for the configuration and the scheduling of the
user logic in the FPGA resources. When an accelerator is to
be configured in the FPGA, the hypervisor decides on the



optimal partial reconfiguration regions (PRRs) to host it and
initiates reconfiguration. The hypervisor also maintains a list
of the available PRRs and configured accelerators to avoid
unnecessary reconfiguration when a required accelerator is
already present in the FPGA and not in use.

IV. HARDWARE ACCELERATORS FOR CLOUD COMPUTING

This section presents the hardware accelerators that have
been developed and are targeting specific cloud applications.
These accelerators are mainly used to speedup widely used
cloud computing applications like MapReduce, Spark, Mem-
cached, etc. A brief overview of these accelerators is presented
together with the main performance metrics for these acceler-
ators such as kernel speedup, overall system speedup, power
and energy savings.

A. Search engines and page ranking

1) Microsoft Catapult: Microsoft has presented in 2014
a reconfigurable hardware accelerator that is used for the
acceleration of the Bing search engine called Catapult [25].
In the proposed system they placed a small daughter-card in
each server with a single high-end FPGA, and connected the
cards directly together with a secondary network. Services that
require more than one FPGA can be mapped across FPGAs
residing in multiple servers. The FPGA board is connected to
the CPU through the PCIe interface. The proposed system was
deployed in a real data center that consisted of 34 populated
pods of machines in 17 racks, for a total of 1,632 machines.
Each server uses an Intel Xeon motherboard, with 12-core
Sandy Bridge CPUs.

For the utilization of the FPGAs, Microsoft has developed
the API for the interfacing of the software with the FPGA
and the interfaces between the FPGA applications and board
level functions. To evaluate the proposed system they ported a
significant fraction of Bings ranking engine onto the Catapult
fabric. The hardware accelerators were developed in Verilog
and they were partitioned across seven FPGAsplus one spare
for redundancy. The main tasks that were mapped to the
FPGAs were all of the free-form expressions, and all of the
machine-learning model that is used in the Bing search engine
for the page ranking. Specifically, one FPGA is used for
feature extraction, two for free-form expressions, one for a
compression stage that increases the efficiency of the scoring
engines, and three FPGAs to hold the machine-learned scoring
models. In the performance evaluation it was shown that the
proposed FPGA achieves a 95% gain in throughput relative to
the software version throughput at each ranking server with
an equivalent latency distributionor at the same throughput,
reduces tail latency by 29%. The power consumption overhead
that was measured of the FPGA was 22.7W.

B. MapReduce

1) Scalable MapReduce Accelerator: In [26], an architec-
ture for the FPGA acceleration of MapReduce applications
is presented. A cluster of worker nodes is designed for the
MapReduce framework, and each worker node consists of

both a CPU-based worker and an FPGA-based worker. CPU
base worker runs the major communications with other worker
node and tasks, while FPGA base worker operates extended
MapReduce tasks to speed up the computation processes. The
Master node is designed as the manager for all workers, and is
used to configure and dynamically monitor the tasks running
in both software program and the FPGA-based workers. Two
kinds of tasks are configured in the CPU worker: real tasks
and virtual tasks. Virtual tasks treated as the normal task
running in CPU workers are actually functions with system
calls to the FPGA resources. Each task configured in FPGA
worker has one relative virtual task interface in CPU worker
for transmission. The proposed framework has been imple-
mented by modifying the open-source Hadoop project [27]
and mapped to the NetFPGA boards. The CPU worker runs the
modified Hadoop MapReduce program [28] which processes
file system and transmit data to FPGA workers. The proposed
framework has been evaluated using two typical applications
of the MapReduce framework: matrix multiplication and page
ranking. For the case of matrix multiplication using one FPGA
board, the proposed system can achieve almost 15× speedup
compared to CPU. In the case of the page ranking, the
proposed system can achieve approximately 4× times faster
execution time compared to the software execution.

2) FPMP: MapReduce, Tsinghua University and Microsoft:
One of the first attempt to accelerator cloud computing appli-
cation using FPGA was presented by Microsoft and Tsinghua
University in [29]. In this work a MapReduce framework
on FPGA, which provides programming abstraction, hard-
ware architecture, and basic building blocks to developers is
presented. A processor scheduler is designed to dynamically
utilize the hardware resources by monitoring the status of each
mapper and reducer. There are two sets of queues in the
processor scheduler. One queue set is for mappers and the
other queue set is for reducers. Each queue set consists of
two queues, one queue for idle processors and the other for
pending tasks. The performance evaluation of the proposed
system has been performed using the RankBoost application
[30] that is used for page ranking. The most time consuming
procedure of RankBoost is WeakLearn, which consumes more
than 95% execution time and it is the one that is ported to
the FPGA [31]. Both the mapper and the reduce tasks of the
WeakLearn algorithm have been mapped to the FPGA. To test
the performance of the RankBoost acceleration on FPMR, a
real world dataset for a commercial search engine is used. This
time-consuming procedure achieves up to 16.74× speedup in
the FPMR framework while the overall system speedup is
14.44×.

