
19

A Survey on Representation, Composition and Application
of Preferences in Database Systems

KOSTAS STEFANIDIS, Chinese University of Hong Kong

GEORGIA KOUTRIKA, IBM Almaden Research Center

EVAGGELIA PITOURA, University of Ioannina

Preferences have been traditionally studied in philosophy, psychology, and economics and applied to decision
making problems. Recently, they have attracted the attention of researchers in other fields, such as databases
where they capture soft criteria for queries. Databases bring a whole fresh perspective to the study of
preferences, both computational and representational. From a representational perspective, the central
question is how we can effectively represent preferences and incorporate them in database querying. From
a computational perspective, we can look at how we can efficiently process preferences in the context of
database queries. Several approaches have been proposed but a systematic study of these works is missing.
The purpose of this survey is to provide a framework for placing existing works in perspective and highlight
critical open challenges to serve as a springboard for researchers in database systems. We organize our study
around three axes: preference representation, preference composition, and preference query processing.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational databases

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Preference modeling, preference queries

ACM Reference Format:

Stefanidis, K., Koutrika, G., and Pitoura, E. 2011. A survey on representation, composition and application
of preferences in database systems. ACM Trans. Datab. Syst. 36, 3, Article 19 (August 2011), 45 pages.
DOI = 10.1145/2000824.2000829 http://doi.acm.org/10.1145/2000824.2000829

1. INTRODUCTION

Preferences guide human decision making from early childhood (e.g., “which ice cream
flavor do you prefer?”) up to complex professional and organizational decisions (e.g.,
“which investment funds to choose?”). Preferences have traditionally been studied in
philosophy, psychology, and economics and applied to decision making problems. For
instance, in philosophy, they are used to reason about values and desires [Hansson
2001]. In mathematical decision theory, preferences (or utilities) model economic be-
havior [Fishburn 1999]. The notion of preference has in recent years drawn new atten-
tion from researchers in other fields, such as artificial intelligence, where they capture
agents’ goals [Boutilier et al. 1999; Delgrande et al. 2003; Wellman and Doyle 1991],
and databases, where they capture soft criteria for database queries. Explicit pref-
erence modeling provides a declarative way to choose among alternatives, whether
these are solutions of problems to solve, answers of database queries, decisions of a

Authors’ addresses: K. Stefanidis, Department of Computer Science and Engineering, Chinese University
of Hong Kong, Hong Kong; email: kstef@cs.uoi.gr; G. Koutrika, IBM Almaden Research Center; E. Pitoura,
Department of Computer Science, University of Ioannina, Ioannina, Greece.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0362-5915/2011/08-ART19 $10.00

DOI 10.1145/2000824.2000829 http://doi.acm.org/10.1145/2000824.2000829

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:2 K. Stefanidis et al.

computational agent and so on. In this article, we focus on preferences in the context
of database queries.

In databases, interest in preferences was triggered by observing the limitations of
the Boolean database answer model, where query criteria are considered as hard by
default and a nonempty answer is returned only if it satisfies all the query criteria.
In this context, a user can face either of two problems: (i) the empty-answer problem,
where the conditions are too restrictive or the data cannot exactly match the query or
(ii) the too-many-answers problem, where too many results match the query. It is hard
to cope with these problems, especially if a user is not familiar with a structured query
language in order to formulate accurate queries and when accessing Web databases,
whose schema and contents are unknown.

Incorporating soft criteria or preferences in a query can help cope with these prob-
lems. The empty-answer problem can be tackled by relaxing some of the hard con-
straints in the query, that is, considering them as soft or as user wishes or by replacing
them by constraints that capture preferences related to the given query and return-
ing results that are ranked according to how well they match the modified query. The
too-many-answers problem can be tackled by strengthening the query with additional
preferences to rank and possibly focus the query results.

The study of preference queries in databases originated by Lacroix and Lavency
[1987], who proposed a simple extension of the relational calculus in which prefer-
ences for tuples satisfying given logical conditions can be expressed. For instance, one
could say: pick the tuples of R satisfying Q ∧ P1 ∧ P2; if the result is empty, pick
the tuples satisfying Q ∧ P1 ∧ ¬P2; if the result is empty, pick the tuples satisfying
Q ∧ ¬P1 ∧ P2. Gaasterland and Lobo [1994] introduced a simple formalism, where a
user provides a lattice of domain-independent values that define preferences and a set
of domain-specific user constraints qualified with lattice values. The constraints are
automatically incorporated into a relational or deductive database through a series of
syntactic transformations that produces an annotated deductive database. Query an-
swering procedures for deductive databases are then used, with minor modifications,
to obtain annotated answers to queries. Almost a decade later, the Web has made in-
formation easily accessible and renewed interest in preferences was triggered by the
need to make (Web) databases more user-friendly.

Several approaches have been proposed since then but a systematic study of them
is missing. It is the purpose of this article to provide a framework for studying various
approaches that deal with preferences in databases. In particular, our objective is to
survey in a holistic way approaches that: (i) define preferences, (ii) combine preferences,
and (iii) apply preferences to query processing. We organize our study around these
main axes as follows:

Preference Representation. Preferences naturally come into different flavors and peo-
ple may have a mix of different preferences. Works on preference modeling have
focused on different aspects of the problem but two main philosophies can be dis-
tinguished on the basis of how preferences are formulated: qualitative approaches,
where preferences are expressed by comparing items (“I like westerns better than
comedies”) and quantitative ones, where a preference for a specific item is expressed
as a degree of interest in this item (“my interest in westerns is 0.8 and in come-
dies 0.4”). We categorize preference representation approaches using the following
dimensions.

(1) Formulation. Preferences are formulated qualitatively or quantitatively.
(2) Granularity. Preferences can be expressed at different levels, that is, for tuples,

relations, relationships, and attributes.
(3) Context. Preferences can be context-free or can hold under specific conditions.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:3

Fig. 1. Database schema.

Fig. 2. Database instance example.

(4) Aspects. Preferences may vary based on their intensity, elasticity, complexity, and
other aspects.

Preference Composition. Given a set of preferences over a set of tuples, different
composition mechanisms can be applied to infer (e.g., implicit preferences), combine
(e.g., through combining scoring functions), or override preferences (e.g., in prioritized
composition) and finally, derive a ranking of the tuples on the basis of how they match
these preferences. In this survey, we group preference composition mechanisms into
the following categories.

(1) Qualitative composition. These mechanisms combine preferences resulting in a
relative (i.e., qualitative) ordering of the tuples.

(2) Quantitative composition. These mechanisms combine preferences by assigning
final scores to the tuples, which are thus ordered in a quantitative way.

(3) Heterogeneous composition. These mechanisms are used to combine preferences
of different granularity, for example, preferences for relationships between tuples
with preferences for tuple attributes.

Preference Query Processing. Preferences are used in query processing to provide
users with customized results typically through ranking. There are roughly two dif-
ferent lines of work on using preferences in query processing. Namely, preferences are
exploited through the following.

(1) Expanding database queries. These methods assume the existence of a number of
user preferences and appropriately rewrite regular database queries to incorporate
them. This process is often referred to as query personalization.

(2) Employing preference operators. These methods use special database operators
(such as top-k or skyline) to explicitly express preferences within queries.

Our survey covers both approaches. We shall also discuss methods for improving
the performance of preferential query processing, for instance, by performing offline
preprocessing steps to construct rankings of database tuples based on preferences.
There is a large number of algorithms for the implementation of preference queries
(especially for top-k and skyline queries). We do not intend to provide an exhaustive
review for special classes of preference queries. We consider that drilling down to the
specifics of different implementations and algorithms is the subject of separate surveys
focusing on algorithms for a specific class of preference queries, such as the survey on
algorithms for top-k queries by Ilyas et al. [2008]. Instead, we aim at providing an
overview of the main approaches for different types of preference queries.

As a running example, we consider a simple database that stores information about
movies, consisting of three relations: movie, play, actor. Figure 1 depicts the schema of
this database. We shall also use the database instance shown in Figure 2.

This survey is organized as follows. We present existing approaches to prefer-
ence representation (Section 2) followed by mechanisms for preference composition

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:4 K. Stefanidis et al.

(Section 3). Then, we study preferential query processing methods (Section 4). In the
final section (Section 5), we discuss other issues such as preference learning and revis-
ing, nonrelational preference models, other preference applications, and connections to
other disciplines that deal with preferences. We conclude with a discussion on critical
open challenges.

2. PREFERENCE REPRESENTATION

Understanding user preferences and finding appropriate representations for them is a
real challenge. There are quite a few approaches (preference models) in the literature
that deal with preference representation and composition and try to reach meaningful
conclusions regarding the desired answers of a database query from different perspec-
tives. In this section, we focus on representing individual preferences and in Section 3,
on mechanisms for preference composition.

We present preference representation based on how preferences are formulated (for-
mulation—Section 2.1), at what level they are expressed (granularity—Section 2.2),
when they hold (context—Section 2.3), and what they express (aspects—Section 2.4).

2.1. Preference Formulation

In general, preferences can be expressed either qualitatively or quantitatively. In the
qualitative approach, preferences between database tuples are specified directly, typ-
ically using binary preference relations. Preference relations may be specified using
logical formulas [Chomicki 2003] or special preference constructors [Kießling 2002]. In
the quantitative approach, preferences are expressed by assigning numerical scores to
database tuples. In this case, a tuple ti is preferred over a tuple tj , if and only if its
score is higher than the score of tj . Scores may be assigned through preference functions
(e.g., Agrawal and Wimmers [2000]) or as degrees of interest associated with specific
conditions that must be satisfied (e.g., Koutrika and Ioannidis [2004]).

In the following, we shall use R(A1, . . . , Ad) to denote a relational schema with d
attributes Ai, 1 ≤ i ≤ d, where each attribute Ai takes values from a domain dom(Ai).
Let A ={A1, A2, . . . , Ad} be the attribute set of R and dom(A) = dom(A1)×. . .×dom(Ad)
be its value domain. We use t to denote a tuple (u1, u2, . . ., ud) ∈ dom(A) of R and r to
denote an instance (i.e., tuple set) of R. Let B ⊆ A be a subset of the attribute set, t[B]
stands for the projection of t on B. Finally, P denotes a preference.

2.1.1. Qualitative Preferences. In the qualitative approach, preferences are defined as
binary relations between two tuples. Given a set S, a binary relation B over S is a
subset of the Cartesian product S × S. For a pair (a, b) of B, we use the notation a B
b, whereas for a pair (a, b) that does not belong to B, we use the notation ¬(a B b). A
preference relation is defined as follows.

Definition 1. Let R(A1, . . . , Ad) be a relational schema and dom(Ai) be the domain
of attribute Ai, 1 ≤ i ≤ d. A preference relation ≻P over R is a subset of (dom(A1)× . . .×
dom(Ad)) × (dom(A1) × . . . × dom(Ad)).

The interpretation of a preference relation ti ≻P tj between two tuples ti and tj of R
is that ti is preferred over tj under ≻P . We shall also say that ti is better than tj or that
ti dominates tj under ≻P .

Next, we list several typical properties of binary relations that are useful in classi-
fying preference relations. A binary relation B over a set S is called:

—reflexive, if ∀a ∈ S, a B a,
—irreflexive, if ∀a ∈ S, ¬ (a B a),
—symmetric, if ∀a, b ∈ S, a B b ⇒ b B a,
—asymmetric, if ∀a, b ∈ S, a B b ⇒ ¬(b B a),

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:5

(a) total order (b) weak order (c) strict partial order

Fig. 3. Examples of preference graphs.

—antisymmetric, if ∀a, b ∈ S, (a B b ∧ b B a) ⇒ a = b,
—transitive, if ∀a, b, c ∈ S, (a B b ∧ b B c) ⇒ a B c,
—negatively transitive, if ∀a, b, c ∈ S, (¬(a B b) ∧ ¬(b B c)) ⇒ ¬(a B c),
—connected (strongly complete or total), if ∀a, b ∈ S, (a B b) ∨ (b B a) ∨ (a = b).

The preceding properties are not independent. For instance, asymmetry implies ir-
reflexivity, while irreflexivity and transitivity imply asymmetry. In terms of a prefer-
ence relation over a relational schema R, there is a subtle point regarding the set S
over which the conditions of each property are tested. Typically, we should consider as
S the set of all tuples t = (u1, u2, . . ., ud), ui ∈ dom(Ai) of R(A1, A2, . . . Ad).However,
in the presence of integrity constraints, we could apply the conditions only amongst
tuples that all belong to a valid instance r of R, that is, to an instance r of R that does
not violate any integrity constraints.

Based on its properties a preference relation ≻P is characterized as follows.

—A binary relation is a preorder or quasiorder if it is reflexive and transitive. If in
addition, it is antisymmetric then it is a partial order.

—A binary relation is a strict partial order (or irreflexive partial order) if it is irreflexive,
asymmetric, and transitive. A preference relation ≻P over a relational schema R is
usually a strict partial order.

—A binary relation is a total order if it is a strict partial order and it is also connected.
If a preference relation ≻P is a total order, any two tuples in any instance r of R are
mutually comparable under ≻P .

—A binary relation is a weak order if it is a negatively transitive strict partial order.

A preference relation over an instance r of R can be represented through a directed
graph that we call a preference graph. In the preference graph, there is one node for
each tuple t in r and there is a directed edge from the node representing tuple ti to
the node representing tuple tj if and only if, ti ≻P tj . Some properties of the preference
relation have a counterpart graph property.

If the preference relation is transitive, it is common to represent the transitive
reduction of the relation. In particular, there is an edge from ti to tj if and only if, ti ≻P

tj and ∄ tk, such that, ti ≻P tk and tk ≻P tj . The graph for a partially ordered set is also
known as the Hasse diagram. In the following, we assume that preference relations
are transitive and use the preference graph of their transitive reduction to represent
them, unless stated otherwise. Examples of preference graphs for different types of
preference relations are depicted in Figure 3.

Besides the explicit listing of preference relations between tuples, a convenient
way to express preferences between tuples is by using logical formulas to express
the constraints that two tuples must satisfy so that one is preferred over the other
[Chomicki 2003].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:6 K. Stefanidis et al.

Definition 2. Given a relational schema R and an instance r of R, a preference
formula PF(ti, tj) defines a preference relation ≻P over R, such that for any pair of
tuples ti, tj ∈ r, ti ≻P tj , if only if PF(ti, tj) holds.

Preference formulas allow us to express choices between sets of tuples in a single
preference specification, and in this respect, they can be considered set-oriented.

Example 1. Consider the relation movie in Figure 1 and its instance shown in Fig-
ure 2. A user, say Addison, prefers a movie t over a movie t′ if and only if they are
both of the same genre and t is longer than t′ (preference P1). P1 can be expressed
as follows. Given two tuples ti, tj ∈ r, ti ≻P1

tj , if and only if, (ti[genre] = tj[genre] ∧
ti[duration] > tj[duration]). Thus, for example, in the given instance, t3 is preferred
over t1 under P1.

Based on the form of the formula PF, Chomicki [2003] makes a distinction between
intrinsic and extrinsic preferences. In intrinsic preferences, PF specifies conditions that
refer solely to the values of the two database tuples ti and tj that are being compared.
In extrinsic preferences, PF involves conditions that cannot be tested using only the
values of the two tuples, such as the existence of other tuples in r, join conditions
with tuples in other relations, or comparisons of aggregate values. Using intrinsic
preferences decouples the complexity of determining the preference order from the size
of the database, since this involves only the two tuples being compared. It also makes
the order insensitive to database updates.

Typically, intrinsic preference formulas are restricted to first-order quantifier-free
formulas expressed in a disjunction of conjunctions normal form (DNF) of simple
equality or rational-order constraints among the values of the tuples. Specifically, a
preference formula PF is a DNF of predicate conditions, PF = (Cond11 ∧ . . . ∧ Cond1m)
∨ . . . ∨ (Condp1 ∧ . . . ∧ Condpb), where each predicate Condxy has the form: (i) ti[Av] θv

tj[Av] or (ii) tk[Av] θv co, where ti, tj ∈ r, k ∈ {i, j}, Av ∈ A, co ∈ dom(Av) and θv ∈ {=, �=,

<,>,≤,≥} if Av is a numerical attribute and θv ∈ {=, �=} otherwise.

Example 2. Addison prefers a recently produced drama movie or a horror movie
with long duration (preference P2). P2 can be expressed as follows. Given two tuples
ti, tj ∈ r, ti ≻P2

tj , if and only if, (ti[genre] = tj[genre] ∧ ti[genre] = ‘drama’ ∧ ti[year] >

tj[year]) ∨ (ti[genre] = tj[genre] ∧ ti[genre] = ‘horror’ ∧ ti[duration] > tj[duration]). In
the movie instance of Figure 2, t3 is preferred over t1 under P2.

Chomicki [2003] provides a characterization of the complexity of checking whether a
preference relation defined using logical formulas satisfies specific properties of binary
relations.

A formal language for formulating preference relations which are strict partial or-
ders is proposed by Kießling [2002]. The language offers a number of base preference
constructors, such as POS and NEG. For instance, P is a POS(B, POS-set) preference
if: ∀ ti, tj ∈ r, ti ≻P tj , if and only if, ti[B] ∈ POS-set ∧ tj[B] /∈ POS-set, where POS-set ⊆
dom(B). This means that a desired value of B is one that belongs to a finite set POS-set
of favorite values. For example, given the movie instance of Figure 2 and preference
POS({director}, {M. Curtiz}), the most preferred tuple is the movie Casablanca. Simi-
larly, a NEG preference defines that a desired value is one that does not belong to a
finite set NEG-set ⊆ dom(B) of dislikes. Preference constructors can be expressed using
logical formulas.

2.1.2. Quantitative Preferences. In the quantitative approach, preferences are specified
using functions that associate a numerical score with each database tuple (e.g., Agrawal
and Wimmers [2000]). The score expresses the importance or degree of interest in the
tuple.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:7

Definition 3. Given an attribute set A, a preference function is a function fP :
dom(A) → R that maps each tuple t ∈ dom(A) to a real number called score.

In general, ti is preferred over tj , that is, ti ≻P tj for a preference function fP if and
only if fP(ti) > fP(tj).

Example 3. Given a scoring function fP(ti) = 0.001 × ti[duration], tuples t1, t2, and
t3 in Figure 2 have interest scores 0.102, 0.109, and 0.195, respectively. Hence, t3 is
preferred over t2, which in turn is preferred over t1.

A convenient way to describe preferences is by specifying constraints that tuples
must satisfy and assigning a preference score to these constraints. Preferences can be
expressed as scores (or degrees of interest) to selection conditions (e.g., Koutrika and
Ioannidis [2004]). Preference scores belong to a predefined numerical domain which
typically corresponds to the real interval [0, 1].

