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Abstract—In the fifth-generation (5G) wireless communications
system, various service requirements under different communica-
tion environments are expected to be satisfied. As a new evolution
network structure, heterogeneous networks (HetNet) have been
fully studied in recent years. In contrast to conventional homo-
geneous networks, the key feature of HetNet is to increase the
opportunity of spatial resource reuse and improve the quality of
service of users by allowing small cells to cooperate in macrocell
networks. However, since the mutual interference among different
users and the limited resource are existing in HetNets, efficient
resource allocation (RA) schemes are very important to reduce
the interference and achieve spectrum sharing. In this paper,
we provide a comprehensive survey on RA in HetNets for 5G
communications. Specifically, we first introduce the definition and
different network scenarios of HetNet. Second, RA models are
discussed. Then, we present classification to analyze current RA
schemes in the existing references. Finally, some challenging open
issues and future research trends are addressed in this field. We
also provide two effective approaches for the sixth-generation
(6G) communications to solve the RA problems of future Het-
Nets, namely, a learning-based approach and a control theory-
based approach. This paper provides important information on
HetNets, which can be used to guide the development of more
efficient RA schemes in this area.

Index Terms—Heterogeneous networks, resource allocation,
spectrum efficiency, machine learning.

I. INTRODUCTION

With the exponential growth of mobile smart terminals, the

fifth generation (5G) networks are designed to improve the

capacity 1000 times compared from the fourth generation (4G)

[1]–[6]. Moreover, spectrum efficiency (SE) improves 5 ∼ 15
times compared to the 4G mobile networks [7]. The 5G mobile

networks integrates various technologies, such as vehicular

networking [8], device-to-device (D2D) communications [9],

machine-to-machine (M2M) communications [10], Internet-

of-Things (IoT) [11], cloud radio access networks (CRANs)

[12], mobile edge computing (MEC) [13], cloud computing

[14], unmanned aerial vehicles (UAV) [15], to make the
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traditional communication network to realize the internet of

everything [16].

From the aspect of network architecture, wireless networks

evolved from homogeneous networks (HomNet) to heteroge-

neous networks (HetNet). 3GPP introduced HetNet in Release

12 [17], [18]. Specifically, HetNet allows many types of small-

cells to coexist while overlapping macrocell networks at the

same location or the same spectrum band, which greatly

improves SE and decreases the coverage holes. Generally

speaking, there are three different spectrum sharing strategies

in HetNets [17], such as,

• Overlay spectrum sharing: the small-cell users (SUs)

are allowed to utilize the frequency bands (FBs) if those

FBs are not used by macrocell users (MUs).

• Underlay spectrum sharing: SUs and MUs are allowed

to utilize the same FBs at the same time. However, it is

necessary to effectively manage the interference to each

MU receiver by a cross-tier interference power constraint.

• Hybrid spectrum sharing: the FBs are classified into

two types: subchannels only used by SUs (i.e., support

high data rates) and subchannels shared by MUs and SUs

(i.e., support high spectrum utilization). That is to say

that SUs with exclusive FBs are allowed to obtain good

system performance by allocating more power due to no

existence of the co-channel interference from MUs. In

addition, the low data-rate SUs can share the FBs with

MUs to support outdoor communication.

From the aspect of access modes, there are two types: open

access and closed subscriber groups [19]:

• Open access: Under this access mode, users are allowed

to associate with a small-cell base station (SBS) or a

macro-cell base station (MBS) according to the coverage

range. For instance, if a user terminal (UT) is within the

coverage of a small-cell network, it is allowed to access

it for communication preferentially. On the contrary, if a

UT is out of the small cell, but it is within the macrocell

network, it can associate with the MBS.

• Closed subscriber groups: Under this access mode, only

subscribed UTs (i.e., SUs) can connect to the small cells,

but the non-subscribed MUs can only access the macro-

cell network whether or not they are within the coverage

of small cells.

Finally, we highlight the unique features of HetNets in

comparison with HomNets
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Fig. 1. System structure of future HetNets.

1) Significant enhancement of system capacity: more users

with different access techniques are allowed to coexist in

the same physical space so that the whole capacity of the

communication system can be significantly improved.

2) Ultra density: many users with different power levels are

distributed in a small range by deploying many small cells so

that more users can access the network.

3) Reduced communication blind zone: with the distribution

of different kinds of small cells (e.g., microcell, picocell, fem-

tocell), it is possible to reduce the coverage holes and expand

the communication range by placing some small access points

(APs) into the poor channel environment (e.g., underground

parking lots, subway).

4) Reduced link loss and delays: if there are no small

cells in the wide-area communication scenario, the link loss

or channel gains between the user equipment (UE) and the

MBS is heavily degraded because of the long distance among

different communication devices. If SBSs are placed between

MBS and UEs, the backhaul signal from the UEs to the MBS

can be achieved by a small path loss.

5) SE improvement: since the available SR is very limited

in traditional HomNets, it is better to find an effective way

to improve the SE [20]. When the transmission radius is

small under the high FB, the radio frequency (RF) unit needs

to be redesigned. However, HetNet significantly improves

SE and provide seamless communication quality for anytime

and anywhere by coexisting different kinds of networks as

indicated in Fig. 1. From the figure, diverse networks with

different functions are divided into multiple tiers which cover

from space to terrestrial communications.

From the perspective of interference management and re-

source sharing, efficient resource allocation (RA) is the key

enabler of HetNet features highlighted above [21]. This paper

presents a comprehensive survey on RA in HetNets. We give

an overview of state-of-the-art contributions. The differences

of our contributions and state of the art contributions are

shown in Table I. Specifically, transmission control protocol

over transmission media was summarized in [22]. A survey on

secure handoff optimization schemes for multimedia services

in all-IP HetNets was given in [23]. The authors in [24],

[25] focused on the survey on vertical handover decision

algorithms. The authors in [26] presented a survey on vehicular

telematics in heterogeneous vehicular networks (HVNs), and

link control, routing, congestion control, security as well as

privacy were discussed in details. The authors in [27] focused

on the 3GPP LTE air interface and network nodes. The authors

in [28] provided the framework and challenges of HetNets

from the aspect of mobile cloud computing. The authors in

[29] explored a system framework of cooperative green Het-

Nets in terms of SE and energy efficiency (EE). The authors in

[30] summarized the converging solutions for heterogeneous

mobile networks (HMNs). The authors in [31] focused on the
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QoS and quality of experience (QoE) schemes. A survey on

the HVN was presented in [32]. A brief survey and a learning

approach for traffic offloading in heterogeneous cellular net-

works (HCNs) were introduced in [33]. The authors in [34]

summarized the system architecture and key technologies of

heterogeneous CRANs (H-CRANs). The authors in [35] gave

the tutorials on strategies for switching off BSs. A survey about

data interchange formats in the context of heterogeneous IoT

(Het-IoT) was discussed in [36]. The authors investigated the

survey on the Het-IoT [37].

Unlike the previously published survey papers [26]–[37], we

survey both the network structures and RA models, as well as

the proposed RA schemes in HetNets, This survey provides

an additional value to the current works with the summary of

the most recent progress on the RA problems in HetNets. In

addition to the basic principle and theoretical analysis, both

potential research issues and new network scenarios are pre-

sented. We discuss two comprehensive theoretical frameworks
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Fig. 3. System model of HetNet.

(e.g., learning-based RA and control-based RA) which are not

discussed in the existing papers. For the easy understanding,

Fig. 2 highlights the structure and contributions of this paper.

II. CELL TYPES AND COMMUNICATION SCENARIOS OF

HETNETS

A. Cell Types of HetNets

As a potential communication way, HetNet can further

improve transmission capacity and SE, as shown in Fig. 3.

According to different communication ranges and application

scenarios, network types can be divided into four categories

as follows.

1) Macrocell networks: Macrocell network as a traditional

cellular communication network can provide radio coverage by

using a high-power BS, which is commonly used in current

communication systems. The features of macrocell network

are: (i) The MBS is always located in the high place, e.g., on

the top of mountain or skyscraper, which provides a clear view

over the surrounding buildings and obstacles; (ii) It has a long

transmission distance and a large coverage area, where the cell

radius can approach from 1 km to 25 km [38]. The distance

between two neighboring MBSs is very far; (iii) Generally, the

QoS of the cell-edge user is seriously affected by the shadow

fading and multipath interference; (iv) There are uncovered

spots or hot spots due to unevenly distributed service requests

so that the QoS of the indoor users is much worse when it is

served by the faraway MBS.

2) Microcell networks: Usually, microcell network is

served by a low-power BS so that it is commonly used in a

densely populated urban area, such as shopping hall, railway

station. However, the transmission radius in the microcell

network can approach only from 200 m to 1 km is smaller than

that of the macrocell network. At the same time, the number of

channels per network and the traffic density are dramatically

increased with the decreasing frequency reuse distance of the

low-power microcell BS.

3) Picocell networks: Picocell network as a small cellular

network often covers a much smaller area (e.g., 100 m∼200

m), such as offices, teaching buildings, subway station. Pic-

ocells are typically used to extend the coverage of indoor

areas so that they can reduce the uncovered spots of indoor

communication scenarios.
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TABLE I
RELATED SURVEYS ON HETNETS AND COMPARISONS

Paper Year Network Main addressed issues Final target and benefits

[22] 2000 HetNet TPC performance
Build an independent network type, to achieve TCP cope with a heterogeneous
Internet via an end-to-end basis

[23] 2007 all-IP HetNet Secure handoff optimization Reduce the effect of handoff delay and support demanding multimedia service

[24], [25] 2009, 2010 HetNet Vertical handover decision Provide seamless roaming and mobility

[26] 2010 HVN Vehicular telematics
Design the essential functional components of HVN and the protocols (radio link
control, routing, congestion control,
security, privacy, application development)

[27] 2011 HetNet A comprehensive survey
Improve SE and create a network structure, overview the 3GPP LTE air interface,
network nodes, cell range
expansion, the enabling mechanisms in heterogeneous scenario

[28] 2013 HetNet Mobile cloud computing Provide vast computation resource and abundant network services

[29] 2014 HetNet EE and SE Cooperative HetNet to balance and optimize SE and EE.

[30] 2014 HMN Converging solution Improve the performance of M2M communications by using WiFi or Bluetooth

[31] 2014 HetNet QoS and QoE mechanisms Achieve the best possible configuration of connectivity, price and user application

[32] 2015 HVN Architecture, challenges
Provide efficient real-time information exchange among vehicles and the
wide coverage for vehicular users simultaneously

[33] 2015 HCN EE based traffic offloading An online reinforcement learning resolves the time-varying traffic and task offloading

[34] 2015 H-CRAN System architecture Fulfill the centralized cooperative process and suppress co-channel interference

[35] 2016 HetNet BS switching Reduce EC and meet traffic needs
[36] 2018 Het-IoT Data exchange formats Improve the size of transmitted messages

[37] 2018 Het-IoT Network architecture
Achieve smart home/city, intelligent transportation, advanced manufacture,
security system

This paper 2020 HetNet RA algorithms
Achieve interference management, SR sharing, high capacity, adaptive
and intelligent optimization

4) Femtocell networks: Femtocell (also called home BS)

network has a small and low-power BS (e.g., 10 m∼50 m)

which is used to achieve good communication in a home

place or a small business place. It is also a typical network

to improve the QoS of indoor users by connecting to the

home BS via wideband technology. Moreover, the installation

of femtocells is much easier and more profitable than that

of macrocells. In addition, femtocells can fill in the gaps of

picocells and eliminate the signal loss through the buildings.

