

Journal of Advanced Computer Science & Technology, 3 (2) (2014) 232-248

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST
doi: 10.14419/jacst.v3i2.3754

Review Paper

A survey on SDN, the future of networking

Shiva Rowshanrad *; Sahar Namvarasl; Vajihe Abdi; Maryam Hajizadeh; Manijeh Keshtgary

Dept. of Information Technology and Computer Engineering, Shiraz University of Technology (SUTECH), Iran, Shiraz

*Corresponding author E-mail: shiva.rrad@gmail.com

Copyright © 2014 Shiva Rowshanrad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Software Defined Networking (SDN) is an emerging architecture which decouples networks control plane and data

plane physically. It makes control plane programmable trough a centralized controller, and builds intelligent and

flexible networks. The OpenFlow is one of the most famous SDN protocols, which acts as a southbound interface

between control plane and data plane. In this survey, SDN implementation approaches and different southbound

interfaces, beside different version of OpenFlow, are introduced. In addition to general architecture of SDN, different

wireless architectures are discussed. Here, also potential SDN’s applications and research areas including hot topics

such as Information Centric Networks, Cloud and datacenters, multimedia, wireless and mobile networks over SDN are

reviewed.

Keywords: Control Plane, Data Plane, Programmable Network, OpenFlow, Software Defined Network.

1. Introduction

Use of mobile devices, emerging technologies such as cloud computing and virtualization, caused changing of traffic

patterns. The rise of Big Data in datacenters arise the need for high network capacity and network scaling. To support

these needs, network devices become more complex. Furthermore it would be hard and time consuming for

administrators to configure individual devices due to even little changes in network, such as adding or omitting a

device. They should reconfigure many multivendor switches and routers, ACLs, which may cause inconsistency and

errors [1-3].

The Idea of programmable networks was introduced to meet these challenges and facilitate network evolution. As a

result, Software Defined Networking (SDN) is a new paradigm, which revolutionized traditional network architecture.

SDN effectively separates the control plane from data plane and move it to a centralized server named controller. It

moves the complexity of network management into a software-based controller and provides an abstraction of

underlying infrastructure. This allows simple data plane and network devices, makes control plane to be directly

programmable and manageable in a centralized manner [1], [4], [5].

The SDN architecture provides programmability, flexibility and reliability over networks. Network operators can

implement their own protocols, rules and policies with common programming languages. They can achieve flexible

control over network services such as routing, traffic engineering, QOS and security. Network can adapt itself depends

on users' requirements. Network management and configurations can be automated through the centralized controller

and standard open API, making the network scale easily. By using SDN, administrators are able to add features to

control plane without changing data plane or enhance devices in data plane without changing control plane. Decupling

control plane from infrastructure is also important because it reduces costs and inconvenience of testing new ideas and

strategies in network or deploying new architectures [1], [3], [5], [6]. In this paper, we present SDN architecture, its

capabilities, deployment, applications and challenges to give a broader view for those who are interested in this area.

The rest of the paper is organized as follows. Section 2 represents the history of programmable networks. In Section 3

wired and wireless SDN architectures are discussed and different protocols used in these architectures are presented.

SDN networks implementation and tests are discussed in section 4. In section 5, the SDN applications and its open

research areas are reviewed. Section 6 describes existing challenges of SDN. Finally section 7 concludes the paper.

http://creativecommons.org/licenses/by/3.0/

Journal of Advanced Computer Science & Technology 233

2. History

Many years ago, the idea of programmable networks, resulting SDN paradigm, has been created [6]. In 1988 SOFTNET

[7], in 1990 Active Networking [8], in 1995 OPENSIG [9] and GSMP [10], in 1998, IEEE P1520 Standards Initiative

[11], in 2004 4D Project [12] and SoftRouter [13] architecture and finally in 2006 NETCONF [14], Ethane [15] and

SANE [16] were proposed to answer the idea of programming network. SANE developed as a prototype, considered a

logical server that performed all access control decision. Ethane separated controller and Ethane switch toward

providing policy and security by an identity-based accessing. But in 2010 according to RFC 5810 by IETF, ForCES

(Forwarding and Control Element Separation) [17] “A parallel approach to software-defined networking” was

announced which standardized the communication between controller and network elements. The difference between

ForCES and OpenFlow (OF) is their network architectures. ForCES assumed no changing in network architecture so

that controller and network elements are situated in one single device as regards to this point that they are apart from

each other, but OF separates the controller and network elements physically. Several efforts in the field of SDN have

been taken until now. Internet Research Task Force (IRTF), defined The Software Defined Networking Research

Group (SDNRG) [18], intended to figure out future SDN approaches and challenges. Also there is a Home provided for

SDN researchers in [19].

3. Architecture

SDN architecture consists of 3 layers: infrastructure layer, control layer and application layer. Infrastructure layer or

data plane is responsible for forwarding the packets by means of simple forwarders and switches. Control layer contains

the controller to manage the Infrastructure layer. In application layer the business applications can interact with network

services and capabilities. There is also a need for southbound and northbound interfaces to enable the controller to

communicate with the two other layers [1]. More details of SDN components are described in this section.

3.1. Control layer

SDN architecture decouples two parts of a network device. In controller plane, a software program is placed on top and

is separated from switches as shown in Fig. 1. Controller plane manipulates the forwarding table for each switch request

based on the header of packet-in message (a packet which is created by switch upon table-miss) and sends respond via

packet-out or flow-mod message and tracks all applications requests. Each controller plane is built from two

components: applications and network operating system. The application part is in many of software programs from

metering to monitoring which network virtualization is one of them. When lots of applications regardless of their works

confront with WAN, resources become scarce and SDN architecture should be completed with a network packet broker

(NPB) and access monitoring [20].

Fig. 1: SDN Architecture [5]

NPB could be one of the controller part that checks the required resources whether it is available or not. So NPB needs

to have network topology, past and current traffic loads [20]. Some of controller platforms are compared in Table 1.

Controllers can be deployed in a centralized or distributed manner. One of the most obvious advantages of using a

centralized controller is that management and retrieving information would be applied from one logical point

(controller) resulting uniform network. Centralized controller like each centralized model has the disadvantages of

single point of failure, terminating no availability and scalability. Network could have more than one controller, so each

controller is responsible to control a group of network switches, which may interfere with each other, thus one

234 Journal of Advanced Computer Science & Technology

controller is chosen to be the main controller and the others would be backups [6]. ONIX [21] and HyperFlow [22],

suggest a logically centralized but physically distributed control plane. Each switch is controlled with its controller and

controllers are distributed in the network, using memory resident (in-memory database) and applications that are written

on top of the controllers consider all of the controllers as one central controller. Although in this option lookup

overhead will be reduced and scalability and availability are supported, establish consistency and compatibility between

network OS and any kind of supported OF and even between controllers are some of the most important issues.

Hierarchical view of the controllers like Kandoo [23], manage their related switches and there exists one controller that

manages local controllers in order to implement applications on it. Using this case like ONIX and HyperFlow reduces

lookup overhead, present availability and scalability with the central view of the whole network without worrying about

its consistency and compatibility. Also a proxy controller, FlowVisor [24] is used to set a logical decentralization and

give a virtualization view to the controllers in one network.

Packet granularity requires controller plane decision whenever a packet is arrived in data plane. When a table-miss is

happened in a switch, switch will encapsulate the entire received packet as a packet-in message and sends it to the

controller, decision will be made and a packet-out message will be sent to the switch. In this case, huge amount of data

would be passing through the controller and switch that could cause delay. Flow granularity is another selection. When

a flow is passed through a switch, for the first time that switch receives that flow, it requires controller plane decision so

sends packet-in message which contains only the header of original packet and at the controller side, decision will be

made and flow-mod message containing original packet header will be sent to switch. After that, switch will decide

based on last decision. In a switch, controller plane decisions would be applied to any kind of flow, subordinates to

source, destination, data or any kind of information relates to that flow. If there isn’t any decision for huge number of

flows received at switch, a lot of connection would be required for any of them; which causes delay. In active policy,

switch notifies the controller each time it needs a decision. In proactive policy, controller passes control information to

the switch. Both of these policies would be merged to any kind of granularity [6].

Table 1: Different Controllers’ Platforms In SDN

Controller Language Created by
Open

source

OpenFlow

version
Description

NOX Python, C++ Nicira Yes
1.0,

1.3

Asynchronous, event-based programming

model, component based framework. NOX-

MT is multithreaded with improving

throughput and response time [25].