Definition 4. Let R(A1, . . . , Ad) be a relational schema and dom(Ai) be the domain
of attribute Ai, 1 ≤ i ≤ d. A preference P on R is a pair (ConditionP , ScoreP), where:

(i) ConditionP is of the form An1
θn1

an1
∧ . . . ∧ Ank

θnk
ank

and specifies a conjunction of
simple selection conditions on the values anm

∈ dom(Anm
) of attributes Anm

, nm ∈
{1, d}, where θnm

∈ {=,<,>,≤,≥, �=} for numerical and θnm
∈ {=, �=} for categorical

attributes.
(ii) ScoreP belongs to a predefined numerical domain.

The meaning of such a preference is that all tuples from R that satisfy ConditionP

are assigned the interest ScoreP . Clearly, a tuple t may satisfy the ConditionP part
of more than one preference P, thus more than one score may be assigned to it. We
discuss ways to combine such scores towards assigning a single score to tuples later in
Section 3. Let us denote the (combined) score assigned to a tuple t by score(t). A tuple
ti is preferred over a tuple tj , that is, ti ≻ tj , if and only if score(ti) > score(tj).

Example 4. Preference (movie.genre = ‘drama′, 0.9) shows high interest in dramas,
while preference (movie.year > 1990, 0.8) shows interest in recent movies.

Analogously to qualitative preferences, quantitative preferences can also be distin-
guished as intrinsic and extrinsic. Definition 4 describes intrinsic quantitative prefer-
ences, that is, a preference score is assigned to a set of tuples based solely on the values
of the tuple. Koutrika and Ioannidis [2004] support extrinsic preferences by allowing
preferences for tuples in a relation R to be formulated based on values of attributes
in different relations that join to R. To this end, Definition 4 is generalized as follows:
a preference P on a relation R is a pair (ConditionP, ScoreP), where ConditionP is a
conjunction of atomic selections involving a set of attributes B in the database and
atomic joins transitively connecting these attributes to R.

Example 5. Consider the database schema in Figure 1. A preference for movies can
be specified using attributes of movies, such as the year of a movie, but also attributes
that are implicitly associated with movies and are stored in other relations, such as
the names of the actors starring in a movie. For instance, a preference for movies with
J. Roberts could be stated as follows:
(movie.mid = play.mid and play.aid=actor.aid and actor.name = ‘J. Roberts′, 0.8).

2.1.3. Equally Preferable and Incomparable Tuples. Ideally, preferences should exist for all
pairs of objects in a domain of interest. However, user preferences are typically incom-
plete. In such cases, the lack of a preference relation between two tuples may be either
interpreted as an equal preference or attributed to incomparability or incompleteness.
Equal preference means that the two tuples are equally preferred and in this sense
equivalent to each other. Incomparability represents that two tuples cannot in some

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:8 K. Stefanidis et al.

t11

tm1

t21

... t1p

t22 t2u
...

tm2 tmv
...

r1

r2

rm

Fig. 4. Tuples tkl are related through the weak order ≻P . All tuples within a dotted oval are indifferent to
each other and form an equivalence class rk. The equivalence classes ri are totally ordered by ≻∗.

fundamental sense be compared with each other and it is likely to arise when tuples
combine together multiple features or when tuples are essentially very different (for
example, a car and a boat). Incompleteness, on the other hand, represents a gap in
our knowledge of user preferences. In general, it is not always possible to differentiate
among these three cases.

Any preference relation ≻P over a relational schema R induces an indifference rela-
tion ∼P , such that, ∀ ti, tj ∈ r, ti ∼P tj if and only if (¬(ti ≻P tj) ∧ ¬(tj ≻P ti)). Note that
for a quantitative preference with scoring function fP , ti ∼ f tj ⇔ fP(ti) = fP(tj). Let
us first look into specific types of a preference relation. If ≻P is a total order, then the
indifference relation ∼P reduces to equality: ∀ ti, tj ∈ r, ti ∼P tj ⇔ ti = tj . In this case,
there is no gap in our knowledge. If ≻P is a weak order, then indifference is an equiva-
lence relation. A binary relation is an equivalence relation if it is reflexive, symmetric,
and transitive. Let r/ ∼P be the set of equivalence classes defined over each instance r
by ∼P . This set is totally ordered by ≻∗, where ≻∗ is defined as: ∀ r1, r2 ∈ r/ ∼P , r1 ⊆ r,
r2 ⊆ r, r1 ≻∗ r2, if and only if, ti ≻P tj for some ti ∈ r1 and tj ∈ r2. An example is shown
in Figure 4. In this case, all indifferent tuples in a class are in a sense equivalent or
equally preferred to each other.

However, if the preference relation ≻P is neither a total nor a weak order, the indif-
ference relation ∼P may not be transitive, thus it may not be an equivalence relation.
To see this, consider the graph shown in Figure 3(c). Tuple t22 is indifferent to t21, t21

is indifferent to t33, but t22 is preferred over t33. In this case, the indifference relation
induced by the preference relation fails to capture the distinction between two tuples
being incomparable versus being equally preferred. For example, the preference “I like
drama and horror movies the same” should be interpreted differently from the prefer-
ence “I cannot compare drama movies to horror movies”. Next, we discuss how to make
this distinction explicit for general types of a preference relation.

When ≻P is a strict partial order, Kießling [2005] partitions the indifference relation
∼P into two parts: (i) a substitutable part and (ii) an alternative part. The substitutable
part ≃P includes tuples that can substitute each other in any preference expression
and intuitively corresponds to the tuples that are equally preferred. Formally, the
substitutable relation ≃P is defined as: ∀ ti, tj ∈ r, ti ≃P tj , only if, (i) ti ≃P tj ⇒ ti ∼P tj ,
(ii) ∀ tk ∈ r, tk ≻P ti ⇒ tk ≻P tj , (iii) ∀ tk ∈ r, ti ≻P tk ⇒ tj ≻P tk, and (iv) if we interchange ti
and tj in (ii) and (iii), they still hold. The substitutable relation is reflexive, symmetric,
and transitive. Two indifferent tuples that are not substitutable are called alternatives.

Example 6. In Figure 3(c), t31 can substitute t32, and t33 can substitute t34, whereas,
for instance, t21 and t22 are alternative tuples. As another example, consider the pref-
erence graph of Figure 5, representing a strict partial order among six tuples. Here,
tuples t11 and t12 are substitutable with each other and so are t21 with t22, while for
example, t11 and t21 are alternatives. Note that when ≻P is a weak order, all tuples

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:9

Fig. 5. Examples of substitutable and strongly indifferent tuples.

indifferent to each other (i.e., all tuples in the same equivalence class) are substi-
tutable. For instance, tuples t21, t22, . . ., t2r, in Figure 3(b) are substitutable.

To differentiate between equally preferable and incomparable tuples, we could define
a strong indifference relation [Fishburn 1999], such that ti ≈P tj if and only if ∀ tk ∈ r,
ti ∼P tk ⇔ tj ∼P tk. For example, t11, t12 and t21, t22 in Figure 5 are strongly indifferent,
whereas t11, t21 are not. Tuples related through strong indifference correspond to sub-
stitutable ones, if transitivity holds. Strong indifference ≈P is an equivalence relation
for any type of preference relation ≻P . Let r/ ≈P be the set of equivalence classes
defined over each instance r by ≈P . In this case, order ≻∗ defined over this set, r/ ≈P ,
of equivalence classes is not a total order.

An alternative way to differentiate between equally preferable and incomparable
tuples is, instead of defining a preference order ≻P , to define another binary relation
�P over R, such that for two tuples ti and tj , ti � tj means that ti is at least as good as
or at least as preferable as tj (e.g., Georgiadis et al. [2008]). The “at least as preferable”
relation � is normally a preorder (i.e., reflexive and transitive). The binary relation �P

induces a preference relation ≻P over R, such that, ∀ ti, tj ∈ r, ti ≻P tj if and only if (ti
�P tj ∧ ¬(tj �P ti)). Note that this corresponds to the asymmetric part of �. From the
symmetric part of �, we get an incomparability relation ||P as follows: ∀ ti, tj ∈ r, ti ||P

tj if and only if (¬(ti �P tj) ∧ ¬(tj �P ti)). We also get an equally preferable relation ≃P

as follows: ∀ ti, tj ∈ r, ti ≃P tj if and only if ((ti �P tj) ∧ (tj �P ti)). If �P is a preorder,
≻P is a strict partial order. In addition, the equally preferable relation ≃P is transitive
and thus forms an equivalence relation. If �P is a preorder that is also antisymmetric,
that is, if �P is a partial order, then ≃P is equality. Finally, if �P is a preorder that is
also connected, ≻P is a weak order and ||P is empty, that is, all tuples are comparable.

2.1.4. Qualitative vs. Quantitative Preferences. Qualitative preferences are described in a
relative way through explicit tuple comparisons, while quantitative preferences are
expressed in an absolute way directly on the desired tuples. In terms of expressive
power, the qualitative specification of preferences is more general than the quantitative
one, since not all preference relations can be expressed by scoring functions or through
degrees of interest in conditions.

For example, take preference P1 in Example 1: Addison prefers one movie tuple to
another if and only if their genres are the same and the duration of the first is longer.
Then in the example movie instance, t3 is preferred over t1 and t2 cannot be compared
with any of them. This preference cannot be expressed quantitatively, that is, there
is no scoring function that captures it. For the purpose of contradiction, assume that
there is such a scoring function. Since there is no preference defined between any of
the tuples t1, t3, and t2 in Figure 2, the score of t2 should be equal to the scores of t1 and
t3. But this implies that the scores of t1 and t3 are the same, which is not possible since
t3 is preferred over t1. Note that ≻P1

is not a weak order.
It has been shown that when the set over which the preference relation is defined

is countable, a necessary and sufficient condition for a scoring function fP , such that,

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:10 K. Stefanidis et al.

ti ≻P tj ⇔ fP(ti) > fP(tj) to exist, is that ≻P is a weak order [Fishburn 1999]. It is
easy to see that if ≻P can be captured by a scoring function fP , then it is a weak order.
To prove sufficiency, assume that ≻P is a weak order. Then, the induced indifference
relation ∼P is an equivalence relation. The trick for defining fP is to assign scores to
each tuple so that: (i) tuples that belong to the same equivalence class get the same
score and (ii) for two tuples ti and tj that belong to two different equivalence classes r1

and r2 respectively, fP(ti) > fP(tj) if and only if r1 ≻∗ r2.
Since using fP implies that the produced preference relation is a weak order, we

cannot find for preference relations that are not weak orders, a function fP such that
ti ≻P tj ⇔ fP(ti) > fP(tj). A less strict condition exists to preserve ≻P one way that is:
ti ≻P tj ⇒ fP(ti) > fP(tj). For the example preference P1, we could for instance define
fP as, fP(t1) = 1, fP(t2) = 2 and fP(t3) = 3.

In particular, it has been shown that, when the set over which the preference relation
is defined is countable, a necessary and sufficient condition for a scoring function fP ,
such that, ti ≻P tj ⇒ fP(ti) > fP(tj) and ti ≈P tj ⇔ fP(ti) = fP(tj) to exist, is that ≻P

is acyclic [Fishburn 1999]. Relation ≻P is acyclic if we never have t1 ≻P t2 ≻P . . . ≻P

tm ≻P t1, for finite m. The idea here is to use the equivalence classes induced by strong
indifference for assigning scores. In this case, the order ≻∗ among the equivalence
classes is not a total order.

However, qualitative preferences return the most preferred tuples without distin-
guishing how much better one tuple is compared to another. For example, they cannot
distinguish preferences, such as “I like comedies very much” versus “I like dramas a
little”. This also holds for negative preferences, that is, there is no way to capture “I do
not like adventures” versus “I extremely dislike horrors”. Finally, it may be easier for
users to express relative pair-wise preferences between tuples than assigning scores.
However, employing such preferences to attain an aggregate order of all involved tuples
is clearly more complex than evaluating a scoring function.

2.2. Preference Granularity

Irrespectively of their (qualitative or quantitative) formulation, preferences may be
expressed at different levels of granularity.

Tuple preferences are expressed between individual database tuples. Typically, they
are formulated over the tuples of one or more relations based on the values of their
attributes. In the previous subsection, we examined several such examples.

Set preferences depend not only on values of the individual tuples, but also on prop-
erties of groups of tuples as a whole. For example, Addison may want to select a set of
three movies and prefers one of them to be a comedy, or as many of them as possible to
have the same director. This means that we need to specify preferences over all subsets
of three movies. Zhang and Chomicki [2011] represent set preferences qualitatively
through profiles. A profile of a subset of k tuples is defined as a tuple of features where
each feature corresponds to a quantity of interest (i.e., the number of comedies or dis-
tinct directors in our example). Such features may be generated by an aggregate query
such as min, max, sum, count, avg over subsets of the same cardinality k (i.e., of k = 3
in our example). Then, a set preference can be formulated as a tuple preference over
profiles of sets with the same cardinality.

Attribute preferences express preferences between attributes. They can have dif-
ferent interpretations. For example, they can be used to set priorities among tuple
preferences based on the attributes involved in the preferences (e.g., Georgiadis et al.
[2008]).

Example 7. Addison prefers director S. Spielberg over A. Hitchcock and horror over
drama movies. She considers the director of a movie to be more important than its genre

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:11

Fig. 6. Personalization graph.

Fig. 7. Example instance relationship preferences.

which is expressed through an attribute preference director ≻ genre. For example, this
results in tuple t3 being preferred over t2 in Figure 2.

Alternatively, attribute preferences can express priorities among the attributes to
be displayed in the result of a query, such as in the quantitative attribute preferences,
called π -pref erences, discussed in the framework of Miele et al. [2009]. A π -pref erence
is expressed by assigning an interest score to an attribute. Das et al. [2006b] and Miah
et al. [2008] propose automatic techniques for scoring attributes in search results based
on the attribute usefulness and visibility.

Relationship preferences are expressed on relationships between two types of enti-
ties (called generic) or two particular entities (called instance). A generic relationship
preference shows interest in a particular type of relationship. For example, one may con-
sider significant the relationship “a director has directed movies”. On the other hand,
one may consider significant the relationship “J. Roberts acted in Ocean’s Twelve”. This
is an example of an instance relationship preference.

A framework that supports both tuple and relationship preferences for different
relations of a database schema is presented by Koutrika and Ioannidis [2004]. User
preferences are stored as degrees of interest in atomic query elements that can be in-
dividual selection or join conditions (called selection and join preferences, respectively).
Join preferences show user interest in tuples from a relation R that join to tuples in
different relations for which preferences do exist.

Example 8. Addison’s liking of the actress J. Roberts is expressed as a selection
preference: (actor.name = ‘J. Roberts′, 0.8). She also considers the actor of a movie
very important and hence she has the following join preferences over the database
schema of Figure 1: (movie.mid = play.mid, 1) and (play.aid = actor.aid, 1). These join
preferences essentially connect movies to their actors and show that movie preferences
are also shaped by preferences for their actors.

To map simple tuple and relationship preferences over a database, a personalization
graph, G(V, E), is introduced. G(V, E) is a directed graph that is an extension of the
database schema graph. Graph nodes correspond to schema relations, attributes, and
values for which a user has a preference. Edges are selection edges, representing a pos-
sible selection condition from an attribute to a value node, and join edges, representing
a join between relations. Tuple preferences map to selection edges. Join edges cap-
ture generic relationship preferences. Figure 6 illustrates a personalization graph that
captures the preferences given in Example 8. Similarly, one could imagine an instance-
based personalization graph (e.g., the one in Figure 7), where nodes correspond to
tuples and edges correspond to relationships between tuples. A personalization graph
could also capture relation and attribute preferences expressed as degrees of interest
(for example, as shown in different color in Figure 6).

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:12 K. Stefanidis et al.

Relation preferences are expressed on a class of entities. For example, “I am in-
terested in directors, but not in producers”. To the best of our knowledge, relation
preferences are not found in the literature so far.

Recently, Golfarelli et al. [2011] introduced preferences in the context of OLAP. Pref-
erences are defined at the schema level, thus allowing preferences at the aggregation
level of facts, that is, on their group-by sets. The basic idea is to define preferences on
the space of hierarchy attributes. These are used to induce preferences on the space of
the corresponding facts, for instance, by stating that monthly data are preferred over
yearly or daily data.

Observe that the granularity at which preferences can be expressed is determined to
a great extent by the database schema. For example, consider that instead of the movie
relation depicted in Figure 1, we have the following relations: movie(mid, title, year,
language, duration, did), director(did, name), genre(mid, genre). Then, the preference
for the director over the genre expressed as an attribute preference in Example 7 would
be instead formulated as a relationship preference.

2.3. Context

In the preference formulation paradigms studied so far, preferences hold uncondition-
ally, that is under all circumstances. Such preferences are called context-free. Contex-
tual or conditional preferences hold under specific circumstances and, in their general
form, consist of two parts, namely a context and a preference one:

Definition 5. A contextual preference C P is a pair (C, P), where C defines the context
and P defines the preference.

The context part C specifies the conditions under which preference P holds, where P
may be specified either qualitatively or quantitatively. In this section, we focus on the
context part.

Adapting the behavior of an application to take the current user context into account
has been studied extensively in the context-aware computing community, where differ-
ent definitions of context have been proposed (e.g., Brown et al. [1997]; Schmidt et al.
[1999]). A generic definition is the following [Dey 2001]:

“Context is any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an application,
including the user and application.”

Under this general definition, user preferences can be also considered part of the user
context because they characterize the situation of a user and can be used to modify
queries. Here, we study how context determines when user preferences hold. With
these observations in mind, we present our own definition of context.

Definition 6. Context is any external to the database information that can be used
to characterize the situation of a user or any internally stored information that can be
used to characterize the data per se.

Based on this definition, context can be dictated by our data (i.e., internal context)
or it can be ephemeral, volatile, and external to the database. On the basis of this dis-
tinction, contextual preferences fall into two categories: internal contextual preferences
and external contextual preferences. For example, an internal contextual preference can
be that, for animations, the year of release should be after 2000. On the other hand,
a preference for thrillers after midnight is an external contextual preference and, in
particular, a time-dependent one.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:13

Fig. 8. CP-net example.

2.3.1. Internal Contextual Preferences. A simple way to specify the context part C of an
internal contextual preference (C, P) is by specifying conditions for the presence of
specific attribute values [Agrawal et al. 2006; Chomicki 2003]. Formally, we have the
following.

Definition 7. Given a relation schema R(A1, A2, . . . , Ad), an internal context C is a
formula of the form ∧ j∈L(Aj θ aj) where L ⊆ {1, . . . , d} and aj ∈ dom(Aj).