The main difference between femtocells and picocells is that

the number of users in the femtocells is much smaller than that

of picocells, such as 4 ∼ 8 users (e.g., homes) and 8 ∼ 16
users per cell (e.g., small enterprise premises).

What’s more, femtocells have three different access methods

including open access, closed access and hybrid access [21].

The open-access mode is applied in the scenario where there

is a quantity of data exchange among subnetworks, such as

mall and enterprises. Under this mode, all legitimate users

can access the network without additional access control. The

closed access mode is mainly used in the private places,

such as homes or offices, where unauthorized users cannot be

allowed to access the network. Furthermore, the hybrid access

mode protects the interests of legitimate users preferentially

combining the above two modes. In other words, when the

network is idle, users are allowed to access the network

through the authentication.

Based on the above discussion, the characteristics of differ-

ent networks are summarized in Table II.

B. Communication Scenarios of HetNets

Since different networks have different system models, we

need to introduce the particular communication scenarios in

TABLE II
COMPARISON OF DIFFERENT NETWORK TYPES [27].

Cell types Radius Transmit power Application environment

Macrocells 1km ∼ 25km 20W ∼ 160W
mountaintop, wide
area coverage

Microcells 200m ∼ 1km 2W ∼ 20W
shopping hall, railway
station, hot spots

Picocells 100m ∼ 200m 250mW ∼ 2W
office/teaching building,
underground parking

Femtocells 10m ∼ 50m 10mW ∼ 200mW
home, small enterprise
for a high data rate

HetNets before RA taxonomy. Combining the above cell

types and different communication types (e.g., multi-antenna

technique, cooperative communication), in this subsection, we

will present several basic communication scenarios in HetNets

from single channel to multiple orthogonal carriers, orthogonal

multiple access (OMA) to non-orthogonal multiple access

(NOMA), single-antenna system to multi-antenna system.

1) Traditional HetNets: The network scenario of traditional

HetNet is depicted in Fig. 4. As shown in the figure, each

BS and each UE has a single antenna to communicate with

each other without relays. In this network structure, there are

always at least two different types of cellular networks, such as

macrocell and small cell (i.e., femtocell, picocell, microcell).

Specifically, macrocell network as the primary network is the

owner of FBs; small cell networks as the secondary network

are placed in the same SR and the users control their transmit

power for avoiding to significantly affect the QoS of MUs. The

MBS serves multiple MUs by uplink/downlink transmission to

achieve a wide coverage. However, the underlay small cells are

used to achieve a higher throughput and the QoS requirements

of users for certain scenarios, e.g., indoor coverage, hot spots.

From the figure, there are several kinds of interference power,
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such as the interference from the femto BS (FBS) to the

MU receiver, the interference from the MBS to the femtocell

user (FU) receiver and the interference among contiguous

femtocells. Therefore, it can not only obtain a good system

but also achieve the network coexistence of different cells.

2) OFDMA based HetNets: To reduce the mutual interfer-

ence among different subchannels and improve SE, orthogonal

frequency division multiplexing (OFDM) was proposed by di-

viding the original FB into multiple orthogonalized subcarriers

in [39]. OFDM can allow flexible subcarrier allocation for

realizing dynamic RA according to the demands of users. As

a powerful candidate technology in HetNet, OFDMA-based

HetNets have been studied by scholars. A two-tier OFDMA

based HetNet is presented in Fig. 5. As shown in Fig. 5, the

main difference of OFDMA based HetNets from the traditional

HetNets is the use of orthogonal subcarriers (subchannels) so

that there is no mutual multiple access interference (MAI)

among users in the same cell.

3) NOMA-based HetNets: Although there is no interference

among users in OMA systems (e.g., OFDMA system), the
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number of available orthogonal resources is limited. Therefore,

NOMA technology was proposed to support more users for

accessing networks in [43]. The basic idea of NOMA is to

achieve non-orthogonal RA among different users at the cost

of the increase of system increase complexity at the receiver

[44]. For example, for the power-domain NOMA system,

different users are allocated different power levels according to

their channel quality, the same time/frequency/code resources

can be shared among multiple users [45]. Meanwhile, at the

receiver side, the signals of different users are decoded by

using successive interference cancellation (SIC). Due to the

advantage of NOMA, the NOMA technology is considered

in HetNets for higher throughput and massive users access,

namely, NOMA-based HetNets.

The network model of NOMA-based HetNets is given in

Fig. 6. As shown in Fig. 6, there are one macrocell and

multiple femtocells in the HetNet, where FUs utilize the

resources by the NOMA way. The principle is: i) The FU with

the poor channel condition (e.g., FU n) detects its signal by

regarding the signals from other users with good channel gains

as the interference power, ii) The FU with the good channel

(e.g., FU 1) firstly detects the signal of the users with weak

channels, and then subtracts its remodulated version from the

received signal, so that the FU with the poor channel (e.g., FU

n) can detect its own signal. The main difference between the

NOMA system and the OMA system is that SIC is applied at

the receivers.

4) Cooperative HetNets: Relay communication (also called

cooperative communication) can effectively extend the cover-

age of the network. As a result, more and more researchers

combine HetNets with relays to form a heterogeneous relay

network for obtaining a wider coverage area and higher

system throughput. A network scenario of heterogeneous relay

network is presented in Fig. 7.

From this figure, different from the non-relay network,

the signal transmission of this network is assisted by relays.

Thus the transmission path is complex and variable, and the

transmission mode is more flexible. With the introduction of

relays, RA, relay selection, and forwarding methods are more
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complex.

5) H-CRANs: To improve SE and reduce energy consump-

tion (EC), H-CRAN was proposed in recent years. As a

new network paradigm, H-CRAN integrating the advantages

of cloud computing and HetNet can provide wider network

coverage and higher throughput, and also can efficiently cope

with the large-scale data processing and control. A network

scenario of H-CRAN is presented in Fig. 8.

As shown in the figure, the baseband unit (BBU) pool in the

cloud is used to coordinate the network resources. However,

the severe inter-tier interference between the MBS and remote

radio heads (RRHs) must be coordinated and eliminated for

the improvement of SE and EE. The functions of different

devices in H-CRANs are summarized in Table III.

6) Multi-antenna HetNets: Multi-antenna HetNet is another

new structure of HetNets relying on spatial domain multi-

plexing, which can improve system capacity and SE. The

MIMO channels can realize spatial division multiple access for

multiple users by using transmit beamforming [40]. Different

from the single-antenna channel, the direct/interfering links

in multi-antenna HetNets have different characteristics. A

TABLE III
A SUMMARY OF DEVICE’S FUNCTION IN H-CRANS.

Name Function

BBU
cloud platform, process real-time virtual computation resources manage

massive signal processing and air interface protocol

RRH
wireless remote radio unit, achieve RA of users, satisfy high-speed

data transmission requirements for massive data services in hotspots

MBS

achieve seamless coverage, control information transmission of the

whole network, transmit control signals and system broadcast

information to users, separate the function between the control plane

and service plane

S1/X2

S1-communication interface between BS and evolved packet core (EPC)

network, X2-interconnection interface between e-NodeBs, support the

direct transmission of data and signaling
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multiuser multi-antenna HetNet is presented in Fig. 9.

As shown in the figure, the multiple antennas are placed

in the MBS. It can provide good communication for MUs,

but causes more interference to the SUs (e.g., picocell users,

PUs). Due to the heterogeneous characteristics, transmission

models and interference models are different from those in

the traditional MIMO-based HomNets. Moreover, there are

usually three types of channels, e.g., single-input multiple-

output (SIMO), multiple-input single-output (MISO) and MI-

MO (massive MIMO is a specifical case of the MIMO system)

[42]. In order to better understand the transmission features

in multi-antenna channels, the comparison of transmission

signal modes is given in Fig. 10. From the figure, it is

obvious that the differences among three modes are the related

channel gain matrix, the dimensions of the received signal and

the transmitted signals. The key issue is to design suitable

beamforming vectors or precoding matrix according to channel

conditions for reducing interference and improving system

performance.

III. RESOURCE ALLOCATION MODELS

In order to better understand RAs, different mathematical

models are introduced in this section, which is helpful to

understand the differences of various RA problems, such as

optimization variables (e.g., power allocation, relay selection,

channel assignment).
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Fig. 10. Comparison of transmission signals of MIMO system.

A. RA Models in Cellular HetNets

Under this network, each user and BS have a single antenna.

The BS transmits the signals to users by the FDMA way.

Assume that there is one macrocell with M MUs and one

small cell with N SUs under an uplink scenario, each user

occupies one subchannel with bandwidth B Hz. Define the

user’s set as m ∈ {1, 2, · · · ,M} MUs and n ∈ {1, 2, · · · , N}
SUs. For example, the total data rate of SUs can be maximized

by solving the following optimization problem

max
pn

N∑

n=1

R
SU
n

s.t. C1 : pn ≤ P
s,max
n

C2 :

N∑

n=1

pnhn,m ≤ I
MU
m , ∀m

C3 : RSU
n ≥ R

min
n , ∀n

(1)

where RSU
n = Blog2(1 + rn) denotes the data rate of SU n.

The SINR (rn) is

rn =
pnhn

N∑

i=1,i 6=n

pihi,n

︸ ︷︷ ︸

inter−tier interference

+

M∑

m=1

Pmgm,n

︸ ︷︷ ︸

cross−tier interference

+ σ2
n

(2)

From (2), the first item of denominator represents the

interference power from other SUs’ links, and the second item

is the interference power from the macrocell network. hn is

the channel gain from SU n to the SBS. σ2
n is the background

noise at SU n. Pm denotes the transmit power from MU m

to the MBS. gm,n is the channel gain from link m to link n.

hi,n denotes the channel gain from SU i to SU n. P s,max
n

denotes the maximum transmit power of SU n. Rmin
n denotes

the minimum rate requirement of SU n. IMU
m denotes the

maximum interference power of MU m, which is used to keep

the QoS requirements of MUs. It is obvious that we need to

solve the optimal power pn to maximize the sum rates of SUs.

What’s more, there are other two commonly used objective

functions for RA problems in such network, namely total

power consumption minimization and total EE maximization.

The former is always used to save energy consumption and

extend network life for energy-limited networks, such as

min
pn

∑N

n=1
pn. The latter is used to improve unit energy

utilization (i.e., bits/Joule, total rate over total energy con-

sumption), such as max
pn

∑N
n=1

RSU
n∑

N
n=1

pn+Pc
, where Pc denotes the

circuit power consumption.

B. RA Models in OFDMA-based HetNets

Since the channel is divided into multiple orthogonal subcar-

riers (subchannels) in OFDMA-based HetNets, we firstly need

to consider the subcarrier allocation problem and then deter-

mine the power allocation according to channel conditions.