3) Reconfigurable MapReduce accelerator, DUTh-NTUA:
In [32][33], an FPGA architecture is proposed for the efficient
implementation of the MapReduce framework. The proposed
architecture implements the Phoenix MapReduce framework
that is a C-based version of the MapReduce. In one case ([33])
a HW-SW co-design is presented where the Map tasks are
executed in the processors and a specialized hardware acceler-
ator is implemented for the efficient processing of the Reduce



tasks. The Reduce function is most of the applications is the
same (e.g. accumulation or calculation of the average value).
Therefore an efficient hardware accelerators is implemented
that performs fast indexing of the key-value pairs using a
cuckoo hashing scheme.

In the second architecture ([32], an integrated framework is
proposed where the whole application is mapped to the FPGA.
The Map computational kernels, that are usually application-
specific, are created using High Level Synthesis (HLS) tools
and the Reduce tasks, that are common to most of the applica-
tions, are executed using the common Reduce hardware accel-
erator. The presented system proposes the complete decoupling
of MapReduces tasks data-paths to distinct buses, accessed
from individual processing engines. Such a dataflow approach
implies a holistic C/C++ to RTL domain-level MapReduce
transition. The performance evaluation shows that the pro-
posed scheme can achieve up to 4.3× overall speedup (system
speedup) in MapReduce applications while offering significant
lower power and energy consumption compared to a high-
end multi-core processor. Specifically it can provide up to
25× lower power consumption and up to 33× better energy
efficiency compared to the software-only solution in the low-
power cores.

4) Big Data Analysis acceleration: In [34], a platform for
energy-efficient acceleration of big data analytics applications
using FPGAs is presented by GMU and UCLA. The proposed
scheme analyzes data mining and machine learning algorithms,
utilized extensively in big data applications, in a heterogeneous
platform that included both CPUs and FPGAs. The proposed
system, consists of a high performance CPU as the master
node, which is connected to several all-programmable MP-
SoCs (Zynq) devices as slave nodes. The master node runs
the HDFS, and is used for the job scheduling between all the
slave nodes. In this study, a comprehensive workload analysis
and performance monitoring is done for four widely used
machine learning kernels: K-means, KNN (pattern recognition
algorithm), SVM (machine learning algorithm) and Naive
Bayes. For the most computational intensive functions that
were identified after the profiling, hardware accelerators have
been created using High Level Synthesis (HLS) tool-flow. The
proposed system has been implemented in the Zedboard that
are used as the cluster’s workers. The results show that a
kernel speedup of up to 321× with HW+SW co-design can be
achieved and up to 2.72x system speedup. Power is reduced
by up to 3.7× on average. Moreover, since both the execution
time and the power has been reduced through the acceleration,
the EnergyDelayProduct (EDP) is significantly reduced by up
to 15.21×.

5) MapReduce for K-means, University of Hong Kong:
The University of Hong Kong has presented the design and
implementation of the k-means clustering algorithm on an
FPGA-accelerated computer cluster [35]. The implementation
followed the map-reduce programming model, with both the
map and reduce functions executing autonomously to the
CPU on multiple FPGAs. A hardware/software framework
was developed to manage the execution on multiple FPGAs

across the cluster. The experiment was run on three compute
nodes, each containing a KC705 FPGA board from Xilinx.
Each KC705 board contains a Kintex-7 FPGA connected to the
CPU through a PCIe x3 interface. When compared to a similar
software implementation executing over the Hadoop MapRe-
duce framework, 15.5× to 20.6× performance improvement
has been achieved across a range of input data sets.

C. Memcached

1) Memcached acceleration, HP: In [36], a hardware ac-
celerator for the Memcached programming framework has
been presented from HP. The proposed framework consists
of two main blocks: a networking block and an Memcached
applications block. The networking block is used for the
parsing of the input packet flow to detect relevant packets
and transmit the required Memcached commands and data
to the Memcached block. The Memcached accelerator has
been mapped to an Altera Stratix IV-based development board
with two 4GB DDR2 memory modules and four 1 GbE
ports. The proposed architecture provides similar performance
with the typical servers based on general purpose processors
but consumes only 9% of the power of the baseline. The
total energy efficiency of the accelerator for the Memcached
application can reach up to 10.9× depending on the workload.