For an instance r of R, the meaning of a preference (C, P) where C is defined as before
is that preference P holds for all tuples t ∈ r, such that, t[Aj] θ ai j

, ∀ j ∈ L.

Example 9. Consider that Addison prefers A. Hitchcock over M. Curtiz as a director
of horror movies and M. Curtiz over A. Hitchcock as a director of drama movies. This
can be be expressed with the following two contextual preferences, where preferences
are specified qualitatively: C Px = (genre = ‘horror’, ti ≻Px

tj , if and only if, ti[director] =
‘A. Hitchcock’ ∧ tj[director] = ‘M. Curtiz’) and C Py = (genre = ‘drama’, ti ≻Py

tj , if and
only if, ti[director] = ‘M. Curtiz’ ∧ tj[director] = ‘A. Hitchcock’).

Note that the preceding specification just offers notational convenience, since such
preferences can also be expressed by the following qualitative preference: Given two
tuples ti, tj ∈ r, ti ≻P tj , if and only if, (ti[genre] = tj[genre] ∧ ti[genre] = ‘horror’
∧ ti[director] = ‘A. Hitchcock’ ∧ tj[director] = ‘M. Curtiz’) ∨ (ti[genre] = tj[genre] ∧
ti[genre] = ‘drama’ ∧ ti[director] = ‘M. Curtiz’ ∧ tj[director] = ‘A. Hitchcock’).

While little work has been done in databases, conditional preferences have been
studied extensively in artificial intelligence. A commonly used graphical notation for
their representation is a conditional preference network, or CP-net (e.g., Boutilier et al.
[2004]). CP-nets use conditional ceteris paribus (all else being equal) semantics. A CP-
net over a set of attributes A = {A1, . . . , Ad} is a directed graph in which there is a
node for each attribute in A. If an edge from an attribute Aj to an attribute Ai exists
in the graph, then Aj is an ancestor of Ai. Let Zi be the set of all ancestors of Ai.
Semantically, the preferences over Ai depend on the attributes Zi. Each attribute Ai is
annotated with a Conditional Preference Table, CPT, describing the preferences over
Ai ’s values given a combination of its ancestor values. That is, the CPT of Ai contains a
set of preference expressions of the form zi : ai1 ≻ ai2 , zi ∈ dom(Zi) and ai1 , ai2 ∈ dom(Ai).
This statement defines the conditional preference of ai1 over ai2 under context zi. In
particular, a tuple with ai1 is preferred over a tuple with ai2 when the value of Zi is zi,
only if the values of the remaining attributes are equal.

Example 10. Let us assume that Addison prefers comedies over dramas. Then, in
case of comedies, she prefers comedies directed by W. Allen over those directed by
M. Curtiz and in case of dramas, she prefers those directed by M. Curtiz over those
directed by W. Allen. Figure 8 depicts the CP-net for these preferences.

There are also a few recent proposals of using CP-nets to represent database pref-
erences. Hierarchical CP-nets introduced in Mindolin and Chomicki [2007] extend
CP-nets by adding, among others, attribute preferences; a preference over an at-
tribute is of higher priority than the preferences over the descendants of this attribute.
Thus, each edge of the net expresses both the conditional dependence and the relative

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:14 K. Stefanidis et al.

Fig. 9. Context hierarchies.

importance between different attributes. Ciaccia [2007] considers incomplete CP-nets
where preferences are only partially specified resulting in pairs of tuples being in-
comparable or indifferent in some contexts. For instance, assume that in the previous
example, the preference for directors in the context of comedies is not specified. This
approach proposes decoupling CP-nets from the ceteris paribus semantics used so far,
and using the totalitarian semantics that intuitively consider a tuple ti to be preferred
over tj if the value of ti at some attribute is preferred over the corresponding value of tj

and none of the other values of tj is preferred over that of ti (Pareto semantics). Finally,
Endres and Kießling [2006] consider translating a CP-net into an expression in the
formal preference language over strict partial orders of Kießling [2002] and introduce
a new preference constructor to capture the ceteris paribus semantics.

2.3.2. External Contextual Preferences. In an external contextual preference (C, P), the
context part C describes a situation outside the database. Common types of external
context include the computing context (e.g., network connectivity, nearby resources), the
user context (e.g., profile, location), the physical context (e.g., noise levels, temperature),
and time [Chen and Kotz 2000].

A simple way to model external context is through a finite set of special-purpose
attributes, called context parameters.

Definition 8. Given a set of context parameters C1, . . . , Cn with domains
dom(C1), . . . , dom(Cn), respectively, an external context C is an n-tuple of the form
(c1, . . . , cn), where ci ∈ dom(Ci).

Stefanidis et al. [2006] propose using context parameters that take values from
hierarchical domains thus allowing the definition of contextual preferences at various
levels of detail, for example preferences that hold at the level of a day or a month. This
model includes only a single context parameter in a context descriptor. Stefanidis et al.
[2007a] and Miele et al. [2009] describe contextual preferences using more than one
context parameter and over a set of external contexts.

Example 11. Assume the context parameters accompanying people and time period
and their corresponding hierarchies depicted in Figure 9. Say Addison enjoys comedies
when accompanied with friends during holidays. The context part of such a preference
is defined by (f riends, holidays).

External contexts, termed situations, are also discussed by Holland and Kießling
[2004]. Each context has an identifier cid and consists of a timestamp and location as
well as other influences, such as physical state, current emotion, weather conditions,
and accompanying people. External contexts are uniquely linked through an N:M
relationship with preferences. Therefore, each external contextual preference can be
described as a (cid, pid) relationship instance, expressing that preference pid holds in
context cid.

Finally, Bunningen et al. [2006] propose a knowledge-based contextual preference
model. Contextual preferences, called preference rules, have the form (C, P), where both
context and preference are description logics concept expressions.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:15

2.4. Preference Aspects

Preferences naturally come into different flavors and express different opinions and
desires. For example, a preference may express like (e.g., “I like going to movies”) or
dislike (e.g., “I do not like long movies”). It may capture a general rule (e.g., “I like
all comedies”) or a finer-grained taste (e.g., “I like comedies released after 2000 by
American directors”) and so forth. In what follows, we present a set of dimensions and
several types of preferences with the purpose of further understanding the expressivity
of existing preference models.

Uncertainty expresses our level of confidence on whether a particular preference
holds. To model uncertainty, fuzzy set theory [Zadeh et al. 1975; Zimmermann 1985]
is often used to represent qualitative fuzzy preferences (e.g., Orlovsky [1978] and
Ovchinnikov and Roubens [1992]). Given a relational schema R(A1, . . . , Ad) with
A = {A1, . . . , Ad} and dom(A) = dom(A1) × . . . × dom(Ad), a fuzzy preference rela-
tion FP is a pair (dom(A) × dom(A), μFP), where μFP : dom(A) × dom(A) → [0,
1] is a membership function that maps each pair of tuples (ti, tj) to [0, 1]. Intu-
itively, μFP(ti, tj) indicates the credibility of the preference ti ≻FP tj . For two tu-
ples ti, tj , μFP(ti, tj) = 0 means that ti ≻FP tj does not belong to the preference
relation, whereas μFP(ti, tj) = 1 indicates that ti ≻FP tj holds; all other values of
μFP indicate fuzzy membership. Note that for nonfuzzy preferences as defined by
Definition 1, μFP(ti, tj) ∈ {0, 1}, for all pairs (ti, tj) in dom(A) × dom(A). The typi-
cal properties of binary relations are translated to the fuzzy case. For example, for
reflexivity, μFP(ti, ti) = 1, ∀ti ∈ dom(A), while for irreflexivity, μFP(ti, ti) = 0, ∀ ti ∈
dom(A).

Intensity shows the degree of desire expressed in a preference and answers the
question of “how strong a preference is”. Synonym concepts are priority, significance,
and importance. Preferences can be loosely characterized as strong, weak, or moderate.
As we have discussed in Section 2.1, quantitative approaches capture intensity in their
score or degree of interest. For example, the preference (movie.genre = ‘drama′, 0.9) is
a strong preference compared to the weaker (movie.genre = ‘animation′, 0.3). On the
other hand, qualitative approaches can show intensity only in an abstract way by the
virtue of comparison.

Necessity corresponds to the satisfaction of a preference and answers to the ques-
tion “should the preference be met”. On the other hand, in the traditional Boolean
database query model, query conditions are by default considered hard constraints,
and a preference may be seen as optional. The degree of interest can again be used as
an indication of the necessity of a preference, however, an explicit distinction between
hard and optional preferences has also been proposed in the preference language of
Kießling and Köstler [2002].

Feeling answers to the question “how one feels about something”. Preferences may be
positive, that is, expressing like, negative, expressing dislike, or neutral if they convey
no particular taste. Neutrality can be explicitly captured by associating specific score
values with it, for instance, in Koutrika and Ioannidis [2005b] degree of interest equal
to 0 or in Agrawal and Wimmers [2000] the symbol ⊥.

Complexity describes the degree of detail of a preference expression and answers to
the question “how specific a preference is”. A preference may be generic or simple if
it refers to a single relationship or attribute of the entities of interest. For example, a
qualitative preference that compares a pair of entities based on a single attribute is a
simple preference. A compound preference jointly expresses a combination of simple
preferences to be concurrently met. For example, a preference for “comedies directed by
W. Allen after 2000” is a compound one expressing a very specific interest in a subclass
of comedies [Chomicki 2003].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:16 K. Stefanidis et al.

Fig. 10. A taxonomy of preference representations.

Attitude indicates whether a preference is associated with the existence (presence
preference) or absence of certain values or relationships (absence preference). For in-
stance, a preference for a movie being a comedy is a presence preference whereas a
preference for movies without violence is an absence one. Also, a veto expresses a pro-
hibition on the presence of a specific set of values in the elements of the answer to a
query [Agrawal and Wimmers 2000; Chomicki 2003].

Elasticity indicates how strict a preference is. An exact preference is either satisfied
exactly or not at all. Elastic preferences may be satisfied as closely as possible. Kießling
[2002] captures elastic preferences using special order and distance operators. For
example, the AROU ND(B, z) preference constructor denotes that tuples whose value
in B has the smallest distance from z are preferred. Another example elastic preference
is (movie.duration = 120min, Score(movie.duration, 120)), where Score() is a function
based on the distance of the actual duration of the movie from the desired duration
[Koutrika and Ioannidis 2005b]. Elasticity can be represented also qualitatively. For
example, (∀ ti, tj ∈ r, ti ≻P tj , if and only if, ti[year] > tj[year]∧tj[year] > 2000) expresses
a preference on recent movies as long as they are more recent than year 2000.

Note also that approximate queries, such as fuzzy (e.g., Fagin [1998]) or vague (e.g.,
Motro [1988]) queries, can be seen as a way to specify elastic preferences by specifying
target values. Again, in this case, tuples are ranked according to how close or similar
they are to the targets, based on appropriately defined distance metrics over their data
values.

2.5. Summary of Preference Representations

In short, we can categorize the various approaches to preference representation based
on the following dimensions: how preferences are formulated (formulation), at what
level they are expressed (granularity), under which conditions they hold (context), and
what they express (aspects). Preferences can be specified in either a qualitative or
quantitative way over tuples, relations, attributes, relationships, or facts. Context-free
preferences hold under all possible contexts, whereas contextual preferences hold in a
specific context that can be internal or external to the database. Finally, preferences can
be characterized based on various aspects, such as intensity, feeling, and complexity.
Figure 10 summarizes the various options in each dimension.

Table I compares preference representation approaches based on the formulation,
granularity, and context dimensions. Table II drills down to preference types and com-
pares approaches based on what preference aspects are captured at each granularity.
Most approaches focus on tuple preferences, whereas uncertainty is not captured. As

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:17

Table I. Preference Representation Approaches w.r.t. Preference Formulation, Granularity and Context

Formulation Granularity Context

Q
u

a
li

ta
ti

v
e

Q
u

a
n

ti
ta

ti
v
e

T
u

p
le

R
el

a
ti

on

A
tt

ri
b
u

te

R
el

a
ti

on
sh

ip

F
a

ct

C
on

te
x
t-

fr
ee

In
te

rn
a
l

E
x
te

rn
a
l

[Lacroix and Lavency 1987] � � �

[Zhang and Chomicki 2011] � sets �

[Chomicki 2002; 2003] � � � �

[Kießling 2002] � � � �

[Agrawal and Wimmers 2000] � � �

[Koutrika and Ioannidis 2004; 2005b] � � � �

[Agrawal et al. 2006] � � �

[Mindolin and Chomicki 2007] � � � �

[Ciaccia 2007] � � �

[Endres and Kießling 2006] � � �

[Stefanidis et al. 2006; 2007a] � � � �

[Holland and Kießling 2004] � � �

[Bunningen et al. 2006] � � �

[Georgiadis et al. 2008] � � � �

[Miele et al. 2009] � � � �

[Golfarelli et al. 2011] � � �

Table II. Preference Representation Approaches w.r.t. Preference Aspects (T = tuple, C = relation, A = attribute,
R = relationship)

Aspects

Intensity Necessity Feeling Complexity Attitude Elasticity

st
ro

n
g

w
ea

k

h
a

rd

so
ft

p
o
si

ti
v
e

n
eg

a
ti

v
e

in
d

if
fe

re
n

t

si
m

p
le

co
m

p
o
u

n
d

p
re

se
n

ce

a
b

se
n

ce

ex
a

ct

el
a

st
ic

[Lacroix and Lavency 1987] T T − T T − − T T T − T −

[Chomicki 2002; 2003], T T − T T − T T T T T T T

[Zhang and Chomicki 2011]

[Kießling 2002] T T − T T T − T T T T T T

[Agrawal and Wimmers

2000]

T T − T T − T T T T T T T

[Koutrika and Ioannidis

2004; 2005b; 2010]

T T TR TR T T T TR TR T T T T

[Agrawal et al. 2006] T T − T T − − T T T − T −

[Stefanidis et al. 2006;

2007a]

T T − T T − − T T T T T −

[Holland and Kießling 2004] T T − T T T − T T T T T T

[Bunningen et al. 2006] T T − T T − − T T T T T −

[Georgiadis et al. 2008] TA TA A T TA − TA T T TA − TA −

[Miele et al. 2009] TA TA A TA TA − − TA TA TA T TA −

it can be seen, there are many aspects of preferences still to be explored. In general, as
discussed, the qualitative approach is more general than the quantitative approach.
However, by using scores, quantitative approaches can express explicitly “how much”
one tuple is preferred over another, that is, the intensity of a preference. Both Chomicki
[2003] and Kießling [2002] support qualitative preferences. Chomicki [2003] offers a
logical framework for formulating preferences, whereas Kießling [2002] takes an alge-
braic approach by defining preferences as strict partial orders through the application
of a number of preference constructors. We have also marked the work in Kießling
[2002] as quantitative, since there is an explicit mention of scoring functions as basic
constructs and a combining function for composing them.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:18 K. Stefanidis et al.

(a) Px (b) Py (c) Px&Py (d) Px ⊗Py

Fig. 11. Example of prioritized and Pareto composition.

3. PREFERENCE COMPOSITION

Given a set of preferences, there is a number of different composition methods or
mechanisms for combining them to determine a single preference among the affected
tuples. This issue arises when aggregating different preferences of a single person
(individual preference modeling) as well as when combining preferences of different
people (group preference modeling). In the former case, the different preferences of a
user may be based on a number of different criteria that need to be combined, whereas in
the latter case the final ranking seeks to reach a consensus among the group members.
Note that a set of preferences may order the same pair of tuples differently. This
situation is sometimes called a conflict.

One way to distinguish composition methods is based on attitude. Let Px and Py be
two preferences, we may have the following two attitudes. In the overriding attitude,
one of the preferences, say Px, is given priority over the other, meaning that Py is
applicable only when Px is not. In the combinatory attitude, both Px and Py contribute
to the final ranking. As with preference representation, composition mechanisms can
also be distinguished as qualitative or quantitative. Qualitative composition mecha-
nisms produce a final pair-wise order of the tuples, whereas quantitative composition
mechanisms assign an aggregated score to each tuple.

In the rest of this section, we present qualitative (Section 3.1) and then quantitative
(Section 3.2) mechanisms for composing tuple preferences. We also outline mechanisms
from the related area of rank aggregation (Section 3.3). Finally, we discuss composing
preferences of different granularity (Section 3.4).

3.1. Qualitative Composition

Next, we describe qualitative mechanisms for composing preferences defined qualita-
tively using preference relations. Such mechanisms are also applicable to preferences
defined quantitatively using functions or degrees of interest. Simply, recall that each
fP defines a preference relation ≻P , such that fP(ti) > fP(tj) ⇔ ti ≻P tj .

3.1.1. Prioritized Preference Composition. Given two preference relations Px and Py, in
prioritized composition, one of them, say Px, is given priority over the other.

Definition 9. Let Px and Py be two preference relations defined over the same rela-
tional schema R. The prioritized preference composition relation ≻Px&Py

is defined over
R, such that, ∀ ti, tj of R, ti ≻Px&Py

tj if and only if (ti ≻Px
tj) ∨ (ti ∼Px

tj ∧ ti ≻Py
tj).

The intuitive meaning of prioritized composition is: use Py only if Px is not appli-
cable. An example is shown in Figure 11, where the preference graph in Figure 11(c)
represents the preference relation resulting from the prioritized composition of Px and
Py represented by the preference graphs shown in Figures 11(a) and 11(b) respectively.
Consider also the following example that uses logical formulas.

Example 12. Addison prefers drama movies over horror movies (preference P3) and
long movies over short ones (preference P4). P3 can be defined using logical formulas
as: ti ≻P3

tj , if and only if, ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’. P4 can be expressed

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:19

as: ti ≻P4
tj , if and only if, ti[duration] > tj[duration]. The prioritized preference P3&P4

can be defined as: ti ≻P3&P4
tj , if and only if, (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’) ∨

(ti[genre] �= ‘drama’ ∧ ti[duration] > tj[duration]) ∨ (tj[genre] �= ‘horror’ ∧ ti[duration] >

tj[duration]). Now, for the movie relation of Figure 2, under P3&P4, t3 is preferred over
t1 which is in turn preferred over t2.

Prioritized composition may also be applied on preference relations defined over
different relational schemas. In this case, it is called lexicographical composition.

Definition 10. Let Px and Py be two preference relations defined over relational
schemas R and R′ with attribute domains dom(A) and dom(A′), respectively. The lexi-
cographical preference composition relation ≻Px&Py

defined over the Cartesian product
R × R′ is a subset of dom(A) × dom(A′), such that (ti, t′

i) ≻Px&Py
(tj, t′

j) if and only if

(ti ≻Px
tj) ∨ (ti ∼Px

tj ∧ t′
i ≻Py

t′
j),

where ti, tj are tuples of R and t′
i , t′

j tuples of R′.