POX Python (2.7) Nicira Yes 1.0
Component based framework, targets Linux,

Mac OS, and Window [26].

Beacon Java
Stanford

university
Yes 1.0.1

Event based and threaded Cross-platform,

Dynamic, and Rapid Development [27].

Maestro Java
Rice

university
Yes 1.0

Modular network control applications,

multi-thread [28].

Floodlight Java
Big Switch

Networks
Yes 1.0

Based on Beacon, core architecture is

modular, open source agent (Indigo) [29].

Floodlight-

plus
Java

Big Switch

Networks
Yes 1.3

New version of floodlight for supporting OF

1.3 [30].

Ryu Python NTT Labs Yes
1.0, 1.2,

1.3, 1.4

Component based, supporting components

development in other languages, event

management and reusable NETCONF

library, sFlow/Netflow library [31].

OpenDaylight Java
Linux

Foundation
Yes 1.0 , 1.3

Modular, pluggable, and flexible controller

platform, supporting multiple southbound

protocols [32].

3.2. Infrastructure layer

Infrastructure layer is the SDN switch. Switches in software defined networks are basic forwarding elements which

communicate with controllers via an open interface such as OpenFlow. An OF switch consists of at least three main

parts: flow table, secure channel and OpenFlow protocol. Flow table(s) is used to lookup packet and also do forwarding.

A secure channel is usually a TLS or SSL channel between switch and controller. OpenFlow protocol is for

communicating with the switches and managing them. Controller can update, delete, and add the flow entries of flow

tables using OF messages. Each flow table consists of many entries, each consists of several components [33-37]. A

flow is a sequence of packets that matches a specific entry in a flow table. On receipt of a packet, the switch matches

the packet header fields with match fields’ component of entries. After table lookup and matching process, the

instructions of entry with higher priority will be done on the packet. The fields from packets used to match with flow

entries are shown in Table 2.

Journal of Advanced Computer Science & Technology 235

Table 2: The Fields from Packets Used to Match with Flow Entries

Ingress

port

Ether

source

Ether

destination

Ether

type

VLAN

ID

VLAN

priority

IP

Src

IP

Dst

IP

protocol
TOS

TCP

Src

TCP

Dst

There are two types of OpenFlow switches: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-only switches support

only OF operation, in those switches all packets are processed by the OpenFlow pipeline and the forwarding decisions

are made by controllers. OpenFlow-hybrid switches support OF operation in addition to traditional operation such as L2

Ethernet switching, L3 routing etc. A classification mechanism is needed to classify the traffics of OF pipeline and

normal pipeline. This mechanism may use VLAN tags, Input ports of the packets, etc. [33-37]. In another aspect, the

switches can be classified into Hardware based switches and software based (virtual) switches. Table 3 lists some of the

currently SDN available switches.

Table 3: Available SDN Switches

Switch Type Series/ Versions OpenFlow version

Arista [38] HW 7050 ,7150, 7500 1.0

Brocade [39] HW CES 2000, CER 2000, MLX 1.0, 1.3

HP [40] HW 3500, 3500yl, 5400zl, 6200yl, 6600 1.0, 1.3

IBM [41, 42] HW IBM 8264, RackSwitch G8264, G8264T 1.0

LINC[43] SW - 1.2,1.3,1.4

NEC [44] HW PF5240, PF5248 1.0 , 1.3.1

Open vSwitch

(OVS) [45]
SW Latest version OVS 2.1.2

OpenFlow 1.0 for OVS 1.9 and

earlier, OpenFlow 1.2 and 1.3 for

OVS 1.10 and later with some

missing features, OpenFlow 1.1

for OVS 2.0 and later with some

missing features, experimental

support of OpenFlow 1.4 for OVS

2.2

Pica8[46] HW P-3290, P-3295, P3930 , P-3297 , P-3922 1.0, 1,1, 1.2, 1.3, 1.4

3.3. Northbound interface

SDN Applications are programs that may consume an abstract view of the network for their decision making goals.

Moreover, these applications programmatically and directly convey their network requirements and desired network

behavior to the SDN Controller. Interfaces between SDN Applications and SDN Controllers are known as Controller-

Application Interaction or SDN Northbound Interfaces (NBIs). Northbound Interface of component can be introduced

as an element that conceptualizes the lower level details of functions used by component. This interface is usually

positioned at the top of the corresponding component, which is the basis of the "northbound interface" title [47].

Despite southbound interface that is well defined in protocols such as ForCES and OF, no comprehensive standard is

defined for northbound interface and they are more likely to be developed for particular SDN applications [6]. One

justification is that the southbound must enable hardware implementation, while northbound interface's definition

completely in software.

For various reasons controllers may need to communicate with each other, on the other side, network applications may

require extraction of information about the underlying network policy aspect, then there should be a clearly defined

interface. There are some proposals such as Procera [48], Frenetic [49], FML [50] and Nettle [51] which build a policy

layer by using a network configuration language. In addition, the northbound API must authorize employment of

different policies to the same flow. The modularization approach proposed by [52] tries to avoid rules installed for one

task override other rules. This goal is achieved by implementation of an abstraction layer.

IETF with the goal of network traffic engineering deployed Application-Layer Traffic Optimization (ALTO) [53] which

currently has been considered for content delivery networks (CDNs) implementation. According to information

provided by ALTO, server network was optimized that improve performance and resource consumption. This

information gathers by mapping network topology and create abstract and logical model of network by server.

Exchanging request and response is accomplished thereby JSON [54]. The set of ALTO features convert this API to

appropriate option for SDN implementation[4].

Interface to the Routing System (I2RS) working group is another API for northbound was developed by IETF that its

objective was to provide standard for programmable network. Policy-based routing can be mentioned as important trait

of I2RS. This interface in compared with similar protocol such as SNMP and NETCONF. It is more rapid and

application-friendly[4].

236 Journal of Advanced Computer Science & Technology

3.4. Southbound interface

In SDN, the most popular southbound interface is the OF protocol. OF enables communication between controller and

the nodes in the network, so the controller discover network topology, get reports from the nodes, instruct and manage

them as needed and implement requests relayed to flows via northbound APIs. There are also other southbound

interfaces, which are described in this section [5], [55].

3.4.1. Openflow protocol

OF protocol is the most well-known interface between forwarders and controllers in SDN. This protocol is defined for

Ethernet-based networks. OF protocol have different versions. The first version was OF 0.2.0 released in March 2008 as

a draft. The OF 1.0 specification is the first version which has official vendor support. The latest specification is OF 1.4

which released in October 2013. As shown in Table 3 OF 1.0 and 1.3 are the most deployed versions. Fig. 2 shows the

OpenFlow changes through its different versions. More details are described in this section.

OF 1.0 [33] supports a single flow table with flow entries consist of three components: Header Fields, Counters and

Actions. The Match field supports 12 header fields which are shown in Table 2. Each flow entry contains a specific

value or ANY keyword which matches any value. The entries must associate with zero or more actions that should be

done on the matching packets in order. The packets with zero actions or action lists which cannot be processed by the

switch are dropped. If no matches found for a packet the first 200 bytes of the packet are sent to the controller through

the secure channel.

In OF 1.1 [34] several flow tables are pipelined. When a switch receives a packet, it starts to look for an entry to be

matched in table0. If the entry found, the packets get processed according to the entry Instructions. The instructions may

contain Goto Instruction which points to another flow table. The flow entries can also point to a Group table which

consists of group entries. The Actions in Group table are common for multiple flows. In this version the Match fields

have 15 tuples. Metadata filed is added to pass information between tables. Two other fields are added to support MPLS

tagging. It also uses Instructions instead of Actions component which are more complex and include modifying the

packets. Other added supports are: Support for VLAN and QinQ, adding, modifying and removing VLAN headers,

Support for virtual ports and tunnels, Multipath routing and ECMP.

OF 1.2 [35] adds support for major features like IPv6 and extensible matches using TLV structure. Using TLV

structure, cause more flexibility, since in previous protocols the order and length of match fields was fixed. With OF 1.2

the switches can connect to multiple controllers concurrently. This allows for a better failure recovery and also load-

balancing between controllers.

In OF 1.3 [36] every flow table must have a table-miss entry which indicates how to process a packet that has not any

match in the table. It may instruct to drop the packet, send it to the controller or direct the packet to another table.

Another improvement over previous versions is meter tables which make OF to implement QOS operations like rate

limiting. Also a specific duration filed is added to most statistics which helps to compute rates. A cookie field is added

to messages containing packets sent to the controller. This helps controller, process the messages faster than if it had to

search its entire database.

