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Abstract— Vehicular networks, an enabling technology for
Intelligent Transportation System (ITS), smart cities, and
autonomous driving, can deliver numerous on-board data ser-
vices, e.g., road-safety, easy navigation, traffic efficiency, comfort
driving, infotainment, etc. Providing satisfactory Quality of
Service (QoS) in vehicular networks, however, is a challenging
task due to a number of limiting factors such as erroneous and
congested wireless channels (due to high mobility or uncoor-
dinated channel-access), increasingly fragmented and congested
spectrum, hardware imperfections, and anticipated growth of
vehicular communication devices. Therefore, it will be critical to
allocate and utilize the available wireless network resources in an
ultra-efficient manner. In this paper, we present a comprehensive
survey on resource allocation schemes for the two dominant
vehicular network technologies, e.g. Dedicated Short Range
Communications (DSRC) and cellular based vehicular networks.
We discuss the challenges and opportunities for resource allo-
cations in modern vehicular networks and outline a number of
promising future research directions.

Index Terms— Intelligent transportation system, vehicular net-
work, autonomous driving, DSRC V2X, cellular V2X, resource
allocation, network slicing, machine learning.

I. INTRODUCTION

THE prevalent vision is that vehicles (e.g., cars, trucks,
trains, etc.) will in the future be highly connected with the

aid of ubiquitous wireless networks, anytime and anywhere,
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which is expected to lead to improved road safety, enhanced
situational awareness, increased travel comfort, reduced traffic
congestion, lower air pollution, and lower road infrastructure
costs. Central to this vision is a scalable and intelligent
vehicular network which is responsible for efficient informa-
tion exchange among vehicles and/or between vehicles, other
road users and road side infrastructure (Vehicle-to-Everything
(V2X) communications). As an instrumental enabler for
Intelligent Transportation Systems (ITS), smart cities, and
autonomous driving, vehicular networks have attracted signifi-
cant research interests in recent years both from the academic
and industrial communities [1]–[5]. So far, there are two major
approaches for V2X communications: dedicated short range
communications (DSRC) and cellular based vehicular commu-
nication [6], [7]. DSRC is supported by a family of standards
including the IEEE 802.11p amendment for Wireless Access
in Vehicular Environments (WAVE), the IEEE 1609.1∼.4 stan-
dards for resource management, security, network service,
and multi-channel operation [8]. On the other hand, 3GPP
have been developing cellular vehicular communications, also
called C-V2X, designed to operate over cellular networks
such as Long-Term Evolution (LTE) and 5G new radio (5G
NR). V2X allows every vehicle to communicate with different
types of communication entities, such as pedestrians, Road-
Side Units (RSU), satellites, internet/cloud, and other vehicles.
Both V2X techniques1 have their respective advantages and
limitations when adopted in a vehicular environments. As a
result, an integration into heterogeneous vehicular networks
has been suggested to exploit their unique benefits, while
addressing their individual drawbacks.

Wireless networks suffer from a wide range of impairments,
among them shadowing, path loss, time- and/or frequency-
selective wireless channels, jamming and/or multi-user inter-
ference. To deal with these impairments, radio resources (such
as time slots, frequency bands, transmit power levels, etc.)
should be allocated in an optimized manner to cater for
varying channel and network conditions. Dynamic Resource
Allocation (RA) schemes are preferred as they give rise
to significantly improved performance (compared to static
RA schemes) by efficiently exploiting wireless channel and
network variations in a number of dimensions [10]–[12].

1Besides IEEE 802.11p and 3GPP, the Internet Engineering Task Force
(IETF) has been working on V2X related topics from a network and transport
layer perspective, specially making necessary changes to make IPv6 more
suitable for V2X communications [9].
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For instance, authors in [13]–[17] studied RA schemes for
Device-to-Device (D2D) V2X networks by taking into account
fast vehicular channel variations. However, efficient resource
allocation in vehicular networks is an extensive topic due to
the following major challenges:

1) Highly dynamic mobility scenarios covering low-speed
vehicles (e.g., less than 60 km/h) to high-speed
cars/trains (e.g., 500 km/h or higher) [18], [19]. The air
interface design for high mobility communication, for
instance, may require more time-frequency resources in
order to combat the impairments incurred by Doppler
spread/shifts and multi-path channels.

2) Wide range of data services (e.g., in-car multimedia
entertainment, video gaming/conferencing, ultra-reliable
and low-latency delivery of safety messages, high-
precision map downloading, etc) with different QoS
requirements in terms of reliability, latency, and data
rates. In particular, some requirements (e.g., high data
throughput against ultra-reliability) may be conflicting
and hence it may be difficult to support them simulta-
neously.

3) Expected explosive growth of vehicular communica-
tion devices in the midst of increasingly fragmented
and congested spectrum. Moreover, devices employed
in vehicular networks usually have different hardware
parameters and therefore may display a wide variation in
their communication capabilities under different channel
and network conditions. For example, a vehicular sensor
device aiming for long battery life (e.g., more than
10 years) is unlikely to use sophisticated signal process-
ing algorithms for power saving purposes whereas more
system resources and more signal processing capabilities
may be required for ultra-reliable transmission of safety
messages.

Driven by these challenges of vehicular networks but also
more broadly in other types of wireless networks, a wide range
of disruptive ideas and techniques for resource allocation have
been published aimed at addressing various aspects of the
problem space over the past decade. Many of them are covered
in survey publications works addressing resource allocation in
for example cognitive radio networks [20]–[22], ultra-dense
networks [23], multi-user MIMO systems [24]. To the best of
our knowledge, survey papers [25], [26] are the only ones
that specifically focus on resource allocation for vehicular
networks. However, while these two surveys consider resource
allocation in cellular vehicular networks, they ignore resource
allocation techniques for DSRC based vehicular networks.
Moreover, they also do not cover more recent work such as
machine learning based solutions for resource allocation in
vehicular networks. To fill this gap and to stimulate further
research and innovation in this area, we provide a compre-
hensive survey on the state-of-the-art of RA in both, DSRC
and cellular vehicular networks, as well as for heterogeneous
versions of these two network types. We also provide a detailed
discussion on current state of machine learning based RA and
suggest a number of promising research directions.

This article is organized as follows. We start our discourse
in Section II by a high-level overview of vehicular networks

based on DSRC, C-V2X and heterogeneous versions. Detailed
literature surveys on these three types of vehicular networks
are presented in Sections III-V, respectively. As machine
learning is gaining increased attention also in this paper’s
topic area, we provide a dedicated survey in Section VI on
applications of machine learning for RA in vehicular networks.
In Section VII, we summarize three important future directions
for RA research in vehicular networks lead by network slicing,
machine learning, and context awareness. Finally, this article
is concluded in Section VIII.

II. OVERVIEW OF VEHICULAR NETWORKS

A. DSRC Vehicular Network

Dedicated Short Range Communications (DSRC) is a stan-
dardised wireless technology that is designed to support ITS
applications in vehicular networks. The underlying standard
for DSRC is 802.11p, which is a derivative of the IEEE
802.11e with small modifications in the QoS aspects. DSRC
supports wireless communication between vehicles and rode
side units (RSUs). The US Department of Transportation esti-
mates that Vehicle-to-Vehicle (V2V) communications based
on DSRC can eliminate up to 592,000 accidents involving
vehicles and can save up to 1,083 lives annually in respect to
crashes at intersection [27]. These predictions show a signif-
icant potential for the DSRC technology to reduce accidents
and to improve road safety.