A special form of prioritized composition is achieved through preference overriding.
The general idea is that in cases where two preferences Px and Py are both applicable
but one of them, say Px is applicable to a subset of the cases that Py is, then priority
is given to Px over Py for this subset. To make this concrete, let Px and Py be two
preferences on R defined using preference formulas PFx and PFy respectively (Defini-
tion 2), that order two tuples ti and tj differently, say ti ≻Px

tj and tj ≻Py
ti. Preference

Px is called specific if ∀ti, tj , PFx(ti, tj) ⇒ PFy(tj, ti). Preference Py is called generic.
Preference Px is given priority over Py, that is, Py is used only when Px does not apply.

Example 13. Addison prefers comedies over westerns only when directed by
W. Allen, that is, (∀ ti, tj ∈ r, ti ≻Px

tj if and only if ti[genre] = ‘comedy’ ∧ ti[director] =
‘W. Allen’ ∧ tj[genre] = ‘western’), otherwise, she prefers westerns over comedies that
is, (∀ ti, tj ∈ r, ti ≻Py

tj , if and only if, ti[genre] = ‘western’ ∧ tj[genre] = ‘comedy’). The
former is a specific preference applicable to a subclass of comedies overriding the latter
generic preference about comedies, thus it is given priority.

When a preference Px is defined using a condition CPx
(Definition 4), we can view

it as a possible conjunctive query QPx
which selects tuples from R that satisfy CPx

.
Given this correspondence, Koutrika and Ioannidis [2010] define preference overriding
using conjunctive query subsumption, that is, query containment. Given two prefer-
ences Px and Py defined on the same relational schema R using condition CPx

and CPy

respectively, Py is overridden by Px, if QPx
is subsumed by QPy

, that is, for all database
instances, every answer to QPx

is an answer to QPy
, that is, QPx

⊆ QPy
.

3.1.2. Pareto Preference Composition. In Pareto composition, the involved preference re-
lations are considered equally important.

Definition 11. Let Px and Py be two preference relations defined over the same
relational schema R. The Pareto preference composition relation ≻Px⊗Py

is defined over
R, such that, ∀ ti, tj of R, ti ≻Px⊗Py

tj if and only if (ti ≻Px
tj ∧ ¬(tj ≻Py

ti)) ∨ (ti ≻Py

tj ∧ ¬(tj ≻Px
ti)).

Note that for two tuples t1 and t2 and a preference relation P, ¬(t1 ≻P t2) ≡ (t2 ≻P t1
∨ t1 ∼P t2). Intuitively, under Pareto composition, a tuple is better than (or dominates)
another if it is at least as good (i.e., not worse) under one preference and strictly better
under the other. For instance, given the preference graphs of two preferences Px, Py

(Figures 11(a), 11(b)), Figure 11(d) depicts the preference graph of Px ⊗ Py. As another
example, consider the following.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:20 K. Stefanidis et al.

Example 14. The Pareto preference P3 ⊗ P4 (P3 and P4 are defined earlier) can
be defined as: ti ≻P3⊗P4

tj if and only if (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’
∧ ti[duration] ≥ tj[duration]) ∨ (ti[duration] > tj[duration] ∧ tj[genre] �= ‘drama’) ∨
(ti[duration] > tj[duration] ∧ tj[genre] = ‘drama’ ∧ ti[genre] �= ‘horror’). For the movie
relation of Figure 2, under P3 ⊗ P4, t3 is preferred over t1, and t1, t2 are incomparable.

Pareto composition is also applicable to relations defined over different schemas.

Definition 12. Let Px and Py be two preference relations defined over the relational
schemas R and R′ with attribute domains dom(A) and dom(A′), respectively. The mul-
tidimensional Pareto preference relation ≻Px⊗Py

defined over the Cartesian product
R × R′ is a subset of dom(A) × dom(A′), such that (ti, t′

i) ≻Px⊗Py
(tj, t′

j) if and only if

(ti ≻Px
tj ∧ ¬(t′

j ≻Py
t′
i)) ∨ (t′

i ≻Py
t′

j ∧ ¬(tj ≻Px
ti)), where ti, tj are tuples of R and t′

i , t′
j

tuples of R′.

3.1.3. Set-Oriented Preference Composition. Set-oriented preference composition is appli-
cable only between preferences defined over the same relational schema. The resulting
relation corresponds to the intersection, set difference, or union of the two preference
relations. Recall that preference relations are defined as binary relations, that is, as
sets.

In particular, given the relations Px and Py, the intersection preference relation
≻Px∧Py

corresponds to ≻Px
∩ ≻Py

. More precisely, we have what follows.

Definition 13. Let Px and Py be two preference relations defined over the same
relational schema R. The intersection preference relation ≻Px∧Py

is defined over R,
such that, ∀ ti, tj of R, ti ≻Px∧Py

tj if and only if ti ≻Px
tj ∧ ti ≻Py

tj .

Example 15. The intersection preference P3 ∧ P4 can be expressed as: ti ≻P3∧P4
tj if

and only if (ti[genre] = ‘drama’ ∧ tj[genre] = ‘horror’) ∧ (ti[duration] > tj[duration]). For
instance, for the movie relation in Figure 2, t3 is preferred over t2 under P3 ∧ P4.

The difference preference relation ≻Px−Py
corresponds to set difference ≻Px

− ≻Py
,

and the union preference relation ≻Px+Py
corresponds to union ≻Px

∪ ≻Py
. Formally, we

have the next definition.

Definition 14. Let Px and Py be two preference relations defined over the same
relational schema R. The difference preference relation ≻Px−Py

is defined over R, such
that, ∀ ti, tj of R, ti ≻Px−Py

tj if and only if ti ≻Px
tj ∧ ¬(ti ≻Py

tj).

Definition 15. Let Px and Py be two preference relations defined over the same
relational schema R. The union preference relation ≻Px+Py

is defined over R, such that,
∀ ti, tj of R, ti ≻Px+Py

tj if and only if ti ≻Px
tj ∨ ti ≻Py

tj .

Set-oriented composition can be extended to apply between preference relations de-
fined over different but union-compatible relational schemas [Kießling 2002]. Let ≻Px

be a preference relation over Rx with dom(Ax) and ≻Py
be a preference relation over Ry

with dom(Ay), where Rx and Ry are union-compatible and their domains are disjoint, for
example, dom(Ax) ∩ dom(Ay) = ∅. The linear sum preference relation ≻Px⊕Py

is defined
over a new relation schema Rw with domain dom(Ax) ∪ dom(Ay), such that, ∀ ti, tj in
Rw, ti ≻Px⊕Py

tj if and only if ti ≻Px
tj ∨ ti ≻Py

tj ∨ (ti ∈ dom(Ax) ∧ tj ∈ dom(Ay)).

3.1.4. Transitive Closure. The transitive closure of a preference relation is defined as
follows [Chomicki 2003].

Definition 16. Let ≻P R be a preference relation defined over a relational schema R
and ti, tj be two tuples of R. The transitive closure of ≻P R is a preference relation ≻P R∗

over R defined as: ti ≻P R∗ tj if and only if ti ≻n
P R tj , n > 0, where:

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:21

(i) ti ≻1
P R tj ≡ ti ≻P R tj and

(ii) ti ≻n+1
P R tj ≡ ∃tk, such that ti ≻P R tk ∧ tk ≻n

P R tj .

An important point is that when preference relations are defined using formulas, the
transitive closure is not defined as the closure of a finite relation as is the case of a
database instance. Ross et al. [2007] introduce a constraint language for expressing the
preference formulas PFs that allows comparison and a limited form of arithmetic. They
prove that the transitive closure computation of a partial-order preference relation
expressed using their language terminates. They also provide estimations for the size
of the transitive closure for Pareto, prioritized, and intersection composition.

3.1.5. Discussion. Let us first see which of the various kinds of orders are preserved
by each composition type [Chomicki 2003]. Prioritized and lexicographical composition
preserve total, and weak orders, but not strict partial orders. Pareto composition does
not preserve weak, total, or strict partial orders. Set-oriented composition operators
do not preserve weak and total orders. Strict partial order is preserved by intersection
but not by set difference or union, whereas linear sum composition as well as union for
disjoint domains (called disjoint union) preserve strict partial orders.

Note that the provided definitions of the various types of qualitative compositions use
the indifference relation ∼P . There are corresponding definitions for the substitutable
relation ≃P [Kießling 2005] and for the “at least as preferable” relation �P [Georgiadis
et al. 2008] (as defined in Section 2.1.3). For these definitions, strict partial orders are
preserved. For example, lexicographical composition is extended for the “at least as
preferable” relation as follows: [Georgiadis et al. 2008]: (i) (ti, t′

i) ≻Px&Py
(tj, t′

j) if and

only if (ti ≻Px
tj) ∨ (ti ≃Px

tj ∧ t′
i ≻Py

t′
j), (ii) (ti, t′

i) ≃Px&Py
(tj, t′

j) if and only if ti ≃Px
tj ∧

t′
i ≃Py

t′
j , and (iii) (ti, t′

i) ||Px&Py
(tj, t′

j) otherwise. Similarly, Pareto composition for the “at

least as preferable” relation �P is defined as [Georgiadis et al. 2008]: (i) (ti, t′
i) ≻Px⊗Py

(tj, t′
j) if and only if (ti ≻Px

tj ∧ t′
i �Py

t′
j) ∨ (t′

i ≻Py
t′

j ∧ ti �Px
tj), (ii) (ti, t′

i) ≃Px⊗Py
(tj, t′

j) if

and only if (ti ≃Px
tj ∧ t′

i ≃Py
t′

j), and (iii) (ti, t′
i) ||Px⊗Py

(tj, t′
j) otherwise.

So far, we have defined qualitative composition between two preference relations.
Since the result of composition is a new preference relation, clearly we can compose
any number of preference relations by gradually applying a sequence of the same
or different composition operators. However, the semantics of an n-ary composition,
n > 2, depend on whether the corresponding operators are associative. For example,
whereas prioritized composition is associative, Pareto composition is not. The preceding
extension of Pareto composition is also associative.

In terms of treating conflicts, the different composition mechanisms reflect different
user attitudes towards resolving them. For instance, union ignores conflicts and thus
such conflicts need to be prevented if we want to obtain a preference relation which is a
strict partial order. Prioritized composition resolves preference conflicts by consistently
giving priority to one of the preference relations, whereas Pareto composition reconciles
direct conflicts between pairs of tuples.

Chomicki [2007a] defines different types of conflicts based on whether when elimi-
nated by prioritized or Pareto composition, they reappear if the resulting relation is
closed by transitivity. A 0-conflict between two preference relations ≻Px

and ≻Py
is a

pair ti, tj , such that ti ≻Px
tj and tj ≻Py

ti. A 1-conflict between ≻Px
and ≻Py

is a pair ti,
tj , such that ti ≻Px

tj , and there exists s1, . . . , sk, k ≥ 1, such that (tj ≻Py
s1) ∧ . . . ∧ (sk

≻Py
ti) and ¬(ti ≻Px

sk) ∧ . . . ∧ ¬(s1 ≻Px
tj). A 2-conflict between ≻Px

and ≻Py
is a pair

ti, tj , such that there exists s1, . . . , sk, k ≥ 1, and w1, . . ., wm, m ≥ 1, such that (tj ≻Py

s1) ∧ . . . ∧ (sk ≻Py
ti), ¬(ti ≻Px

sk) ∧ . . . ∧ ¬(s1 ≻Px
tj), (ti ≻Px

w1) ∧ . . . ∧ (wm ≻Px
tj) and

¬(tj ≻Py
wm) ∧ . . . ∧ ¬(w1 ≻Py

ti). For strict partial orders, it was shown that prioritized

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:22 K. Stefanidis et al.

composition resolves those 0-conflicts that are not 1-conflicts, while Pareto composition
resolves those 1-conflicts that are not 2-conflicts.

3.2. Quantitative Composition

A general quantitative way of composing preferences that are expressed quantitatively
is by applying a function to combine the scores assigned to a tuple by each of the
preferences.

Definition 17. Given two preferences Px, Py over R defined through preference func-
tions fPx

, fPy
respectively and a combining function F : R × R → R, ∀ ti, tj in R,

ti ≻rankF (Px,Py) tj if and only if F(fPx
(ti), fPy

(ti)) > F(fPx
(tj), fPy

(tj)).

Example 16. Assume preference P5 with scoring function fP5
(ti) = 0.001 ×

ti[duration] and preference P6 with scoring function fP6
(ti) = 0.0001 × ti[year]. A com-

monly used combining function is weighted summation. For example, the numerical
preference rankF(P5, P6) with combining function F(fP5

(ti), fP6
(ti)) = 0.1× fP5

(ti)+0.9×
fP6

(ti) combines the two preferences by assigning weight 0.1 to P5 and weight 0.9 to P6.
In this case, tuples t1, t2, t3 of the movie relation of Figure 2 get the combined scores
0.185, 0.187, and 0.199, respectively.

Besides weighted summation or average, other commonly used combining functions
are “min” and “max”. Agrawal and Wimmers [2000] propose a generic combine operator
as part of their formal preference framework. The operator can be instantiated by
different combining functions, called value functions, to yield specific instances of the
combine operator. The result of combining preferences is a preference, thus providing
the closure property.

In Fagin [1996, 1998], several combining functions are considered for multimedia
databases where each tuple is assigned a score s ∈ [0, 1] based on how well it satisfies
an atomic query. The objective is to compute an aggregated score for each tuple based
on how well the tuple satisfies a boolean combination (disjunction or conjunction) of
such atomic queries. A combining function F is a triangular norm if it is monotonous,
commutative, associative, and also preserves conjunction expressed by the following
boundary conditions: F(0, 0) = 0 and F(s, 1) = F(1, s) = s. A combining function F is
a triangular conorm if it is monotonous, commutative, associative, and also preserves
disjunction expressed by F(1, 1) = 1 and F(s, 0) = F(0, s) = s. Triangular norms and
triangular conorms are duals. For example, the “min” function is a triangular norm with
conorm the “max” function. Another related property is strictness, where a combining
function is strict if it takes its maximum value precisely when all its arguments take
their maximum values.

Koutrika and Ioannidis [2005b] distinguish combining functions to be: (i) inflation-
ary, when the score of a tuple that satisfies multiple preferences together increases
with the number of these preferences; (ii) dominant, when the score assigned by one
of the preferences dominates; and (iii) reserved, when the combined score of each tuple
lies between the highest and the lowest scores assigned to it.

Independently of the type of the combining function, Fagin and Wimmers [2000]
provide a formula for mapping an unweighted combination of preference functions to
a weighted one. This formula has three properties: (i) if all weights are equal, the
weighted combining function coincides with the unweighed one, (ii) if a weight is zero,
the value of the function associated with this weight does not affect the resulting score,
and (iii) the resulting score is a continuous function of the weights.

Analogously to prioritized and Pareto composition, numerical composition may
be applied to preferences defined over different schemas (e.g., Hristidis and
Papakonstantinou [2004] and Ilyas et al. [2004a]).

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:23

Definition 18. Given two preferences Px, Py defined over R, R′ through prefer-
ence functions fPx

, fPy
, respectively, and a combining function F : R × R → R,

(ti, t′
i) ≻rankF (Px,Py) (tj, t′

j) if and only if F(fPx
(ti), fPy

(t′
i)) > F(fPx

(tj), fPy
(t′

j)), where ti,

tj are tuples of R and t′
i , t′

j are tuples of R′.

3.3. Rank Aggregation

A topic related to preference composition is rank aggregation, which refers to the fol-
lowing problem: given m different ordered lists or rankings of a set of items, how
to produce a single ranking of the items. An instance of rank aggregation known as
social choice studies the problem of determining the ranking of alternatives that is
best for a group given the individual opinions of its members. Social choice has been
studied extensively in economics, politics, sociology, and mathematics (e.g., Condorcet
[1785] and Taylor [1995]). Rank aggregation is also studied in the Web, for example,
in metasearch, where ranked lists of Web pages produced by different search engines
need to be combined into a single one (e.g. Dwork et al. [2001] and Cohen et al. [1999].
In database middleware, a related problem refers to finding the most preferred objects
when there are multiple rankings based on preferences defined on different attributes
or dimensions of these objects (e.g., Fagin et al. [2001]). In recommendation systems,
collaborative filtering combines known preferences of a group of users to predict pref-
erences for new similar users or unrated items (e.g., Adomavicius and Tuzhilin [2005]).
Next, we outline some of the proposed methods for rank aggregation and how they can
be applied to compose preferences.

In the context of social choice, Condorcet [1785] outlines a generic method designed
to simulate pair-wise elections in a voting system. The criterion for selecting an item
x as a winner is that for all other items y, x is preferred over y by the majority. In the
context of preferences, for example, this criterion can be used to compose preference
relations qualitatively, as follows.

Definition 19. Let SP be a set of preference relations defined over the same rela-
tional schema R. The majority aggregation preference relation ≻mp is defined over R,
such that ∀ ti, tj ∈ R, let P1 ⊆ SP be the set of preference relations Px such that ti ≻Px

tj ,
and P2 ⊆ SP be the set of preference relations Py such that ¬(ti ≻Py

tj), then ti ≻mp tj if
and only if |P1| > |P2|.

Another example from voting theory is the approach proposed by Borda [1781]. In
preference composition terms, it suggests a combining function that assigns as a final
score to each item the sum of its positions in the initial mrankings. Yet another proposal
from voting theory is to rank each tuple t based on both the number of tuples that t
dominates and the number of tuples t is dominated by. This is also known as the
Copeland index.

Masthoff [2004] reviews different aggregation strategies or functions for group pref-
erence modeling. Group preference modeling has been recently discussed by Amer-
Yahia et al. [2009], in the context of group recommendations. Given a set of rankings
representing recommendations for individual users, group recommendations are com-
puted by aggregating the rankings using a consensus function that takes into account
both the tuples degrees of interest for the users and the level at which users disagree
with each other. Different strategies are used, such as the least misery, where the idea
is that a group is as happy as its least happy member.

The rank aggregation problem can also be formalized as follows.

Definition 20. Given m ordered list of items, find an ordered list σ of the union of
the items appearing in all m lists such that σ has the minimum total distance from the
m lists.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:24 K. Stefanidis et al.