2) Memcached acceleration, Xilinx: In [37][38], a fully
compliant implementation of the Memcached framework is
presented from Xilinx. The proposed scheme quantify novel
hybrid memory systems that combine conventional DRAMs
and serial-attached flash to increase value store capacity to
40Terabytes with up to 200 million entries while providing
access at 80Gbps. This is achieved by an object distribution
based on size using different storage devices over DRAM
and flash and data-flow based architectures using customized
memory controllers that compensate for large variations in
access latencies and bandwidths. The proposed scheme is
based on a novel hashing scheme for the efficient storing and
searching of the values based on the key [39]. This framework
is prototyped and measured using real-world value size dis-
tributions from Facebook, Wikipedia, Twitter and Flickr and
compare to existing solutions. The performance evaluation of
1 FPGA is roughly comparable to 2 Xeon E5-2680 processors
with some variation depending on use case specifics. The key
differentiator is the memory capacity, as the FPGA can offer
the performance in conjunction with flash and thereby scale to
40TB and provide much improved power efficiency per GB.

3) Thin Servers with Smart Pipes: In [40], accelerator
has been proposed that can be coupled with commodity
processors for servers. The proposed accelerator can process
GET requests entirely in hardware, offloading both network
handling and data look up. The accelerator deciphers the
request sent from the Network Interface Card (NIC) and passes
control signals along with the key to a hardware hash table
implementation. While all of the GET requests are processed
by the hardware accelerator, the memory allocation, the key-
value pair eviction and replacement are implemented in soft-
ware. The proposed accelerator has been demonstrated through



an FPGA prototyping platform, and show the potential for a
6×-16× power-performance improvement over conventional
server baselines.

4) Memcached, UTexas-Austin: A hardware accelerator for
the Memcached applications is also presented by University
of Texas at Austin in [41]. The proposed architecture presents
a hardware accelerator for distributed key-value Memcached
applications using a hybrid CPU+FPGA architecture. The ac-
celerator, implemented on the FPGA fabric, processes request
packets directly from the network, avoiding the CPU in most
cases. The hardware acceleration is used for the implementa-
tion of the most computational intensive task that are on the
critical path. That is request parsing, item hash calculation,
item look up, LRU update, and response assembly. If the
control flow exits the trace prematurely, the side effects of the
computation are rolled back and the request packet is passed
to the CPU. The proposed accelerator has been mapped to a
Xilinx Virtex-5 FPGA part and compared with a Xeon core as
a baseline. Compared to the Xeon processor the Memcached
accelerator achieves almost the same throughput but it is
9.15× more energy efficient for common case requests.

D. In-memory Databases

1) Database acceleration, IBM: One of a widely-used
application run in data centers is database analytics. IBM has
recently presented a novel architecture for the acceleration of
the in-memory database operations based on reconfigurable
logic [42][43]. The accelerator is connected directly to the pro-
cessors main memory instead of being in the I/O path, and it
processes the latest in-memory data in the DBMSs buffer pool.
The FPGA pulls the database pages from the main memory,
parses the pages to extract, and processes the rows and writes
the qualifying rows back to the main memory in database-
formatted pages. The FPGA can be used for several tasks
such as table joins, database sorting, and column projection.
The FPGA is also used for the compression/decompression
tasks that are used in database management systems (DBMS).
The proposed system is evaluated on a commercial DBMS
running on a 3.8-GHz multicore system with a PCIe-attached
FPGA card with an Altera Stratix V FPGA. Overall, the FPGA
achieves speedups in the range of 7× to 14× for most queries.

2) Database acceleration, Stanford: An integrated frame-
work for the hardware acceleration of in-memory database
analytics has been presented in [44], from Stanford. The
proposed hardware design is used to accelerate three impor-
tant primitive database operations: selection, merge join, and
sorting. These three operation can be combined to perform
one of the most fundamental database operations: the table
join. The proposed system has been implemented in a Maxeler
system with a Xilinx Virtex 6 FPGA. The proposed system
based on the FPGA was compared in terms of row processing
throughput against the baseline unmodified DBMS (Database
Management System) running on a single core. The proposed
hardware accelerator were able to obtain close to ideal uti-
lization of available memory bandwidth, resulting in a 2.8×,

5.7×, and 1.4× improvement in utilization over software for
selection, sorting, and joining, respectively.