Assume that there are K subcarriers and k ∈ {1, 2, · · · ,K},

we can formulate a total rate maximization problem as follows,

max
pn,k,αn,k

N∑

n=1

K∑

k=1

αn,kR
SU
n,k

s.t. C̄1 :

K∑

k=1

pn,k ≤ P
max
n , ∀n

C̄2 :

N∑

n=1

K∑

k=1

αn,kpn,khn,k,m ≤ I
MU
m , ∀m

C̄3 :

K∑

k=1

αn,kR
SU
n,k ≥ R

min
n , ∀n

C4 :

K∑

k=1

αn,k ≤ 1, ∀n

C5 : αn,k ∈ {0, 1}, ∀n, k

(3)

where αn,k denotes the subcarrier allocation factor, which is

the biggest difference with problem (1). C4 and C5 ensure that

one subcarrier can be only used by one SU. RSU
n,k = log2(1+

rn,k) is the data rate of SU n on subcarrier k. And the SNR

is

rn,k =
pn,khn,k

σ2
n,k

, (4)

where pn,k, hn,k and σ2
n,k are the corresponding transmit pow-

er, channel gain and background noise power. Accordingly, (4)

is completely different from (2). hn,k,m denotes the channel

gain from SU n to MU m over subcarrier k.

Obviously, (3) needs to solve two variables pn,k and αn,k,

and this problem can be extended into other scenarios with

different objective functions.

C. RA Models in NOMA-based HetNets

Because multiple users can share the same subchannel under

NOMA technique, the co-channel interference becomes the

main challenge. For the same user scenario as Subsection A,

the channel gains can be sorted as hNOMA
1 ≤ hNOMA

2 ≤
· · · ≤ hNOMA

n ≤ · · · ≤ hNOMA
N . After the SIC technolo-

gy, each receiver with good channel condition can perfectly

decode the signals of the weakest users and then remove

the inter-user interference. Thus, the transmit power satisfies

pNOMA
1 ≥ pNOMA

2 ≥ · · · pNOMA
n ≥ · · · ≥ pNOMA

N [46], the

SINR of SU n becomes

r
NOMA
n =

pNOMA
n hNOMA

n

h
NOMA
n

N∑

j=n+1

p
NOMA
j

︸ ︷︷ ︸

co−channel interference

+

M∑

m=1

Pmgm,n

︸ ︷︷ ︸

cross−tier interference

+σ2
n

(5)

Other constraints are the same as problem (5).
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Another important issue in RA problems of NOMA-based

HetNets is the fairness among NOMA users, because the basic

idea of NOMA is to improve the performance of user under

bad channel condition for further capacity income [47]. As a

result, the SINR of SU N with the best channel condition can

be expressed as

r
NOMA
N =

pNOMA
N hNOMA

N

M∑

m=1

Pmgm,N + σ2
N

(6)

Thus the RA models of NOMA-based HetNets will become

more and more complex with the increasing number of users.

D. RA Models in Cooperative HetNets

With the aid of relay nodes, RA models in cooperative

HetNets are completely different from the network without

relays (e.g., direct transmission). From Fig. 7, according to

different relay forwarding modes, the RA models are different.

Assume that there is one MBS and one FBS which serves sin-

gle user, FBS acts as the relay BS due to the large-scale fading

between MBS and MU. We consider an uplink transmission

mode, and the MU is a source node. The destination is the

MBS. Therefore, the transmission rates of source-relay (SR,

CS→R), source-destination (SD, CS→D) and relay-destination

(RD, CR→D) are






CS→R = Blog2

(

1 + pShS→R

σ2

)

CS→D = Blog2

(

1 + pShS→D

σ2

)

CR→D = Blog2

(

1 + pRhR→D

σ2

)
(7)

where pS and pR are the transmit power of source node and

relay node. hS→D, hS→R and hR→D are the channel gains

of direct transmission, SR link, and RD link. σ2 denotes the

background noise power.

And the effective data rate under the two-hop relay protocol

is

C̃
S→D

=
1

2
min

{

C
S→R

, C
R→D

}

(8)

Therefore, there are two transmission ways. If CS→D ≥
C̃

S→D

holds, the channel gain of direct channel is better than

that of relay link, so we can choose the direct transmission.

Otherwise, we need to choose relay transmission. And the

optimization problem can be formulated as

max
pS ,pR

1

2
min

{

C
S→R

, C
R→D

}

(9)

s.t. Ĉ1 : pS ≤ P
max

Ĉ2 : pR ≤ P
max
FBS

Obviously, (9) is completely different from RA models

without relays. It also can be extended into multiple relays,

cells and users under the constraints of the minimum rate

requirement of each user, the allowable interference power of

MUs and so on. The detailed RAAs of heterogeneous relay

networks will be discussed in the following Section.

E. RA Models in H-CRANs

Comparing with traditional HetNets, the main challenge

of RA models in H-CRANs is not only transmit power and

user association but also BBU offloading, resource block (RB)

allocation, etc. We assume a downlink H-CRAN with one

macrocell with M MUs and K RRHs with N RUEs. Each

RRH is connected to the BBU pool via the wired or wireless

fronthaul links. Let ∀m ∈ ℜM = {1, 2, · · · ,M}, ∀k ∈ K =
{1, 2, · · · ,K} and ∀j, n ∈ N = {1, 2, · · · , N} denote the sets

of active MUs, all RRHs and RUEs, respectively. Define the set

of RRHs connected to the BBU pool via wired fronthaul links

as K1 = {1, 2, · · · ,K1}, and the set of RRHs connected to the

BBU pool via wireless links as K2 = {K1+1,K1+2, · · · ,K}.

If RUE n is associated in RRH k, αn,k = 1, otherwise

αn,k = 0. The received SINR for RUE n accessing RRH

k is given by

γ
R
n,k =

αn,kp
R
n,kh

R
n,k

∑

k

∑

j 6=n

αj,kp
R
j,kg

RR
j,n,k +

∑

m

pMm gMR
m,n + σ2

(10)

where pRn,k and hR
n,k are the transmit power and direct channel

gain of RUE n in RRH k. pMm denotes the allocated power

from MBS to the mth MU. gRR
j,n,k is the interference channel

gain of inter-tier links to RUE n. gMR
m,n is the interference

channel gain of cross-tier links. σ2 is the additive white

Gaussian noise (AWGN) power.

The received SINR of MU m is given by

γ
M
m =

pMmhM
m

∑

k

∑

n

αn,kp
R
n,kg

RM
n,k,m + σ2

(11)

where hM
m is the channel gain from the MBS to MU m. gRM

n,k,m

denotes the interference channel gain from link n to MU m.

Thus, based on Shannon capacity formula, the individual

capacity constraint of each RRH satisfies






∑

n

B log(1 + γR
n,k) ≤ R1

k, k ∈ K1

∑

n

B log(1 + γR
n,k) ≤ R2

k, k ∈ K2

(12)

where B denotes the bandwidth of each subchannel. R1
k and

R2
k are the different capacity limitation of wired and wireless

transmissions between the RRHs and BBU pool. Therefore,

the sum capacity and total power consumption of all RRHs

(CRRH and PRRH ) are

C
RRH =

∑

k

∑

n

B log(1 + γ
R
n,k) (13)

P
RRH = µ

∑

k

∑

n

αn,kp
R
n,k + P

RRH
c + Pfh (14)

where µ, PRRH
c and Pfh denote the efficiency of the power

amplifier, circuit power, and power consumption of the fron-

thaul link, respectively. Similarly, the sum capacity and total

power consumption of all MUs (CM and PM ) are

C
M =

∑

m

B log(1 + γ
M
m ) (15)

P
M = µ

M
∑

m

p
M
m + P

M
c + Pbh (16)

where µM , PM
c and Pbh denote the efficiency of the power

amplifier, circuit power, and power consumption of the back-

haul link between the MBS and BBU pool, respectively. So,

the EE maximization problem in the downlink H-CRAN can
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be formulated as

max
{pR

n,k
,αn,k,p

M
m }

CRRH + CM

PRRH + PM

s.t. C̃1 :
∑

n

αn,k = 1, αn,k ∈ {0, 1}

C̃2 :
∑

n

αn,kp
R
n,k ≤ p

max
k ,

C̃3 : γR
n,k ≥ γ

min
n,k ,

C̃4 : γM
m ≥ γ

min
m ,

C̃5 :
∑

n

B log(1 + γ
R
n,k) ≤ R

1
k, k ∈ K1

C̃6 :
∑

n

B log(1 + γ
R
n,k) ≤ R

2
k, k ∈ K2

(17)

where pmax
k denotes the maximum transmit power of RRH k.

γmin
n,k and γmin

m present the minimum SINR requirement of

each RUE and each MU, respectively. As a result, the RA in

problem (17) is more complex.

F. RA Models in Multi-antenna HetNets

Comparing with the single-antenna system, multiple anten-

nas in BSs or users make the optimal variable and channel

gain of traditional RA models as multidimensional vectors.

We assume a multi-antenna HetNet with one macrocell and

one femtocell. The MBS with M antennas and FBS with N

antennas serve multiple single-antenna users. Denote the set

∀l ∈ RM = {1, 2, · · · , L} and ∀k, i ∈ RF = {1, 2, · · · ,K}
as the number of MU receiver and the number of FU receiver,

respectively. Hence, the transmitted signals from FBS (i.e., x)

can be presented as

x =
∑

k

wksk (18)

where wk ∈ R
N×1 and sk ∼ CN(0, 1) denote the beam-

forming vector (i.e., precoding vector) for the kth FU and the

downlink data symbol intended to the kth FU with zero mean

and unit variance, respectively, and E[‖sk‖
2
] = 1.

Because of the limitation of FBS, from (18), we have the

following constraint

E

(

x
H

x
)

=
∑

k

‖wk‖
2 ≤ P

max
FBS (19)

where (·)H denotes the conjugate transpose of a matrix or

vector. Pmax
FBS is the maximum transmit power of FBS. Based

on the same principle, we can obtain the transmitting signal

and power constraint of MBS, i.e.,






x̃ =
∑

l

vlsl

E
(
x̃H x̃

)
=

∑

l

‖vl‖
2 ≤ Pmax

MBS

(20)

where x̃ is the transmitted signal at MBS. vl ∈ R
M×1 and

sl ∼ CN(0, 1) are the beamforming vector for the lth MU

and downlink data symbol intended to the lth MU with zero

mean and unit variance respectively, and E[‖sl‖
2
] = 1. Pmax

MBS

is the maximum transmit power at MBS. Hence, we can easily

get the received signal at the receiver, i.e.,

yk = h
H
k wksk +

∑

i 6=k

h
H
k wisi

︸ ︷︷ ︸

inter−cell interference

+
∑

l

H
H
l,kvlsl

︸ ︷︷ ︸

MU′s interference

+nk (21)

yl = H
H
l x̃ +

∑

k

h
H
k,lwksk

︸ ︷︷ ︸

FU′s interference

+nl (22)

where yk and yl are the received power at FU k and MU

l respectively, and nk ∈ CN(0, σ2
k) and nl ∈ CN(0, σ2

l )
present the circularly-symmetric complex Gaussian receiver

noise. hk ∈ R
N×1 and Hl ∈ R

M×1 are the channel vectors

from FBS to the kth FU and the MBS to the lth MU

respectively. Hl,k ∈ R
M×1 and hk,l ∈ R

N×1 denotes the

interference channel gain vectors from macrocell network and

femtocell network, respectively. Therefore, the SINR at the kth

FU and interference power constraint for each MU receiver are

SINR
FU
k =

∣
∣hH

k wk

∣
∣
2

∑

i 6=k

∣
∣hH

k wi

∣
∣2 +

∑

l

∣
∣HH

l,kvl

∣
∣2 + σ2

k

(23)

∑

k

∣
∣
∣h

H
k,lwk

∣
∣
∣ ≤ η

MU
l (24)

where ηMU
l is the permissible interference threshold for the

lth MU receiver. Thus, the beamforming design with sum rate

maximization of FUs can be formulated as

max
{wk,vl}

∑

k

B · log2




1 +

∣
∣hH

k wk

∣
∣
2

∑

i 6=k

∣
∣hH

k wi

∣
∣2 +

∑

l

∣
∣HH

l,kvl

∣
∣2 + σ2

k






s.t. C1,1 :
∑

k

‖wk‖
2 ≤ P

max
FBS

C2,2 :
∑

l

‖vl‖
2 ≤ P

max
MBS

C3,3 :
∑

k

∣
∣
∣h

H
k,lwk

∣
∣
∣ ≤ η

MU
l

(25)

Obviously, it is clear that the design of beamforming vectors

{wk} and {vl} is crucial for the interference cancellation and

optimal performance. Problem (25) can be easily extended to

the other problems with different optimization objectives and

MIMO-HetNets with multi-antenna BS and users. Compared

with the problem (25), the difference of MIMO-HetNets is the

dimension of channel gains and beamforming vectors.