A list is called full if it includes all items. Well-studied distance metrics between two
full ordered lists include the Spearman footrule distance that measures the sum of the
differences in positions of the items in the two lists, and the Kendall tau distance that
counts the pair-wise disagreements between the two lists. The aggregation obtained
by optimizing the Kendall distance, called Kemeny optimal aggregation, corresponds
to the geometric median of the input lists. Computing this aggregation was shown
to be NP-hard and appropriate heuristics have been developed in the context of Web
search for reducing Web spam based on local Kemenization [Dwork et al. 2001]. These
heuristics essentially push Condorcet losers to the bottom of the final ranking. It was
also shown that a good heuristic for the footrule optimal aggregation is to sort all
items by the median of their positions in all m ranks. This is actually optimal if all
median positions are distinct. The optimal distance-based formulation of the aggrega-
tion problem is considered for the case of ranking with ties in Fagin et al. [2006, 2004;
2003]. Appropriate metrics are proposed that generalize the Spearman footrule and
the Kendall tau distances by either breaking ties in all possible ways or summarizing
the rankings into compact vectors. Efficient polynomial-time algorithms are presented
for the computation of all proposed metrics.

A majority-based approach is taken in Cohen et al. [1999] in the context of Web. The
input in this case is a set of binary preference relations and the goal is to find a total
order of all items that maximizes the number of pair-wise agreements. The problem
is shown to be NP-complete and a greedy heuristic is proposed that approximates this
optimal total order by assigning to each item a score based on the Copeland index.

3.4. Combining Preferences of Different Granularity

The mechanisms presented in the previous sections compose preferences for tuples. In
this section, we study composition of preferences of different granularity.

In the preference model of Koutrika and Ioannidis [2005b], user preferences are
expressed at the tuple and relationship level. Recall that in this model, preferences are
expressed as (Condition, Score) pairs where Condition is a logical formula and Score
is the score assigned to tuples satisfying Condition (Definition 4). Two preferences Px

and Py are composeable if and only if: (i) Px is a join preference of the form (qx, dx)
connecting Rx to a relation Ry, and (ii) Py is a join or selection preference (qy, dy) on Ry.

Definition 21. An implicit preference (q, d) defined from two composeable prefer-
ences Px and Py, is a preference on R ≡ Rx, such that: (i) q is the conjunction of the
conditions qx and qy and (ii) d is a score which is the result of a combining function f
of the degrees of interest of the two preferences, that is, d = f (dx, dy).

The combining function f used to compute d is usually a nonincreasing function,
such as the product or the minimum of the degrees of interest dx and dy, on the ground
that it cannot exceed the degrees of interest of its supporting preferences.

Example 17. Addison likes actress J. Roberts, captured by the selection preference:
(actor.name = ‘J. Roberts′, 0.8). Moreover, she has expressed specific preferences over
joins between the relations of the database schema (Figure 1). In particular, she con-
siders the actor of a movie to be very important and hence, she has provided the join
preferences: (movie.mid = play.mid, 0.9) and (play.aid = actor.aid, 1). We can define
an implicit preference for movies with J. Roberts, by for example, taking as a final
score the product of the degrees of interests, as follows: (movie.mid = play.mid and
play.aid = actor.aid and actor.name = ‘J. Roberts′, 0.72).

Georgiadis et al. [2008] define preferences between both (i) values of specific at-
tributes (tuple level) and (ii) attributes themselves (attribute level). Attribute-level

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:25

Table III. Preference Composition w.r.t. Attitude

Attitude
Overriding Combinatory

Qualitative prioritized, lexicographical
Pareto, multidimensional Pareto, intersection, difference,
union, disjoint union, linear sum, majority aggregation

Quantitative – max, min, avg, weighted average

preferences are used to select the appropriate mechanisms for composing tuple prefer-
ences. The following example illustrates this.

Example 18. Consider the movie instance of Figure 2 and the preferences:
(i) A. Hitchcock is preferred over M. Curtiz or S. Spielberg (preference PD), (ii) hor-
ror movies are preferred over drama movies (preference PG), and (iii) the director of a
movie is equally important with its genre (preference PDG). To combine preferences PD

and PG, the proposed model selects the Pareto preference composition PD ⊗ PG, since,
as expressed by the third preference, PD and PG are equally important. Then, with
regards to PD ⊗ PG, t2 is preferred to t1 and t3, and t1, t3 are incomparable.

3.5. Summary of Preference Composition

Given a set of preferences, preference composition seeks to combine them. The pref-
erences to be composed may correspond to variant interests of a single user or to
preferences of a group of users that need to be aggregated to express the group as a
unit. With the increasing popularity of social networks, since users’ interests are in
general diverse, composition is central for the success of personalization.

Table III summarizes composition mechanisms for tuple preferences. In general, com-
position reflects different user attitudes towards reconciling preferences and resolving
conflicts. Compositions operators differ also on whether they preserve the properties
of the preferences that they compose. Preserving specific properies is critical for pro-
viding sound theoretical formalisms. The resulting composed preference may be either
expressed qualitatively or quantitatively. As discussed, any composition mechanism
defined over preference relations can be also applied to preferences defined using func-
tions (or degrees of interest). However, most approaches follow a pure qualitative or
quantitative approach for preference representation and composition. For example,
if one approach represents preferences using scoring functions then it also combines
preferences using scoring functions. Besides mechanisms for composing tuple prefer-
ences, composition mechanisms for preferences of different granularity have also been
considered, for example, for composing preferences for tuples with preferences for at-
tributes. Although preferences could be used to express interest on specific composition
approaches, this is an issue that is not fully explored. For example, this is implicitly
achieved through preferences on attributes in Georgiadis et al. [2008].

4. PROCESSING PREFERENCE QUERIES

Preferences are used in query processing to provide users with customized answers,
usually by changing the order and possibly the size of results. We organize methods for
integrating preferences with queries into two general groups.

—Query expansion methods. These methods intend to personalize a given query by
expanding it to include preferences, for example, by adding selection conditions that
express user preferences on specific attribute values.

—Methods with special preference operators. These methods use special preference
operators to explicitly specify preferences along with each query. Such preference
operators are either implemented inside the database engine or translated to existing
logical or physical operators.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:26 K. Stefanidis et al.

We can further distinguish preference queries based on how preferences are integrated
in a database query. In general, preferences are considered soft constraints as opposed
to the selection conditions of the original query. This is the approach taken by most
of the methods that use special preference operators. In contrast, in Koutrika and
Ioannidis [2005a, 2005b], the original query is expanded with additional conditions
inferred by the user preferences, thus, in a sense, preferences are treated as hard
constraints. Another distinction between preference queries can be based on whether
they result on a qualitative or a quantitative ranking of the output. In the former case,
the dominant tuples are returned, whereas in the latter, a score is associated with each
tuple in the result.

In the rest of this section, we study first query processing techniques related to
methods that expand database queries (Section 4.1) and then issues related to using
special preference operators (Section 4.2), including top-k queries (Section 4.3). We also
discuss methods for improving performance through preprocessing steps (Section 4.4).

4.1. Expanding Database Queries

In this case, the existence of a predefined set of user preferences, often called user
profile, is assumed. This set is used to expand regular database queries with conditions
that express such preferences. In doing so, there are three basic steps.

(1) Determining preference relatedness. The first step involves determining which pref-
erences are related and hence applicable to a given query.

(2) Filtering-related preferences. In some cases not all related preferences should be
used, and thus, an extra step is needed for identifying which of these preferences
should be integrated into the query.

(3) Preference query formulation. Finally, the query is expanded with the selected
preferences.

4.1.1. Preference Relatedness. There are many different ways of defining the relevance
of a preference to a query. Let (C, P) be a preference, indicating that P is defined for
context C, which can be internal, external (or both), or null if the preference is context-
free (in which case, we could simply write P). Similarly, let (CQ, Q) be a user query
Q formulated over the database, where CQ indicates the external context of Q and is
null if no external context is specified. CQ is formulated using the same set of context
parameters that are used for the external part of C.

Definition 22. A preference (C, P) is related to a query (CQ, Q) if: (i) the external
part of context C matches the external query context CQ and the internal part of the
context C (if any) matches Q, and (ii) the preference part P is relevant to (a subset of)
the results of Q.

—Context Matching. To determine how well the context of a preference matches the
context of a query, a measure of the distance, similarity, or difference between contexts
is used. This measure depends on the type of context. A commonly used approach is to
adopt a vector representation for context and then apply known distance metrics.

In the case of internal context, the context C of a preference specifies conditions that
the tuples of a database instance r must satisfy for P to hold. This context must match
the query Q. As an example of a vector-based approach for this case, we consider the
approach in Agrawal et al. [2006]. Let R = {A1, . . . , Ad} be a relational schema. In
this model, a preference has the form (C, P), where C is a logical formula expressing
conditions on the values of the attributes that must be satisfied for P to hold, specifically
C = ∧ j∈L(Aj = aj), L ⊆ {1, . . . , d} and aj ∈ dom(Aj). Q is a conjunctive query. Let D be the
set of all N distinct < attribute, value > pairs appearing in an instance r of R. We refer
to the i-th element of D by D[i]. A vector representation of C is a binary vector VC of size

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:27

N whose i-th element corresponds to D[i]. If D[i] appears among the conjunctions of C,
then VC[i] = 1; otherwise it is 0. Analogously, the vector representation of Q is a binary
vector VQ of size N, where VQ[i] = 1, if D[i] is one of the conjuncts in Q; otherwise it is
0. The similarity of C and Q is then defined using their vector representations VC and
VQ as follows.

sim(C, Q) = cos(VC, VQ) =
VC · VQ

|VC ||VQ|

In the case of external context, the external context of a preference must match
that of the query. A special case applies when the context parameters take values
from hierarchical domains (e.g., the hierarchies in Figure 9). Then, it is possible to
compare contexts expressed at different levels of abstraction using the notion of cov-
erage [Stefanidis et al. 2007a]. For instance, we can relate a context in which the
parameter time period is instantiated to a specific occasion (e.g., Christmas) with a
context in which the same parameter is expressed with a more general period (e.g.,
holidays). Based on coverage, we can relate the external context of a preference (C,
P) to the context CQ of a query, if C is more general than CQ, that is, if the context
values specified in C are equal to, or more general than the ones in CQ [Stefanidis et al.
2007a; Miele et al. 2009]. This can be generalized as follows. A context C is related
to a query context CQ, if C is relaxing zero or more parameters of CQ in any of the
following ways [Stefanidis et al. 2007b]: upwards by replacing its value by a more gen-
eral one, downwards by replacing its value by a set of more specific ones, or sideways
by replacing its value by sibling values in the hierarchy. Given all these possible re-
laxations, appropriate distance metrics that exploit the number of relaxed parameters
and the associated depth of such relaxations are employed to measure how well context
C matches CQ.

Bunningen et al. [2006] consider query expansion using external contextual pref-
erences where contexts and preferences are defined through description logic concept
expressions. Contextual preferences are considered relevant to a query if their contexts
are the same with or more general than the query context and their preferences con-
tain concepts which can be mapped to certain relations of the query. Stefanidis et al.
[2010] define a qualitative preference model with internal context for keyword search
in relational databases. Both context and queries are sets of keywords. A preference is
considered related to a query if its context is the same with or more general than the
query (i.e., contains a subset of the query keywords).

—Preference Relevance In general, a preference is relevant to a query if, when com-
bined with a query, it yields an interesting, nonempty result. For example, consider a
preference P on the genre of a movie and a query Q about actors born before 1900.
Should P be used in evaluating Q perhaps by ranking the actors in the result of Q
based on the genre of the movies in which each actor appears? Furthermore, in iden-
tifying relevant preferences, should we consider just the given set of preferences or
also possible compositions of them? There is no single definition of relevance. Koutrika
and Ioannidis [2004] consider both explicit and implicit (i.e., composed) preferences as
relevant, if they map to a path on the database graph attached to a relation included
in the query.

Applicability is a special form of relevance, when preferences are considered hard
constraints. A preference P is applicable to a query Q, if the execution of Q combined
conjunctively with P (over the current database instance) yields a nonempty result.
This may be also called instance applicability. For example, consider a query about
recent movies and a preference for movies directed by S. Spielberg. This preference
is instance applicable only if the database contains recent entries of this director. In

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:28 K. Stefanidis et al.

general, instance applicability can only be checked by actually executing the query
with the preference.

Another type of applicability is semantic applicability. A preference P is not seman-
tically applicable to a query Q if the execution of Q combined conjunctively with P
over any database instance yields an empty result. To decide whether a preference is
semantically applicable to a query, knowledge outside the database may be needed. As
an example, take a query about comedies. Then, a preference for movies directed by
A. Tarkovsky is not semantically applicable to this query, since this director has not
directed any comedies. Note that if a preference P is instance applicable to a query
Q, then it is also semantically applicable to Q. The reverse does not always hold. In
some special cases, the applicability of a preference P to a query Q can be determined
simply by a syntactic analysis of P and Q. For example, a query about movies released
after 2000 and a preference for movies released prior to 1990 are conflicting and will
return an empty result when combined through a conjunction. On the other hand, a
preference for movies with actor B. Stiller is syntactically applicable to a query for
movies with J. Roberts. Note that a preference P that is syntactically applicable to Q
is not necessarily instance applicable. However, the reverse always holds.

4.1.2. Preference Filtering. All preferences related to a query may be used for rank-
ing and selecting the tuples returned by the query. Alternatively, preferences can be
ranked based on their preference score (showing their intensity) or their relatedness
score (capturing the degree to which a preference is related to a query based on some
context matching function, their relevance to query, or both). Then, the best of them
are selected. Note that selecting too many preferences may lead to overrestricting the
result, while selecting too few may not suffice to express the initial user intent.

Koutrika and Ioannidis [2004] propose an algorithm for selecting at query time the
top K (explicit and implicit) preferences based on their preference score. Preference
filtering has been also modeled as an optimization problem with constraints [Koutrika
and Ioannidis 2005a]. The parameters of the problem are the execution cost of the
query, the size of its result, and the degree of interest of its tuples. The objective is
to select a set of preferences that, in conjunction with the query, will optimize one of
the parameters and satisfy constraints on the others. A state space search approach is
used and a number of algorithms are proposed that find the optimal subset of related
preferences that matches the problem constraints.

4.1.3. Formulation of Preference Queries. Once the set of related preferences P is selected,
the preferences in P are used to rewrite the original query Q to construct one or more
preference queries. Depending on the preference model and the desired result, one
may think of different ways to integrate the preferences with Q. Next, we outline two
approaches.

Koutrika and Ioannidis [2004] uses the top K preferences to modify Q, a process
termed query personalization, and generate results that satisfy at least L of the K
preferences. Parameter K determines the desired extent of personalization, while pa-
rameter L captures the minimum number of user criteria (i.e., preferences) that an
answer should meet. Two different query rewriting mechanisms are possible. The first
one composes a single query that defines a conjunction of the initial query Q with the
disjunction of all possible conjunctions of the L from the K preferences. In the second
mechanism, at most K queries are formulated, each one augmenting Q with one of the
K preferences. The partial results are grouped and each tuple that appears at least
L times is output. In both cases, a ranked list of results is returned according to the
preferences they satisfy.

Georgiadis et al. [2008] consider a different but related problem: given a relation R
and a set P of preferences defined over R, how to formulate preference queries that

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:29

 A. Hitchcock, horror query block 1

A. Hitchcock, drama M. Curtiz, horror S. Spielberg, horror query block 2

 M. Curtiz, drama S. Spielberg, drama query block 3

Fig. 12. Query lattice example.

would produce as output a ranking of R based on P. To this end, they build a query
lattice with one node for each combination of values of different attributes appearing
in P. For example, for preferences: (i) A. Hitchcock is preferred over M. Curtiz or
S. Spielberg, (ii) horror movies are preferred over drama movies, and (iii) the director
of a movie is as important as its genre, the query lattice of Figure 12 is constructed. A
query is formulated for each node in the lattice. All queries in a specific block produce
equally preferable results. The queries of each block are successively executed starting
from the queries of the top block and going down the lattice. For example, for the
instance shown in Figure 2, t2 is the result of the query of the first block, the queries of
the second block return no results, and the third block returns tuples t1 and t3.

4.2. Using Preference Operators

Another way of integrating preferences in querying relational databases is by extending
query languages with preference-related operators. Next, we first present a number of
such operators and then discuss their implementation.

4.2.1. Types of Preference Operators. The most basic preference operator is one that
selects from its input the set of the most preferred tuples. This operator is called
winnow [Chomicki 2003], Best [Torlone and Ciaccia 2002], and preference selection
operator [Kießling 2002]. Formally, we have the following definition.

Definition 23. Given an instance r of a relational schema R and a preference relation
P over R, the winnow operator winP(r) is defined as

winP(r) = {ti ∈ r | ∄tj ∈ r, such that tj ≻P ti}.

A database tuple ti belongs to the winnow if it is not “killed” or dominated by another
tuple tj that is, if no other tuple tj in r is preferred over ti. Winnow can be used to select
tuples for more than one relation when applied to the result of queries defined over
more than one relation.

Clearly, winP(r) ⊆ r. It has been shown [Chomicki 2003] that for every finite,
nonempty instance r of R, if ≻P is a strict partial order, then winP(r) is nonempty.
For any two tuples ti and tj of r that belong to winP(r), it holds that ti ∼P tj , that is,
they are indifferent. When the preference relation ≻P is a total order, winP(r) includes
just one tuple, whereas when the preference relation ≻P is a weak order, the tuples
in winP(r) are the tuples that belong to the top equivalence class of r defined by ∼P .
Partial antimonotonicity also holds when ≻P is a strict partial order: ∀ r1, r2 of R, r1 ⊆
r2 ⇒ winP(r1) ⊇ winP(r2) ∩ r1 [Chomicki 2003].

Kießling [2002] defines two relational operators: (i) the preference selection operator
and (ii) the grouped preference selection operator. The preference selection operator,
denoted σ [P](r), corresponds to the winnow operator winP(r). The grouped preference
selection operator applies preference selection within groups. Given a subset B of the
attribute set of R, tuples in r are partitioned into groups of tuples having the same
values in the grouping attributes in B. The grouped preference selection operator σ [P
group by B](r) selects the dominating tuples in each group. Formally, we present the
next definition.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:30 K. Stefanidis et al.

Definition 24. Given an instance r of a relational schema R and a preference relation
P over R, the grouped preference selection operator σ [P group by B](r) is defined as:
σ [P group by B](r) = {ti ∈ r | ∄tj ∈ r, such that, tj ≻P ti ∧ ti[B] = tj[B]}, where B is a
subset of the attribute set of R.

A popular form of incorporating preferences in SQL is by applying a skyline operator
to pick from the query result only those tuples that are not dominated by any other
tuple in the result, where dominance is based on Pareto composition semantics. A tuple
ti dominates another tuple tj , if ti is as good as or better than tj with regard to a set of
preferences and better than tj with regard to at least one preference.