3) Database walkers, EPFL, HP, Google: A novel hard-
ware architecture for the acceleration of in-memory database
analytics has also been shown in [45], called Widx. The
proposed architecture is used for the acceleration of hash
index lookups that is the largest singe bottleneck to the
overall execution time. The critical path in hash index lookups
consists of ALU-intensive key hashing followed by pointer
chasing through a node list. The proposed system is an on-chip
accelerator for database hash index lookups, which achieves
both high performance and flexibility by decoupling key
hashing from the list traversal, and at the same time processing
multiple keys in parallel on a set of programmable units. The
proposed system can integrated tightly to a conventional core,
thus eliminating the need for a dedicated TLB and cache. An
evaluation of the proposed framework on a set of modern data
analytics workloads (TPC-H, TPC-DS) based on MonetDB
showed an average speedup of 3.1x over an aggressive OoO
(Out-of-Order) core on bulk hash table operations, while
reducing the OoO core energy by 83%. In terms of the energy
efficiency Widx improves the energy delay product by 5.5×
over the in-order core and by 17.5× over the OoO baseline.

E. Spark

1) Spark acceleration, UToronto: In [46][47], a hardware
accelerator has been presented for the K-means application
based on the Apache Spark framework [10]. The hardware
accelerators for the k-means computation have been developed
using High-Level Synthesis (HLS). The proposed architecture
has been prototyped in a heterogeneous CPU-FPGA cluster
of Zynq development boards, leveraging the Apache Spark
cluster management capabilities. Similar to a typical Spark
cluster, the prototype cluster includes a Master and multiple
Workers. Each worker includes the software and hardware
support to offload the computation to the custom accelerators
inside the FPGA. A Spark cluster of up to 16 worker nodes
has been created for the performance evaluation. The FPGA
comprise 64 mappers and 8 reducers, operating at 111.11
MHz and the FPGA include also two ARM 32-bit cores.
The speedup increases ranges from 18.6× to 36.0× depending
on the number of dimensions and centers for the fixed-point
use-case compared to the software solution running only
on the ARM cores. For the case of the floating-point, the
speedup ranges from 20× to 40× depending again on the
number of dimensions and centers. Compared to the Xeon
core, the proposed dataflow architecture achieves a two-fold
performance improvement using four nodes and 4× speedup
using 8 cores.

2) Spark acceleration, UCLA: In [48], an integrated frame-
work is presented for the efficient utilization of hardware
accelerators under the Spark framework. The performance
evaluation shows that the proposed system can achieve up to
3.05× speedup for the Logistic regression adn 1.47× speedup
for the K-Means and reduces the overall energy consumption
to 38% and 56% of the baseline respectively.



F. Commercial products

Besides the proposed architectures from academia, there
are also commercial devices that are used for acceleration
of cloud computing applications. Ryft offers a device, called
Ryft one, that can be used for the acceleration of the Spark
applications. Each Ryft ONE device allows users to simul-
taneously analyze up to 48TB of locally stored data at rest
as well as streaming data. According to their datasheet, Ryft
ONE can achieve up to 100× speedup while reducing costs
by 70% [49]. The device utilize a library for commonly used
task such as term frequency, search, and fuzzy search. Falcon
Computing provides also commercial devices that are used for
the acceleration of cloud computing and Big Data applications.
Falcon Computing provides the automated compilation tool,
the runtime management tool, as well as acceleration libraries
to enable seamless integration of accelerators into existing
data center infrastructures [50]. Their device can provide 2.7×
speedup for iterative computations with data pipelining and
caching techniques and 1.7× cluster throughput improvement
by providing fine-grained accelerator sharing among multiple
applications.

V. CLASSIFICATION AND COMPARISON

This section categorizes the proposed schemes and provides
a qualitative and quantitative comparison on the features of
these schemes such as speedup, energy efficiency, development
method, and type of cloud application. All of the proposed
frameworks presented in Section III, allows the virtualization
of the hardware resources in the FPGAs. The virtualization of
the FPGAs does not mean that the user can access in time-
sharing ways the resources of the FPGA, as it is done in the
case of typical processor virtualization. FPGA virtualization
means that the user can allocate and utilized part of the
FPGA without allocating the whole FPGA for his application.
The virtualization of the FPGAs is usually performed by
exploiting the partial reconfiguration in which part of the
FPGA can be reconfigured while the rest of the FPGA can
remain operational in the static partition of the FPGA.

Table I presents the hardware accelerators for cloud com-
puting applications and the main features of each architecture.