In Previous version of OF, a switch could connect to multiple controllers for fault tolerance and load balancing. OF 1.3

introduces per connection event filtering which improves the multi-controller support by enabling each controller to

filter events from the switch it does not want. It also enables a switch to create auxiliary connections to supplement the

main connection between the switch and the controller. This allows using the parallelism ability implemented in most

switches.

OF 1.4 [37] is the latest specification. In this version TLV structures is used in more parts, improving extensibility.

Support for optical ports is added by means of new set of port properties. They include fields for configuring and

monitoring transmit/receive frequency and power of a laser in either Ethernet optical port or optical ports on circuit

switches.

In previous versions, when a flow table is full, the switch sends an error message to controller to operate on the flow

table. This is time consuming and may cause problem. In OF 1.4 an Eviction option is added which makes the switch

able to eliminate lower important entries automatically and make space available for new entries. Switches can also

inform controller of tables getting full (based on a capacity threshold chosen by controller) via vacancy events and

avoid tables to get full. Bundle mechanism is added for quasi-atomic execution of a group of instructions. The Error

message is sub-type of symmetric messages in this version and can be initiated by either switch or the controller.

Journal of Advanced Computer Science & Technology 237

Fig. 2: Open flow Revolution

3.4.2. XMPP

The Extensible Messaging and Presence Protocol (XMPP) [56] is a XML-based protocol introduced by Internet

Engineering Task Force (IETF). The basic idea was proposed by Jabber community in 1999 and they introduced an

open-source protocol. Afterward IETF represented the improvement version for instance message in 2002. Finally in

2004 the standard definition was published on RFC3920 and RFC3921. XMPP enable exchange “XML stanzas”, small

piece of XML, between different entities based on client-server architecture. All connection of this protocol is

performed by TCP. Decentralized system of XMPP enables everyone to implement their own XMPP servers and launch

their domain. At Juniper Networks Contrail [3], an open source solution introduced by Juniper Network Company was

intended XMPP as southbound protocol and was implemented in the controller. As a result, it is possible to build high

scalable virtual network and control cloud services automatically.

3.4.3. OnePK

One Platform Kit (OnePK) [4] is API & software development kit (SDK) toolkit to develop controller application for

programming Cisco network devices managing and planning. OnePK consists of three main elements: presentation

Layer which provides required library for programmers and supports multi language programming such as C, Java and

Python, API Infrastructure with task of coordination among various platform and Communication Channel that put out

security and flexibility between controller and network elements. Provided service sets enable network administrator to

manage and control great number of elements.

3.5. Wireless architectures

We described the general architecture of SDN in previous sections which is mainly used for wired networks. But SDN

also can be deployed for wireless networks. Currently, researchers’ main focus in SDN wireless architecture, is

centralized control of wireless networks: A central controller's main duties such as management wireless access points,

user verification, etc. [57]. In comparison with distributed wireless networks, the centralized system has better

consistency because of global view of the network controller. One other feature of wireless SDN networks is that they

present peculiarities because its control requires the knowledge and policy about the radio interference and the node

mobility [5].

3.5.1. Openroad

For controlling wireless SDNs one of the first approaches was OpenRoad [58]. This open source platform was

developed to specify the wireless OF over NOX. OpenRoad architecture [5], is composed of three layers as illustrated

in Fig. 3, permits expanded modules to monitor the wireless medium by employing simple network management

protocol (SNMP). Flow layer's main responsibility is management of the flow tables in the access points. Network

virtualization is the main duty of Slicing layer. FlowVisor in this layer responsible for sharing the OpenFlow tables in

the switches. Purposed architecture also required SNMP demultiplexer module in this layer to performing the network

slicing for the SNMP traffic, because FlowVisor did not slice the access through SNMP. The last layer is Control layer

which represented the OF control plane. Finally, OpenRoad has a centralized controller that provides resource

virtualization and different policies can work to gather.

OF 1.0

DEC

2009

OF 1.1

FEB

2011

OF 1.2

DEC

2011

OF 1.3

APR

2012

OF 1.4

AUG

2013

-Single
flow table

 -IPv4

-Multiple flow
tables

-Group tables

-MPLS

- ECMP

-IPv6

-Flexible TLV
Matching

_-Multiple
controllers

- Multiple parallel

channels between

switch and

controllers

- Table meters

- Flow table miss

entry

-Vacancy
events

-Optical
ports

-Eviction

 -Bundles

238 Journal of Advanced Computer Science & Technology

Fig. 3: Open roads Architecture, Which Consists of Three Layers [5].

3.5.2. SoftRAN

Nowadays, distributed algorithms are utilized by radio access network in order to handovers management. While the

decision making in environment with few base stations can be easy, it will be relatively harder to swiftly select the best

candidate in dense deployments of base stations. For the purpose of handling increasing mobile traffic, some

researchers offered SoftRAN [59], a centralized software defined radio access network designed for performing

handovers efficiently. In SoftRAN all the base stations are abstracted and controlled in a centralized way. In order to

manage every base station, control plane used defined APIs to communicate with radio elements.

General architecture of SoftRAN is illustrated in Fig 4. It periodically gathers the states of base stations and updates the

global view of the network. The controller modules require that information to manage radio resource, so collected in

the form of a database.

Fig. 4: Architecture of SoftRAN [59]

3.5.3. SoftCell

For solving significant scalability problems exist in cellular networks, Li Erran Li et al. [60] proposed a cellular SDN

architecture with local control agents with ability to make simple decisions, as illustrated in Fig. 5. The centralized

controller responsible for interpreting flows with high level abstractions. On the Other side, some actions and policies

are run on a cell agent for improving the performance and efficiency of the centralized controller.

Journal of Advanced Computer Science & Technology 239

Fig. 5: Cellular SDN with Local Agent [60]

4. Implementation and testing

As mentioned in previous section, many switches and controllers are available for implementing a software defined

network. But there is also ways for testing ideas in SDN such as using simulators, emulators and test-beds. NetFPGA’s

[61] can be used for building a SDN node. Debuggers are also available for testing controllers.

4.1. Simulators and emulators

In this section available SDN simulators and emulators such as Mininet, NS-3 and Estinet are described and compared.

4.1.1. Mininet

Mininet [62], an emulator platform using OF protocol, runs a collection of end-hosts, switches, routers and links on a

single Linux kernel by using lightweight virtualization. Components of Mininet act as real network components. This

emulator has lots of tools to check the possible bandwidth, the connectivity among nodes and deepest nodes, and the

speed of flows. These tools are named Ipref, Ping, PingAll, PingPair, CBench and also Wireshark in order to view

network traffic. Mininet is used by developers, teachers and researchers and this is because of easily interaction with

network using CLI and API, customizing and sharing features and also development feature on real hardware. It should

be mentioned that Mininet is actively developed and supported. Mininet is used widely just because of: fast to start a

simple network, supporting custom topologies and packet forwarding, running real programs available on Linux,

running on laptops, servers, virtual machines, having sharing and replicating ability, easy to use, being in open source

and active development state. In contrast with these advantages, Mininet has some disadvantages too: having disability

of transferring huge amount of data in one single system, non-available supporting arbitrary OF controllers, supporting

just one platform (Linux kernel), doing NAT out of box, having sharing host file system and PID space and virtual time

notion absence. Measuring performance is presented in [63].

4.1.2. NS-3

NS-3 [64] is a discrete event network simulator which is suited for researchers and educators. The NS-3 library is split

across many modules organized under the modules tab. One of these modules is OF conformable to SDN. NS-3 has

OpenFlowSwitchNetDevice object behaves as a switch and is OF compatible. This object implements a flow table for

all received packets and also a connection to controller just like SDN architecture. Two controllers are available in

original package, DropController and LearningController (based on learning switch algorithm) [65]. This simulator has

these advantages: adding new protocols, shortage of distance among real network and simulated network, having

integration and customizable without remaking the core of simulator. NS-3 disadvantages are: loss of available models,

absence of visual interface for creating topology and visible capability in experimental level.

4.1. 3 EstiNet

EstiNet 8.0 [66] simulator and emulator supports many OF 1.3.2 and 1.0.0 switches. Besides this advantage, in the

simulation mode of EstiNet; POX, NOX, Floodlight and Ryu controllers will have the role of SDN controller plane. In

the emulation mode of EstiNet, these controllers can run up on an external machine that is different from the machine

which simulates switches. Also in this mode implementation of the controller as a dedicated hardware device using an

Ethernet cable is possible, resulting remote controlling. The other benefits of using this simulator/emulator are:

accuracy, quickness, repetition and scalability. EstiNet has a unique capability which is called "kernel-reentering

simulation methodology". By using this, testing of a novel controller applications program by an OF researcher is easy

and effective. A comparison between Mininet, NS-3 and EstiNet is presented in Table 4.