Typically, skylines are formulated in multidimensional Euclidean spaces where the
preference relation is either > or <. Let A = {A1, A2, . . . , Ad} be a set of d attributes
(also called dimensions). Let dom(A) = dom(A1) × . . . × dom(Ad) and the preference
relation be >. Let ti, tj ∈ dom(A), ti dominates tj , ti ≻D tj , if and only if, for all attributes
Am, 1 ≤ m≤ d, ti[Am] ≥ t j[Am] and for some l, 1 ≤ l ≤ d. ti[Al] > t j[Al]. A tuple belongs
to the skyline if and only if it is not dominated by any other point. Clearly, the skyline
operator corresponds to the winnow operator.

Skylines were first introduced in Börzsönyi et al. [2001] for multidimensional
Euclidean spaces using the following clause.

SKYLINE OF A1 [MIN | MAX | DIFF], . . ., Am [MIN | MAX | DIFF]

where a MIN (or MAX) specification following an attribute or dimension Ai expresses
preference of small (or large) values of Ai and DIFF that only tuples with identical
values of Ai are comparable.

There are several recent proposals for refining the typical skyline dominance defini-
tion. Chan et al. [2006] define the k-dominant skyline: a tuple ti k-dominates another
tuple tj if there are k dimensions, or preferences, in which ti is better than or equal
to tj , and ti is better in at least one of these k dimensions. Lin et al. [2007] propose
the k-representative skyline that selects k tuples such that the number of tuples that
are dominated by at least one of these k tuples is maximized, while Xia et al. [2008]
introduce the ǫ-skyline that computes the set of all tuples that are not ǫ-dominated by
any other tuple. Given a set of preferences, a tuple ǫ-dominates another tuple if it is as
good, better, or slightly worse (up to ǫ) with regard to all preferences and better in at
least one preference.

Both the winnow and the skyline operators select the most preferred tuples from a
given input set. Ranking the whole input can be achieved by repetitive applications of
such operators. The iterated winnow operator is formally defined as follows [Chomicki
2003; Torlone and Ciaccia 2003].

Definition 25. Given an instance r of a relational schema R and a preference relation
P over R, the iterated winnow operator, wini

P(r), of level i, i > 0, is defined as follows:

—win1
P(r) = winP(r)

—wini+1
P (r) = winP(r– ∪i

k=1 wink
P(r)).

Tuples retrieved earlier are of higher interest to the users. All tuples in any wini
P(r)

are indifferent to each other.
Another commonly used preference operator in SQL is top-k expressed by adding a

clause of the form

ORDER BY [user-defined-function] STOP AFTER k.

In this case, the tuples in the result are ranked according to a user-defined scoring
function and the results with the k highest scores are returned. Note that repetitive

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:31

applications of skyline correspond to a qualitative ordering of results, whereas an
application of top-k to a quantitative one.

Besides skyline and top-k, there are two rather comprehensive proposals of extending
SQL with preference operators, namely, Preference SQL [Kießling and Köstler 2002]
and recently FlexPref [Levandoski et al. 2010].

Preference SQL is an extension of SQL that covers all base preference constructors
of Kießling [2002]. Preferences can be defined over several relations. It supports both
hard constraints in the WHERE clause and soft constraints using a special PREFERRING

clause.

PREFERRING [conditions] BUT ONLY [conditions]

Preference SQL follows a “best matches only” semantics. First, it finds all perfect
matches to the conditions of PREFERRING. If this set is empty, then it considers all other
best matching values excluding those that do not satisfy the BUT ONLY quality conditions.
For example, the query

PREFERRING year AROUND 2010 BUT ONLY distance(year)<= 2

expresses a preference for movies of 2010, but if such movies do not exist, the user is
willing to accept variations of at most two years.

The goal of FlexPref [Levandoski et al. 2010] is to provide a framework for the
integration of any preference operator inside the database engine. It adds the following
clauses to SQL.

PREFERRING [preference attributes] USING [method]
WITH [parameter] OBJECTIVES [objective]

The USING clause specifies the preference method (such as skyline or top-k) with ob-
jectives (such as MIN for the case of skyline) applied over the attributes defined in
the PREFERRING clause WITH specific values for the parameters (such as parameter k for
top-k). For example, the query

SELECT ∗ FROM movies USING skyline
WITH OBJECTIVES MIN duration, MAX year

evaluates the skyline on movies, where the preference objective requires minimizing
duration while maximizing the year of release.

4.2.2. Implementation of Preference Operators. There are the following general ways of
handling preference operators.

—Preference operators can be implemented on-top of the DBMS either as stand-alone
programs or as user-defined functions.

—Preference operators may be translated into other, existing relational algebra oper-
ators during a preprocessing step.

—Preference operators can be implemented inside the database engine using specific
physical operators and algorithms.

We present first specialized algorithms for implementing winnow. These can be im-
plemented within the database engine or on top of the DBMS on the returned query
results. The naive way to compute the winnow of a relation instance r is to apply a
basic Nested-Loop (NL) method that compares each tuple in r with every other tuple.
The NL method works for every type of preference relation ≻P but requires scanning
the whole r for each tuple, which becomes inefficient for large r.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:32 K. Stefanidis et al.

A more efficient implementation is the Block-Nested-Loop (BNL) algorithm proposed
by Börzsönyi et al. [2001] in the context of skyline queries. BNL maintains a window
W of indifferent tuples which comprise the best tuples found so far. At each iteration,
all tuples in the input are read. When a tuple t is read, it is compared with all tuples
in W . If t is dominated by a tuple in W , then t is discarded. If t dominates one or more
of the tuples in W , these tuples are discarded and t is inserted into W . Finally, if t
is indifferent with all tuples in W , t is inserted into W . At the end of each iteration,
all tuples added to W are output since these are the most preferred ones. BNL uses
transitivity and works correctly only when the preference relation ≻P is at least a strict
partial order. To see this, say that an input tuple tj is dominated by a tuple ti in W ,
thus tj is discarded. Next, a tuple tk arrives that is dominated by tj , but not by ti in W .
The algorithm may output tk incorrectly.

When ≻P is a weak order, the Winnow for Weak Orders (WWO) algorithm takes
advantage of the fact that all tuples in the winnow belong to a single equivalence class
and can further improve on BNL [Chomicki 2007b]. A single comparison of t with just
one tuple in W suffices to determine whether t will be added in W or will replace the
whole W or be discarded. At the end of the first iteration, W will contain only tuples in
the winnow.

The Sort-Filter-Skyline (SFS) algorithm for computing skylines [Chomicki et al. 2003]
adds a preprocessing step to BNL that sorts all tuples in r, so that if a tuple ti ≻P tj ,
then ti precedes tj in the produced order. This corresponds to the order produced by
a topological sort of the preference graph of r. By processing the tuples following this
order, it is ensured that when a tuple is inserted into the window W , it belongs to the
winnow, thus it can be output immediately. For SFS to work, ≻P must be at least a
strict partial order. The LESS algorithm refines SFS by eliminating nonskyline tuples
during the sort process [Godfrey et al. 2007]. SaLSa performs also a topological sort
of the input [Bartolini et al. 2008]. Sorting is used as a means to stop fetching tuples
from the input stream, thus limiting the number of tuples to be read.

Morse et al. [2007] and Preisinger and Kießling [2007] proposed algorithms for low
cardinality domains with linear worst-case complexities. They are based on a lat-
tice data structure that captures the dominance relationship between equivalence
classes.

Several other approaches have been proposed for computing skylines but their de-
tailed presentation is beyond the scope of this survey. A large class of these approaches
use indexing. For example, Tan et al. [2001] introduced the first progressive algorithm
that returns skylines without scanning the whole dataset using a Bitmap and an index
algorithm. Kossmann et al. [2002] proposed another progressive algorithm based on
the nearest neighbor search method, while Papadias et al. [2003] introduced a branch-
and-bound algorithm where datasets are indexed by an R-tree. Skyline computation
in subspaces has been studied, for example, in Yuan et al. [2005], Pei et al. [2005],
and Tao et al. [2006]. Zhang et al. [2009] exploit an index structure to improve the
performance of sort-based approaches. The focus is on reducing the computation cost,
instead of the I/O cost. This is achieved by determining appropriate partitions of the
search space that reduce the number of comparisons between the input tuples and the
current skyline points.

A straightforward implementation of the iterated winnow operator can be achieved
by applying one of the previous algorithms (e.g., the NL or SFS) multiple times. The first
application would be on instance r to produce win1

P(r) and the subsequent applications

on (r - ∪i
k=1wink

P(r)), to produce wini+1
P (r). A more efficient implementation of winnow

and ranking is proposed in Torlone and Ciaccia [2002, 2003]. The Evaluating Best

Operator algorithm is a variation of BNL, where the repetition for computing wini+1
P (r)

does not start from scratch each time, but instead, from those tuples that were found

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:33

Table IV. Time Complexities and Preference Relation Requirements of Winnow Algorithms.

Algorithms Worst-case complexity Preference relation

NL O(n2) any

BNL [Börzsönyi et al. 2001] O(n2) strict partial order

WWO [Chomicki 2007b] O(n) weak order

SFS [Chomicki et al. 2003] O(n2) strict partial order

LESS [Godfrey et al. 2007] O(n2) any

SaLSa [Bartolini et al. 2008] O(n2) any

Best [Torlone and Ciaccia 2002] O(n2) any

[Drosou et al. 2009] O(n2) strict partial order

LBA, TBA [Georgiadis et al. 2008] O(n), O(n2) preorder

Table V. Use of Indices for Computing Skylines and Progressive Computation

Algorithms Index Progressive

Index [Tan et al. 2001] B+-tree �

Nearest Neighbor [Kossmann et al. 2002] R-tree �

Branch-and-Bound [Papadias et al. 2003] R-tree �

Subsky [Tao et al. 2006] B-tree

OSP [Zhang et al. 2009] LCRS-tree �

to be directly dominated by a tuple in wini
P(r). The iterated winnow operator can also

be implemented by topologically sorting the preference graph of r [Drosou et al. 2009;
Georgiadis et al. 2008].

Table IV depicts the worst-case time complexities and the preference relation require-
ments of the basic algorithms for evaluating winnow. In general, these algorithms do
not require indexing or preprocessing and present quadratic worst case and linear
average case with regard to the size of the input relation. In Table V, we present ap-
proaches that employ indices for computing skylines also indicating which ones are
progressive. An analysis of the runtime complexity of many skyline-related algorithms
can be found in Godfrey et al. [2007].

In the case of implementing winnow inside the database engine, a number of in-
teresting research problems are introduced regarding the semantic optimization of
relational queries that include winnow operators. For semantic optimization, a set of
algebraic rules that characterize the interaction of winnow with the standard rela-
tional operators, such as commutativity, are provided in Chomicki [2003]. These rules
can be used to optimize a query, for example, by pushing selections and projections
down the query tree. Further optimizations in the presence of integrity constraints,
such as eliminating redundant applications of winnow, are possible [Chomicki 2007b].
Such optimizations are achieved by relativizing the properties of the given preference
relations to the sets of instances that satisfy the integrity constraints of the particular
database. Additional semantic optimization techniques are developed by Endres and
Kießling [2008].

Apart from using special evaluation and optimization algorithms to implement pref-
erence operators, it is possible to translate preference operators to existing relational
algebra operators. For example, winnow can be translated to existing relational algebra
operators [Chomicki 2003; Kießling 2002]. This is the approach taken to implement
Preference SQL, where preference queries expressed using such operators are trans-
lated into standard SQL queries [Kießling and Köstler 2002].

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:34 K. Stefanidis et al.

Note that Hafenrichter and Kießling [2005] offer also a hybrid approach to imple-
menting Preference SQL that provides support for preference query processing within
the database engine. The query optimizer is extended to include transformation rules
for the preference selection operator (i.e., winnow) and the group preference selection
operator.

Finally, a different approach to implementing preference operators is taken by Flex-
Pref [Levandoski et al. 2010]. The goal is to facilitate the integration of any preference
operator into the database engine with minimal effort. A preference method can be in-
tegrated by registering a set of functions that define rules for the following: (i) given two
tuples, when one is preferred over the other and (ii) given a tuple t and a set of preferred
tuples whether t is a preferred tuple and can be added to the set. Once a preference
method is injected into the database, it can be used for querying the database.

4.3. Top-k Query Processing

Typically, a top-k query aims at providing only the top k most important results to
the users. A common way to identify the k most important results is scoring all tuples
based on a scoring function, possibly defined as an aggregation of a set of functions
over different attributes, and reporting the k tuples with the highest scores. Although
there is a large amount of research that addresses top-k processing techniques, we
consider that the details of such techniques are out of the scope of this survey, since
in most cases, they are not directly related to user preferences. Thus, in the following,
we provide only an overview of the main approaches. A survey of top-k processing
techniques is presented by Ilyas et al. [2008].

In general, methods for compounding a set of rankings to an aggregate one consider
that each tuple in each ranking is associated with an interest score that determines its
position within the ranking. Then, to construct a total ranking, instead of following the
naı̈ve approach of computing the aggregate score of each tuple and ranking the tuples
based on these scores, several more efficient algorithms have been proposed.

A fundamental algorithm, called FA algorithm, for retrieving the top-k tuples of
a relational schema R is proposed by Fagin et al. [2001]. This algorithm considers
two types of available tuple accesses: the sorted access and the random access. Sorted
access enables tuple retrieval in a descending order of their scores, while random access
enables retrieving the score of a specific tuple in one access. Next, we present the main
steps of the FA algorithm.

—First, do sorted access to each ranking until there is a set of k tuples, such that each
of these tuples has been seen in each of the rankings.

—Then, for each tuple that has been seen, do random accesses to retrieve the missing
scores.

—Compute the aggregate score of each tuple that has been seen.
—Finally, rank the tuples based on their aggregate scores and select the top-k ones.

FA is correct when the aggregate tuple scores are obtained by combining their indi-
vidual scores using a monotone function. This also holds for the T A algorithm [Fagin
et al. 2001]. T A ensures further that its stopping condition always occurs at least as
early as the stopping condition of FA. Its main steps are the following.

—First, do sorted access to each ranking. For each tuple seen, do random accesses to
the other rankings to retrieve the missing tuple scores.

—Then, compute the aggregate score of each tuple that has been seen. Rank the tuples
based on their aggregate scores and select the top-k ones.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:35

Table VI. A Taxonomy of Top-k Query Processing Techniques

Implementation Level
Application Level Within Engine

Query Model

Top-k Tuples
[Fagin 1999; Fagin et al. 2001; Nepal
and Ramakrishna 1999; Güntzer et al.
2000; 2001]

−−

Top-k Join Tuples [Natsev et al. 2001] [Ilyas et al. 2004b]
Top-k Groups of
Tuples

— [Li et al. 2006]

—Stop to do sorted accesses when the aggregate scores of the k tuples are at least equal
to a threshold value that is defined as the aggregate score of the scores of the last
tuples seen in each ranking.

Nepal and Ramakrishna [1999] and Güntzer et al. [2000] independently propose al-
gorithms equivalent to the T A algorithm. Several T A modifications with regard to
the access type that can be applied have been introduced (e.g., Fagin et al. [2001] and
Güntzer et al. [2001]). For example, the NRA algorithm is appropriate when random
accesses are expensive or impossible and so only sorted accesses are employed, while
the C Aalgorithm is appropriate when random accesses are expensive relative to sorted
accesses [Fagin et al. 2001]. Balke et al. [2002] propose the SR-Combine algorithm for
top-k query processing in mobile environments.

All the aforesaid approaches focus on constructing an aggregate ranking by com-
bining a set of rankings that contain the same set of tuples. Clearly, in this case, the
produced ranking consists of the same tuple set. Apart from such approaches, there are
algorithms (e.g., Natsev et al. [2001] and [Ilyas et al. 2004b]) for aggregating rankings
that contain different sets of tuples. In this category of algorithms, tuples of different
rankings are joined together with respect to specific join conditions. The produced rank-
ing here consists of a set of joined tuples, each one with an aggregate score computed
from the scores of the participating tuples. Instead of working on individual tuples,
Li et al. [2006] propose a method that reports the k groups of tuples with the largest
interest scores, where scores are computed using a group aggregation function, such
as sum.

In Table VI, we organize the main top-k query processing techniques with respect
to: (i) the query model and (ii) the implementation level. The query model defines the
kind of results returned by the top-k computation, that is, single tuples (e.g., Fagin
[1999] and Nepal and Ramakrishna [1999]), joined tuples (e.g., Natsev et al. [2001]
and Ilyas et al. [2004a]) or groups of tuples (e.g., Li et al. [2006]). The implementation
level defines the level of integration with database systems, that is, at application
level outside the database engine (e.g., Fagin et al. [2001] and Nepal and Ramakrishna
[1999], and Güntzer et al. [2000]), or within the query engine, such as the approach
proposed by Ilyas et al. [2004a] that defines physical, nonblocking query operators
based on variants of ripple join that can be integrated into pipelined execution plans.

4.4. Precomputation of Rankings

To avoid ranking large datasets at query time, preprocessing steps can be exploited
for making online query processing faster. Most related approaches use preferences to
compute and store (i.e., materialize) representative rankings of the database tuples
offline. At query time, materialized rankings that are related to the query are selected
and possibly combined to generate the final results. We organize existing approaches
to answering preference queries as:

—Context-Based approaches, where preferences hold under specific conditions.
—Context-free approaches, where preferences hold under all circumstances.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:36 K. Stefanidis et al.

4.4.1. Context-Based Approaches. Given a set of contextual preferences, Agrawal et al.
[2006] initially produce a ranking for each set of preferences with the same context. Let
Tm be this set of rankings. Since this set may be large, instead of materializing all such
rankings, a smaller set, say Tl, of representative rankings is selected to be materialized.
The selection is such that to minimize the cost of computing any τ in Tm from Tl defined
as

∑
τ∈Tm

d(τ, Tl), where the distance between a single ranking τ and a set of rankings
T is defined as d(τ, T) = minρ∈T d(τ, ρ) and the distance between two rankings is
either the Spearman footrule or the Kendall tau distance. Since the selection of Tl is
an NP-hard problem, different heuristics are proposed. For example, given the set of
all rankings Tm, the Greedy algorithm removes in each iteration the ranking which
when removed, causes the least increase in the cost. The Furthest algorithm starts by
selecting randomly a ranking and at each step picks from the unselected rankings the
one which is furthest from the already selected rankings. You and Hwang [2008] adopt
the preference model proposed by Agrawal et al. [2006] and use a machine learning
approach to induce a contextual total ranking from a partial quantitative ranking used
as training set.