1) Batch versus Streaming applications: As was described
in Section II, the cloud applications can be divided to the
ones that process large files (batch) and to the ones that
process small chunks of data usually coming from the network
(streaming). Usually, FPGAs are used for batch processing
applications, where a large amount of data are offloaded to
the FPGA for acceleration. This way, the overhead of the
communication of the FPGA and the processor is minimized.
However, as it is shown in the table, the FPGAs can also be
used in many streaming applications. In many streaming appli-
cations, the computational complexity is very small compared
to the required packet processing of the Network Interface
Card (NIC), the operating system (OS) and the Virtual Ma-
chines (VM). Therefore, in many architectures, FPGAs can
be used to offload both the NIC by using specialized TCP/IP

[27]
[28]

[30]

[33]

[35]

[37]

[38]

[41]

[42]

[43]

[45]

[46]

[47]

1

10

100

0 5 10 15 20 25 30 35

En
er

gy
 e

ff
ic

ia
n

cy

System Speedup

System Speedup vs Energy Efficiency of Hardware Accelerators

PageRank

MapReduce

MemCached

Databases

K-means

[36]

Fig. 2. Speedup vs Energy Efficiency for several hardware accelerator for
cloud computing application. The architectures that they do not report the
energy efficiency are shown in the x-axis.

offload engine (TOE) and specialized hardware for the actual
processing of the data packets.

2) System speedup: The main metric for the efficiency of
the accelerator is the kernel speedup and the system speedup.
Kernel speedup refers to the speedup that is achieved for the
execution of a specific task on the hardware accelerator com-
pared to the execution time of the this task in software using
a typical processor. System speedup refers to the speedup
achieved using the hardware accelerator for the execution of
the complete application compared to the execution time of the
application running in software. The system speedup takes into
account the communication overhead for transferring data to
the FPGA and vice versa. The system speedup takes also into
account the overhead for the drivers that are used to perform
the communication and the control of the accelerator. In most
of the papers, the overall system speedup is reported rather
than the kernel speedup of the task that is being accelerated.
As is it shown in this table the speedup of the hardware
accelerators ranges from 0.7× to 31.8×. In most of the cases
that the speedup is low, emphasis has been given to the energy
efficiency of the system. The speedup also depends on whether
the proposed accelerators is used as a co-processor or it is used
as a complete replacement to the processor. In the latter case,
the speedup is usually higher since the overall application is
running on the FPGA.

3) Energy efficiency: Besides the speedup, the hardware
accelerator can also evaluated in terms of power and energy
efficiency. Power efficiency is used to compare the power
consumption of the hardware accelerator (or the system with
the hardware accelerator) compared to the power consumption
of the system executing the application in software. However,
this metric is not widely used since the energy consumption
depends not only on the power consumption but also on the
execution time. Energy efficiency is used to compare the
energy consumption of the hardware accelerator (or the system
with the hardware accelerator) compared to the energy con-



TABLE I
SURVEY ON RECONFIGURABLE ACCELERATORS FOR CLOUD COMPUTING APPLICATIONS

Type
Paper Institute Application Batch Stream Speedup Energy Interface Design Integration
[25] Microsoft Search engine • 1.95x - PCIe HDL Coprocessor
[26] NUDT RankBoost (MapReduce) • 4x - Ethernet HDL Coprocessor
[29] TU, Microsoft RankBoost (MapReduce) • 31.8x - PCIe HLL Coprocessor
[32] DUTh, NTUA MapReduce • 4.3x 33x AXI4 HDL-HLL Coprocessor
[34] GMU, UCLA MapReduce • 2.7x 15.2x AXI4 HLL Coprocessor
[36] HP, UML Memcached • 1x 10.9x Ethernet HDL Standalone
[37] Xilinx Memcached • 1.35x 36x Ethernet HDL Standalone
[40] HP, ARM, Facebook Memcached • 0.68x 16x Custom HDL Coprocessor
[41] UTAustin Memcached • 3x 9.15x Custom HDL Coprocessor
[42] IBM Databases • 14.6x - PCIe HDL Coprocessor
[44] Stanford Databases • 5.7x - PCIe OpenSPL Coprocessor
[45] EPFL,HP,UE, Google Databases • 3.1x 3.7x Custom HDL Coprocessor
[46] Toronto U K-Means (Spark) • 4x - PCIe HLL Coprocessor
[48] UCLA K-Means, LR (Spark) • 3x 2.6x PCIe HLL Coprocessor
[35] HKU K-Means (MapReduce) • 20x - PCIe HDL Coprocessor

sumption of the system executing the application in software.
The energy consumption may refer either to the total energy
consumption in order to complete a specific application or it
can be measured in terms of operations(tasks)/Watt.