240 Journal of Advanced Computer Science & Technology

Table 4: Comparision of SDN Simulators and Emulators

Simulator

/emulator

Open

source
Language Platform License OpenFlow version Docs

Mininet

(Emulator)
Yes Python

Ubuntu or

experimentally

Fedora

BSD

open

source

OF 1.3 of the reference

user switch and NOX

from CPqD and Ericsson

Good

NS-3

(simulator)
Yes

C++,

Python

Linux, Mac, Free

BSD

GNU

GPLv2

Pre OF 1.0 and version of

OF-SID that support

MPLS

Good

EstiNet

(emulator/simulator)
NO - Linux - OF 1.3.2 and 1.0.0 Medium

4.2. NeTFPGA

NetFPGA is the software and hardware platform aim for researchers and is used for teaching. Now it is available in 2

platforms: NetFPGA-1G (1G) and the NetFPGA-10G (10G). Due to its open source software and low cost hardware, it

is taken into consideration of many students. NetFPGA consists of PCI with four Ethernet port, Xilinx Virtex II pro,

static RAM and Double Date Rate (DDR2) SDRAM [4].

Based on advantages that mentioned and flexibility of NetFPGA platform, it is intended as one solution to implement

SDN. Field Programmable Gate Array (FPGA) allows to program core processing with user defined logic and

embedded core allows to program control functions[61].

In [67] Pang-Wei Tsai et al. described a solution to integrate NetFPGA and OF into network emulation test-bed.

Therefore, the authors succeed to implement traffic-controllable network test-bed with high speed packet processing.

J. Naous et al. presented a paper and explained the result of implementing OF on NetFPGA in [68].They stated that this

implementation is full line-rate and easy to monitor network flow.

4.3. Test-beds

OF test-beds are experimental environments that mainly developed for testing novel applications using OF. Currently,

there are some open test-beds that can be employed for academic research. In continue, some of the most important OF

test-beds are introduced and described.

GENI: GENI [69] stands for Global Environment for Network Innovations that is supported by the National Science

Foundation. It is a wide suite of infrastructure, developed to support experimental research in networking by creating a

huge test-bed [5] In order to reach its goal, GENI federated some platform such as PlanetLab [70], Internet 2 [71],

Emulab [72], etc.

At a high level, it has the prospect of experimental test-bed in which all components will be programmable, federated

and virtualizable, thus it is the best candidate when the deployment scales [73]. Nowadays, GENI project in conjunction

with Internet2 are enabling a SDN based network ready for the deployment novel architecture for new network services

and future internet [74].

OFELIA: Funded by Seventh Frame-work Program (FP7) of European Union. The idea behind OFELIA [75] is a test-

bed in which researchers can dynamically control and extend the network via OF. The OFELIA infrastructure formed

by a set of interconnected islands, each of them managed independently. Employment of virtualization, permits each

experimenter receives a network slice. Each slice is formed by virtual machines to run the clients and server, virtual

machine which corresponds to a typical OF controller and virtual OF network. OFELIA Control Framework (OCF) is a

Common control framework to performed experiment. OCF provides tools for user verification and access, allocation of

the slice, configuration of the network [5].

FIBRE: The main goal of FIBRE is to create common space between Brazil and Europe for future Internet architectures

[76]. The key idea behind this project [77], is to build a federated test-bed by combining wireless networks and wide

area network. The wireless network and wide area network are controlled using OF[5].

4.4. Debuggers

As mentioned before SDN controller is programmable and this feature increases the probability of inadvertently errors.

Generally, finding bugs is hard and time-consuming therefore debuggers have become one of the important components

of OF/SDN. Debuggers are tools that are used to test and diagnose program and enable programmers to interact with

program while it is executing on computer. OF debuggers allow us to trace packet flow behavior to check whether the

network is operating as expected[5]. Nikhil Handigol et al. in[78] introduced ndb, a SDN debugger. Their idea was

similar to gdb, a debugger for GNU operating system, which changes original control flow without any changes to its

semantic. The main goal of the authors was using familiar action specially breakpoint. Breakpoint operation calls all

functions that lead program to specified point.

Journal of Advanced Computer Science & Technology 241

A.Khurshid et al. presented VeriFlow in [79], a layer between controller and hosts that analyzes and checks network

configuration to find bugs without having negative impact on network performance. They claimed that implementation

of VeriFlow is compatible with NOX controller and demonstrated that it is able to verify the control plan rules in real

time and prevent error to impact the proper functioning of the network.

FlowChecker is a configuration analysis tool which introduced by in [80]. Using this system provides the possibility of

checking correctness of data plan configuration and validating consistency of different devices on OF network by

interpretation intra/inter-switches flow table using Binary Decision Diagrams. The authors showed that configuration

analysis can be done while network is running. This feature is useful to determinate QoS.

M.Kobayashi et al. at [81] presented approach for collecting network parameters and used that data to monitor, analyze

and debug SDN. The main information for debugging is gathered from flow table, different traffic statistics and

controller messages. Some different tools were used for debugging purpose and checking traffic between controller and

switches using Wireshark integration, which was stated as the most effective approach.

5. Applications and research trends

In this section we introduce SDN applications and recent researches including Software defined ICN, Multimedia,

network management, network virtualization, cloud and datacenter, security, wireless and mobile networks.

5.1. Software defined ICN

In recent years many researchers claimed that current internet architecture is not able to response the emerging and

future need of users. Based on this claim, new architectures were introduced. Information centric network is one of

these architectures. In ICN, the information name is unique and independent of locations, applications, storages and

distribution and network primitives are done based on the names. To retrieve named information, various transmission

techniques are introduced, including name-based routing, name-based resolution, and etc. To support these techniques

and exploit the advantages of ICN, dramatic changes to the network devices deployed in current Internet are needed,

which leads to challenge of ICN implementation[82], [83]. A number of projects [82-86] proposed implementing ICN

over SDN. This leads to decreasing in implementation costs. It also enables innovation and optimization of network

resources and functionalities. Proposed methods are discussed in Table 5.

Table 5: Software Defined ICN Implementation Methods

Method

Description
Publication `Description Implementation

ContentFlow
Carvalho et al.

[87]
Changing OF protocol No implementation

Wrapper/

Proxy

Nguyen et al.

[82, 88]

Using wrapper to communicate between OF switch and

CCNx (an ICN implementation reference) so the wrapper,

OF switch and CCNx act as an ICN router together

OF 1.0

Hash functions Ooka et al. [86]
Hashing the names into fields (e.g. IP address) that can be

processed by OpenFlow
OF 1.0

CoNet
Blefari-Mellazzi

et al. [83-85]
Using IP option header as name filed

OF 1.0 and

Floodlight

controller,

Implemented in

OFELIA [75] SDN

test-bed

Integrating ICN and SDN can help emerging technologies grow efficiently and easily face the challenges in today’s

networks. Supporting mobility and cloud computing are two controversial subjects in today’s networks due to

inconsistency with IP protocol. SDN can be used to make the best and optimized decisions for VM migration based on

the controllers’ view of network and automatically update the network devices configurations after migration [5].

One of the advantages of implementing ICN over SDN is to improve ICN’s functionalities. In [89] a routing protocol is

proposed which supports mobility by means of controller. This can be easily implemented using software defined ICN.

In [90] the authors, discussed the role of virtualization in NDN (an architecture based on ICN) and outlined traffic

optimization, traffic engineering and in-network catching management as the advantages of implementing NDN over

SDN, specially for multimedia traffics.

242 Journal of Advanced Computer Science & Technology

5.2. Multimedia and QOS

Today’s internet architecture is based on end-to-end communication control which enables best effort services. This is

valuable for data transmission but not for multimedia traffics. Multimedia applications such as video streaming, video

on demand, video conferencing, WebTV and etc. require steady network resources and tolerate special amount of delay,

jitter and error-rate. Providing these QOS requirements needs to select optimum path among all paths available in the

network[91], [92]. QOS architectures like IntServ [93] and DiffServ [94] are proposed for this purpose, which have

difficulties. They have lack of a centralized view of the network and choose the path in a hop-by-hop manner which

may not be the optimum path. They also need specialized software and hardware requirements for implementation.