A different approach for precomputing representative rankings is to create groups
of similar preferences and produce a ranking for each group. Two different ways of
defining similarity of contextual preferences are proposed by Stefanidis and Pitoura
[2008]. The first one considers as similar the preferences that have similar contexts
and groups them using a typical hierarchical agglomerative clustering method. Context
similarity exploits the hierarchical nature of the domain of the context parameters. For
each produced cluster, the resulting cluster description is selected as the representative
context. A complementary method for grouping preferences is based on identifying
those preferences that result in similar scores for all database tuples. This method
exploits the quantitative nature of preferences and groups together preferences that
have similar predicates and scores. Preferences are represented through a predicate
bitmap matrix whose size depends on the desired precision of the resulting scores.

In both Agrawal et al. [2006] and Stefanidis and Pitoura [2008], when a user poses
a query, the query is matched against the representative contexts, and those similar to
the query are used for computing the query results.

4.4.2. Context-Free Approaches. In a context-free scenario, there are approaches for com-
puting the result of a preference query based on a set of materialized rankings con-
structed offline and maintained independently of specific conditions or circumstances.
Usually, such approaches employ materialized preference views, that is, relational
views ordered according to a preference, or scoring, function, to compute preferential
query results.

The PREFER system provides ranked answers to preference queries based on a num-
ber of precomputed and materialized views [Hristidis and Papakonstantinou 2004].
Given a relational schema R(A1, . . . , Ad), a view v ranks the tuples of R with regard to
a scoring function Fv defined as a weighted sum using a vector of weights (w1, . . . , wd).
During the online phase, for each query Q that is also expressed via a weight vector,
the view that best matches Q is selected. The view selection problem is formulated as
the problem of identifying the view that needs the least number of tuples to be fetched
for computing the query answer.

After locating the appropriate view, PREFER returns in a pipelined way the k tuples
that maximize the query preference function. In particular, the employed algorithm
computes the smallest prefix of the view, that is, the smallest number of top ranked
tuples, to find the most preferred tuple for the query. Then, it computes a second prefix
to find the most preferred tuple after the previous one and so forth, until the k most
preferred tuples are retrieved. The key concept of this algorithm is the computation

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:37

of a watermark value which calibrates the stopping condition in each iteration of the
algorithm. Such a watermark value determines how deep in the ranked materialized
view we should go to locate the top tuple of a query. The first watermark for a view v

is the maximum value T 1
v,Q, such that, ∀t ∈ R, Fv(t) < T 1

v,Q ⇒ FQ(t) < FQ(t1
v), where

t1
v is the tuple in v with the highest score. Respectively, at the second iteration of the

algorithm, the tuple t2
v , which is the tuple with the next higher score, replaces the tuple

t1
v in the process of watermark computation and so on.

Another view-based technique that also maintains ordered views based on preference
functions is proposed by Das et al. [2006a]. This work utilizes the given set of views to
produce query answers, using a linear programming algorithm. Yi et al. [2003] focus
on the reduction of the maintenance cost of the materialized top-k views, considering
occurrences of deletions and updates.

4.5. Summary of Processing Preference Queries

In general, preference queries exploit user preferences to rank their results and present
to users the best among them. There are two general lines of work: (i) performing query
expansion and (ii) using preference operators.

Query expansion methods assume the existence of a set of user preferences and
integrate them into a regular query to personalize it. Issues related to this line of work
include: (1) how to find the best set of preferences to use and (2) how to rewrite the
original query to integrate the selected preferences. There are many open problems
with regards to both issues. For instance, there is the issue of overpersonalization if
too many preferences are selected or the issue of conflict resolution when conflicting
preferences are applicable. Furthermore, performance-related issues with regards to
the integration of preferences with query processing have hardly been explored.

Preference operators are used as additional clauses to a query to specify a way of
ranking its results. Two widely used such operators are: (i) top-k, that ranks the results
based on some user-defined scoring function and returns the k highest ranked ones, and
(ii) skyline that returns the nondominated results with regards to a Pareto composition
of preferences on the values of the attributes of the tuples in the result. There are a
large body of research on algorithms for computing them mostly to be used on top of the
database engine either as stand-alone programs or as database user-defined functions.
However, besides these two popular operators, there are a variety of other ways of
expressing preferences. Nevertheless, in terms of supporting a general preference query
model, the only comprehensive approach is Preference SQL. Another recent attempt
is FlexPref, which aims at providing a flexible mechanism for the integration of any
preference operator inside the database engine. This is a very promising topic.

5. CONCLUSIONS

Although the primary focus of this survey is on representation, compositions, and ap-
plication of preferences in databases, we present in this section a short overview of
some representative approaches to preference learning and revising, since they are
interesting and active related areas of research with potential applications in data
management (Section 5.1). We also present other preference models and applications
and discuss connections with other fields in which preferences are investigated. Fi-
nally, we highlight critical open research challenges and directions for future work
(Section 5.2).

5.1. Other Issues

5.1.1. Preference Learning. Learning and predicting preferences in an automatic way
has attracted much current attention in the areas of machine learning, knowledge

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:38 K. Stefanidis et al.

discovery, and artificial intelligence. Most methods for preference learning utilize in-
formation of the past user interactions in the form of a history or log of transactions.
Joachims [2002] utilizes as input logs of the form of user clickthrough data, namely
the query-logs of a search engine along with the log of links that the user actually
clicked on from those in the presented ranked list. The fact that a user clicked on a
link li and did not click on a link l j ranked higher in the list than li, is interpreted as
a user preference of li over l j . Clikthrough data are used as training data to learn a
ranking function that, for each query q, produces an order of links based on their rele-
vance to q. This is achieved by selecting the function that produces the order having the
minimal distance from the orders inferred from the clickthrough data. A Support Vector
Machine (SVM) algorithm is used.

User logs are also used as input by Holland et al. [2003], but in the form of relational
instances. Since there is no explicit ranking information in the log of relations, to detect
preferences, the frequencies of the different attribute values, that is, their number
of entries, in the log relation are used. Then, x is preferred over y, if and only if,
f req(x) > f req(y). Preferences between values of individual attributes are used to infer
positive and negative preferences, numerical preferences, and complex preferences
[Kießling 2002].

The approach proposed by Cohen et al. [1999] is an example of employing user
feedback to improve preference learning. They consider the problem of learning how
to rank items given the feedback that an item should be ranked higher than another.
For a set of items I, the employed preference function Pref (i1, i2), Pref : I ×I → [0, 1],
returns a value indicating which item, i1 or i2, is ranked higher. The learning phase
of such a function takes place in a sequence of rounds. At each round, items are
ranked with respect to Pref . Then, the learner receives feedback from the environment.
The feedback is assumed to be an arbitrary set of rules of the form “i1 should be
preferred to i2”. Given that Pref is a linear combination of n primitive functions,
that is, Pref (i1, i2) =

∑n
i= j w j Fj(i1, i2), at each round the weights w j are updated with

regards to the loss of a function F with respect to the user feedback, where loss is the
normalized sum of disagreements between function and feedback.

Moreover, applying machine learning techniques for learning ranking functions has
recently attracted much attention in the research literature (e.g., Burges et al. [2005],
Zhai and Lafferty [2006], and Zha et al. [2006]).

5.1.2. Preference Revising. Preferences change, so one should not base a practical ap-
proach on a theory that presupposes fixed preferences. Preferences can change even
during examination of alternatives, that is, during searching. For example, negotia-
tion offers a setting that shows the ease with which preferences can change over time
and the use of preference expressions to provide succinct instructions for controlling
behavior [Doyle 2004]. Of course, one can sometimes prescribe patterns of change
in advance by identifying specific dependencies on particular aspects of the context in
which decisions will be made, but such foreknowledge is not always available. Recently,
there are approaches focusing in preference change. Freund [2004] studies the prob-
lem of revising rational preferences. A single revision satisfies the postulates of success
and minimal change, while this result can be extended for multiple revisions. Chomicki
[2007a] proposes a framework for incremental preference revision. This work considers
binary preference relations. A revised preference relation is produced by composing an
original preference relation with another preference relation. Three different seman-
tics of preference revision are considered: union, prioritized, and Pareto composition.
Also, the cases in which the revision fails, that is, the revised preference relation is
cyclic, are identified, while minimality of preference change is guaranteed.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:39

More recently [Mindolin and Chomicki 2008, 2011] focus on preference contraction,
that is, the problem of constructing binary preference relations by discarding prefer-
ences. Again, the property of minimality of preference change is desirable. Additional
properties studied include the preservation of strict partial orders and the protection of
preferences by allowing the specification of the preferences that cannot be contracted.

5.1.3. Other Preference Models and Applications. Besides preferences for relational data,
preferences have also been used in XML query processing. Preference XPATH [Kießling
et al. 2001] implements the preference model of Kießling [2002] for XML databases.
Amer-Yahia et al. [2007] define two kind of preference rules for personalized XML
search: scoping rules that are used to expand or restrict the original query result by
adding, removing, or replacing query predicates (similar to the query expansion ap-
proach) and ordering rules that specify how to rank answers. Both rules follow the
qualitative approach and define partial orders. Cohen and Shiloach [2009] propose
a query language for XML that incorporates value and structure preferences. Prefer-
ence queries are defined as simple exact queries with some optional constraints. Pref-
erence queries are also enhanced with value orderings that express priorities among
contents of variables, using a qualitative approach. Skyline semantics are applied for
computing the “best” results of a preference query.

Although preferences have been mainly used for personalizing queries through con-
trolling the order or size of their results, there are many other potential applications
that can be investigated further. Qu and Labrinidis [2007] propose a different form of
query personalization through the concept of quality contracts. Quality contracts com-
bine user preferences for different quality metrics, such as quality of service that refers
to the query response time and quality of data that refers to the freshness of data in the
query answer. Besides query processing, another potential application is that of using
preferences for managing the content of a cache. Cherniack et al. [2003] introduce a
profile language that uses preferences for specifying the relative importance of the data
items to be prefetched. Similarly, Kambalakatta et al. [2004] propose a profile-based
caching mechanism for mobile environments. Preferences have been also applied to
e-business applications. Kießling et al. [2004] and Döring et al. [2005] present an au-
tomated electronic sales agent for e-procurement portals. This work includes, among
others, a presentation component that adapts the presentation of the query results to
the user preferences, supporting several human sales strategies. Finally, Drosou et al.
[2009] introduce preferential subscriptions to indicate priorities among subscriptions
in publish/subscribe systems, so that the matching events are ranked based on the
importance of the related subscription.

5.1.4. Connection with Other Fields. Although preferences have been traditionally stud-
ied in fields such as philosophy [Hansson 2001], psychology [Scherer 2005], decision
making [Lichtenstein and Slovic 2006], and economics [Fishburn 1999], nowadays
computational methods for handling preferences are studied in fields such as artificial
intelligence [Wellman and Doyle 1991], human-computer interaction [Linden et al.
1997], and databases. All these fields can lend useful ideas to databases. For example,
psychology understands preference nature and impact on human decision making and
can help in building more sophisticated database models and mechanisms for handling
preferences. Several aspects of decision making can be exploited to enrich database
models of preferences, such as the concept of risk.

On the other hand, databases bring some fresh perspectives to the study of pref-
erence modeling and handling by introducing computational methods for the elicita-
tion, representation, aggregation, and satisfaction of preferences for computational
tasks. This broadened scope of preferences leads to new problems for applying pref-
erence structures and new kinds of benefits that extend the scope of classic decision

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:40 K. Stefanidis et al.

support and add new questions, methods, and applications to the handling of prefer-
ences. Preferences are inherently a multidisciplinary topic, of interest to AI, databases,
logic programming, operation research, and more.

5.2. Directions for Future Work

We have only begun to understand the variety, nature, and representation of prefer-
ences, and the appropriate methods for specifying, realizing, effecting, tracking, adapt-
ing, and revising preferences. Moving forward, we highlight critical open research
challenges and directions for future work.

Hybrid preference models. The preference models proposed so far follow either the
qualitative or the quantitative approach. While qualitative preferences can express
more types of relations than qualitative preferences, with qualitative preference, we
cannot distinguish how much better a query answer is compared to another. We could
exploit ideas from both philosophies. For instance, we could express preferences, such
as thriller movies are preferred over dramas with score 0.7 and dramas are preferred
over comedies with score 0.5. Defining such hybrid preference models is challenging.
For example, given the preceding preferences, what is the relationship between thriller
and comedy movies? Furthermore, people naturally express their preferences in either
way (e.g., “I like comedies a lot” and “I like comedies more than dramas”). We could
also define a hybrid preference model that allows expressing both qualitative and
quantitative preferences. Then, several interesting issues arise: How can we combine
hybrid preferences? How can we rank query results using both a qualitative or a
quantitative approach?

Preferential social search. Usually, in social Web systems, users share resources, such
as photos, papers, blogs, and other personal information. Since such systems become
extremely popular and thus, an important component of the Web, exploring new ways
of searching the social graph is challenging. Building upon previous work, we envision
a social system where users are allowed to restrict their view of the social graph based
on the current context and related preferences. Users will be able to query the social
graph and be presented with a diversified subgraph relevant to their interests. As the
time passes, results will be adapted to the new context of the user. For instance, a query
about friends’ news submitted on Monday morning may begin returning information
about various activities of the user’s colleagues. By the evening of the same day, the
same query may be presenting information about the user’s friends and family. From
a different perspective, social systems can be used for deducing user preferences. By
exploiting the amount of personal information currently available over the social Web,
interesting knowledge about users can be elicited.

Preferences and diversity. Usually, preferential query processing methods focus on
ranking the query results and report only a portion of them, typically the top ranked
ones. The top results are often very similar to each other, since data items containing
the same, highly preferable piece of information are all ranked in the top positions, even
if they are redundant. Besides pure accuracy achieved by matching the criteria set by
the user preferences, there are also other factors that can increase user satisfaction,
such as retrieving results on a broader variety of topics, that is, increasing the diversity
of results (e.g., Vee et al. [2008]). There are two perspectives on achieving diversity:
(i) avoiding overlap among results, that is, choosing items that are dissimilar to each
other and (ii) increasing coverage, that is, choosing items that cover as many different
topics, or preferences, as possible.

Processing preference queries. There are many open problems with regards to both
query expansion or personalization and preference operators. In the case of query per-
sonalization, the problem of selecting the appropriate preferences for personalizing
a query is challenging, since there can be no single best solution. Furthermore, the

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:41

performance issues of integrating preferences with query processing are still largely
unexplored. Whereas there has been a large amount of work for specific preference
operators, such as top-k, skyline, and their variants, there is very little work on inte-
grating more general preference models within the database engine. Finally, note that
database systems are typically used by many users. Processing group preferences and
integrating them with database query processing is also a very promising topic.

Preferences over uncertain data. Recently, many approaches (e.g., Benjelloun et al.
[2006] and Dalvi and Suciu [2007]) focus on modeling and processing uncertain, or
probabilistic, data, since such data are common in many applications, such as sensor
networks and location tracking. In probabilistic databases, tuples are associated with
membership probabilities that define the belief that they should belong to the database.
For processing top-k queries, both interest scores and probabilities of tuples are taken
into account [Soliman et al. 2007; Soliman and Ilyas 2009; Zhang and Chomicki 2009].
Such approaches may act as a springboard for new methods dealing with the problem
of expressing general preferences for uncertain data. Designing appropriate preference
models and extending processing methods to conform with them are challenging tasks.

REFERENCES

ADOMAVICIUS, G. AND TUZHILIN, A. 2005. Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Engin. 17, 6, 734–749.

AGRAWAL, R., RANTZAU, R., AND TERZI, E. 2006. Context-sensitive ranking. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 383–394.

AGRAWAL, R. AND WIMMERS, E. L. 2000. A framework for expressing and combining preferences. In SIG-
MOD 29, 2, 297–306.

AMER-YAHIA, S., FUNDULAKI, I., AND LAKSHMANAN, L. V. S. 2007. Personalizing XML search in PIMENTO. In
Proceedings of the International Conference on Data Engineering (ICDE). 906–915.

AMER-YAHIA, S., ROY, S. B., CHAWLA, A., DAS, G., AND YU, C. 2009. Group recommendation: Semantics and
efficiency. Proc. VLDB 2, 1, 754–765.

BALKE, W.-T., GÜNTZER, U., AND KIESSLING, W. 2002. On real-time top-k querying for mobile services. In Pro-
ceedings of the IFCIS Conference on Cooperative Information Systems (CoopIS). 125–143.

BARTOLINI, I., CIACCIA, P., AND PATELLA, M. 2008. Efficient sort-based skyline evaluation. ACM Trans. Datab.
Syst. 33, 4.

BENJELLOUN, O., SARMA, A. D., HALEVY, A. Y., AND WIDOM, J. 2006. ULDBs: Databases with uncertainty and
lineage. In Proceedings of the International Conference on Very Large Database (VLDB). 953–964.

BORDA, J.-C. 1781. Mémoire sur les Élections au Scrutin. Histoire de l’Académie Royale des Sciences.

BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of the International
Conference on Very Large Databases (ICDE). 421–430.

BOUTILIER, C., BRAFMAN, R. I., DOMSHLAK, C., HOOS, H. H., AND POOLE, D. 2004. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191.

BOUTILIER, C., BRAFMAN, R. I., HOOS, H. H., AND POOLE, D. 1999. Reasoning with conditional ceteris paribus
preference statements. In Proceedings of the Symposium on Uncertainty in Artificial Intelligence.
71–80.

BROWN, P., BOVEY, J., AND CHEN, X. 1997. Context-aware applications: From the laboratory to the marketplace.
IEEE Person. Comm. 4, 5, 5864.

BUNNINGEN, A. H., FENG, L., AND APERS, P. M. G. 2006. A context-aware preference model for database querying
in an ambient intelligent environment. In Proceedings of the International Conference on Database and
Expert Systems Applications (DEXA). 33–43.

BURGES, C. J. C., SHAKED, T., RENSHAW, E., LAZIER, A., DEEDS, M., HAMILTON, N., AND HULLENDER, G. N. 2005.
Learning to rank using gradient descent. In Proceedings of the International Conference on Machine
Learning (ICML). 89–96.

CHAN, C. Y., JAGADISH, H. V., TAN, K.-L., TUNG, A. K. H., AND ZHANG, Z. 2006. Finding k-dominant skylines in
high dimensional space. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 503–514.

CHEN, G. AND KOTZ, D. 2000. A survey of context-aware mobile computing research. Tech. rep. TR2000-381,
Computer Science, Dartmouth College.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:42 K. Stefanidis et al.