The table shows the energy efficiency of each paper since it
is the one that is mainly reported and it is the one that it is more
fair as it compares the energy consumption for the execution of
the complete application. The energy consumption ranges from
3.7× to 36×. However, the 3.7 speedup refers to a hardware
accelerator incorporated to the chip, as part of an ASIC and
not to an FPGA hardware accelerator. The energy efficiency
is also affected by the integration of the proposed system. In
cases that the accelerator is proposed as a co-processor the
overall energy efficiency is lower compared to the ones where
the accelerator is used for the total replacement of the server
processor. Overall it is shown that the hardware accelerators
can achieve an order of magnitude better energy efficiency
compared to the typical server processors. Figure 2 shows
the speedup of the hardware accelerators versus the energy
efficiency that they provide. The architectures that they do not
report the energy efficiency are shown in the x-axis.

4) Communication Interface: This column on the table
shows the interface that is used from the accelerator. In
the cases that the accelerator is used as a co-processor, the
interface is either the PCI express offering a total throughput
of 16GB/sec or the AXI4 bus that provides an aggregated
throughput of 25.6GB/sec when clocked at 200MHz. The latter
case is used when the accelerator is part of the programmable
Multi-Processor System-on-a-Chip (MPSoC). In the former
case, multiple FPGA cards can be added in the PCIe allowing
easier scalability of the hardware accelerators. In the cases
that a complete system is proposed as a total replacement to
the typical processor, the Ethernet is used for the reception
and transmission of the data packets. In that case, as it was
mentioned earlier, a TCP/IP-offload-engine (TOE) is used to
speedup the processing requirements at the network level.

5) Design method: The main obstacle for the wide deploy-
ment of the FPGAs in the cloud is the high programming
complexity of the hardware description languages (HDL). In

the last years there are several efforts from the main FPGA
and system vendors to allow users to program FPGA using
high level languages (HLL) like OpenCL or specific-domain
languages like OpenSPL. Although that HDLs can provide
higher speedup, the low programming complexity of HLL
make them very attractive in the domain of cloud computing.
For example, in [29], it is reported that the fully manually
designed version, achieves 33.5× speedup, while the use of
HLL achieves 31.8× speedup. However, the most promising
approach for the efficient deployment of the hardware ac-
celerators in the data centers seems to the be the integrated
programming frameworks presented in Section III and also
plan to be adopted by major companies like Intel [51] and
IBM[20][22]. These frameworks allows the development of
hardware accelerators from 3rd party entities and the storing of
these accelerators in the form of IP blocks in centralized repos-
itories. This approach will allow the efficient development of
hardware accelerators in HDL while at the same time it will
allow the seamlessly deployment of the hardware accelerators
by cloud tenants without any prior experience in HDLs.

6) Integration: The last column of the table shows the level
of integration of each architecture. When the accelerators are
used as a co-processor then the accelerator is used only for
the computational intensive tasks while the rest of the tasks
are executed in the processor. In the case that the hardware
accelerator is used a complete replacement to the processor,
then it has to support the complete processing of the data
such as the network processing, etc. This approach is usually
preferred for the acceleration of a specific application that
will not need any major modifications. However, the co-
processor approach has a higher level of flexibility since the
computational intensive tasks remain in hardware while the
rest of the tasks can be modified in software.

VI. CONCLUSIONS

Hardware accelerators looks as a promising solution for the
increase of the performance in data centers and the reduction
of the energy consumption. The main disadvantage of the
hardware accelerators is the programming efficiency which can
be overcome by using high level languages such as OpenCL



and HLS. The quantitative and the qualitative comparison
shows that for widely used cloud computing applications
like Memcached, in-memory databases, etc. the hardware
accelerators can achieve a speedup ranging from 1× to 32×.
The most import advantage however is the energy efficiency.
The proposed schemes can achieve from 9× up to 36× better
energy efficiency compared to the software solution running
on typical server processors.

REFERENCES

[1] “Cisco Global Cloud Index: Forecast and Methodology, 20142019 White
Paper,” 2015.

[2] E. Savitz, “Bridging The Data Deluge Gap,” Forbes Tech, August 2012.
[3] C. Martin, “Post-Dennard Scaling and the final Years of Moores Law,”

Tech. Rep., 2014.
[4] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and

D. Burger, “Power challenges may end the multicore era,” Commun.
ACM, vol. 56, no. 2, pp. 93–102, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408797

[5] ——, “Dark silicon and the end of multicore scaling,” IEEE Micro,
vol. 32, no. 3, pp. 122–134, May 2012.