Software defined networks make it possible to select different paths for different traffic flows by use of different routing

protocols (performing routing prioritization), based on flow’s requirements and a centralized view of the network.

Moreover, OF has some QOS features. In OF 1.0 the flows’ packets can be queued in output ports. This queuing

mechanism can be configured through protocols such as SNMP, CLI and NetConf [95]. By use of an auxiliary

configuration protocol named OF-Config [96] maximum and minimum transmission rate of queues can be configured.

OF 1.1 added support for rewriting ECN (Explicit Congestion Notification) bits. The most important feature is table

meters which have been supported since OF 1.3. This feature enables rate limiting. Many projects [91, 92, 97, 98]

proposed enhancement or optimization methods for multimedia QOS over SDN. A summary of these projects are

presented in Table 6.

Table 6: Multimedia and QOS Projects over SDN

Project Application Features used Implementation

Civanlar et.al

[91]

Scalable video

streaming
Routing prioritization OF 1.0 , NOX

Kim et.al [97]
Network QOS

control
Rate limiting and queuing OF 1.3, NOX

Owens and

Durresi [98]
Video

QOS-routing, Queuing and rate limiting(traffic

shaping) – an IntServ like scheme
OF 1.3.1 (simulation)

Egilmez et.al

[92]
Video Routing prioritization (dynamic QOS routing)

OF 1.0 , Floodlight

Controller

5.3. Network management

SDN caused an abstract picture of network for simplified policy enforcement and network management so network

management is applied from one logical point. OF architecture, as a part of SDN architecture, made network

management more flexible, control in the packet or flow granularity levels. Management in software defined network

from a centralized logical point upon flow-table at controllers and using that flow-tables distributed in network

(switches) cause a flexible network management [99]. Here are some efforts accomplished in the field of network

management.

Network configuration because of A) high-level policies specifications in a distributed low-level configuration (using

CLI) mode and B) mutable network state is difficult [99]. Authors also in [99] authors solved three problems SDN

network management: frequently changes happening in a network, using a high level language for network

configuration, fault and error recognition and troubleshooting. They did it by Procera, an event-driven control

framework based on SDN paradigm which is based on functional reactive programming (FRP) and OF 1.0.0. High level

policies could be translates into a set of rules and four control domain is in operators’ hand: time, data usage and

authentication status and traffic flow. Another control system is integrated network management and control system (I-

NMCS) discovery and fault detection [100]. Provisioning and control are combined together and is modular, loose

coupling, with low overhead and extensible. I-NMCS is used in a hybrid mode which means that only selected flows

will be handled by the controllers and rest of the flows will be exerted by network protocols. This is because of authors’

thought that traditional network management and SDN in future networks would be co-exists with each other. Security

management is another aspect of network management. Some applications implemented in controllers brings complex

processing more than security. In [101] an algorithm of information security management system combined with fuzzy

logic and a prototype of intrusion detection system (IDS) is presents. Using fuzzy logic in this paper decreases number

of code lines 20-30%. For event-based network control approach, Lithium [102] system and for minimal visibility of

performance and control, a programmable measurement platform approach resulting BISmark [103] are offered. In

[104] an online configuration management problem which uses OF and includes agility, accuracy, reliability and

scalability is presented. This framework is consists of two parts: disaster event detection and filtering segment and

disaster correlation and detector management segment. More efforts are doing in network management fields from

performance to security.

Journal of Advanced Computer Science & Technology 243

5.4. Network virtualization

Network virtualization is one of the important research areas of today’s network that enable users to share resource and

infrastructure. SDN due to central controller is discussed as a solution to manage virtual networks [5].

In [105] J. Matias et.al presented the EHU OF Enabled Facility (EHU-OEF), a system for managing virtual networks

and sharing infrastructure based on layer 2 and OF. The authors were selected L2PNV for implementation their system.

The benefits of using layer 2 prefix-based network virtualization (L2PNV) for network virtualization consist of ease of

configuration and flexibility of header fields that allows users to create different slice and different virtual network. R.

Nejbati et.al in [106] was proposed cross-layer approach for network isolation based on OF to optimize Network

virtualization without interfering between different slice so users are enable to modify the behavior of own virtual

network. The suggested solution was based on FlowVisor and SCML. Slice Control and Management Layer (SCML) is

used for management and monitoring slices infrastructure operations.

I. M. Moraes et al. in [107] suggested FITS, a test-bed for completely isolated virtual network with different QoS. FITS

provided the possibility for researchers to choose Xen [108], hypervisor for virtualization with the best performance and

high ability to manage resource, or OF to test and perform their experiments. Measurement tools of FITS monitor the

state of physical and virtual network that helped administrator to manage and allocate resource optimally.

5.5. Cloud and data center

One area that SDN has been attended a lot is Cloud Services and data center. One of the main characteristics of cloud is

that users gain the adequate resources based on requirement in real time[109]. Cloud management is the most important

challenge that has always been and many solutions have been proposed for that. SDN is highly regarded as one of the

newest solutions, which makes it possible to configure and manage cloud and data center easily. In [110] Anderson et.al

implemented cloud data center using OF and they found that SDN based implementation is faster and easier to

configure because of SDN centralized controller and abstraction management plan. The other challenge of cloud system

is maintain costs, that SDN due to centralized location management solve this problem well [5, 109].

Oracle SDN is an example of system that virtualizes data center using definition connectivity in software. This system

connects virtual machine to other virtual machines and network servers with 70 percent simpler infrastructure. Using

Oracle Fabric Manager’s interface configuration and monitoring virtual network is possible from any location. It is

claimed that the cost of Oracle SDN system compared with legacy network is 50 percent less where as you benefit of up

to 80 GB/s server-to-server throughput [111].

Raghavendra et.al in [112] introduce NetGraph, a software architecture to manage SDN based cloud systems. This

system is shared graph library and provides a module with a set of API for monitoring and diagnostics cloud system.

Hedera which is presented by Al-Fares et al. [113], define Dynamic Flow Scheduling for Data Center Networks using

OF. A central scheduler makes it possible to balance load based on active flow state on whole system.

In [114] propose cross stratum resilience architecture for OF enabled data center interconnection. Deployment of virtual

machines to server is utilized based on service type. Managing resources, degree of their occupation and backup

mechanisms are used for resource maintenance. This system is designed for Flexi-Grid optical networks. Hui Yang et.al

argued that system has improved end to end responsiveness and optimized resource usage.

5.6. Security

Due to centralized architecture of SDN, it used to detect security problem. Supervision of SDN on whole network flow

and monitoring behavior of users makes SDN possible to detect attack rapidly and prevent more damage. Many

researchers introduced mechanisms to detect Dos and DDos attack -because of flooding based behavior of them. The

example of such system is introduced by Junho Suh et.al in [115] that is implemented on NetFPGA-OF platform.

Chu et al. in [116] introduced system which uses OF switch on edge to pass only safe traffic which is defined on flow

table and LISP (Locator/ID separation protocol) to recognize trusty user

In [117] have been explored solutions for scanning-based attack. In that article J. Jafarian et.al introduced OF Random

Host Mutation (OFRHM) system which changes real IP of each host with the random virtual IP. With this mechanism

fake IP is easily detectable and system prevents large percentage of attacks such as stealthy scanning, worm propagation

and etc. OF responsibility is assigned the virtual IP to host frequently.

Considering policy based security is another security solution that Xiong Liu et.al in [118] have dealt with. They

introduced multilevel security system that prevents information of specific level which gathered by same or lower level

host. In designing system is used OF is used to monitor packet and check content so filter packet with security problem.

Main idea of Y. Jubaa et.al paper in [119] is to isolate network device dynamically from intra-LAN attack using OF. In

suggested architecture IDS component is responsible for detecting attacks and recognizing unsecure devises and inform

OF controller. They argue that results have shown this architecture is effective enough on actual LAN.

One problem of SDN approach anomaly detection is that when network traffic is high gathering full data from flow

table is not efficient so K. Giotis et.al in [120] suggested solution to optimal real time detection system. They combined

244 Journal of Advanced Computer Science & Technology

sFlow [121] and OF and used sampling instead of full flow information and benefited entropy-based algorithm to detect

and mitigate anomaly. The authors stated that in low traffic situation performance of system is comparable with native

OF architecture.