IV. RA TAXONOMY IN HETNETS

In this section, we will survey RA algorithms under differ-

ent network scenarios. The taxonomy for RA algorithms in

HetNets is given in Fig. 11.

A. RA in Traditional HetNets

Traditional HetNets: According to Fig. 4, the key issues of

RA in traditional HetNets (e.g., TDMA) are optimal power

allocation (i.e., power control, RA), user association (i.e.,

the user uses which BS to communicate) and bandwidth

allocation. The structure of this typical network is the simplest
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RA in HetNets
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Fig. 11. Taxonomy for the RAAs in HetNets.

TABLE IV
A SUMMARY OF RA ISSUES IN TRADITIONAL HETNETS

Networks Issues Criteria Description Theory

Macro-micro [59] Fairness [49], [63] Mean rate [51] Distributed algorithm [63] Water-filling [51], Match theory [56]

Macro-small [53], [58], [63] allocate power [48]- [63] Secrecy rate [54] Centralized algorithm (others) Iteration algorithm [55], [58], [63]

Macro-femto [56], [60]–[62] bandwidth [48], [58] EE [52], [55], [57],
[58], [60]–[62] Imperfect CSI [59]–[61] Convex optimization [48], [52]- [54],

[59]–[62]

Macro-pico [50]–[52], [54],
[55], [57]

User association [49], [51],
[53], [55]

Throughput, rate [48]–[50],
[56], [59], [63] Perfect CSI (others) Game theory [52], KKT condition [49],

[54], [61], [63]

one because of no relays, antenna selection, coaching and

so on. The current research works about RA problems in

conventional HetNets are presented as follows.

In [48], a joint power and bandwidth allocation algorith-

m via convex optimization was proposed to maximize the

sum throughput under the bandwidth allocation constraints,

maximum transmit power constraints and the minimum data

rate requirements. In [49], a fairness-driven fast RA problem

for interference-free HetNets was investigated to maximize

the sum of logarithms of received rates. The authors in [50]

considered the optimal power allocation problem of capacity

maximization by allowing each subcarrier of macrocell to be

shared by users from multiple picocells. For a cellular HetNet

with one macrocell and multiple picocells, the authors in [51]

studied joint RA and user association problems to maximize

the mean rate of the system. The authors in [52] proposed

a low-complexity game-theoretic approach for EE-based RA

in a two-tier HetNet. Based on fractional programming (FP),

the nonconvex problem was transformed into a two-stage

Stackelberg game, which is solved by using the backward

induction method and the Lagrange dual decomposition (LDD)

method. In [53], from the aspect of fractional frequency reuse,

the authors also investigated the joint RA and user association

in HetNets with one macrocell and multiple small cells. The

authors in [54] studied the secrecy rate RA problem for phys-

ical layer security in HetNets with hidden eavesdropper of the

macrocell. The EE-based power control and user association

(i.e., BS selection, channel allocation, and model selection)

problem were investigated for an uplink HetNet in [55], where

the SU can associate with the BS directly or through the help

of its cooperative relay. In [56], a modified many-to-one swap

matching algorithm based on stable matching theory was used

to solve the rate maximization RA problem. In [57], a three-

stage RAA was proposed to maximize the EE of downlink

transmissions in HetNets by using employ the fractional

frequency reuse scheme to eliminate outages for the cell-edge

users. In [58], the authors focused on EE-based maximization

power allocation and wireless backhaul bandwidth allocation

in downlink heterogeneous small cell networks. The authors

in [59], [60] studied the robust RA problems for maximizing

sum rate and EE under imperfect CSI, respectively. In [61],

an uplink cross-layer RA problem under imperfect CSI was

modeled as min-max fractional stochastic programming for

HetNets with macrocells and femtocells, where the constraints

of delay, service outage probability, system radio bandwidth,

and total power consumption were considered simultaneously.

In [62], a security-aware EE RA was modeled as a FP

problem for HetNets where the average packet delay, the

average packet dropping probability, and the total available
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power consumption were considered. The authors in [63]

studied the distributed RA to maximize the total throughput

of the cognitive small cell networks by jointly considering

interference management, fairness-based RA, average outage

probability and channel reuse radius.

To give a better illustration, we give a summary of RA prob-

lems in Traditional HetNets in Table IV. Discussion: Based on

the above-detailed discussion and Table IV, it is obvious that

the user association of multicells (i.e., cell selection) is very

meaningful to achieve RA problems of this network scenario.

Through user association, the RA scheme can be well designed

according to the user’s CSI. For multiuser case, user’s fairness

is important for the user under the poor radio environment,

however, the fairness-based RAAs are not well discussed,

especially in multi-tier multicell networks with multiple users.

Another question is the stability and robustness of the system.

Since it is inevitable for channel perturbation, different estima-

tion errors from channel estimation and signal’s quantification

and reconstruction, the trade-off between optimal performance

(e.g., maximized throughput) and robustness (e.g., reduce

outage event) is required to be considered ahead of time for

practical communication environment. Additionally, a hard-

ware fault tolerance based distributed RA strategy should be

addressed for future research to improve data transmission

efficiency (e.g., reduce the computational burden of FBS) and

prolong the lifetime of femtocells.

B. RA in OFDMA-based HetNets

OFDMA-based HetNets: In OFDMA-based HetNets, the

bandwidth is divided into multiple orthogonal subcarrier-

s/subchannels. Under this orthogonal deployment, the macro-

cell and different small cells can be considered independently,

where there is no mutual interference with each other [64].

Different from the above traditional HetNets, subchannel al-

location as another key factor needs to be considered in the

RA optimization problem of OFDMA-based HetNets.

In [65], the RA problem with proportional rate constraint

was considered to maximize the sum rate of the system.

For a two-tier downlink HetNet with multiple WLAN APs

operating in OFDMA manner and one macrocell operating

in TDD manner, the authors in [66] studied the EE-based

RA and subcarrier allocation problem by using a double-loop

iteration method. In [67], for a two-tier OFDMA heteroge-

neous macrocell-femtocell network, a subchannel and power

allocation problem for cochannel femtocells was modeled as a

mixed-integer programming problem to maximize the capacity

for both delay-sensitive users and delay-tolerant users subject

to the delay-sensitive users’ QoS constraint and an interference

constraint imposed by the macrocell. The problem was solved

by using LDD method. In [68], based on Stackelberg game

theory, the authors proposed an interference-aware EE RA

scheme and interference pricing scheme for OFDMA-based

HetNets with incomplete CSI. In [69], a joint BS selection and

RA for an OFDMA HetNet with one macrocell and multiple

small cells was proposed to maximize the total throughput by

using game theoretic stochastic learning approaches. In [70], a

joint subchannel allocation and power allocation problem was

investigated to minimize the total transmit power of BSs. The

authors in [71] proposed a distributed power allocation scheme

for maximizing EE in an uplink OFDMA-based HetNet where

a macro-tier was augmented with small cell APs. The opti-

mization problem was formulated as a non-cooperative game

process for maximizing individual utility (i.e., its EE) of each

small cell user. For a two-tier uplink HetNet with multiple

small cells and one macrocell via OFDMA manner, the authors

in [72] focused on the limited-feedback RAA to maximize the

weighted sum rate of all users by jointly optimizing power and

subcarrier allocation under the constraints of transmit power

and interference power threshold. The problem was solved

by using SCA and Karush-Kuhn-Tucker (KKT) conditions.

For a two-tier uplink HetNet with multiple small cells and

one macrocell via OFDMA manner, the authors in [73] in-

vestigated the joint power and admission control problem to

maximize the SE and EE of users. With the case of local

CSI overhearing and scheduling prediction, the authors in

[74] studied the distributed RAA for maximizing the sum rate

of FUs in an OFDMA heterogeneous macro-femto network.

For a downlink OFDMA multi-cell HetNet, a joint optimiza-

tion problem of user association, subchannel allocation, and

power allocation was considered in [75]. The graph theory

was used to solve the subproblem of user association and

subchannel allocation for fixed power allocation. In addition, a

KKT optimal RA solution was obtained by a low complexity

algorithm based on the difference of two convex functions

approximation method. In [76], the EE maximization downlink

resource optimization problem was formulated as a mixed-

integer nonlinear FP problem with a nonconcave nonlinear

objective function and nonlinear constraints. And the problem

was is optimally solved by using Dinkelbach and branch-

and-bound methods. In [77], for a two-tier OFDMA-based

heterogeneous macro-small network with spectrum underlay

and overlay access, the QoS-constrained EE optimization

problem was formulated as a complex mixed-combinatorial

and nonconvex optimization problem. Furthermore, with the

help of appropriate decomposition, the authors proposed a

dual-layer RA approach and provided a complete solution

using the difference of two concave function approximations,

SCA, and gradient search method.

To provide a better illustration, we give a summary of RA

in OFDMA-based HetNets in Table V. Discussion: Based on

the above introduction and Table V, it is well-known that

subcarrier allocation is very important for achieving RAAs in

OFDMA-based HetNets. With the introduction of the integer

subcarrier assignment factor, the original RA issue becomes a

mixed integer programming problem, which is converted into

a continuous optimization one by aiding relaxation variables.

Obviously, the problems of joint BS selection, subcarrier and

robust/distributed power allocation are less addressed.