[6] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward
dark silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, Jul.
2011. [Online]. Available: http://dx.doi.org/10.1109/MM.2011.77

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “A case
for specialized processors for scale-out workloads,” IEEE Micro’s Top
Picks, 2014.

[8] “The Xilinx SDAccel Development Environment: Bringing The Best
Performance/Watt to the Data Center,” Tech. Rep., 2015.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: A study of emerging scale-out
workloads on modern hardware,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New
York, NY, USA: ACM, 2012, pp. 37–48. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150982

[10] “Apache, spark.” [Online]. Available: http://spark.apache.org/
[11] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench:

A comprehensive benchmarking suite for in memory data analytic
platform spark,” in Proceedings of the 12th ACM International
Conference on Computing Frontiers, ser. CF ’15. New York,
NY, USA: ACM, 2015, pp. 53:1–53:8. [Online]. Available:
http://doi.acm.org/10.1145/2742854.2747283

[12] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of the
data analytics workload in cloudsuite,” in Workload Characterization
(IISWC), 2014 IEEE International Symposium on, Oct 2014, pp. 202–
211.

[13] T. Jiang, Q. Zhang, R. Hou, L. Chai, S. A. Mckee, Z. Jia, and N. Sun,
“Understanding the behavior of in-memory computing workloads,” in
Workload Characterization (IISWC), 2014 IEEE International Sympo-
sium on, Oct 2014, pp. 22–30.

[14] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G.
Chun, “Making sense of performance in data analytics frameworks,”
in Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 293–307. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789791

[15] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“Bigdatabench: A big data benchmark suite from internet services,”
in High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, Feb 2014, pp. 488–499.

[16] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar, “High-level language tools for reconfigurable computing,”
Proceedings of the IEEE, vol. 103, no. 3, pp. 390–408, March 2015.

[17] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming for the
masses,” Queue, vol. 11, no. 2, pp. 40:40–40:52, Feb. 2013. [Online].
Available: http://doi.acm.org/10.1145/2436696.2443836

[18] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “Sparkcl:
A unified programming framework for accelerators on heterogeneous
clusters,” CoRR, vol. abs/1505.01120, 2015. [Online]. Available:
http://arxiv.org/abs/1505.01120

[19] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright, “High
level programming framework for fpgas in the data center,” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1–4.

[20] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling fpgas in the cloud,” in Proceedings of the
11th ACM Conference on Computing Frontiers, ser. CF ’14. New
York, NY, USA: ACM, 2014, pp. 3:1–3:10. [Online]. Available:
http://doi.acm.org/10.1145/2597917.2597929

[21] S. Byma, J. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “Fp-
gas in the cloud: Booting virtualized hardware accelerators with open-
stack,” in Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on, May 2014, pp.
109–116.

[22] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
fpgas in hyperscale data centers,” in 2015 IEEE International Conference
on Cloud and Big Data Computing (CBDCom 2015), May 2015.

[23] O. Knodel and R. G. Spallek, “RC3E: provision and management of
reconfigurable hardware accelerators in a cloud environment,” in 2nd
International Workshop on FPGAs for Software Programmers, 2015.
[Online]. Available: http://arxiv.org/abs/1508.06843

[24] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators
for efficient cloud computing,” in 7th IEEE International Conference on
Cloud Computing Technology and Science, CloudCom 2015, Vancouver,
BC, Canada, November 30 - Dec. 3, 2015, 2015, pp. 430–435.
[Online]. Available: http://dx.doi.org/10.1109/CloudCom.2015.60

[25] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 13–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665678

[26] D. Yin, G. Li, and K.-d. Huang, “Scalable mapreduce framework on fpga
accelerated commodity hardware,” in Internet of Things, Smart Spaces,
and Next Generation Networking, ser. Lecture Notes in Computer
Science, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds., vol. 7469.
Springer Berlin Heidelberg, 2012, pp. 280–294.