DSRC technology supports two classes of devices [28],
[29]: the On-Board Unit (OBU) and the Road-Side Unit
(RSU), which are equivalent to the Mobile Station (MS) and
Base Station (BS) in traditional cellular systems, respectively.
An overview of a typical DSRC vehicular network in shown
in Fig. 1a. The Federal Communications Commission in
the United States has allocated 75 MHz licensed spectrum
for DSRC communications in the 5.9 GHz frequency band
[30]. Out of the 75 MHz spectrum, 5 MHz is reserved
as the guard band and seven 10-MHz channels are defined
for DSRC communications. The available spectrum is con-
figured into one Control Channel (CCH) and six Service
Channels (SCHs). The CCH is reserved for high-priority short
messages or control data, while other data are transmitted
over the SCHs. Several Modulation and Coding Schemes
(MCS) are supported with the transmitter (TX) power rang-
ing from 0 dBm to 28.8 dBm. Based on the communica-
tion environments, the coverage distance may range from
10m to 1km.

The fundamental mechanism for medium/channel access
in DSRC is known as the Distributed Coordination Function
(DCF). With DCF, vehicles contend for a wireless channel
using a Carrier-Sense Multiple Access (CSMA) with Collision
Avoidance (CA) technique. To transmit a packet from a
vehicle, the channel must be sensed idle for a guard period.
This guard period is known as the Distributed Inter-Frame
Space (DIFS). If the channel is sensed busy, the vehicle
initiates a slotted backoff process and vehicles are only
permitted to start transmissions at the beginning of slots.
Vehicles randomly choose their individual backoff time from
the range [0, CW −1], where CW is known as the contention
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Fig. 1. Overview of vehicular networks.

window. The backoff time counter is decreased by 1, when
the channel is sensed idle for a time slot. The counter is
frozen when the channel is sensed occupied and reactivated
after the channel is sensed idle again for a DIFS time
interval period. A vehicle transmits when its backoff counter
reaches zero. A packet collision occurs when two or more
vehicles choose the same time slot for transmission. Note
that unlike other forms of the IEEE 802.11 standard, e.g.
IEEE802.11a/b/g/n and the most recent update IEEE 802.11ax,
IEEE 802.11p does not use a collision avoidance mechanism.
Consequently, DSRC networks are prone to the effects of the
hidden terminal problem. Along with the above channel access
mechanism, IEEE 802.11p adopts the Enhanced Distributed
Channel Access (EDCA) mechanism, which allows four

access categories for vehicle data transmission with different
priorities.

B. Cellular Based Vehicular Network (C-V2X)
Despite the fact that DSRC is generally considered the

de facto standard for vehicular networks, cellular/LTE based
vehicular communications (also known as C-V2X) has
recently attracted significant attention due to its large cov-
erage, high capacity, superior quality of services, and multi-
cast/broadcast support. An depiction of a cellular based vehic-
ular network is shown in Fig. 1b. LTE-V2V communication
exploits LTE uplink resources while utilizing Single Carrier
Frequency Division Multiple Access (SC-FDMA) at the PHY
and MAC layers [31]. According to the LTE specifications,
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the available bandwidth is subdivided into equally-spaced
(spacing of 15 kHz) orthogonal subcarriers. A Resource Block
(RB) in LTE is formed by 12 consecutive subcarriers (i.e.,
180 kHz) and one time slot (i.e., 0.5 ms). The number of data
bits carried by each RB depends on specific Modulation and
Coding Schemes (MCS).

To enable direct short-range communication between
devices, LTE uses direct communication interface so-called
PC5 interface (also known as LTE side-link), which can
be used for V2V and V2I communications. To utilize the
available radio resources, two side-link modes are defined
by the 3GPP standard release 14: Mode 3 and Mode 4.
In Mode 3, it is assumed that the vehicles are fully covered
by one or more evolved NodeBs (eNBs) who dynamically
assign the resources being used for V2V communications
through control signalling. This type of resource assignment
is called dynamic scheduling. An eNB may also reserve a
set of resources for a vehicle for its periodic transmissions.
In this case, the eNB defines for how long resources will
be reserved for the particular vehicle. In Sidelink Mode 4,
vehicles are assumed to be in areas without cellular coverage
and hence, resources are allocated in a distributed manner.
A sensing based semi-persistent transmission mechanism is
introduced in Sidelink Mode 4 to enable distributed resource
allocation.

The distributed algorithm optimizes the use of the available
channels by increasing the resource reuse distance between
vehicles that are using the same resources. A distributed
congestion control mechanism is also applied which calculates
the channel busy ratio and the channel occupancy ratio. Then,
a vehicle reserves resources for a random interval and sends
a reservation message, called Scheduling Assignment (SA),
using Side-link Control Information (SCI). Other vehicles
which sense and listen to the wireless channel find out from
the SA the list of busy resources and avoid selecting those
resources. To increase the reliability, a vehicle may send a data
message in this mode more than once. In Release 14, 3GPP
mentioned that D2D communications included in Releases
12 and 13 can also be applied to vehicular networks as the
localization characteristics of vehicular networks are similar
to D2D networks [15], [32].

C. Heterogeneous Vehicular Networks

Despite its potential and advantages, the DSRC technology
suffers from several drawbacks [6], [33], [34], such as limited
coverage, low data rate, and limited QoS guarantee, and
unbounded channel access delay. These drawbacks are due
to DSRC’s origins in earlier IEEE 802.11 standards, which
were originally designed for wireless local area networks with
low mobility. Although the current DSRC technology has
been shown to be effective in supporting vehicular safety
applications in many field trials [34], significant challenges
remain when employing DSRC technology in some more
hostile vehicular environments.

While cellular based vehicular networks can provide wide
coverage and high data rate services, they may not be able
to support decentralized communication as the networks may

Fig. 2. Data transfer ratio for fast and slow vehicles versus mean velocity
of the slow vehicles. Comparison between default DSRC and the scheme
proposed by Harigovindan et al. [45].

become easily overloaded in situation with very high vehicle
density, e.g. traffic jams. Thus, both DSRC and cellular based
vehicular networks have their respective advantages and limi-
tations when used in vehicular environments. A depiction of a
heterogeneous vehicular network in shown in Fig. 1c. A range
of efforts [35]–[44] have been made towards the integration
of both DSRC and cellular based vehicular networks (e.g.,
LTE) for enhanced vehicular communications. Besides the
integration of DSRC and cellular based vehicular networks,
emerging V2X applications require efficient utilization of
heterogeneous access technologies, such as Wi-Fi and TV
broadcasting networks.

III. RESOURCE ALLOCATION IN DSRC NETWORKS

In this section, we review resource allocation approaches for
DSRC based vehicular networks, which have largely focused
on MAC parameter allocation, channel allocation and rate
allocation techniques. In the following, we classify resource
allocation approaches for DSRC networks into those cate-
gories.