C. RA in NOMA-based HetNets

Although NOMA can bring a lot of benefits with data

traffic requirements, it also brings some new challenges to the

RA problems in NOMA-based HetNets due to the cross-tier

interference, user’s fairness, and the co-channel interference
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TABLE V
A SUMMARY OF RA ISSUES IN OFDMA-BASED HETNETS

Network scenarios
one macro, multiple small cells [64], [68], [69], [71]- [73], [76],[ [77] one macro, multiple WLANs [65], [66]

one macro,multiple femtos [67], [74], one macro, multiple picos [70]
one macro, multiple micros [75]

Transmission modes
downlink [64]- [66], [68], [70], [74]- [77] uplink [69], [71]- [73]

downlink and uplink [67]

Purposes

power allocation [64]- [77] subcarrier assignment [64], [66], [67],
[70]- [72], [75]- [77]

user association [64], [75] cell cluster [64], [65]
time fraction [65], [66] BS selection [69]
admission control [73] schedule prediction [74]

Utility functions
max: weighted sum rate [64], [72], [73], [75] max: sum rate [65], [67], [69], [74]

max: EE [66], [68], [71], [76], [77] min: total power [70]

Constraints
maximal transmit power [64], [67], [72]- [77] integer subcarrier allocation [64], [67], [70],

[72], [75]- [77]

minimum rate requirement [65]- [67], [70],
[71], [73], [76] user association [75]

MU’s interference constraint [67], [68], [72]- [74] individual power constraint [64]

Theory methods

water-filling [64], [74] graph theory [64],
LDD [64], [67], [72], KKT [65], [67], [75]
Dinkelbach’s method [66], [76] iteration-based method [66].
game theory [68], [69], [71], [75] stochastic learning [69]
sub-gradient method [67], [70], [77] SCA [73], [77]

Algorithm types centralized [64]- [70], [72], [73], [75]- [77] distributed [71], [74]

TABLE VI
A SUMMARY OF RA ISSUES IN NOMA-BASED HETNETS

Perfect CSI

network
one macrocell, multiple picocells [81] one macrocell, multiple small cells [80], [85], [86]
one macrocell, one small cell [83], [84] multiple macrocells, multiple small cells [82]

transmission downlink [80]- [86]

purposes power allocation [80]- [86] user association [84]
RB allocation [80], [86]

utility function
max: total EE [82], [86] max: fairness-based sum rate [80], [81]
max: sum throughput/rate [83]- [85]

constraint
maximum transmit power [80]- [83], [85], [86] RB allocation [80], [86]

minimum data rate [82], [84]- [86] SIC constraint [84], [85]

theory
LDD [86] game theory [80], [82], [83]
subgradient method [82], [86] KKT [80], [82], [86]
iteration-based method [81], [84], [85]

algorithm types distributed [83]- [85] centralized [80]- [82], [86]

Imperfect CSI

network one macrocell, multiple small cells [87], [88] one macrocell, multiple femtocells [89]
transmission downlink [87]- [89]

purposes power allocation [87]- [89] bandwidth allocation [87]
BS selection [89]

utility function max: sum rate [87], [89] max: EE [88]

constraint
maximum transmit power [88], [89] power allocation coefficient [87], [88]
minimum data rate [89] user association [87], [89]

theory
LDD [87], [89] SCA [89]
sub-gradient method [87], [88] KKT [87]

algorithm types distributed [87] centralized [88], [89]

in [78]. A survey on EE-based RA in NOMA HetNets was

summarized in [79]. Based on channel conditions, RA in

NOMA HetNets can be classified into two cases: perfect CSI

and imperfect CSI (e.g., some errors in system parameters).

Perfect CSI: In [80], a joint spectrum allocation and power

control problem was modeled as a many-to-one matching

game with peer effects to achieve the sum-rate maximization

and the user’s proportional fairness. The sequential convex

programming was used to update the power allocation. In [81],

the EE and fair power allocation approach was studied for

a two-tier downlink ultra-dense HetNet to improve fairness

and network EE. In [82], the EE maximization power allo-

cation approach was proposed based on a Stackelberg game.

The authors in [83] studied the distributed power allocation

problem for NOMA HetNets to maximize the throughput of

MU and SU under the maximum transmit power constraint of

each user by using a Stackelberg game. The authors in [84]

studied the power allocation problem with the objective of

the overall throughput maximization for a downlink NOMA

HetNet where both macrocell and small cell used the NOMA

approach. An iterative distributed power control algorithm

was proposed to solve the RA problem. The downlink power

allocation with the sum-rate maximization for a CoMP-NOMA

two-tier HetNet was considered in [85]. In [86], the problem

of subchannel allocation and power allocation was formulated

to maximize the overall EE of both macrocell and small cells.

The convex relaxation and Lagrangian dual decomposition

approaches were used to obtain a suboptimal algorithm for

reducing the co-channel interference and cross-tier interfer-

ence.

Imperfect CSI: The authors in [87] proposed a distributed

cluster formation and power-bandwidth allocation approach

for downlink HetNets with NOMA, where a non-ideal NOMA

scheme was considered with power disparity and sensitivity

constraints, delay tolerance, and residual interference after

cancellation. The non-convex optimization problem was trans-

formed into a convex form by using geometric programming.

In [88], the authors considered the EE power allocation issue

for downlink NOMA HetNets with imperfect CSI. The RA

model was modeled by a probabilistic non-convex problem

which was transformed into a convex problem by the sequen-

tial convex programming, and the solutions were obtained

by using a bisection search algorithm. The authors in [89]

proposed a downlink chance-constrained robust radio RA and

BS selection algorithm for maximizing the weighted sum rate

of the elastic users with channel uncertainties in a power
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domain NOMA HetNet. The sample approximation scheme

was used to deal with the probabilistic constraints of the user’s

data rate.

To provide a better illustration, we give a summary of RA

in NOMA-based HetNets in Table VI. Discussion: According

to the above discussion and analysis in Table VI, it is clear

that optimal RA schemes in NOMA-based HetNets are well

studied, but the distributed RA scheme with user’s fairness

and imperfect CSI/SIC is not considered. For the NOMA

protocol, the fairness factor is a key index for good resource

optimization. Additionally, SIC’s residual errors and channel

estimation errors are inevitable in this type of network. Low-

complexity distributed RA approaches are more useful for

practical system design.

D. RA in Relay-based HetNets

As we know, there are different small cells in HetNets,

however, the QoS of cell-edge users and the users with

the weak channels in the indoor environment may not be

ensured due to the limited coverage area and weak signal

strength of the BSs. As a result, the relay transmission is

introduced in HetNets, also called heterogeneous relay net-

work or heterogeneous cooperative network [90], [91]. The

RA problems of relay-based HetNets are mainly concentrated

in transmit power allocation and relay selection [92], since

the relay selection can choose the best transmission path

for good data communication. Additionally, transmit power

allocation can achieve some optimization objectives, such as

EE-maximization, the QoS of each user.

Single relay: The authors in [93] studied the beamforming

designs of the relay user and MUE for a heterogeneous

relay network, where a FU as a relay helped the uplink

transmission between D2D user and the MUE. The proposed

multistage maximal-ratio combining approach can make a

balance between the signal of relay and MUE. In [94], the

authors proposed a hybrid decode-forward compress-forward

relay selection scheme and reconsidered the joint bandwidth

and power allocation for a donwlink heterogeneous relay

network with frequency division relay channel scenario.

Multiple relays: In [95], the authors focused on the EE-

based optimal relay selection and radio mode selection (i.e.,

multiple radio access technologies) for heterogeneous cooper-

ative networks with the decode forward (DF) mode. In [96], a

long-term proportional fair RA problem via the gradient-based

method and KKT conditions was solved to maximize the sum

rate of UEs for a heterogeneous relay network, where the relay

nodes with in-band backhaul act as micro BSs and are able to

serve UEs either independently or cooperatively with the MBS.

The authors in [97] developed a hierarchical Stackelberg game

to achieve mobile users’ sum-rate maximization based RA for

the heterogeneous relay networks. In [98], the authors studied

the EE maximization RA and cell selection problems for a

heterogeneous relay network with macrocells and picocells,

where D2D relay nodes were used to extend the coverage

of macrocells for the performance of cell-edge users. Based

on the Charnes-Cooper transformation method, the original

non-linear FP problem was transformed into a concave op-

timization problem solved by using an outer approximation

algorithm. In [99], the authors focused on the overall EC

minimization of the pico-relay BSs for an overlay-based green

relay assisted D2D communication scenario in HCNs. In order

to avoid to predict the available green energy, the D2D users

equipped with a dual battery system to harvest, store and use

green energy. The overall data rate maximization based RA

problem of D2D users were also studied. In [100], the authors

formulated a new relay selection and power allocation problem

with mixed-integer linear programming to select solar-powered

relay stations and grid-powered relay stations meanwhile the

optimization objective was to minimize the total grid power

consumption under a DF cooperative heterogeneous cellular

communication scenario. In [101], a power allocation and

relay selection scheme for the underlay D2D network was

designed. The idle FBS worked as a relay for the D2D

transmission pair. In order to offload the distributed load from

the macrocell to femtocells and reduce the resource reuse

interference in HetNets, the authors in [102] investigated the

relay-aided D2D based load balancing approach for multitier

HetNets. Furthermore, relay selection and RA schemes were

studied to minimize the potential interference and ensure the

QoS of different users. In [103], the authors studied the joint

RA and power control problem for a downlink cooperative

D2D HetNet. The RB, power control and relay selection were

considered to the total throughput maximization based RA

problem which was solved by a quantum coral reefs opti-

mization algorithm. By using a low computational complexity

iterative water-filling method, the authors in [104] investigated

the joint power allocation and relay selection problem for the

multi-hop relay heterogeneous ultra-dense network.

To provide a better illustration, we give a summary of

RA in relay-based HetNets in Table VII. Discussion: Based

on the above discussion, relay node selection and power

allocation are two important issues in relay-based HetNets.

With the introduction of relays, the communication scenario

becomes more complex than traditional direct transmission.

The purpose of relay selection is to choose better channels

for signal transmission. But relay forward ways and network

structure become complex, which makes the RA problems be

more difficult. Additionally, due to the successively received

data with the help of relay APs, the operation status of relays is

the bottleneck of relay HetNets. Security-based RA and robust

RA approaches need to be given more attention in this field.

E. RA in H-CRANs

H-CRAN is a promising transmission mode for the next-

generation wireless communication technique by integrating

the advantages of CRNAs and HetNets. By connecting all BSs

(e.g., FBS, picocell BS, PBS) of different tiers to a central

processor (e.g., the cloud) through wire/wireline backhaul

links, the H-CRAN can greatly provide an open, simple,

controllable and flexible communication paradigm for future

wireless networks [105], [106]. In the H-CRAN scenario, the

high power node (always considered as MBS in H-CRAN) is

used to deliver the control signals and guarantee the seamless

coverage for MUs with a low data rate due to path loss. On

the other side, a huge number of RRHs densely deployed in
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TABLE VII
A SUMMARY OF RA ISSUES IN RELAY-BASED HETNETS

Relay scenario Ref. Network Objective function Relay strategy Constraint Purposes

single relay
[93] two-hop, one user with antennas max: SINR AF

maximum transmit power
beamforming

[94] two-hop, single user max: total rate hybrid DF-CF power allocation

multiple relays

[95] two-hop, single user max: EE DF
end-to-end delay,
maximum transmit power

time allocation,
power allocation

[96]

two-hop, multiuser

max: sum throughput

DF

mode selection of CoMP,
maximum transmit power power allocation

[97] max: sum rate RB selection,
maximum transmit power

RB allocation,
power allocation

[98] max: EE minimum rate, maximum
transmit power, BS selection

cell selection,
power allocation

[99] min: total power SINR constraint,
maximum transmit power power allocation

[100]
min:total power SINR, maximum power

relay selection,
power allocation

[101]

[102]
max: sum throughput

interference constraint,
maximum transmit power

[103] minimum rate,
maximum transmit power

[104] multi-hop, multiuser max: sum rate maximum transmit power

the hot spots of the macrocell network, where the fronthaul

links are used to connect the BBU pool and multiple RRHs.

As a result, the users accessing RRH (denoted as RUEs) often

have high QoS requirements with a higher priority.

The objective of RA in H-CRANs is to improve SE and

EE by interference mitigation and interference suppression.

To better achieve resource management, we need to find a

good RAA to alleviate the burden of the BBU pool, reduce

the signal overhead and severe inter-cell (or called inter-

tier) interference from adjacent cells. The feature of RA in

H-CRANs is necessary to consider the RB assignment and

fronthaul/backhaul transmission capacity/delays.