[27] “Apache, hadoop.” [Online]. Available: http://hadoop.apache.org/
[28] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.
[29] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr:

Mapreduce framework on fpga,” in Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010, pp. 93–102.
[Online]. Available: http://doi.acm.org/10.1145/1723112.1723129

[30] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” J. Mach. Learn.
Res., vol. 4, pp. 933–969, Dec. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=945365.964285

[31] N.-Y. Xu, X.-F. Cai, R. Gao, L. Zhang, and F.-H. Hsu, “Fpga
acceleration of rankboost in web search engines,” ACM Trans.
Reconfigurable Technol. Syst., vol. 1, no. 4, pp. 19:1–19:19, Jan. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1462586.1462588

[32] C. Kachris, D. Diamantopoulos, G. C. Sirakoulis, and D. Soudris,
“An fpga-based integrated mapreduce accelerator platform,” Journal
of Signal Processing Systems, pp. 1–13, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11265-016-1108-7

[33] C. Kachris, G. C. Sirakoulis, and D. Soudris, “A reconfigurable mapre-
duce accelerator for multi-core all-programmable socs,” in System-on-
Chip (SoC), 2014 International Symposium on, Oct 2014, pp. 1–6.

[34] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun,
“Energy-efficient acceleration of big data analytics applications using
fpgas,” in Big Data (Big Data), 2015 IEEE International Conference
on, Oct 2015, pp. 115–123.

[35] Y. M. Choi and H. K. H. So, “Map-reduce processing of k-means al-
gorithm with fpga-accelerated computer cluster,” in Application-specific



Systems, Architectures and Processors (ASAP), 2014 IEEE 25th Inter-
national Conference on, June 2014, pp. 9–16.

[36] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An fpga memcached appliance,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’13. New York, NY, USA: ACM, 2013, pp. 245–254.
[Online]. Available: http://doi.acm.org/10.1145/2435264.2435306

[37] M. Blott, L. Liu, K. Karras, and K. Vissers, “Scaling out to a
single-node 80gbps memcached server with 40terabytes of memory,”
in Proceedings of the 7th USENIX Conference on Hot Topics
in Storage and File Systems, ser. HotStorage’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 8–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2827701.2827709

[38] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István,
“Achieving 10gbps line-rate key-value stores with fpgas,” in
Presented as part of the 5th USENIX Workshop on Hot Topics
in Cloud Computing. Berkeley, CA: USENIX, 2013. [Online].
Available: https://www.usenix.org/conference/hotcloud13/workshop-
program/presentations/Blott

[39] Z. István, G. Alonso, M. Blott, and K. Vissers, “A hash table
for line-rate data processing,” ACM Trans. Reconfigurable Technol.
Syst., vol. 8, no. 2, pp. 13:1–13:15, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2629582

[40] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing soc accelerators for
memcached,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, ser. ISCA ’13. New
York, NY, USA: ACM, 2013, pp. 36–47. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485926

[41] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line
accelerator for memcached,” IEEE Comput. Archit. Lett., vol. 13, no. 2,
pp. 57–60, Jul. 2014. [Online]. Available: http://dx.doi.org/10.1109/L-
CA.2013.17

[42] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Brezzo, S. Asaad,
and D. E. Dillenberger, “Database analytics: A reconfigurable-computing
approach,” IEEE Micro, vol. 34, no. 1, pp. 19–29, Jan 2014.

[43] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database analytics acceleration using
fpgas,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12. New
York, NY, USA: ACM, 2012, pp. 411–420. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370874

[44] J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” in Proceedings of the 2014 ACM/SIGDA International
Symposium on Field-programmable Gate Arrays, ser. FPGA ’14.
New York, NY, USA: ACM, 2014, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554787

[45] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals for
in-memory databases,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 468–479. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540748

[46] E. Ghasemi, “A Scalable Heterogeneous Dataflow Architecture For Big
Data Analytics Using FPGAs,” Master’s thesis, Graduate Department of
Electrical and Computer Engineering, 2015.

[47] E. Ghasemi and P. Chow, “A scalable heterogeneous dataflow
architecture for big data analytics using fpgas (abstract
only),” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA,
USA, February 21-23, 2016, 2016, p. 274. [Online]. Available:
http://doi.acm.org/10.1145/2847263.2847294

[48] J. Cong, M. Huang, D. Wu, and C. H. Yu, “Invited - heterogeneous
datacenters: Options and opportunities,” in Proceedings of the
53rd Annual Design Automation Conference, ser. DAC ’16. New
York, NY, USA: ACM, 2016, pp. 16:1–16:6. [Online]. Available:
http://doi.acm.org/10.1145/2897937.2905012

[49] “Big Data, Meet the Small Ryft One,” Tech. Rep., 2015.
[50] “Broader Paths Etched into FPGA Datacen-

ter Roadmap,” Tech. Rep., 2015. [Online]. Avail-
able: http://www.nextplatform.com/2016/02/29/broader-paths-etched-
into-fpga-datacenter-roadmap/

[51] P. Gupta, “Xeon+fpga platform for the data center,” in Proceedings of
the International Symposium on Computer Architectures (ISCA), 2015.