A. MAC Parameter Allocation

In a traditional DSRC network, all vehicles adopt identical
MAC parameters by default and hence have equal opportunity
to access the network resources. However, this setting may be
unfair for fast moving vehicles compared to slow moving vehi-
cles, potentially leading to significant degradation in network
performance. For example, the throughput of a high speed
vehicle may degrade significantly compared to a slow moving
vehicle as the latter has a better chance to communicate
with its RSU, due to its long residence time in the coverage
area of the RSU. Several studies have been carried out on
MAC parameter allocation in DSRC networks to enhance
reliability, throughput, and fairness. Harigovindan et al. [45]
presented a contention window allocation strategy to resolve
the aforementioned unfairness problem and to dynamically
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TABLE I

EXISTING RA TECHNIQUES FOR DSRC VEHICULAR NETWORK

Fig. 3. Transmission performance with the stochastic model and algorithm proposed by Rossi et al. [48].

adapt the MAC parameters based on the residence time of
vehicles. Specifically, an optimal selection on the minimum
contention window (required for any vehicle) has been derived
by taking into consideration the mean speed of vehicles in
the network. To validate the proposed technique, authors in
[45] simulated a V2I network using an event driven custom
simulation program (written in C++ programming language),
where the MAC layer was based on the EDCA mode of IEEE
802.11p and the physical layer was based on IEEE 802.11a.
The mean velocity of the slow vehicle was set to 60 km/hr
whereas the mean velocity of fast vehicle was set to 120km/hr.
Fig. 2 compares the default DSRC scheme with the approach
proposed in [45] in terms of the data transfer ratio (for fast
and slow vehicles) versus mean velocity of slow vehicles.
It is observed that for the default DSRC scheme, the data
transfer ratio increases as the mean velocity of slow vehicles
increases. In fact, in this case, the residence time of slowly
moving vehicles decreases within a RSU’s coverage area and
hence the data transfer decreases correspondingly. On the other

hand, a relatively flat data transfer ratio is maintained with
Harigovindan et al. proposed contention window allocation
scheme which ensures equal chances of communication with
the RSU for both slow and fast vehicles2 Note that the
proposed technique can cause unfairness to slower vehicles
in the event of a small number of fast vehicles and a large
number of slow vehicles, as slower vehicles as they could
experience higher levels of loss. Also, the proposed technique
will likely cause unfairness in a situation when a highway
lane is occupied with a platoon of slow moving vehicle, while
an adjacent lane is occupied with a steady stream of faster
vehicles.

To maximize throughput among neighboring vehicles, a sto-
chastic model was proposed by Rossi et al. [47], [48] to find
the optimal maximum contention window using the surround-
ing vehicle density. By exploiting the equivalence between

2A contention window allocation approach similar to that in [45] can be
found in [46].
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the slotted Aloha and the broadcast CSMA/CA protocols,
an amended CSMA/CA protocol was integrated in the sto-
chastic model to maximise the single-hop throughput among
adjacent vehicles. To validate the proposed model, authors in
[48] simulated (in Network Simulator 2 (NS-2)) a vehicular
network considering a one-lane, single-direction road of length
5 km. In the simulation, it is assumed that vehicles are
able to estimate the number of neighbouring vehicles in the
interference range. The transmission range is set to be 100m,
while setting the path loss exponent to 4. Fig. 3 shows that
the proposed protocol in [47], [48] offers much lower average
transmission delay as well as significantly improved packet
reception rate (compared to the standard DSRC protocols) due
to reduced packet collision with optimized contention window
size.

In [49], two dynamic Contention Window (CW) allocation
schemes are proposed to improve the network performance in
high mobility environments. The first scheme is a p-persistent
based approach [53] which dynamically assigns the contention
window based on the number of neighbor vehicles, while
the second scheme performs contention window adaptation
based on other vehicle’s relative velocity. To evaluate the
impact of the proposed dynamic allocation schemes, authors
in [49] simulated a Network Simulator 2 (NS-2) based a
vehicular network considering a 3-lane highway with a length
of 5 km and a width of 10 m per lane. Same 802.11p MAC
parameters were set for all vehicles and vehicles’ velocities
were varied from 60 km/h to 120 km/h. Fig. 4 compares their
proposed schemes in terms of the packet delivery ratios and
network throughput. It is observed that both schemes provide
enhanced performance (compared to the default DSRC scheme
with minimum contention window sizes CWmin = 3,7,15)
as they give rise to reduced packet collisions. Moreover,
each scheme provides enhanced performance for a specific
scenario. For example, the first scheme exhibits better packet
delivery ratio when the number of vehicles in the network
is large. In terms of network throughput, the second scheme
outperforms the first when the number of vehicles is higher
than 80.

B. Channel Allocation for Emergency Messages

DSRC/WAVE uses orthogonal frequency bands to support
multi-channel operation while considering equal share of
available channels to all messages. Emergency messages (e.g.,
mission critical messages that carry safety-related information)
in vehicular networks need to be processed with high priority,
ultra reliability, and low latency. Ryu et al. [50] proposed a
multi-channel allocation strategy called DSRC-based Multi-
channel Allocation for Emergency message dissemination
(DMAE) by first identifying the available bandwidth of chan-
nels and then allocating the channel with the largest bandwidth
to the emergency message while maintaining QoS between
RSU and OBU through periodic channel switching. It is shown
that the emergency PDR of DMAE is higher than the PDR
of WAVE as DMAE assigns available SCH with maximum
bandwidth to the emergency messages. Moreover, DMAE
outperforms WAVE in terms of delay performance as it can

assign emergency messages to reserved channels in the event
of heavy traffic scenario.

C. Rate Allocation

IEEE 802.11p based communication supports multiple MCS
to allow a wide range of data transmission rates ranging from
3 Mbps to 27 Mbps. The data rates (both nominal and average
effective data rates [54]) and transmission ranges for different
MCS are shown in Table II. For the sake of simplicity, a
constant MCS is often assumed in previous works on vehicular
communications. This strategy may deteriorate the communi-
cation performance as constant MCS may not be suitable for
diverse traffic environments in different roadway scenarios.
More precisely, the IEEE 802.11 MAC protocol offers equal
transmission opportunities to the competing nodes when all
nodes experience similar channel conditions. However, with
varying channel condition and congested network, throughput-
based fairness will lead to drastically reduced aggregate
throughput. As a solution, [51] proposed a new Vehicular
Channel Access Scheme (VCAS) to maintain a trade-off
between overall throughput and fairness. In this scheme, a
number of vehicles with similar transmission rates are grouped
into one channel to achieve the overall throughput requirement,
while the fairness3 requirement is achieved by controlling the
group sizes. Grouping of OBUs with similar transmission rates
boost the system throughput by eliminating the performance
anomaly phenomena resulted from multiple transmission rates
in the IEEE 802.11p multi-channel networks. By adopting a
marginal utility model to allocate an appropriate transmission
rate per SCH (determined by predefined transmission distance
thresholds), it is shown in [51] that their proposed scheme
can simultaneously achieve enhanced fairness and overall
system throughput over the existing scheme adopted in DSRC
system. More recently, [52] proposed the allocation of variable
MCS (i.e., variable data rates) in network coding-assisted
heterogeneous on-demand data access, in which the MCS for
disseminating data items were assigned based on the distance
of the requested vehicles from the RSU. Authors devised a
dynamic threshold based network coding for minimizing the
system response time, where the coded packet is formed in
such a way that the coded packet always contains the most
urgent request and the transmission time of the coded packet
does not exceed the deadline of the most urgent request. Note
that the transmission time depends on the size of the coded
packet4 and the selected MCS that offers highest data rate
while ensuring serving of all the requests included in the
coded packet. We evaluated the performance of the proposed
scheme by simulating an urban grid-type multi RSU vehicular
network. We have implemented the simulation model using
CSIM19 [55] and conducted the simulation using the default
settings of IEEE 802.11p PHY and MAC layer standard. The
vehicle’s mobility was modelled by following a Manhattan
mobility model. Performance of the proposed scheme was

3In the context of throughput of each vehicle.
4Note that the size of the encoded packet is the size of the maximum size

data items among all the data items that are being encoded in the coded
packet.



NOOR-A-RAHIM et al.: SURVEY ON RESOURCE ALLOCATION IN VEHICULAR NETWORKS 707

Fig. 4. Network throughput simulation results [49] for different minimum Contention Window (CWmin) sizes.