5.7. Wireless and mobile

SDN can be applied in wireless sensor network [122]. Generally, using SDN in WSNs provided the SDN benefits such

as flexibility, easier management, optimized resource utilization, etc. The network controllers have the power to set

policies to support several applications by utilizing sensor based software defined wireless network. Also this approach

would permit using the same sensor nodes for several applications.

OF can be used for applying flexible control in Wireless Mesh Networks [123]. This approach benefits both features of

Mesh networks and OF which are self-configuration and flexible forwarding, respectively.

To apply concepts of abstraction to wireless ad hoc network of smartphone, software defined networking in ad hoc

networks [124] was developed. This Hybrid platform has been implemented on Android operating system. The

purposed platform is more modular and easier for modification and extension of its components.

Other use case were mentioned in [57] referred the benefit of based SDN, such as Inter-cell interference management

and Mobile traffic management. OF could provide seamless handover, dynamic resource management for wireless

backhaul, power consumption optimization in mobile backhaul network, Security and Backhaul Optimization and etc.

[125].

6. Challenges

Software defined network and OF have confronted with some challenges. Security needs to be everywhere within SDN:

A) architecture and its controller, applications, devices, channels (TLS with plain text) and flow table, B) services (to

protect availability), C) connected resources and D) information. Also a robust policy framework in order to check and

balance controllers, a recovery, report policy and security deployment is still very much up for grabs. The solutions

should be simple to deploy and maintain, cost effective and assuredly secure. A new category called software-defined

security (SDSec) which is an example of network functions virtualization (NFV) delivers network security enforcement

by separating the security control plane from processing and forwarding planes [126].

Besides security, availability (controllers’ existence), flexibility [5], [15], [55], [127], controllers and applications

compatibility, link and controller reliability are considerable issues. A centralized controller could recover itself in some

processes by using backup flows in a way that is not as faster as it is expected [55].

 Capital and operational expenses called CAPEX and OPEX is another challenge debated by OF adapters. Availability

and reducing system bottleneck would increase CAPEX, however adapters believe that using software defined network

and OF reduce the CAPEX. OPEX in SDN would be decreased by diminishing the number of human based

configuration, time and error prone fields [55].

Besides these challenges there are some implementation issues for example having 40+ matching fields in a flow,

several tables and their large number of flow entries, instructions and actions, flow level programming and controllers'

own way programming that must be considered. Also lack of standard APIs in case of overlapping domain among

controllers, necessity of encryption APIs for data plane packets, injection APIs for packet and instantaneous APIs for

services like IDS and firewall on a switch, absence of operations in case of absence of controller, existence of other

packet format are regarding too [128].

7. Conclusion

In this survey, we provided an overview of software defined networks. We introduced programmable networks such as

SOFTNET, SANE, ForCes, etc. which resulted the SDN paradigm. Then we described the SDN architecture in three

layers: control layer, infrastructure layer and application layer. We discussed about the control layer and its different

control platforms such as Floodlight, RYU, OpenDaylight, etc., the infrastructure layer, available switches and their

capabilities. Also the northbound interfaces and southbound interfaces including different versions of OpenFlow

protocol, XMPP and OnePK were described. Wireless architectures such as OpenRoad, SoftRan and SoftCell are also

explained. We also described different tools for testing SDN. We compared Mininet, EstiNet and NS3 as SDN

simulators and emulators. We discussed different hardware and software tools and test-beds for SDN. At last we

introduced SDN applications and research trends such as software defined ICN, virtualization, wireless and mobile

networks, cloud and datacenters, multimedia over SDN and the works done on security of SDN . We also point out the

existing challenges of using SDN.

Journal of Advanced Computer Science & Technology 245

References

[1] Open Networking Fundation , "Software-defined Networking: The New norm for Networks.", ONF White Paper, (2012) , available online:

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf, last visit:18.10.2014

[2] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka and T. Turletti, “A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks”, hal-00825087,(2013), available online: http://hal.inria.fr/hal-00825087, last visit:18.10.2014

[3] K. Bakshi, "Considerations for Software Defined Networking (SDN): Approaches and Use Cases", IEEE Aerospace Conference, (2013), pp:1-

9.
[4] T. D. Nadeau and K. Gray, Software Defined Networks, CA: O' Reilly, (2013).

[5] F. Hu, "Network Innovation through OpenFlow and SDN: Principles and Design", CRC Press, (2014). http://dx.doi.org/10.1201/b16521.
[6] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, "A Survey of Software-Defined Networking: Past, Present, and

Future of Programmable Networks", IEEE Communications Surveys and Tutorials, Vol.16, No.3, (2014), pp. 1617-1634, available online:

http://dx.doi.org/10.1109/SURV.2014.012214.00180, last visit: 18.10.2014.
[7] J. Zander and R. Forchheimer, "The SOFTNET Project: a Retrospect", Electrotechnics, 1988. Conference Proceedings on Area

Communication, EUROCON 88., 8th European Conference on, (1988), pp.343-345, available online: http://dx.doi.org/

10.1109/EURCON.1988.11172, last visit:18.10.2014.
[8] N. Feamster, J. Rexford, and E. Zegura, "The Road to SDN," Queue, Vol.11, No.12, (2013), p.20, available online:

http://dx.doi.org/10.1145/2559899.2560327 , last visit:18.10.2014.

[9] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, "Open Signaling for ATM, Internet and Mobile Networks (OPENSIG'98)," ACM
SIGCOMM Computer Communication Review, Vol.29, No.1, (1999), pp.97-108, available online: http://dx.doi.org/10.1145/505754.505762,

last visit:18.10.2014.

[10] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, "General switch management protocol (GSMP) V3," RFC 3292, (2002), available online:
https://www.ietf.org/rfc/rfc3292.txt, last visit:18.10.2014

[11] J. Biswas, A. A. Lazar, J.-F. Huard, K. Lim, S. Mahjoub, L.-F. Pau, et al., "The IEEE P1520 standards initiative for programmable network

interfaces," Communications Magazine, IEEE, Vol.36, No.10, (1998), pp.64-70, available online: http://dx.doi.org/64-70,10.1109/35.722138,
last visit:18.10.2014.

[12] The 4D Project,”Clean Slate Architectures for Network Management”, available online: http://www.cs.cmu.edu/~./4d/#csamp, last

visit:18.10.2014.
[13] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, "The softrouter architecture," Proceedings of ACM SIGCOMM Workshop

on Hot Topics in Networking, (2004), available online: http://conferences.sigcomm.org/hotnets/2004/HotNets-

III%20Proceedings/lakshman.pdf, last visit:18.10.2014.
[14] R. Enns, M. Bjorklund, and J. Schoenwaelder, "NETCONF configuration protocol," RFC 6241, (2011), available online:

https://tools.ietf.org/html/rfc6241, last visit:18.10.2014.

[15] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, "Ethane: Taking control of the enterprise," ACM SIGCOMM
Computer Communication Review, Vol.37, No.4, (2007), pp.1-12, available online: http://dx.doi.org/ 10.1145/1282427.1282382, last

visit:18.10.2014.

[16] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, et al., "SANE: A protection architecture for enterprise
networks," Proceedings of the 15th conference on USENIX Security Symposium, Vol.15, No.10, (2006), pp.137–151, available online:

https://www.usenix.org/legacy/event/sec06/tech/full_papers/casado/casado_html/, , last visit:18.10.2014.

[17] A. Doria, R. Gopal, H. Khosravi, L. Dong, J. Salim, and W. Wang, "Forwarding and control element separation (ForCES) protocol

specification," RFC 5810, (2010), available online: http://tools.ietf.org/html/rfc5810, last visit:18.10.2014.

[18] T. Chown and D. R. Newman, "OpenFlow Experiment in Real-Time Internet Edutainment," OFERTIE Project Partners, (2013), pp.1-24,

available online: www.ofertie.org/files/2014/02/318665OFERTIE-D7-7-1-Initial-Standardisation-Proposal FINAL.pdf, last visit: 18.10.2014.
[19] Open Networking Foundation, available online: https://www.opennetworking.org/, last visit: 18.10.2014.

[20] C. Alaettinoglu, "Software Defined Networking," (2013), available online: www.packetdesign.com/resources/white-papers/sdn-white-

paper.pdf, last visit:18.10.2014.
[21] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, et al., "Onix: A Distributed Control Platform for Large-scale Production

Networks," Proceedings of the 9th USENIX conference on Operating systems design and implementation, (2010), pp.1-6, available online:

static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf, last visit:18.10.2014.
[22] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, "On controller performance in software-defined networks," USENIX

Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE), (2012), available online:

https://www.usenix.org/system/files/conference/hot-ice12/hotice12-final33_0.pdf, last visit:18.10.2014.
[23] Kandoo, available online: http://www.kandoo.org, last visit:18.10.2014.