CHERNIACK, M., GALVEZ, E. F., FRANKLIN, M. J., AND ZDONIK, S. B. 2003. Profile-Driven cache management. In
Proceedings of the International Conference on Data Engineering (ICDE). 645–656.

CHOMICKI, J. 2002. Querying with intrinsic preferences. In Proceedings of the International Conference on
Extending Database Technology (EDBT). 34–51.

CHOMICKI, J. 2003. Preference formulas in relational queries. ACM Trans. Datab. Syst. 28, 4, 427–466.

CHOMICKI, J. 2007a. Database querying under changing preferences. Ann. Math. Artif. Intell. 50, 1-2,
79–109.

CHOMICKI, J. 2007b. Semantic optimization techniques for preference queries. Inf. Syst. 32, 5, 670–684.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE). 717–719.

CIACCIA, P. 2007. Querying databases with incomplete CP-nets. In Proceedings of the M-Pref Conference.

COHEN, S. AND SHILOACH, M. 2009. Flexible XML querying using skyline semantics. In Proceedings of the
International Conference on Data Engineering (ICDE). 553–564.

COHEN, W. W., SCHAPIRE, R. E., AND SINGER, Y. 1999. Learning to order things. J. Artif. Intell. Res. 10,
243–270.

CONDORCET, J. A. N. 1785. Éssai sur l’ Application del’ Analyse á la Probabilitédes Décisions Rendues á la
Pluralité des Voix. Kessinger Publishing.

DALVI, N. N. AND SUCIU, D. 2007. Efficient query evaluation on probabilistic databases. VLDB J. 16, 4, 523–544.

DAS, G., GUNOPULOS, D., KOUDAS, N., AND TSIROGIANNIS, D. 2006a. Answering top-k queries using views. In
Proceedings of the International Conference on Very Large Databases (VLDB). 451–462.

DAS, G., HRISTIDIS, V., KAPOOR, N., AND SUDARSHAN, S. 2006b. Ordering the attributes of query results. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 395–406.

DELGRANDE, J. P., SCHAUB, T., AND TOMPITS, H. 2003. A framework for compiling preferences in logic programs.
Theory Pract. Logic Program. 3, 2, 129–187.

DEY, A. K. 2001. Understanding and using context. Person. Ubiq. Comput. 5, 1, 4–7.

DÖRING, S., 0003, S. F., KIESSLING, W., AND PREISINGER, T. 2005. Optimizing the catalog search process for
e-procurement platforms. In Proceedings of the DEEC Conference. 39–48.

DOYLE, J. 2004. Prospects for preferences. Comput. Intell. 20, 2.

DROSOU, M., STEFANIDIS, K., AND PITOURA, E. 2009. Preference-aware publish/subscribe delivery with diversity.
In Proceedings of the ACM International Conference on Distributed Event-Based Systems (DEBS). 1–12.

DWORK, C., KUMAR, R., NAOR, M., AND SIVAKUMAR, D. 2001. Rank aggregation methods for the web. In Proceed-
ings of the International World Wide Web Conference (WWW10).

ENDRES, M. AND KIESSLING, W. 2006. Transformation of TCP-net queries into preference database queries. In
Proceedings of the Multidisciplinary Work-shaop on Advances in preference Handling (M-Pref).

ENDRES, M. AND KIESSLING, W. 2008. Optimization of preference queries with multiple constraints. In Proceed-
ings of the International Workshop on Personalized Access Profile Management, and Context Awareness
(PersDB). 25–32.

FAGIN, R. 1996. Combining fuzzy information from multiple systems. In Proceedings of the ACM SIGACT-
SIGMOD-SIGAR PODS Symposium on Principles of Database Systems. 216–226.

FAGIN, R. 1998. Fuzzy queries in multimedia database systems. In Proceedings of the ACM SIGACT-SIGMOD-
SIGAR PODS Symposium on Principles of Database Systems. 1–10.

FAGIN, R. 1999. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58, 1, 83–99.

FAGIN, R., KUMAR, R., MAHDIAN, M., SIVAKUMAR, D., AND VEE, E. 2004. Comparing and aggregating rankings with
ties. In Proceedings of the ACM SIGACT-SIGMOD-SIGAR PODS Symposium on Principles of Database
Systems. 47–58.

FAGIN, R., KUMAR, R., MAHDIAN, M., SIVAKUMAR, D., AND VEE, E. 2006. Comparing partial rankings. SIAM J.
Discr. Math. 20, 3, 628–648.

FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top-k lists. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms. 28–36.

FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. In Proceedings of
the ACM SIGACT-SIGMOD-SIGAR PODS Symposium on Principles of Database Systems.

FAGIN, R. AND WIMMERS, E. L. 2000. A formula for incorporating weights into scoring rules. Theor. Comput.
Sci. 239, 2, 309–338.

FISHBURN, P. C. 1999. Preference structures and their numerical representations. Theor. Comput. Sci. 217, 2,
359–383.

FREUND, M. 2004. On the revision of preferences and rational inference processes. Artif. Intell. 152, 1,
105–137.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:43

GAASTERLAND, T. AND LOBO, J. 1994. Qualified answers that reflect user needs and preferences. In Proceedings
of the International Conference on Very Large Database (VLDB). 309–320.

GEORGIADIS, P., KAPANTAIDAKIS, I., CHRISTOPHIDES, V., NGUER, E. M., AND SPYRATOS, N. 2008. Efficient rewriting
algorithms for preference queries. In Proceedings of the International Conference on Data Engineering
(ICDE). 1101–1110.

GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2007. Algorithms and analyses for maximal vector computation. VLDB
J. 16, 1, 5–28.

GOLFARELLI, M., RIZZI, S., AND BIONDI, P. 2011. MyOLAP: An approach to express and evaluate OLAP prefer-
ences. IEEE Trans. Knowl. Discov. Data Engin. To appear.

GÜNTZER, U., BALKE, W.-T., AND KIESSLING, W. 2000. Optimizing multi-feature queries for image databases. In
Proceedings of the International Conference on Very Large Database (VLDB). 419–428.

GÜNTZER, U., BALKE, W.-T., AND KIESSLING, W. 2001. Towards efficient multi-feature queries in heterogeneous
environments. In Proceedings of the International Conference on Information Technology: Coding and
Computing (ITCC). 622–628.

HAFENRICHTER, B. AND KIESSLING, W. 2005. Optimization of relational preference queries. In Proceedings of the
Australian Database Conference (ADC). 175–184.

HANSSON, S. O. 2001. Preference logic. In Handbook of Philosophical Logic D. Gabbay, Ed.

HOLLAND, S., ESTER, M., AND KIESSLING, W. 2003. Preference mining: A novel approach on mining user pref-
erences for personalized applications. In Proceedings of the European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD). 204–216.

HOLLAND, S. AND KIESSLING, W. 2004. Situated preferences and preference repositories for personalized
database applications. In Proceedings of the ER Conference. 511–523.

HRISTIDIS, V. AND PAPAKONSTANTINOU, Y. 2004. Algorithms and applications for answering ranked queries using
ranked views. VLDB J. 13, 1, 49–70.

ILYAS, I. F., AREF, W. G., AND ELMAGARMID, A. K. 2004a. Supporting top-k join queries in relational databases.
VLDB J. 13, 3, 207–221.

ILYAS, I. F., BESKALES, G., AND SOLIMAN, M. A. 2008. A survey of top-k query processing techniques in relational
database systems. ACM Comput. Surv. 40, 4.

ILYAS, I. F., SHAH, R., AREF, W. G., VITTER, J. S., AND ELMAGARMID, A. K. 2004b. Rank-Aware query op-
timization. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
203–214.

JOACHIMS, T. 2002. Optimizing search engines using clickthrough data. In Proceedings of the International
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 133–142.

KAMBALAKATTA, R., KUMAR, M., AND DAS, S. K. 2004. Profile based caching to enhance data availability in
push/pull mobile environments. In Proceedings of the MobiQuitous Conference. 74–83.

KIESSLING, W. 2002. Foundations of preferences in database systems. In Proceedings of the International
Conference on Very Large Database (VLDB). 311–322.

KIESSLING, W. 2005. Preference queries with SV-semantics. In Proceedings of the International Conference on
Managrment of Data (COMAD). 15–26.

KIESSLING, W., FISCHER, S., AND DÖRING, S. 2004. COSIMAB2B—Sales automation for e-procurement. In Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC). 59–68.

KIESSLING, W., HAFENRICHTER, B., FISCHER, S., AND HOLLAND, S. 2001. Preference XPATH: A query language for
e-commerce. In Wirtschaftsinformatik.

KIESSLING, W. AND KÖSTLER, G. 2002. Preference SQL—Design, implementation, experiences. In Proceedings
of the International Conference on Very Large Database (VLDB). 990–1001.

KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for
skyline queries. In Proceedings of the International Conference on Very Large Database (VLDB).
275–286.

KOUTRIKA, G. AND IOANNIDIS, Y. 2005a. Constrained optimalities in query personalization. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 73–84.

KOUTRIKA, G. AND IOANNIDIS, Y. 2005b. Personalized queries under a generalized preference model. In Proceed-
ings of the International Conference on Data Engineering (ICDE). 841–852.

KOUTRIKA, G. AND IOANNIDIS, Y. 2010. Personalizing queries based on networks of composite preferences. ACM
Trans. Datab. Syst. 35, 2.

KOUTRIKA, G. AND IOANNIDIS, Y. E. 2004. Personalization of queries in database systems. In Proceedings of the
International Conference on Data Engineering (ICDE). 597–608.

LACROIX, M. AND LAVENCY, P. 1987. Preferences; Putting more knowledge into queries. In Proceedings of the
International Conference on Very Large Database (VLDB). 217–225.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

19:44 K. Stefanidis et al.

LEVANDOSKI, J., MOKBEL, M. F., AND KHALEFA, M. E.. 2010. FlexPref: A framework for extensible preference
evaluation in database systems. In Proceedings of the International Conference on Data Engineering
(ICDE).

LI, C., CHANG, K. C.-C., AND ILYAS, I. F. 2006. Supporting ad-hoc ranking aggregates. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 61–72.

LIN, X., YUAN, Y., ZHANG, Q., AND ZHANG, Y. 2007. Selecting stars: The k most representative skyline operator.
In Proceedings of the International Conference on Data Engineering (ICDE). 86–95.

LINDEN, G., HANKS, S., AND LESH, N. 1997. Interactive assessment of user preference models: The automated
travel assistant. In Proceedings of the International Conference on User Modeling. 67–78.

MASTHOFF, J. 2004. Group modeling: Selecting a sequence of television items to suit a group of viewers. User
Model. User-Adapt. Interact. 14, 1, 37–85.

MIAH, M., DAS, G., HRISTIDIS, V., AND MANNILA, H. 2008. Standing out in a crowd: Selecting attributes
for maximum visibility. In Proceedings of the International Conference on Data Engineering (ICDE).
356–365.

MIELE, A., QUINTARELLI, E., AND TANCA, L. 2009. A methodology for preference-based personalization of con-
textual data. In Proceedings of the International Conference on Extending Database Technology (EDBT).
287–298.

MINDOLIN, D. AND CHOMICKI, J. 2007. Hierarchical CP-networks. In Proceedings of the Multidisciplinary Work-
shop on Advances in Preference Handling (M-Pref).

MINDOLIN, D. AND CHOMICKI, J. 2008. Minimal contraction of preference relations. In Proceedings of the National
Conference on Artificial Intelligence (AAAI). 492–497.

MINDOLIN, D. AND CHOMICKI, J. 2011. Contracting preference relations for database applications. Artif. Intell.
J. to appear.

MORSE, M. D., PATEL, J. M., AND JAGADISH, H. V. 2007. Efficient skyline computation over low-cardinality
domains. In Proceedings of the International Conference on Very Large Database (VLDB). 267–278.

MOTRO, A. 1988. Vague: A user interface to relational databases that permits vague queries. ACM Trans. Inf.
Syst. 6, 3, 187–214.

NATSEV, A., CHANG, Y.-C., SMITH, J. R., LI, C.-S., AND VITTER, J. S. 2001. Supporting incremental join queries
on ranked inputs. In Proceedings of the International Conference on Very Large Database (VLDB).
281–290.

NEPAL, S. AND RAMAKRISHNA, M. V. 1999. Query processing issues in image (multimedia) databases. In Pro-
ceedings of the International Conference on Data Engineering (ICDE). 22–29.

ORLOVSKY, S. A. 1978. Decision making with a fuzzy preference relation. Fuzzy Sets Syst. 1, 155–167.

OVCHINNIKOV, S. AND ROUBENS, M. 1992. On fuzzy strict preference, indifference, and incomparability relations.
Fuzzy Sets Syst. 49, 1, 15–20.

PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2003. An optimal and progressive algorithm for skyline queries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. 467–478.

PEI, J., JIN, W., ESTER, M., AND TAO, Y. 2005. Catching the best views of skyline: A semantic approach based
on decisive subspaces. In Proceedings of the International Conference on Very Large Database (VLDB).
253–264.

PREISINGER, T. AND KIESSLING, W. 2007. The Hexagon algorithm for pareto preference queries. In Proceedings
of the Multidisciplinary Workshop on Advances in Preference handling (M-Pref).

QU, H. AND LABRINIDIS, A. 2007. Preference-Aware query and update scheduling in web-databases. In Pro-
ceedings of the International Conference on Data Engineering (ICDE). 356–365.

ROSS, K. A., STUCKEY, P. J., AND MARIAN, A. 2007. Practical preference relations for large data sets. In Proceed-
ings of the ICDE Workshops. 229–236.

SCHERER, K. R. 2005. What are emotions? and how can they be measured? Social Sci. Inf. 44,
695–729.

SCHMIDT, A., AIDOO, A. K., TAKALUOMA, A., TUOMELA, U., LAERHOVEN, K., AND DE VELDE, M. 1999. Advanced
interaction in context. In Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing. 89101.

SOLIMAN, M. A. AND ILYAS, I. F. 2009. Ranking with uncertain scores. In Proceedings of the International
Conference on Data Engineering (ICDE). 317–328.

SOLIMAN, M. A., ILYAS, I. F., AND CHANG, K. C.-C. 2007. Top-k query processing in uncertain databases. In
Proceedings of the International Conference on Data Engineering (ICDE). 896–905.

STEFANIDIS, K., DROSOU, M., AND PITOURA, E. 2010. Perk: Personalized keyword search in relational databases
through preferences. In Proceedings of the International Conference on Extending Database Technology
(EDBT). 585–596.

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

A Survey on Representation, Composition and Application of Preferences 19:45

STEFANIDIS, K. AND PITOURA, E. 2008. Fast contextual preference scoring of database tuples. In Proceedings of
the International Conference on Extending Database Technology (EDBT). 344–355.

STEFANIDIS, K., PITOURA, E., AND VASSILIADIS, P. 2006. Modeling and storing context-aware preferences. In Pro-
ceedings of the East European Conference on Advances in Databases and Information Systems (ADBIS).
124–140.

STEFANIDIS, K., PITOURA, E., AND VASSILIADIS, P. 2007a. Adding context to preferences. In Proceedings of the
International Conference on Data Engineering (ICDE). 846–855.

STEFANIDIS, K., PITOURA, E., AND VASSILIADIS, P. 2007b. On relaxing contextual preference queries. In Proceedings
of the International Conference on Mobile Data Management (MDM). 289–293.

TAN, K.-L., ENG, P.-K., AND OOI, B. C. 2001. Efficient progressive skyline computation. In Proceedings of the
International Conference on Very Large Database (VLDB). 301–310.

TAO, Y., XIAO, X., AND PEI, J. 2006. Subsky: Efficient computation of skylines in subspaces. In Proceedings of
the International Conference on Data Engineering (ICDE). 65.

TAYLOR, A. 1995. Mathematics and Politics: Strategy, Voting, Power and Proof. Springer.

TORLONE, R. AND CIACCIA, P. 2002. Finding the best when it’s a matter of preference. In Proceedings of the
Italian Symposium on Advanced Database Systems (SEBD). 347–360.

TORLONE, R. AND CIACCIA, P. 2003. Management of user preferences in data intensive applications. In Proceed-
ings of the Italian Symposium on Advanced Database Systems (SEBD). 257–268.

VEE, E., SRIVASTAVA, U., SHANMUGASUNDARAM, J., BHAT, P., AND AMER-YAHIA, S. 2008. Efficient computation
of diverse query results. In Proceedings of the International Conference on Data Engineering (ICDE).
228–236.

WELLMAN, M. P. AND DOYLE, J. 1991. Preferential semantics for goals. In Proceedings of the National Conference
On Artificial Intelligence (AAAI). 698703.

XIA, T., ZHANG, D., AND TAO, Y. 2008. On skylining with flexible dominance relation. In Proceedings of the
International Conference on Data Engineering (ICDE). 1397–1399.

YI, K., YU, H., YANG, J., XIA, G., AND CHEN, Y. 2003. Efficient maintenance of materialized top-k views. In
Proceedings of the International Conference on Data Engineering (ICDE). 189–200.

YOU, G. AND HWANG, S. 2008. Search structures and algorithms for personalized ranking. Inf. Sci. 178, 20,
3925–3942.

YUAN, Y., LIN, X., LIU, Q., WANG, W., YU, J. X., AND ZHANG, Q. 2005. Efficient computation of the skyline cube.
In Proceedings of the International Conference on Very Large Database (VLDB). 241–252.

ZADEH, L., FU, K., TANAKA, K., AND SHIMURA, M. 1975. Fuzzy Sets and Their Applications to Cognitive and
Decision Processes. Academic Press, New York.

ZHA, H., ZHENG, Z., FU, H., AND SUN, G. 2006. Incorporating query difference for learning retrieval functions in
world wide web search. In Proceedings of the ACM International Conference on Knowledge Management
(CIKM). 307–316.

ZHAI, C. AND LAFFERTY, J. D. 2006. A risk minimization framework for information retrieval. Inf. Process.
Manag. 42, 1, 31–55.

ZHANG, S., MAMOULIS, N., AND CHEUNG, D. W. 2009. Scalable skyline computation using object-based space
partitioning. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
483–494.

ZHANG, X. AND CHOMICKI, J. 2009. Semantics and evaluation of top-k queries in probabilistic databases. Distrib.
Parallel Databases 26, 1, 67–126.

ZHANG, X. AND CHOMICKI, J. 2011. Preference queries over sets. In Proceedings of the International Conference
on Data Engineering (ICDE).

ZIMMERMANN, H. 1985. Fuzzy Set Theory and its Applications. Kluwer Academic, Dordrecht.

Received December 2009; revised January 2011; accepted March 2011

ACM Transactions on Database Systems, Vol. 36, No. 3, Article 19, Publication date: August 2011.