TABLE II

DIFFERENT MODULATION AND CODING SCHEMES (MCS) AND THEIR CORRESPONDING DATA RATES ADOPTED IN DSRC. BPSK: BINARY PHASE SHIFT

KEYING; QPSK: QUADRATURE PHASE SHIFT KEYING; QAM: QUADRATURE AMPLITUDE MODULATION

Fig. 5. Performance comparison between fixed and dynamic Modulation and Coding Schemes (MCS) [52].

evaluated in terms of deadline miss ratio and response time.
Fig. 5 shows the performance comparison between fixed MCS
and dynamic MCS schemes. Simulation results show that

dynamic MCS scheme is capable of improving the on-demand
requests serving capability and reducing the system response
time.
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TABLE III

EXISTING RA TECHNIQUES FOR C-V2X VEHICULAR NETWORK

IV. RESOURCE ALLOCATION IN C-V2X

The capability of supporting diverse vertical applications
and use cases is a major feature of 5G communication
systems and beyond. Examples of vertical use cases include
smart homes/cites, e-health, factories of the future, intelli-
gent refineries and chemical plants, and Cellular V2X (C-
V2X). A strong catalyst for deeper and wider integration
of wireless communications into our lives, C-V2X has been
advocated by many mobile operators under the evolution
of 3GPP’s LTE and 5G NR [74]. Compared to DSRC, C-
V2X acts as a “long-range sensor” (aided by sophisticated
cameras, radar, lidar, RSUs, cellular infrastructure and net-
work) to allow vehicles to see/predict various traffic situa-
tions, road conditions, and emergent hazards several miles
away.

From a network point of view, there are three major
5G use cases to be supported: enhanced Mobile Broadband
(eMBB) communications, massive Machine-Type Communi-
cations (mMTC), Ultra-Reliable and Low-Latency Commu-
nications (URLLC). As far as C-V2X is concerned, eMBB,
aiming to provide data rates of at least 10 Gbps for the
uplink and 20 Gbps for the downlink channels, plays a
pivotal role for in-car video conferencing/gaming, various

multimedia services, or high-precision map downloading,
etc; mMTC will allow future driverless vehicles to con-
stantly sense and learn the instantaneous driving environments
using massive number of connected sensors deployed in-
car or attached to the infrastructure; URLLC, targeting to
achieve 1 ms over-the-air round-trip time for a single transmis-
sion with reliability of at least 99.999% will be instrumental
for example for autonomous emergency braking and hazard
prevention.

However, C-V2X has to share and compete with other ver-
tical applications for system resources (e.g., spectrum/network
bandwidth, storage and computing, etc) under a common
physical infrastructure. RA for C-V2X therefore is a trade-
off with a variety of data requirements from different vertical
applications. A central question is how to design an efficient
network to provide guaranteed quality of service (QoS) for
C-V2X while balancing the data services for other vertical
applications.

A. RA for Traditional Cellular Systems

Graph based interference aware RA strategies have been
proposed in [56], [57], where the weights of the edges are
assigned according to the interference terms between the



NOOR-A-RAHIM et al.: SURVEY ON RESOURCE ALLOCATION IN VEHICULAR NETWORKS 709

Fig. 6. Sum-rate comparison between traditional scheme and optimal scheme
proposed by Zhang et al. [56].

related vertices. The scheme proposed by Zhang et al. [56]
formulates an optimization problem with the objective of
maximizing the network sum rate5 with low computational
complexity. Considering the interference between different
communication links, authors formulated the resource-sharing
problem as a resource assignment optimization problem for
a vehicular network scenario, where different V2V and
V2I communication links are permitted to access the same
resources for their individual data transmission. To avoid
high computational complexity, graph theory was used to
effectively obtain a suboptimal resource assignment solution.
Authors in [56] conducted a simulation considering a 20m ×
500m road layout with a base station located at the center of
the long edge. The vehicles were distributed randomly within
the road with a random velocity of between 0 − 100 km/h.
The interference radius of vehicle and base station were set
to 10 m and 100 m, respectively. For resource allocation
purpose, number of resource blocks was set to 10. It is
shown in Fig. 6 that their proposed scheme exhibits higher
network sum rate than the traditional orthogonal communica-
tion mode. In contrast, the work in [57] aims at improving
the connectivity of vehicular communications by introducing
a metric called connectivity index, which is obtained from
the percentage of vehicles in the network being assigned
with resources while satisfying the interference constraints.
With the aid of the minimum spanning tree approach [75],
Meng et al. [57] proposed a RA algorithm to improve the
connectivity of the network. Authors in [57] evaluated the
performance of the proposed scheme using simulation (using
NS-3) where a two-way four-lane road of 1 km with randomly
distributed vehicles was considered. The transmission radius
of vehicles was assumed to be 50 m, while the speed of
the vehicles varied from 20km/h to 60 km/h. Fig. 7 shows
the performance of the RA scheme proposed in [57]. The
connectivity index performance is presented in Fig. 7a with
varying number of vehicles, whilst the performance of a brute

5Network sum rate is defined as the sum of the channel capacity for all V2I
and V2V communication links within the network.

force search algorithm is shown as a benchmark. We observe
that the connectivity index of Meng et al.’s algorithm is only
17.1% away from the optimum solution obtained with the
brute force search algorithm. In Fig. 7b, we present the full
connectivity performance of the algorithm proposed in [57]
and compare with a greedy graph coloring algorithm [76].
We observe a similar full connectivity performance for both
algorithms, while the graph coloring algorithm exhibits high
computational complexity. As expected, the full connectivity
percentage decays with the increase of vehicle arrival rate (i.e.,
denser vehicular network).

By exploiting geographical information, [58] proposed a
joint RA and power control scheme for reliable D2D-enabled
vehicular communications by considering slow fading chan-
nel information. Queuing dynamics was also considered in
[58] in order to meet the requirements of different QoS
in vehicular networks. Reference [15] developed a heuristic
algorithm, named Separate resOurce bLockand powEr allo-
catioN (SOLEN), under large-scale vehicular fading channels
to maximize the sum rate of cellular users while satisfying
the vehicular users’ requirements on latency and reliability.
Similar to [15], [77] incorporated dynamic MCS in the process
of RBs and transmit power allocation for guaranteed reli-
ability and latency. It is shown that by adopting dynamic
MCS in the allocation algorithm, the algorithm proposed in
[77] outperforms that of [15] in terms of average outage
probability and packet latency. To support D2D-based safety-
critical vehicular communication, a cluster-based RA scheme
was proposed in [16] by maximizing the cellular users’ sum
rate. This is achieved by a three-step heuristic algorithm with
the knowledge of the slowly varying channel state information
of uplink channel.

The work in [59] proposed a centralized RA algorithm
by utilizing the spectral radius estimation theory. Their pro-
posed algorithm maximizes the number of concurrent reuse
of resources by multiple vehicles instead of maximizing the
sum rate (a method often used in traditional allocation algo-
rithms). With eNodeB centrally deciding the resource reuse
for the vehicles in the network, the scheme proposed in [59]
exhibits significant improvement in the spectrum efficiency
and demonstrates the capability of maintaining the required
QoS when the vehicle density is high. Reference [60] proposed
a RA scheme to support V2X communications in a D2D-
enabled cellular system, where the V2I communication is
supported by a traditional cellular uplink strategy and the V2V
communication is enabled by D2D communications in reuse
mode. [60] formulated an optimization problem to maximize
the sum ergodic capacity of the vehicle-to-infrastructure (V2I)
links while satisfying the delay requirements of V2V links.
The optimization problem was solved by combining a bipartite
matching algorithm and effective capacity theory.