Cellular H-CRANs: The authors in [107] studied a joint user

association, power allocation, and admission control problem

in a H-CRAN with the objective of overall throughput maxi-

mization. In [108], the authors focused on user association and

sum-rate maximization based RA for a downlink H-CRAN

with one macro RRH and several small RRHs. The problem

was constrained by the minimum rate of each SU, the sum

achievable rate of fronthaul links and interference protection of

the MU. User association and power allocation were achieved

by using the matching theory and LDD respectively. Based

on the sophisticated online learning, the authors in [109]

researched the EE-based maximization problem of downlink

H-CRANs subject to the constraint of the number of available

RBs, minimum capacity requirements of each RUE, the QoS

constraint of each MU, the maximum transmit power of MBS

and RRH.

OFDMA-based H-CRANs: In order to mitigate the inter-tier

interference and improve EE, the authors in [110] investigated

the EE optimization problem with resource assignment and

power allocation for a downlink OFDMA based H-CRAN.

The EE maximization problem (i.e., a kind of nonconvex FP)

of overall RRHs was formulated under the constraints of the

minimum data rate of each RRH, inter-tier interference from

RRHs to MU’s receiver, and the maximum transmit power of

the RRH. The solutions of RB allocation and power allocation

were achieved by using LDD methods. The authors in [111]

considered the joint resource optimization and congestion

control to maximize average throughput of the users serviced

by high-power nodes (HPNs) and RUEs, and balanced between

throughput utility and delay performance in a downlink mul-

tiuser H-CRAN. Based on the Lyapunov optimization theory,

the original stochastic optimization problem was transformed

and decomposed into three convex subproblems solved by us-

ing LDD method. For an uplink OFDMA based H-CRAN, the

authors in [112] investigated the EE-based RA by considering

BBU offloading.

MISO H-CRANs: The authors in [113] studied the inter-

ference collaboration and beamforming design problems in a

H-CRAN with one MBS and multiple RRHs to suppress the

inter-tier interference. Furthermore, the expressions of overall

outage probability, system sum capacity and the average bit

error rate of all radio links were derived. In [114], the authors

proposed a dynamic RAA for a H-CRAN with time division

duplex (TDD) mode. Specifically, a clustering scheme was

designed to group the RRHs into different sets; the coordinated

multipoint (CoMP) communication technology was used to

improve network capacity by eliminating the inter-tier inter-

ference in every set; the joint power allocation, frame structure

and subcarrier selection was formulated as a mixed strategy

non-cooperative game. In [115], in order to improve queue

stability and achieve cooperative beamforming, the authors

investigated the average weighted EE-based maximization RA

optimization problem for a downlink H-CRAN with one multi-

antenna MBS and multiple multi-antenna RRHs. To solve the

capacity-constrained fronthaul problem, a non-convex beam-

former with economical SE maximization was formulated

under fronthaul capacity and transmit power constraints in

[116]. Through the bisection search method, the non-convex

problem was transformed into the equivalent problem solved

by the weighted minimum mean square error (WMMSE)

approach. By combining RRH antenna resource and BBU

computation resource, the authors in [117] proposed an EE-

based maximization RA scheme under the constraints on the

QoS of each UE, maximum transmit power of each RRH,

the fronthaul capacity and the BBU processing ability in a

H-CRAN with multi-antenna RRHs. The RA problem was

decomposed into a network-wide beamforming vector opti-

mization problem and a BBU scheduling problem, which are



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 15

TABLE VIII
A SUMMARY OF RA ISSUES IN H-CRANS

Ref. Network Types RA Problems Objective Function Optimization Variables Solutions

[107] cellular H-CRAN
(downlink, uplink)

user association, power
allocation, admission control

max: throughput and
the number of users

user’s number, transmit power outer approximation algorithm

[108] cellular H-CRAN
(downlink) user association and RA max: sum rate RB allocation, transmit

power, user association matrix matching game

[109] cellular H-CRAN
(downlink) green RA max: EE of small cells RB allocation, power allocation sophisticated online learning

[110] OFDMA-CRAN
(downlink) EE RA max: EE of RRHs subchannel allocation,

power allocation LDD, subgradient method

[111] OFDMA H-CRAN
(downlink) EE RA, congestion control max: EE of RRHs traffic admission, user association,

transmit power, RB allocation Lyapunov optimization, LDD

[112] OFDMA H-CRAN
(uplink) EE RA, BBU offloading

max: average throughput,
keep network stability

AP assignment, subcarrier
and power allocation,
fronthaul allocation of BBUs

SCA, complementary
geometric programming

[113] MISO H-CRAN
(downlink)

inter-tier interference
suppression max: throughput of RRHs

beamforming vector, outage
probability analysis, power
allocation

KKT conditions

[114] MISO H-CRAN
(TDD, downlink)

traffic asymmetry, inter-cell
interference suppression max: average capacity power allocation and

subcarrier selection
game theory

[115] MISO H-CRAN
(downlink) EE RA max: average weighted

EE of RRHs
transmit power,
beamforming vector

Lyapunov optimization,
WMMSE approach

[116] MISO H-CRAN
(downlink) cost-efficient RA max: cost-coefficient EE beamforming vector

WMMSE approach,
interior point method

[117] MISO H-CRAN
(downlink) joint BBU RRH RA

max: EE of pico RRH and
macro RRH, min: the number
of working BBUs

beamforming vector, user
association factor, data
processing rate factor

WMMSE approach, bin
packing algorithm

[118] MISO H-CRAN
(downlink)

user association,
power allocation max: sun rate user association, transmit power variational inequality theory

[119] MISO H-CRAN
(downlink)

pilot reuse scheduling,
robust beamforming

min: sum MSE, max: sum
rate of RRH and MBS

beamforming vector,
pilot allocation

Dsatur algorithm,
convex optimization

[120] MISO H-CRAN
(downlink) EE RA max: EE of HPN and RRHs

beamforming vectors of RRH
and HPN, power allocation

combining matrix sparseness,
normalized water-filling

[121] MIMO H-CRAN
(massive, downlink)

RRH activation, robust
coordinated beamforming min: total power consumption RRH association

factor, beamforming vector Bernstein approximation, SDP

[122] MIMO H-CRAN
(massive, downlink ) priced-based RA max: weighted sum rate transmit power,

bandwidth allocation
convex optimization,
1-D search method

resolved by a WMMSE approach and a bin packing algorithm

via the best-fit-decreasing method respectively. In [118], a

centralized-distributed method via variational inequality theory

was designed to achieve joint user association and power

allocation in a two-tier downlink H-CRAN with one macrocell

network and multiple RRHs. In order to reduce pilot consump-

tion and the effect of incomplete CSI, a sum-rate maximization

robust beamforming and pilot scheduling problem in a dense

H-CRAN with one multi-antenna MBS and multiple multi-

antenna RRHs was studied under maximum transmit power

constraints of each RRH and the MBS in [119]. In [120], the

authors addressed the EE-based RA problem by selectively

cooperative transmission and power consumption model. The

joint channel matrix sparseness and normalized water-filling

RAAs were proposed.

Massive MIMO H-CRANs: With the consideration of im-

perfect CSI and power consumption of fronthaul links as well

as transmit power constraint of each RRH, the authors in

[121] proposed a joint RRH activation and outage constrained

coordinated beamforming algorithm for MIMO H-CRANs. A

conservative convex approximation was introduced by using

a semidefinite program (SDP) and Bernstein-type inequality.

For a mmWave massive MIMO H-CRAN, the authors in [122]

investigated the bandwidth and price-based power allocation

problem for maximizing the downlink weighted sum rate of

the system with transmit power constraint of each RRH and

fronthaul capacity constraints. The problems were solved by

the WMMSE-based iteration algorithm and the 1-D search

method.

To provide a better illustration, we give a summary of RA

in H-CRANs in Table VIII. Discussion: Currently, combining

with the above discussion, RA problems in H-CRANs have

been well investigated from a single-antenna network to a

massive MIMO scenario. Congestion control and BBU of-

floading become the new challenges for resource optimization.

The effect of imperfect task offloading and imperfect CSI is

less considered for practical environments. Moreover, the lim-

itation of backhaul and fronthaul ability should be constrained

in RA problems.

F. RA in Multi-antenna HetNets

Different from RA problems in single-antenna HetNets

(i.e., optimize transmit power p), the resource optimization

problems in multi-antenna HetNets focus on the interference

alignment (also called interference cancellation) and beam-

forming design (also called precoding method) because the

transmission signal can be integrated into the beamforming

vector, e.g., the following equation. Additionally, the BS

with multiple antennas can automatically adjust the phase of

the transmitted signal of each antenna, so that the receiver

will obtain better signal gain to overcome the path loss by

effectively superimposing the electromagnetic wave signal.

Traditional multi-antenna HetNets: In [123], for a MI-

MO HetNet with one macrocell network and one femtocell
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TABLE IX
A SUMMARY OF BEAMFORMING DESIGN IN MULTI-ANTENNA HETNETS

Paper Network User Scenario Performance Metrics

[123] MIMO HetNet
(one macrocell, one femtocell) multi-antenna MBS/FBS and MUs/FUs

objective: throughput maximization of each FU, mean
throughput analysis, precoder selection. constraint: MU’s
interference power, FBS’s maximum transmit power.

[124] MISO HetNet
(multiple macrocells, multiple small cells) multi-antenna MBSs/SBSs, single-antenna MUs/SUs

objective: weighted EE maximization of MUs.
constraint: MBS’s maximum power, SU’s maximum
interference power, each MU’s instantaneous rate.

[125] MIMO HetNet
(one macrocell, multiple femtocells) multi-antenna MBS, FBSs, users

objective: sum rate maximization of FUs, sum power
minimization of FUs. constraint: FBS’s maximum power,
MU’s interference.

[126] MISO HetNet
(one macrocell, multiple picocells) multi-antenna MBS/PBSs, single-antenna MUs/PUs objective: sum EE maximization of PUs. constraint: PBS’s

maximum transmit power, each PU’s minimum rate.

[127] MISO HetNet
(one macrocell, one small cell) multi-antenna MBS/SBS, single-antenna MU/SU

objective: SU’s SINR maximization. constraint: SBS’s
maximum power, MU’s maximum interference.

[128] MIMO HetNet with full duplex
(one macrocell, one small cell) multi-antenna MBS/SBS, multi-antenna MUs/SU

objective: weighted sum rate maximization of MUs and SU’s
backhaul link. constraint: maximum transmit power of MBS and SBS.

[129] massive MIMO HetNet
(one macrocell, multiple small cells)

massive MIMO MBS with MUs, multi-antenna
SBSs with SUs

objective: total power minimization of SUs. constraint: SINR
outage probability of SU, maximum transmit power of each SBS.

[130] massive MIMO HetNet
(one macrocell, multiple picocells)

massive MIMO MBS with single-antenna MUs,
multi-antenna PBSs with single-antenna PUs.

objective: weighted sum rate maximization of PUs. constraint: binary
variable constraint of PU, maximum transmit power of PBS.

[131] massive MIMO HetNet
(one macrocell, multiple femtocells)

massive MIMO MBS with sing-antenna MUs,
multi-antenna FBS with single-antenna FUs

objective: sum transmit power minimization of both FUs and MUs.
constraint: SINR outage probabilities of each FU and MU.