[24] Flowvisor, available online: https://openflow.stanford.edu/display/DOCS/Flowvisor, last visit:18.10.2014.

[25] NOX ,available online: http://www.noxrepo.org/nox/about-nox/, last visit:18.10.2014.
[26] POX , available online: http://www.noxrepo.org/pox/about-pox/, last visit:18.10.2014.

[27] Beacon , available online: https://openflow.stanford.edu/display/Beacon/Home, last visit:18.10.2014.

[28] E. Ng, "Maestro: A System for Scalable OpenFlow Control," available online: www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf, last
visit:18.10.2014.

[29] Floodlight OpenFlow Controller - Project Floodlight, available online: http://www.projectfloodlight.org/floodlight/, last visit:18.10.2014.

[30] Announcing release of Floodlight with OF 1.3 support, available online: http://sdnhub.org/releases/floodlight-plus-openflow13-support/, last
visit:18.10.2014.

[31] Ryu 3.9 documentation, available online: http://ryu.readthedocs.org/en/latest/getting_started.html#what-s-ryu, last visit:18.10.2014.
[32] Opendaylight. available online: http://www.opendaylight.org/, last visit:18.10.2014.

[33] OpenFlow Switch Consortium, "OpenFlow Switch Specification Version 1.0. 0.", (2009), available online :

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf, last
visit:18.10.2014

[34] OpenFlow Switch Consortium, "OpenFlow Switch Specification Version 1.1. 0.", (2011), available online :

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf, last
visit:18.10.2014

[35] OpenFlow Switch Consortium, "OpenFlow Switch Specification Version 1.2. 0.", (2011), available online :

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.0.pdf, last
visit:18.10.2014

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://hal.inria.fr/hal-00825087
http://dx.doi.org/%2010.1145/2559899.2560327
http://dx.doi.org/%2010.1145/2559899.2560327
http://dx.doi.org/%2010.1145/2559899.2560327
http://dx.doi.org/10.1145/505754.505762
http://dx.doi.org/10.1145/1282427.1282382
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf

246 Journal of Advanced Computer Science & Technology

[36] OpenFlow Switch Consortium, "OpenFlow Switch Specification Version 1.3. 0.", (2012), available online :

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf, last

visit:18.10.2014

[37] OpenFlow Switch Consortium, "OpenFlow Switch Specification Version 1.4. 0.", (2013), available online :

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf, last
visit:18.10.2014

[38] Arista Networks, available online: http://www.aristanetworks.com/en/products/eos/openflow, last visit:18.10.2014

[39] Brocade, available online: http://www.brocade.com/products/all/switches/product-details/netiron-ces-2000-series/index.page , last
visit:18.10.2014

[40] HP switches, available online:

http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3500_and_3500_yl_Switch_Series/index.aspx, last visit:18.10.2014
[41] IBM, available online : http://www-03.ibm.com/systems/networking/software/sdnveof/ , last visit: 8.8.2014

[42] Juniper, http://www.juniper.net/us/en/products-services/sdn/ , last visit:8.8.2014

[43] Y. Cheng, V. Ganti, and V. Lubsey, “Open Data Center Alliance Usage Model: Software-Defined Networking rev. 2.0”, Open Data Center
Alliance, (2014), [Online]. Available online: http://www. opendatacenteralliance.org/docs/Software Defined-Networking-Master-Usage-

Model- Rev2.0.pdf, last visit:8.8.2014

[44] NEC, available online: http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch, last visit:18.10.2014
[45] OpenVSwitch, available online: http://openvswitch.org , last visit:18.10.2014

[46] Pica8 open networking, http://www.pica8.org/open-switching/1gbe-10gbe-40gbe-open-switches.php, last visit:18.10.2014

[47] R. Kumar, Software Defined Networking - a definitive guide, Smashwords, (2013).
[48] H. K. A. Voellmy, and N. Feamster, "Procera: a language for high-level reactive network control", Proceedings of the Hot topics in software

defined networks, (2012), pp. 43-48, available online: http://dx.doi.org/10.1145/2342441.2342451, last visit: 18.10.2014.

[49] R. H. N. Foster, M. J. Freedman,C. Monsanto, J. Rexford, A. Story, and D. Walker, "Frenetic: a network programming language", ACM
SIGPLAN Notices, Vol.46, No.9, (2011), pp. 279-291, available online: http://dx.doi.org/10.1145/2034574.2034812, last visit: 18.10.2014.

[50] N. S. Gude, T. L. Hinrichs, M. Casado, J. C. Mitchell, and S. Shenker, "Practical declarative network management", Proceedings of the ACM

workshop on Research on enterprise networking, (2009), pp. 1-10, available online: http://dx.doi.org/10.1145/1592681.1592683, last visit:
18.10.2014.

[51] A. V. a. P. Hudak., "Nettle: taking the sting out of programming network routers", Proceedings of the Practical aspects of declarative

languages, (2011), pp. 235-249, available online: http://dx.doi.org/10.1007/978-3-642-18378-2_19, last visit: 18.10.2014.
[52] J. R. C. Monsanto, N. Foster, J. Rexford, and D. Walker, "Composing software-defined networks", Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation, (2013), pp. 1-14.

[53] J. Seedorf and E. Burger, "Application-layer Traffic Optimization (ALTO): Problem Statement", RFC 5693, (2009), available online:
http://tools.ietf.org/html/rfc5693, last visit:16.10.2014.

[54] D. Crockford, “The Application/json Media Type for Javascript Object Notation (json)”, RFC 4627, (2006), available online:

https://tools.ietf.org/html/rfc4627, last visit:17.10.2014.
[55] A. Lara, A. Kolasani, and B. Ramamurthy, "Network innovation using openflow: A survey", Communications Surveys & Tutorials, IEEE,

Vol.16, No.1, (2013), pp.493–512, available online: http://dx.doi.org/ 10.1109/SURV.2013.081313.00105, last visit:18.10.2014.
[56] P. Saint-Andre, "Extensible Messaging and Presence Protocol (XMPP): Core", RFC 6120, (2011), available online:

http://xmpp.org/rfcs/rfc6120.html, last visit:17.10.2014.

[57] Open Networking Foundation, “Openflow-enabled mobile and wireless networks”, ONF whitepaper, (2013), available online:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-wireless-mobile.pdf, last visit:18.10.2014.

[58] K. K. Yap, M. kobayashi, R. Sherwood, T. Huang, M. Chan, N. Handigol, and N. McKeown, "OpenRoads: Empowering research in mobile

networks", ACM SIGCOMM Computer Communication Review, Vol.40, No.1, (2010), pp. 125-126, available online:
http://dx.doi.org/10.1145/1672308.1672331, last visit: 18.10.2014.

[59] P. D. Gudipati Aditya, Erran Li Li, and Katti Sachin, "Softran: software defined radio access network", Proceedings of the ACM SIGCOMM

workshop on Hot topics in software defined networking, (2013), pp. 25–30, available online: http://dx.doi.org/10.1145/2491185.2491207, last
visit: 18.10.2014.

[60] M. Z. M. Erran Li Li, and Rexford Jennifer, "Toward software defined cellular networks", Proceedings of the European Workshop on

Software Defined Networking, (2012), pp. 7-12, available online: http://dx.doi.org/10.1109/EWSDN.2012.28, last visit: 18.10.2014.
[61] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, et al., "NetFPGA--An Open Platform for Gigabit-Rate Network

Switching and Routing", Proceedings of the 2007 IEEE International Conference on Microelectronic Systems Education, (2007), pp:160-161,

available online: http://dx.doi.org/10.1109/MSE.2007.69, last visit:17.10.2014.
[62] Mininet: An Instant Virtual Network on your Laptop (or other PC), available online: http://mininet.org/, last visit:18.10.2014.

[63] Introduction to Mininet - mininet/ mininet wiki – GitHub, available online: https://github.com/mininet/mininet/wiki/Introduction-to-Mininet,

last visit:18.10.2014.
[64] ns-3, available online: http://www.nsnam.org/, last visit:18.10.2014.

[65] ns-3: ns-3 Documentation, available online: http://www.nsnam.org/docs/release/3.19/doxygen/index.html, last visit:18.10.2014.