B. RA for Vehicular Computing Systems

In recent years, integration of vehicular network with mobile
cloud computing, also known as vehicular computing system,
has attracted increasing interest for its capability of provid-
ing real-time services to on-board users [78], [79]. RA for
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Fig. 7. Performance of the RA scheme proposed by Meng et al. [57].

vehicular computing systems has been investigated in [61],
[62]. In particular, [62] integrated the computational resources
of vehicles and RSUs in the vehicular cloud computing system
to provide optimum services. The integration was performed
by establishing a semi-Markov decision model for resource
allocation in the vehicular cloud computing system, which
allocates either vehicular cloud (consisting of vehicle’ com-
puting resources) or remote clouds to handle vehicles’ service
requests. Besides cloud computing, which is a centralized
system, fog computing is an attractive option for vehicular
computing as it allows distributed decentralized infrastructure.
[61] aimed to reduce the serving time6 by optimally allocating
the available bandwidth in a vehicular fog computing system.
The optimization problem of [61], formulated based on the
requirements of the serving methods, was solved in the follow-
ing two steps: 1) finding the sub-optimal solutions by applying
the Lagrangian algorithm; 2) performing selection process to
obtain the optimum solution.

C. RA for Secure Vehicular Networks

RA may also be exploited to enhance the secrecy of
cellular vehicular networks. By observing that LTE-based V2X
communication cannot properly preserve the privacy, [63]
evaluated the message delivery with specified security. A joint
channel and security key assignment policy was presented in
[63] to enable a robust and secure V2X message dissemination.
The proposed approach classified V2X messages into four
categories and utilized V2X interfaces and resource allocation
mode (dynamic/ semi-persistent) intelligently to protect pri-
vacy. Specially for the emergency message, a novel random
access with status feedback based resource allocation strategy

6The serving time is the time required to serve a specific request, while
serving method refers to the specific way to serve the request.

was proposed in sidelink PC5 interface to protect the privacy.
In [64], a RA scheme was proposed to enhance the physical
layer security in cellular vehicular communication. A max-
min secrecy rate based problem was formulated to allocate
power and sub-carrier while taking into account the outdated
Channel State Information (CSI) due to the high mobility. The
problem was solved in two stages: (i) with fixed sub-carrier
assignment, allocating the power level by using a bisection
method allocation problem; (ii) finding suboptimal sub-carrier
allocation by using greedy algorithm.

D. RA for Vehicle Platooning

In recent years, vehicle platooning networks have been
gaining growing research interest as they can lead to signif-
icant road capacity increase. In [65], the authors proposed
a RA scheme for D2D based vehicle platooning to share
control information efficiently and timely. A time-division
based intra-platoon and minimum rate guaranteed inter-platoon
RA scheme was proposed to allocate the resources within
the platoon, while ensuring optimized cellular users’ rate.
Moreover, to obtain a stable platoon, a formation algorithm
was proposed in [65] based on a leader evaluation method.
Authors in [66] presented a RA strategy to reduce the re-
allocation rate that enhances the number of guaranteed services
in a vehicle platooning network. A time dynamic optimization
problem was formulated in [66] under the constraint of a
network re-allocation rate. To further reduce the computa-
tional complexity, their proposed optimization problem was
converted into a deterministic optimization problem using
the Lyapunov optimization theory [10]. Joint optimization
of communication and control in vehicle platooning was
proposed in [80]. An improved platooning system model
was developed by taking into account both control and com-
munication factors in vehicle platooning. A safety message
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dissemination scenario was considered under an LTE based
vehicular network, where the platoon leader vehicle coordi-
nates the allocation of available communication and control
resources. A joint optimization problem of RB allocation
and control parameter assignment was formulated with the
constraints of communication reliability and platoon stability.
Through simulation results, it was shown that their proposed
RA algorithm reduces the tracking error while maintaining
the stability of the platoon. For cooperative adaptive cruise
control (CACC) enabled platooning, a semi-persistent schedul-
ing approach for LTE-V2X network was studied in [67],
[81], [82]. A theoretical framework was developed to find
the required scheduling period that fulfills the string stability
condition for CACC. The scheduling framework took into
account different control and communication parameters such
as platoon kinematics, number of radio blocks, packet sizes. To
reduce the average amount of links provisioned, [68] proposed
an adaptive resource allocation approach for automated guided
vehicles (AVGs), where a control communication co-design
scheme was considered. Authors have derived co-design rec-
ommendations to improve the correct operation of AVGs,
while considering the impact of packet loss on the system. It is
shown that the impact of packet loss is not as severe as com-
monly assumed with appropriate system design. A dynamic
resource re-allocation technique was proposed in [69] for the
vehicle platooning scenario to reduce the re-allocation rate
and guarantee the delay requirement for each vehicle. The
proposed allocation algorithm aims to minimize the process
cost which is defined as the cost of signaling to the network
due to the execution of resource re-allocation. A closed form
of the resource re-allocation rate and the delay upper bound
was derived using Lyapunov optimization. In [70], a joint sub-
channel allocation scheme and power control mechanism were
proposed for LTE-based inter-vehicle communications in a
multi-platooning scenario. Authors performed intra- and inter-
platoon communications by combining the evolved multimedia
broadcast multicast services (eMBMS) and device-to-device
(D2D) multicast communications while ensuring a desired
trade-off between the required cellular resources and minimum
delay requirement.

E. RA for Out-of-Coverage Scenario

A two-step distributed RA scheme was proposed in [71]
for out-of-coverage (i.e., out of eNodeB coverage) LTE V2V
communication. In the first step, RBs are assigned based on
the heading directions of vehicles. In other words, the same
set of RBs are assigned to the vehicles moving in the same
direction. In the second step, a channel sensing based strategy
is utilized to avoid the packet collision between the vehicles
which travel in parallel on the road. Recently, authors in [72]
studied RA scheme for a delimited out-of-coverage scenario,
where the network infrastructure assigns the resources to
vehicles based on the estimated location of vehicles. The
network infrastructure performs the resource allocation based
on the propagation conditions and the predictions of vehicle
locations inside the out-of-coverage area. The past locations
of the vehicles are used by the network infrastructure to

Fig. 8. Packet delivery ratio (PDR) performance comparison when tagged
is located with 100m from the intersection center.

predict future trajectories of the vehicles and to predict the
dwelling time of the vehicles inside the out-of-coverage area.
The performance of the proposed resource allocation scheme
was analysed for non-scheduled services as well as pre-
scheduled services. More recently, authors in [73] analyzed
and evaluated the safety message broadcasting performance
of LTE-V2V out-of-coverage mode in an urban intersection
scenario. In the context of vehicle assisted relaying, two
resource allocation strategies were presented, namely relaying
with dedicated resources and relaying with dynamic resources.
With the first strategy, resource blocks were reserved for the
relaying vehicle, while for the latter strategy, the relaying
vehicle dynamically finds the candidate resource blocks with
least interference. To evaluate the performance, we have
performed simulations modeling a 2km × 2km road network
where the intersection-center is assumed at the middle of
the road network. This simulation model was implemented
using the LTEV2Vsim simulator presented in [83], where the
LTEV2VSim was extended by adding the intersection topol-
ogy. The simulation scenario assumed three lanes per travel
direction with uniformly distributed (generated in random
locations) vehicles along the road. The vehicular mobility was
modelled by assigning an average speed of 50.08 km/h with a
3.21 km/h standard deviation. Fig. 8 shows the performance of
the proposed schemes when the transmission/target is located
with 100m from the intersection center. We observe that the
relaying with dynamic resources gives slightly better perfor-
mance than the relaying with dedicated resources. We also
observe that the proposed relaying schemes exhibit significant
broadcast performance improvement over the scheme without
relaying when the vehicle density is low to moderate.