[132] massive MIMO HetNet
(one macrocell, multiple small cells)

massive MIMO MBS with single-antenna MUs,
multiple SBSs with single-antenna SUs

objective: sum EE maximization of MUs + SUs.
constraint: maximum transmit power of MBS and SUS,
minimum SINR requirement of each MU and SU.

[133] massive MIMO HetNet with cluster
(one macrocell, multiple small cells)

massive MIMO MBS with single-antenna MUs,
multi-antenna SBSs with single-antenna SUs

objective: downlink sum rate maximization of SUs.
constraint: each SBS’s maximum transmit power.

[134] massive MIMO HetNet
(one macrocell, multiple small cells)

massive MIMO MBS with single-antenna MUs,
single-antenna SBSs with single-antenna SUs

objective: weighted sum rate maximization of MUs.
constraint: maximum transmit power of MBS.

[135] massive MIMO HetNet with QoE aware
(one macrocell, multiple small cells)

massive MIMO MBS with single-antenna MUs,
multi-antenna SBSs with single-antenna SUs

objective: MOS maximization of SUs.
constraint: MBS’s maximum transmit power, SBS’s maximum
transmit power, minimum SINR and MOS constraint of each SU.

[136] massive MIMO HetNet with cluster
(one macrocell, multiple small cells)

massive MIMO MBS with single-antenna MUs,
multi-antenna SBSs with single-antenna SUs

objective: sum rate maximization of MUs + SUs.
constraint: minimum rate requirements of MUs and SUs, minimum
backhaul rate of SBS, maximum transmit power of MBS
and small cell cluster.

network, the authors addressed the downlink interference

mitigation problem between FUs and MUs by maximizing

the throughput of FUs under the constraints of the cross-

tier interference and the required QoS. The authors in [124]

investigated the EE-based coordinated beamforming design for

downlink heterogeneous multicell multiuser systems under the

BS with multiple antennas. The original non-convex optimiza-

tion problem was converted into a polynomial form optimiza-

tion problem which is solved by introducing an efficient block

coordinate ascent optimization algorithm. In [125], based on

an alternating optimization method, the authors tried to study

the downlink beamforming design for balancing the sum-

power minimization and sum-rate maximization optimization

problem in a MIMO HetNet with a single macrocell and

multiple femtocells. In [126], for a real-time and non-realtime

heterogeneous traffic scenario, the authors proposed a two-

layer EE-based RAA to jointly optimize transmit beamforming

design and power allocation policies for downlink two-tier

MISO HetNets comprised of a single macrocell and multiple

picocells. Because the distribution function of CSI uncer-

tainty may be difficult to obtain some times, therefore the

authors in [127] studied robust beamforming design problem

under the worst-case deterministic model of imperfect CSI

in a two-tier MISO HetNet. In [128], to further improve

capacity, the authors investigated the distributed precoding

design for MIMO HetNet with full-duplex communication in

wireless backhaul links. A low-complexity iterative algorithm

was presented to solve the non-convex weighted sum-rate

maximization problem.

Massive MIMO HetNets: For a downlink two-tier MISO

HetNet with one macrocell and multiple small cells, the

authors in [129] studied the EE-based beamforming problem

under macro BS with massive antennas. The beamforming

optimization problem was formulated to solve the total power

consumption minimization problem subject to the QoS outage

probability constraint. And the problem was resolved by

using Bernstein approximation and semi-definite relaxation.

Considering the imperfect CSI of PBS and PU, the authors

in [130] studied the power allocation and user association

problem to maximize the sum rate with proportional fairness

by deriving the closed-form expression of ergodic capacity un-

der imperfect CSI in a downlink massive MIMO HetNet. The

mixed-integer nonlinear programming problem with the binary

variable of user association was solved by using the dual

decomposition method. Most of the literature designed beam-

forming under the assumption of perfect CSI, but in [131],

the authors studied the robust hybrid coordinated beamforming

under outage probabilities of MUs and FUs for time-division

duplex (TDD) massive MIMO HetNets under downlink trans-

mission to improve the efficiency of spectrum reuse and robust

against CSI uncertainty. The robust beamforming problem was

formulated to minimize the total transmit power of both MUs

and FUs subject to SINR outage probability constraints of

each FU and MU meanwhile the problem was solved by

using Bernstein-type approximation and semidefinite relax-

ation methods. In [132], based on the traditional zero-forcing
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beamforming method, a downlink beamforming scheme for

the EE-based maximization problem of both macrocell system

and small cell system was proposed in a downlink MIMO

HetNet scenario. For the same communication scenario as

the above reference, the authors in [133] jointly considered

dynamic small cell clustering and non-cooperative game-

based precoding design for reducing severe interference among

different small cells. The problem was formulated to maximize

the sum rate of SUs under the maximum transmit power

constraint. Through applying matrix stuffing and alternative

direction method of multipliers, the authors in [134] inves-

tigated the fast converging robust beamforming design for

the weighted sum-rate maximization problem of MUs under

maximum transmit power constraint in a downlink MIMO

HetNet, while imperfect CSI was considered at the transmitter.

In order to enhance the user’s quality of experience (QoE), the

authors in [135] considered the aggregated mean opinion score

(MOS) maximization-based QoE aware beamforming design

problem for the downlink two-tier massive MIMO HetNet. In

[136], the authors studied the small cells cluster-based RA

problem in a two-tier downlink HetNet with massive MIMO,

where two FBs, cellular FB, and mmWave FB were used

for wireless backhaul links. The interference coordination and

precoding design were formulated as a sum-rate maximization

issue of MUs and SUs, which was transformed into a standard

convex optimization problem solved by using an interior-point

method. To provide a better illustration, we give a summary

of beamforming design in multi-antenna HetNets in Table IX.

Discussion: Most of the previous works focused on down-

link beamforming design in multi-antenna HetNets, however,

the case of the uplink transmission scenario is less considered.

The beamforming problem in the uplink mode is more chal-

lenging than that in the downlink mode and one of the reasons

is that uplink is subject to the distributed power constraints.

In the downlink transmission, the beamforming vectors are

centralized controlled by the BS while the precoding problem

in the uplink is controlled by each individual device. Moreover,

the computational complexity and network expenditure are

not involved in most of the works, especially in the massive

MIMO scenario. For massive transmission antennas, it is better

to trade-off between system cost and high performance (e.g.,

better diversity gain). The reason is that both EC and the

hardware design complexity of RF units are the drawbacks

with the increasing number of the antenna. Finally, although

the case of multi-antenna BSs for beamforming design has

been given more attention, the case of multi-antenna receivers

needs to be more in-depth research.

G. Other RA in HetNets

Apart from the prominent RAAs in HetNets, recently a

number of RA for other HetNets have also been studied due

to the coming new technology, which will be discussed in this

section.

1) Full-duplex HetNet: In [137], the authors studied the

power minimization problem for a NOMA full-duplex self-

hauling HetNet, and proposed an efficient iterative RA ap-

proach to avoid the backhauling bottleneck and ensure the data

rate requirement of each user. With the full-duplex technology

in HCNs, the authors in [138] investigated the RAA under the

gain of self-interference cancellation. Considering the same

communication scenario, the authors in [139] studied the price-

based power control and RA problem in full-duplex hetero-

geneous macrocell-femtocell networks. A triple optimization

strategy was proposed for power control, subcarrier allocation,

and price regulation to mitigate the cross-tier interference.

Under the TDD mode, in [140], the design of the NOMA

decoding order with transmit beamforming at the MBS and

power allocation at SBS were jointly considered, then an

iterative low-complexity RAA was developed by using the

SCA and max-min method.

2) NOMA H-CRAN: To obtain high EE and SE as well as

low-cost operation, the authors in [141] gave a short survey

on the EE problem for a NOMA H-CRAN. In [142], based

on the SCA and Dinkelbach method, a cross-layer EE-based

RA and RRH selection algorithm for power domain NOMA

H-CRANs was proposed to maximize the EE of the elastic

users subject to the average delay constraint of the streaming

users and the constraints, RRH selection, subcarrier, transmit

power and SIC. In [143], the optimal RA scheme was studied

for a cooperative NOMA HetNet.

3) MEC-based HetNet: In [144], to better accommodate

the dramatically increasing demand for data caching and

computing services, the authors studied the RA problem

for information-centric virtualized HetNets with in-network

caching and MEC. A distributed algorithm based on the alter-

nating direction method of multipliers was adopted in order

to solve the virtual RA problem. Thanks to the advantages

of reducing task execution latency, EC of users and achieving

task offloading in MEC, the authors in [145] jointly considered

the radio and computational RA problem for NOMA-based

MEC in HetNets to minimize the EC of all users with the task

execution latency constraint and the maximum transmit power

constraint of each user. The uplink power allocation problem

was resolved by using sequential convex programming. To

reduce the end-to-end delay of mobile service delivery and

improve the user experience, in [146], the adaptive boundary

algorithm of indoor small cell BSs and power optimization

schemes were proposed to obtain a bigger coverage ratio of

the BS for self-organizing MEC-based heterogeneous small

cell networks.

4) Energy harvesting-based HetNet: In [147], a distributed

RAA about the EE maximization was designed to achieve

the optimal user association and power control for a NOMA

HetNet where the BS was powered by both renewable energy

harvesting (EH) and conventional grid energy. In [148], the

authors studied the subchannel allocation and power control

for maximizing the EE by using a low complexity subchannel

matching algorithm and Lagrange dual method in a NOMA

HetNet with EH. For a power-domain NOMA HetNet with

EH at the UE, the authors in [149] proposed joint subcarrier

and power allocation algorithms to achieve EE-based RA for

each fairness method and SIC ordering. In [150], an EE-based

RAA was studied for EH based D2D HetNets by using the

Dinkelbach and LDD method. In [151], the authors aimed

to maximize the sum-rate of the EH aided D2D links in
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a two-tier HetNet by superimposing their messages on the

downlink resources of mobile users, which is achieved without

unduly degrading MU’s throughput. In [152], for EH aided

heterogeneous cognitive radio sensor networks, the RAA was

proposed to achieve the sustainability of spectrum sensors and

conserve the energy of data sensors. In [153], based on a non-

cooperative game-theoretic approach, the authors investigated

the problem of power allocation and subchannel assignment

for the simultaneous wireless information and power transfer

(SWIPT) enabled HetNets with the consideration of cross-

tier/co-tier interference mitigation and incomplete CSI. Based

on SCA methods, an iterative algorithm was used to solve the

non-convex optimization problem. In order to provide a cost-

effective and long-lasting power supply for energy-constrained

mobile devices in HetNets, in [154], the authors investigated

the EE maximization based beamforming problem for a down-

link MISO HetNet with SWIPT. The problem formulation was

presented to maximize the information transmission efficiency

of information decoding FUs and EH efficiency of EH FUs

meanwhile the beamformers were obtained by the zero forcing

and mixed beamforming schemes. The authors in [155] studied

the EE optimization for CoMP SWIPT HetNets meanwhile

satisfying certain QoS requirements in regard to transmission

rate and EH at both the macro cell and small cells.