F. Network Slicing Based RA

Network slicing (NS) is a new paradigm that has arisen in
recent years which helps to create multiple logical networks on
top of a common physical network substrate tailored to differ-
ent types of data services and business operators [89], [90]. NS
offers an effective way to meet the requirements of varied use
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TABLE IV

EXISTING RA TECHNIQUES FOR HETEROGENEOUS VEHICULAR NETWORKS

cases and enables individual design, deployment, customiza-
tion, and optimization of different network slices on a common
infrastructure [91]. In addition to providing vertical slices (for
vertical industries), NS may be used to generate horizontal
slices which aim to improve the performance of User Equip-
ment (UE) and enhance the user experience [92]. Although ini-
tially proposed for the partition of Core Networks (CN), using
techniques such as Network Function Virtualization (NFV)
and Software Defined Networking (SDN) [93], the concept
of NS has been extended to provide efficient end-to-end data
services by slicing radio resources in Radio Access Networks
(RANs) as well [94], [95]. The slicing of radio resources
mainly involves dynamic allocation of time and frequency
resources based on the characteristics of multiple data services.
This is achieved by providing multiple numerologies, each
of which constitutes a set of data frame parameters such as
multi-carrier waveforms, sub-carrier spacings, sampling rates,
and frame and symbol durations. For example, an mMTC
slice in C-V2X is allocated with relatively small subcarrier
spacing (i.e., for massive connectivity) and hence large symbol
duration. In contrast, URLLC requires large subcarrier spacing
to meet the requirements of ultra-low latency and stringent reli-
ability. Fig. 9 depicts how NS is implemented across different
layers (e.g., PHY, RAN, CN) of a C-V2X network consisting
of RSUs, high-speed trains, railway stations and vehicles.
Using orthogonal frequency-division multiplexing (OFDM) as
the transmission scheme, the three types of time-frequency
grids (shown in different colors) in Fig. 9 correspond to the
three classes of numerologies for mMTC, eMBB, and URLLC,
respectively. Roughly speaking, eMBB and URLLC slices
may help address the second major challenge presented in
Section I, whereas mMTC slices aim to address the third major
challenge. These slices are configured according to specific
QoS requirements of various C-V2X use cases.

A step-wise approach for designing and applying function
decomposition for NS in a 5G CN has been proposed in
[96]. Their main idea is to identify those functions which
could be merged in different network elements as well as
their corresponding implications for communication procedure
and information storage. [97] presented a concrete example of
using NS in the vehicular network domain focusing on efficient
notification of unexpected road conditions among cars within
a certain range. By properly configuring the SDN switch and
controller, it is shown in [97] that a network slice for such

inter-car communication can be readily created. For ultra-
low latency in autonomous driving, a scalable and distributed
CN architecture with the aid of 5G NC has been proposed
to allow the deployments of fog, edge and cloud computing
technologies [98]. The benefits of 5G NC (in comparison with
4G NC) for efficient C-V2X have been discussed in [99].

In [100], the impact of NS on a 5G RAN, such as the
CN/RAN interface, the QoS framework, and the management
framework, has been discussed. It is pointed out in [100]
that dynamic NS is preferred in order to cater for rapid
changes in traffic patterns. Comprehensive work on applica-
tions of NS to support a diverse range of C-V2X use cases
is presented in [101]. Major C-V2X slices identified in [101]
are: autonomous driving, tele-operated driving, vehicular info-
tainment, and vehicular remote diagnostics and management.
For example, the slice for supporting tele-operated driving
enables URLLC and the slice for vehicular infotainment may
use multiple Random Access Technologies (RATs) to support
higher throughput. Reference [101] also show that slicing may
be carried out in different vehicular devices according to their
storage and computing capacities as well as the nature of the
data services, a scenario similar to mobile edge computing.

It is noted that NS can be carried out not only at higher lev-
els of wireless networks, but also in the PHY. In 2017, a multi-
service system framework implemented in both time and fre-
quency domains was proposed [102], [103]. A major issue here
is how to select and design multicarrier waveforms with good
time-frequency localization, low out-of-band power emission,
low Inter-Carrier Interference (ICI) among different sub-bands
using different numerologies, and capability to support multi-
rate implementation. Multicarrier waveform design for PHY
NS such as Filtered Orthogonal Frequency-Multiple Access
(F-OFDMA), windowed-OFDM, and Universal Filtered Multi-
Carrier (UFMC) have been studied in [102], [104], [105].

V. RA FOR HETEROGENEOUS VEHICULAR NETWORKS

A graph based resource scheduling approach was proposed
in [84] for cooperative relaying in heterogeneous vehicular
networks. In LTE, vehicles close to the base station usually
enjoy high data rates due to favourable radio links, while
vehicles far away from the base station suffer from lower
data rates due to poor channel conditions. To tackle this
problem, cooperative relaying may be adopted to establish
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Fig. 9. Network slicing implemented across different layers (e.g., PHY, RAN, CN) for a C-V2X network consisting of RSUs, high-speed trains, railway
stations and moving vehicles.

V2V communications for distant vehicles through DSRC.
Reference [84] proposed a bipartite graph based scheduling
scheme to determine the transmission strategy for each vehicle
user from base station (i.e., cooperative or non-cooperative)
and the selection of relaying vehicles. The scheme proposed
in [84] consists of the following three steps: 1) construct
a weighted bipartite graph, where the weight of each edge
is determined based on the capacity of the corresponding
V2V link, 2) solve the maximum weighted matching problem
using the Kuhn-Munkres algorithm (also known as Hungar-
ian method) [106], [107], and 3) optimize the number of
messages that need to be relayed, where binary search was
utilized to find the optimal solution. The proposed approach
guarantees fairness among vehicle users and can improve
the data rates for the vehicles far away from the base
station.

Very recently, a cascaded Hungarian channel allocation
algorithm was presented by Guo et al. [85] for non-orthogonal
multiple access (NOMA) based heterogeneous vehicular net-
works. [85] addressed the channel assignment problem in
high-mobility environments with different user QoS require-
ments and imperfect CSI by formulating a chance constrained
throughput optimization problem. To validate the proposed
model, the authors in [85] simulated a two-way urban roadway
scenario. The vehicles were covered by a single macro-cell and
several non-overlapping coexisting femto-cells. The vehicles
positions were based on a spatial Poisson point process and
constant vehicle speed (60 km/h) was considered. In Fig. 10,
the overall throughput is compared with that of the RA
method reported in [108]. Enhanced performance is observed
for the allocation scheme of [85], thanks to an efficient
user scheduling algorithm which fully utilizes the transmit
power to maximize the throughput. It is also observed that
the method proposed in [85] provides more benefits with
increasing transmit powers.

Fig. 10. Throughput comparison between schemes by Guo et al. [85] and
Fang et al. [108] with respect to reliability of the V2V link (pv ) and cellular
user link (p f ) [85].

Xiao et al. [86] investigated the spectrum sharing for vehi-
cle users in heterogeneous vehicular networks by exploiting
available white space spectrum such as TV white space spec-
trum. A non-cooperative game theoretic approach was pro-
posed with correlated equilibrium. Their proposed approach
allows macro-cell base stations to share the available spectrum
with the vehicle users and improves the spectrum utiliza-
tion by reusing the white space spectrum without degrading
the macro-cell performance. By sharing available spectrum
with LTE and Wi-Fi networks, [87] presented a Quality of
Experience (QoE) based RA scheme for a software defined
heterogeneous vehicular network. The system model consid-
ered in [87] is shown in Fig. 11. To maximize the QoE of
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Fig. 11. Software defined network (SDN) based heterogeneous vehicular
network.

all vehicular users, the proposed scheme exploits the CSI
of vehicular users to extract transmission qualities of those
users with different access points. A heuristic solution was
proposed to allocate the available resources (in LTE and Wi-
Fi networks), which can be used in both centralized and hybrid
software defined network systems. With 20 vehicles, a remote
server with an SDN controller, one eNodeB and three Wi-
Fi access points, authors in [87] presented the performance
comparison between the proposed SDN based scenario and
non-SDN based scenario. In the non-SDN based scenario,
the optimization for the allocation of LTE and Wi-Fi resource
is carried out separately. Due to the joint optimization of RA,
the proposed method allocates resources effectively and hence
outperforms its non-SDN counterpart. An allocation approach
for joint LTE and DSRC networks was proposed in [88]. The
proposed approach allocates the LTE resources to minimize
the number of vehicles that compete for channel access in
DSRC based communication. The LTE resources are optimally
allocated by the eNodeB, which jointly pairs one vehicle with
another and allocates the resources to the pair considering a
guaranteed signal strength for all communication links.

VI. MACHINE LEARNING BASED RA FOR VEHICULAR

COMMUNICATIONS

In vehicular networks, whilst vehicles are expected to
employ various facilities such as advanced on-board sen-
sors including radar and cameras and even high-performance
computing and storage facilities, massive amounts of data
will be generated, processed and transmitted. Machine
Learning (ML) is envisaged to be an effective tool to
analyse such a huge amount of data and to make more
data-driven decisions to enhance vehicular network perfor-
mance [116]. For details on machine learning, readers can
refer to [117]–[119].

For resource allocation, the traditional approach is to
formulate an optimisation problem and then obtain an
optimal or sub-optimal solution depending on the trade-

off between target performance and complexity. However,
in vehicular networks where the channel quality and network
topology can vary continuously, the conventional optimization
approach would potentially need to be rerun whenever a
small change happens, thus incurring huge overhead [120].
While an ML approach could be an alternative to prevalent
optimisation methods, research on applying ML in vehicular
networks is still at an early stage [116]. In the existing
literature [109]–[115], machine learning has been applied to
resource (e.g., channel and power) allocation, user association,
handoff management, and virtual resource management for
V2V and V2I communications while considering the dynamic
characteristics of a vehicular network.

A distributed channel and power allocation algorithm
employing deep reinforcement learning (RL) [119] has been
proposed for cellular V2V communications in [109]. With
the assumption that an orthogonal resource is allocated for
V2I links beforehand, the study focuses on resource allocation
for V2V links under the constraints of V2V link latency and
minimized interference impact to V2I links. The structure of
reinforcement learning for V2V links is shown in Fig. 12.
While the agent corresponds to each V2V link, it interacts with
the environment which includes various components outside
the V2V links. The state for characterising the environment is
defined as a set of the instantaneous channel information of
the V2V link and V2I link, the remaining amounts of traffic,
the remaining time to meet the latency constraints, and the
interference level and selected channels of neighbours in the
previous time slot. At time epoch t , each V2V link, as an
agent, observes a state st ∈ S, and depending on its policy π ,
takes an action at ∈ A, where S is the set of all states and A
the set of all available actions. An action refers to the selection
of the sub-band and transmission power. Following the action,
the agent receives a reward rt calculated by the capacity of
V2I links and the V2V latency. The optimal decision policy
π is determined by deep learning.

The training data is generated from an environment sim-
ulator and stored. At the beginning, for the training stage,
the generated data is utilised to gradually improve the policy
used in each V2V link for selecting spectrum and power. Then,
in a test stage, the actions in V2V links are chosen based on
the policy improved by trained data. This work is extended in
[110] to include a broadcast scenario. In [110], each vehicle is
modelled as an agent and the number of times that the message
has been received by the vehicle and the distance to the vehi-
cles that have broadcast are additionally considered in defining
the state. Then, each vehicle improves the messages broad-
cast and sub-channel selection policies through the learning
mechanism.

In [111], a contention-based MAC protocol for V2V broad-
cast transmission using the IEEE 802.11p standard for DSRC
is investigated. In a scenario with fewer than 50 vehicles, IEEE
802.11p can exhibit better performance than LTE in terms
of lower latency and higher packet delivery ratio than LTE.
However, as vehicle density gets high, the standard becomes
unable to accommodate the increased traffic. In [111], with
the aim of overcoming the scalability issue associated with
the vehicular density, an ML based approach is proposed to
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Fig. 12. The structure of reinforcement learning for V2V links [109]. In the learning framework, a V2V link (Agent) learns the policy to select the sub-band
& Tx power (Action) considering channel info, the remaining traffic amount, the latency constraint, the interference level (State) and the achieved capacity
of V2I links and V2V latency (Reward).

TABLE V

EXISTING RA TECHNIQUES WITH MACHINE LEARNING

find the optimal contention window to enable efficient data
packet exchanges with strict reliability requirements. As a
independent learning agent, each vehicle employs learning
to decide on the contention window size. The result of
each packet transmission, either success or fail, is feedback
and utilized for the window size decision. Similar to [109],
the two-stage RL is considered to get instant performance
benefits starting from the first transmission. At the beginning,
the data generated from a simulator is exploited to improve
the policy. In the test stage, the actions are chosen based
on the pre-trained policy while the policy keeps improving.
Authors in [111] evaluated the performance of their proposed
ML based approach via simulation. Through simulation results
illustrated in Fig. 13, it is shown that the proposed ML based
approach achieves more reliable packet delivery and higher
system throughput performance. In the simulation, all cars
in the area of 600 m × 500 m are assumed to continuously
transmit broadcast packets with a period 100 ms. While the
packets are transmitted using the highest priority, the network
density changes. In Fig. 13a for a given packet size 256 bytes,
it is shown that the proposed approach reduces collisions
between data packets and achieves better packet delivery ratio
(PDR) performance in denser networks by adjusting the size
of contention window. In a sparse networks (of 20 cars), while
a minimum window size is optimal, the learning protocol
exploring larger window size causes increases of packet col-
lisions. However, In denser networks, the proposed approach

is superior to IEEE 802.11p standard. In a network formed
of 80 cars, a 37.5% increase in PDR performance is observed.
In Fig. 13b, the performance of the proposed algorithm is
evaluated for different packet sizes in a network of 60 cars.
While the proposed approach achieves more reliable packet
delivery, it yields 72.63% increases in throughput for 512 bytes
packet size.

In [112], the ML approach is exploited to develop the
user association algorithm for load balancing in heterogeneous
vehicular networks. Considering data flow (generated from
vehicular networks) characteristics in the spatial-temporal
dimension, a two-step association algorithm is proposed. The
initial association decision is made by a single-step reinforce-
ment learning approach [118]. Subsequently, a base station
(i.e., macro, pico and femto cells) uses historical association
patterns to make decisions for association. In addition, a base
station, as an agent of learning, keeps accumulating feedback
information and updates the association results adaptively.
While each base station runs the proposed algorithm in a
distributed manner, in the long run, it is shown that both the
real-time feedback and the regular traffic association patterns
help the algorithm deal with the network changes.

In [113], a vertical handoff strategy has been devised by
using a fuzzy Q-learning approach [118] for heterogeneous
vehicular networks consisting of a cellular network with global
coverage complemented by the V2I mode. From the OBU
side, various information including average Received Signal
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Fig. 13. Performance comparison between IEEE 802.11p standard and the proposed ML based approach for DSRC [111].

Strength (RSS) level, vehicle velocity and the type of data
is sent to the RSU side. Then, the RSU side considers the
delivered information as well as the traffic load (i.e., the num-
ber of users associated with the target network) and makes
handoff decisions by using the fuzzy Q-learning method. With
the simulation results, it is shown that the proposed algorithm,
which has a real-time learning capability, can determine the
network connectivity to ensure seamless mobility management
without prior knowledge of handoff behaviour.