5) Other scenarios: To overcome the limitations of limited

coverage, strictly line-of-sight transmission, and mobility ro-

bustness in the visible light communication (VLC), the authors

in [156] focused on the energy-aware design of network

selection and RA for a HetNet combining with RF and VLC

APs. In [157], a security-aware joint power and subchannel

allocation problem based on the inter-network cooperation was

investigated for a cognitive HetNet under imperfect spectrum

sensing. The authors in [158] focused on RA for D2D com-

munications in multi-cell multi-band HCNs. The optimization

problem was formulated as the D2D communication spectrum

RA among multiple microwave bands and multiple mm-wave

bands in HCNs. The authors in [159] studied the robust RA

problem with chance constraints to improve the throughput and

reliability of NOMA HVNs where the chance constraints with

channel estimation errors were converted into the deterministic

ones by using the approximation of non-central Chi-square

distribution. To improve SE and EE due to the large number

of connectivity demands in IoT, an EE-based RA problem with

imperfect SIC was studied for the NOMA heterogeneous IoT

in [160]. A deep recurrent neural network based optimal RAA

was proposed to reduce the computational complexity of RA.

The relationships among the above works is summarized in

Fig. 12.

V. CHALLENGES, OPPORTUNITIES AND FUTURE

RESEARCH DIRECTIONS

According to the above content, we have discussed current

research works of RA over heterogeneous multi-tier networks

in detail. We identify key research challenges and directions.

Our recommendations are summarized as follows.

Other HetNets

Full duplex HetNet

Full-duplex NOMA HetNet [137]

Full-duplex cellular HetNet [138,139]

TDD NOMA multi-antenna HetNet [140]

NOMA H-CRAN
NOMA H-CRAN [141,142]

NOMA relay HetNet [143]

EH HetNet

NOMA HetNet with EH [147,148]

D2D HetNet with EH [149,150]
EH based Het-IoT [151]
SWIPT based HetHet [152-155]

MEC HetNet

MEC HetNet [144]

MEC NOMA HetNet [145]

Self-organizing MEC HetNet [146]

others

VLC/RF HetNet [156]

Cognitive HetNet [157]

D2D HetNet [158]

NOMA HVN [159]

NOMA Het-IoT [160]

Fig. 12. The relationship on RA of other HetNets.

A. System Model

Currently, information communication technology presents

a state of rapid development so that there are a lot of new

technologies, such as carrier aggregation, OFDMA/NOMA,

cooperation communication, massive MIMO, mmWave com-

munication and so on. These excellent technologies would

be properly integrated with the existing HetNets for better

communication performance. In addition, traditional switching

management methods via user, action and network status may

not satisfy the QoS requirements of different types of users. In

the new communication age, we not only need to consider the

utilization rate of the SR but also consider the effect of channel

fading and time-varying interference to the RA problems of

the whole network. How to design a low complexity and

high flexibility network model as well as RAAs with the

consideration of user’s fairness and network performance is

an important research topic.

B. Communication Security

From the perspective of information transmission, informa-

tion security is very important for a communication system,

especially in HCNs. Although HetNets can achieve multi-

network integration and satisfy different user’s requirements,

there may be information leakage, eavesdropping situation and

other security problems. As a result, RA with the considera-

tion of security constraints is necessary to be considered in

multiuser HetNets due to complex communication scenarios,

such as RA for physical-layer security in HetNets.

C. Spectrum Efficiency

As we know, the spectral resource (SR) is a precious

and limited resource for wireless communication so that we

need to design some methods for improving SE. In HetNets,

different users in cellular networks operate in the same FBs,

which cause more interference between each other. For next-

generation HetNets, it moves towards the intelligent and

adaptive regulation communication system. Cognitive radio

technology can effectively improve the SE of the secondary

market in an adaptive way, where users with cognitive function
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can dynamically detect idle spectrum and use the SR by using

some access methods (e.g., underlay, overlay, interweave).

Therefore, the number of accessing users and throughput of

the whole HetNets increase in an exponential way. Spectrum

sensing-based HetNets (i.e., cognitive HetNets) is a key tech-

nique for the next generation communication system. How to

tradeoff the spectrum detection capacity and dynamic RA is a

very important issue in resource sharing in cognitive HetNets.

The false probability may bring some new challenges for RA

in different cellular networks.

D. Network Structure

From the aspect of network structure, HetNets move towards

the development of better transmission efficiency, higher data

rate, more powerful function and so on. As a result, how to

achieve joint antenna selection and multi-user diversity opti-

mization for multiuser MIMO HetNets is a challenging prob-

lem, since both the multi-antenna system and ultra-intensive

users are a development trend. Furthermore, HetNet will move

towards ground communication to space communication or

underwater communication, as shown in Fig. 1. Otherwise,

channel uncertainty, unreliable feedback channel (e.g., the

effect of channel delay), the limited bandwidth and the scarce

SR bring a lot of challenges for the design and practical

application of RA in HetNets.

E. Energy Efficiency

In future communication, the main issue is to solve the

operation lifetime of network and save EC for achieving green

communication and reducing carbon dioxide emissions. Since

there are a lot of users and small cells in multi-tier HetNets,

EC is a big problem for next-generation communication.

For example, RA problems for green communication-based

HetNets and EH based HetNets are worth studying in our

future research.

F. New Theory

1) Learning-based RA Scheme: With the increasing number

of intelligent terminals, the BSs need to process more data than

before. However, the randomness of channels and the mobility

of the user as well as high-definition video services can heavily

influence the performance of the communication system. As a

result, we need to focus on intelligent algorithms to deal with

those problems. With the development of machine learning,

deep learning and artificial intelligence, many learning-based

algorithms have been proposed to solve channel estimation

[161]–[170], automatic modulation recognition [171]–[175],

network traffic prediction [176]–[184], computing offload-

ing [185]–[192], physical wireless techniques [193]–[203],

congestion control [204]–[208], direction-of-arrival estimation

[209]–[216], and so on, but there is no learning-based scheme

to resolve RA problems in HetNets. Therefore, it is meaningful

to design it for achieving intelligent communication.

We design a new learning-based structure to solve the RA

issue in HetNets, as shown in Fig. 13. The work process is:

(i) CSI feedback: Both of MU’s receiver and SU’s receiver

feedback forward channel gains, interference power from

SUs or MUs, background noise by estimation algorithms.

Also, the actual SINR and the QoS requirements of

users (e.g, minimum SINR or data rate) are sent to the

transmitters (MBS and SBS).

(ii) Optimal transmit power: The related channel and inter-

ference information are transmitted from a local server

to a cloud server by the optical fiber. The cloud server

deals with massive data processing and computation. The

optimal transmit power is firstly obtained by the embed-

ded CVX optimization tool [217]. The cloud server sends

the optimal value to local servers. Also, the centralized

cloud server can achieve task offloading according to the

requirements of MBS and SBS, which can reduce the

computation burden.

(iii) Neural network training: At the BS server, the CSI,

interference constraint and optimization objective are

considered as the inputs of neural network (e.g., a kind

of learning method). Through several network training,

we can obtain the actual output of the network at the

output layer of the neural network. The actual deviation

can be obtained by a comparator (i.e., the BS server

sends another reference value). The error is feedback

to the neural network for adjusting network deviation

and weight updating. When the error is zero, the sys-

tem is stable and the cloud server stops working. The

mature networks can replace traditional algorithms (i.e.,

iteration-based algorithm or CVX tool) for intelligent

adjustment and RA.

2) Control theory-based RA Scheme: From the perspective

of infrastructure cost, building a large number of servers is

a less realistic thing sometimes, e.g., industrial IoT, Ad-hoc

network, D2D network, M2M, WSN and so on. Therefore,

it is necessary to develop a new theory to effectively solve

traditional resource optimization problems without increasing

infrastructures. Currently, most of the RA problem is for-

mulated as an optimization problem for achieving network

requirements (e.g., throughput/EE maximization) under some

constraints. There are a lot of difficulties in transformation and

solution, especially in non-convex problems. Moreover, there

is no general method to deal with it. As a result, we provide

a new double closed loop-based RA method for better solving

the resource optimization problems in HetNets, as shown in

Fig. 14. The advantages of this method are summarized as

follows.

(i) Macrocell network: In HetNets, MUs can achieve op-

timization objectives by themselves without any limita-

tions except the processing ability of MBS. As shown in

Fig. 14, it can well obtain SINR-tracking performance

for each user by designing a power controller via control

theory, such as log-linear model [218], Fuzzy logic

control [219] and robust control [220].

(ii) Small cell network: Usually, small cell network is de-

signed in the hot spots of the macrocell network for

solving high throughput and reducing the pressure of

the macrocell network. That is to say that SUs cannot

influence the normal communication quality of MUs. In

a non-cooperative way, users in the macrocell network
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Fig. 13. A new learning-based structure of HetNets.

Fig. 14. A new control theory-based structure of HetNets.

have no obligation to provide any information for SUs.

As an effective way, low-power APs can be used to

estimate related messages for SUs’ data transmission.

The SBS can schedule all resources for obtaining a good

performance improvement. The power-allocation con-

troller can be designed and used to achieve optimization

objectives as traditional optimization models.

(iii) Low-power AP: Due to the interference power constraint

of each MU, it is necessary to dynamically estimate

the interference channel gain from SBS to MUs and

feedbacks the information to the SBS, which is helpful

to adjust the power limiter intelligently for protecting

the QoS of MUs. Moreover, the AP estimates the MU’s

interference for SUs, so that the received SINR of SU’s

receiver can be easily calculated for further information

feedback and performance optimization.
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Comparing with traditional iteration-based RA schemes,

control theory-based RA methods have many advantages

which have been demonstrated in cognitive networks [221]–

[226]. However, these methods can not directly extend to

the HetNets due to the complexity of network structure.

Additionally, due to the characteristics of control theory,

the designed RA schemes can be well achieved by analog

or digital circuits, e.g., proportional-integral-derivative (PID)

controller. Therefore, control theory-based RAAs in HetNets

have many benefits and may be the research direction of next-

generation complicated HetNets.

G. Other Open Issues

With the mass of data requirements and the development of

IoT, the whole wireless communication system has a great

change, such as the V2V network or the M2M network.

For different application scenarios, the RA and power op-

timization problems are different. The optimization problem

may become a multiple-variable one. For example, in a HVN

with MEC technology, our target is not only to reasonably

adjust the transmit power of the user but also needs to

consider the caching optimization and computation offloading

in the communication system. In this case, we need to pay

attention to the more practical and complicated application

environment. Additionally, from the aspect of the solution

process, the more intelligent and self-optimization algorithm

should be introduced and designed for future HetNets, such as

machining learning in a wireless communication application.

These algorithms can adaptively match the surrounding radio

scenes. We do not need to build an optimization model with

multiple constraints and try to transform it into a convex form

that can be efficiently solved by convex optimization theory

or game theory. The training system can dynamically adjust

its optimization parameters (e.g., transmit power, subcarrier

assignment, beamforming matrix) to adapt the requirements

of the wireless networks. With these intelligent algorithms

(i.e., artificial-intelligent based schemes), the RA problems in

HetNets will obtain a good solution in the future.

VI. CONCLUSION

In this article, a detailed survey on RA issues has been done

for HetNets. The network structures and network scenarios

of HetNets have been given together. The comparison of RA

models in typical scenarios was presented. Then the state-of-

art RAAs were introduced from theory (e.g., assume perfect

CSI) to practical application (i.e., consider uncertainties or

errors), including network scenarios, optimization objectives,

approaches and so on. In addition, challenges and future

trends were provided from optimization schemes to intelligent

algorithms. It is expected that the RA in HetNets will play

an important role in the system design of next-generation

wireless communication for providing seamless connection,

high system capacity and large-scale user access.

VII. APPENDIX

Table X lists the acronyms used in this survey
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