In [114], [115], a machine learning approach is exploited
to devise the virtual resource allocation in vehicular networks.
Vertical clouds [121] consisting of various OBUs, RSUs, and
remote cloud servers can provide a pool of processing, sensing,
storage, and communication resources that can be dynamically
provisioned for vehicular services. The importance of resource
allocation in the vehicular cloud is highlighted in [114].
Poorly designed resource allocation mechanisms could result
in QoS violation or under-utilisation of resources, whereas
dynamic resource provisioning techniques are crucial for
meeting the dynamically changing QoS demands of vehicular
services. Against this background, a reinforcement learning
framework has been proposed for resource provisioning to
cater for dynamic demands of resources with stringent QoS
requirements. In [115], a two-stage delay-optimal dynamic
virtualisation radio scheduling scheme has been developed.
Based on the time-scale, the proposed algorithm is divided
into two stages, macro allocation for large time-scale variables
(traffic density) and micro allocation with short time-scale
variables (channel state and queue state). The dynamic delay-
optimal problem is formulated as a partially Observed Markov
Decision Process (POMDP) [117] and is then solved by an
online distributed learning approach.

In Table V, the characteristics of ML based algorithms
in literature are summarised. Since the increase of com-
munication overheads and the computational complexity to
analysis a high volume of data can significantly deteriorate

the performance of vehicular networks, aforementioned works
consider a distributed learning approach. Different entities are
chosen as a autonomous agent to manage their problem: a V2V
link in [109], [110], a vehicle in [111], a BS in [112], a RSU
in [113], and resource controller [115]. In [114], whilst it
focuses on the benefit of the learning-based dynamic resource
provisioning, a learning framework is considered.

In machine learning, the type of data (i.e., labelled or unla-
belled) can be a key element to decide the learning technique
to use and high-quality data is an important factor in affect-
ing the learning performance. However, the scarcity of real
datasets available for vehicular networks is pointed out as
one of the biggest challenges for the application of machine
learning [122]. Different from learning approaches requiring
datasets obtained in advance (i.e., supervised, unsupervised
learning), the RL approach can be exploited without prior
knowledge of the environment. In the aforementioned studies,
the RL approach is exploited without any prior datasets and it
is shown that online RL approach can converge to a solution
through feeding back from the dynamic vehicular environment
iteratively.

VII. FUTURE RESEARCH DIRECTIONS

In this section, we present a number of attractive directions
for future research in resource allocation for vehicular net-
works.

A. RA for NR-V2X and IEEE 802.11bd

While NR-V2X is emerging as an improved version of LTE-
V2X, the IEEE 802.11bd standard has recently emerged as an
upgraded version of the IEEE 802.11p standard to reduce the
gap between DSRC and C-V2X [123]. Both of the upgraded
technologies are expected to support mm-Wave communica-
tions, which raise one of the main challenges, that of effective
utilization of traditional bands and new mm-Wave bands.
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As such, suitable dynamic resource scheduling is required to
exploit their unique benefits. For example, while mm-Wave
communication offers very high data rates, it is mostly suitable
for short-range communication. Thus, the resource allocation
approach should allocate resources in mm-Wave bands to those
transmitters with receivers within short range. For the out-
of-coverage scenario, NR-V2X has introduced co-operative
distributed scheduling approaches, where vehicles can either
assist each other in determining the most suitable transmission
resources or a vehicle schedules the sidelink transmissions
for its neighboring vehicles. In the first scenario, a thorough
investigation is required to determine the type of information
(e.g., packet reception acknowledgment, channel busy ratio
assessment, etc.) that vehicles need to share to improve the
resource allocation process, while ensuring that the sharing
process itself will not cause congestion in the vehicular
networks. On the other hand, the autonomous selection of
a cluster-head (a vehicle that allocates the resources for its
surrounding vehicles) is an open issue for the latter scenario.
For example, what information shared by vehicles benefits
the nomination of a cluster-head, how to adapt cluster-head
selection algorithms to different vehicular environments (e.g.,
highway, intersection, urban, rural, etc.), while ensuring good
connectivity between the cluster-head and other vehicles.

B. Efficient and Ultra-Fast Slicing for C-V2X

For NS discussed in Subsection IV-F, it is critical to
understand how C-V2X competes for system resources with
other vertical applications, how C-V2X assigns and optimizes
these resources among a vast range vehicular use cases, and
in particular, how to carry out efficient and ultra-fast NC in
highly dynamic and complex vehicular environments. In a
high mobility channel, for example, the PHY slicing for
multiple numerologies needs to rapidly deal with severe ICI
and inter-symbol interference. An interesting future direction
is to design intelligent slicing algorithms by efficiently using
various computation resources at the edge or in the cloud.
Recent advances on this topic can be found in [124]–[126].

C. Security Enhancement With Blockchain Technology

The widespread deployment of V2X networks very much
relies on significantly enhanced security for large scale vehic-
ular message dissemination and authentication. The consid-
eration for this imposes new constraints for RA in V2X
networks. For example, mission critical messages should
have ultra resilient security to deal with potential malicious
attacks or jamming, whilst multimedia data services pre-
fer lightweight security due to large amount of data rates.
These two types of security lead to different frame struc-
tures, routing/relaying strategies, and power/spectrum alloca-
tion approaches. Besides the approaches introduced in Sub-
section IV-C it is interesting to investigate the applications
of blockchain which has emerged recently as a disruptive
technology for secured de-centralized transactions involving
multiple parties. An excellent blockchain solution (e.g., smart
contract or consensus mechanism) should not only allow

access to the authenticity of a message, but also preserve the
privacy of the sender [127], [128].

D. Machine Learning Supported Resource Allocation

While the potential of applying ML in vehicular networks
has been discussed in Section VI, mechanisms as to how to
adapt and exploit ML to account for the particular character-
istics of vehicular networks and services remains a promising
research direction. Vehicular networks significantly differ from
the scenarios where machine learning has been conventionally
exploited in terms of strong dynamics in wireless networks,
network topologies, traffic flow, etc. How to efficiently learn
and predict such dynamics based on historical data for the
benefit or reliable communications is still an open issue. In
addition, data is supposed to be generated and stored across
various units in vehicular networks, e.g., OBUs, RSUs, and
remote clouds. It could be interesting to investigate whether
traditional centralised ML approaches can be exploited to
work efficiently in a distributed manner. For collective intelli-
gent decision making in learning-capable vehicular networks,
the overhead for information sharing and complexity of learn-
ing algorithms need to be taken into account.

E. Context Aware Resource Allocation

Existing work on resource allocation for vehicular networks
mostly deals with efficient allocation of resource blocks such
as frequency carriers or time-slots. However, most of the prior
work on resource allocation did not consider context-aware/on-
demand data transfer applications in vehicular networks. Since
on-demand data transfer applications need to meet constraints
such as deadline of the requested data items or priority of
data items, to ensure a reliable service, there is a need for
research to consider those more thoroughly. Although there is
a lot of prior work [129], [130] on performance evaluation of
on-demand data dissemination scenarios in terms of the above
constraints, they do not deal with the allocation of resource
blocks, which is important for 5G networks.

VIII. CONCLUSION

In this paper, we have surveyed radio resource allocation
schemes in vehicular networks. We have categorized these
schemes into three categories based on the types of vehicular
networks, i.e., DSRC vehicular networks, cellular vehicular
networks, and heterogeneous vehicular networks. For each
category, the available literature on resource allocation is
reviewed and summarized while highlighting the advantages
and disadvantages of the reviewed schemes. We have also
discussed several open and challenging future research direc-
tions for radio resource allocation in vehicular networks.
It is anticipated that this paper will provide a quick and
comprehensive understanding of the current state of the art
in radio resource allocation strategies for vehicular networks
while attracting and motivating more researchers into this
interesting area.
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