[66] EstiNet Technologies, available online: http://www.estinet.com/products.php, last visit:18.10.2014.
[67] P.-W. Tsai, P.-W. Cheng, M.-Y. Luo, T.-L. Liu, and C.-S. Yang, "Planning and Implantation of NetFPGA Platform on Network Emulation

Testbed", Proceedings of the asia-Pacific advanced network, Vol.32, (2011), pp:1-7, available online: http://dx.doi.org/10.7125/APAN.32.1,

last visit:17.10.2014.

[68] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown, "Implementing an OpenFlow Switch on the NetFPGA Platform",

Proceedings of the 4th ACM/IEEE symposium on architectures for networking and communications systems, (2008), pp:1-9, available online:

http://dx.doi.org/10.1145/1477942.1477944, last visit:17.10.2014.
[69] GENI, available online: http://www.geni.net/, last visit: 18.10.2014.

[70] PLANETLAB, available online: http://www.planet-lab.org/, last visit: 18.10.2014.

[71] Internet2, available online: http://www.internet2.edu/, last visit: 18.10.2014.
[72] Emulab - Network Emulation Testbed Home, available online: http://www.emulab.net/, last visit: 18.10.2014.

[73] C. Elliott, "GENI: opening up new classes of experiments in global networking", IEEE Internet Computing, Vol.14, No.1, (2010), pp. 39–42.

[74] F. de Oliveira Silva, J.H. de Souza Pereira, P.F. Rosa, and S.T. Kofuji, "Enabling future internet architecture research and experimentation by
using software defined networking", ", Proceedings of the European Workshop on Software Defined Networking, (2012), pp. 73-78, available

online: http://dx.doi.org/10.1109/EWSDN.2012.24, last visit: 18.10.2014.

[75] OpenFlow in Europe Linking Infrastructure and Applications, available online: http://www.fp7-ofelia.eu/, last visit: 18.10.2014.
[76] A. A. e. S. Sallent, I. Machado, L. Bergesio, S. Fdida, J. Rezende, S. Azodolmolky, M. Salvador, L. Ciuffo, and L. Tassiulas, "Fibre project:

Brazil and europe unite forces and testbeds for the internet of the future", Testbeds and Research Infrastructure. Development of Networks and

Communities, Vol.44, (2012), pp. 372, available online: http://dx.doi.org/10.1007/978-3-642-35576-9_33, last visit: 18.10.2014.
[77] FIBRE Project, available online: http://www.fibre-ict.eu/, last visit: 18.10.2014.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://www.aristanetworks.com/en/products/eos/openflow
http://www.brocade.com/products/all/switches/product-details/netiron-ces-2000-series/index.page
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_3500_and_3500_yl_Switch_Series/index.aspx
http://www-03.ibm.com/systems/networking/software/sdnveof/
http://www.juniper.net/us/en/products-services/sdn/
http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch
http://openvswitch.org/
http://www.pica8.org/open-switching/1gbe-10gbe-40gbe-open-switches.php
http://dx.doi.org/10.1145/2034574.2034812
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://dx.doi.org/10.1109/SURV.2013.081313.00105
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-wireless-mobile.pdf
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.7125/APAN.32.1
http://www.geni.net/
http://www.planet-lab.org/
http://www.internet2.edu/
http://www.emulab.net/
http://www.fp7-ofelia.eu/
http://www.fibre-ict.eu/

Journal of Advanced Computer Science & Technology 247

[78] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown, "Where Is The Debugger for My Software-Defined Network?",

Proceedings of the first workshop on Hot topics in software defined networks, (2012), pp:55-60, available

online: http://dx.doi.org/10.1145/2342441.2342453, last visit:17.10.2014.

[79] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, "Veriflow: Verifying Network-wide Invariants in Real Time", ACM SIGCOMM Computer

Communication Review, vol.42, (2012), pp:467-472, available online:http://dx.doi.org/10.1145/2342441.2342452, last visit:17.10.2014.
[80] E. Al-Shaer and S. Al-Haj, "FlowChecker: Configuration Analysis and Verification of Federated OpenFlow Infrastructures", Proceedings of

the 3rd ACM workshop on Assurable and usable security configuration, (2010), pp:37-44, available

online: http://dx.doi.org/10.1145/1866898.1866905, last visit:17.10.2014.
[81] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little, J. van Reijendam, et al., "Maturing of OpenFlow and Software-Defined

Networking Through Deployments", Computer Networks, (2013), pp:151–175, available online: http://dx.doi.org/10.1016/j.bjp.2013.10.011,

last visit:17.10.2014.
[82] X. N. Nguyen, D. Saucez, and T. Thierry, "Providing CCN functionalities over OpenFlow switches", hal-00920554, (2013), available online:

https://hal.inria.fr/hal-00920554/, last visit: 18.10.2014.

[83] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, "Information centric networking over SDN and OpenFlow: Architectural
aspects and experiments on the OFELIA testbed," Computer Networks, vol. 57,(2013), pp. 3207-3221.

[84] N. B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri, "An openflow-based testbed for information centric networking",

Future Network & Mobile Summit (FutureNetw), (2012), pp.1-9.
[85] N. B. Melazzi, A. Detti, M. Pomposini, and S. Salsano, "Route discovery and caching: a way to improve the scalability of Information-Centric

Networking", IEEE Global Communications Conference (GLOBECOM), (2012), pp. 2701-2707.

[86] A. Ooka, S. Ata, T. Koide, H. Shimonishi, and M. Murata, "OpenFlow-based content-centric networking architecture and router
implementation", Future Network and Mobile Summit (FutureNetworkSummit), (2013), pp. 1-10.

[87] I. Carvalho, F. Faria, E. Cerqueira, and A. Abelem, "ContentFlow: An Introductory Routing Proposal for Content Centric Networks using

Openflow", API 7th Think-Tank Meeting, (2012), pp. 1-2.
[88] X. N. Nguyen, D. Saucez, and T. Turletti, "Efficient caching in content-centric networks using OpenFlow", INFOCOM 2013 Student

Workshop, (2013).

[89] J. Torres, L. Ferraz, and O. Duarte, "Controller-based routing scheme for Named Data Network", Technical report, Electrical Engineering
Program, (2012).

[90] J. Ren, K. Pentikousis, C. Westphal, W. Liu, and J. Wang, "The Role of Virtualization in Information-centric Network Deployment", E-

LETTER.
[91] S. Civanlar, M. Parlakisik, A. M. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem, "A qos-enabled openflow environment for scalable video

streaming", IEEE GLOBECOM Workshops (GC Wkshps), (2010), pp. 351-356.

[92] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, "OpenQoS: An OpenFlow controller design for multimedia delivery with end-to-
end Quality of Service over Software-Defined Networks," Signal & Information Processing Association Annual Summit and Conference

(APSIPA ASC), (2012), pp. 1-8.

[93] R. Braden, D. Clark, and S. Shenker, "Integrated services in the internet architecture: an overview", RFC 1633, (1994), available online:
http://tools.ietf.org/html/rfc1633.html, last visit:18.10.2014.

[94] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An architecture for differentiated services", RFC 2475,(1998), available
online: https://tools.ietf.org/html/rfc2475, last visit:18.10.2014.

[95] Network Configuration (NetConf), http://datatracker.ietf.org/wg/netconf, last visit:18.10.2014.

[96] Open Networking Foundation, "OpenFlow configuration and management protocol 1.0 (OF-Cinfig)", (2011), available online:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config1dot0-final.pdf, last

visit:18.10.2014.

[97] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, et al., "Automated and scalable qos control for network convergence",
INM/WREN, vol. 10, (2010), pp. 1-1, 2010.

[98] I. Owens and A. Durresi, "Video over Software-Defined Networking (VSDN)", 2013 16th International Conference on Network-Based

Information Systems (NBiS), (2013), pp. 44-51.
[99] H. Kim and N. Feamster, "Improving network management with software defined networking," Communications Magazine, IEEE, Vol.51,

No.2, (2013), pp.114-119, available online: http://dx.doi.org/ 10.1109/MCOM.2013.6461195, last visit:18.10.2014.

[100] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro, "Enhancing network management frameworks with SDN-like
control," Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on, (2013), pp.688-691, available online:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6573054&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnu

mber%3D6573054, last visit:18.10.2014.
[101] S. Dotcenko, A. Vladyko, and I. Letenko, "A fuzzy logic-based information security management for software-defined networks," Advanced

Communication Technology (ICACT), 2014 16th International Conference on, (2014), pp. 167-171, available online:

http://dx.doi.org/10.1109/ICACT.2014.6778942, last visit:18.10.2014.
[102] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R. Clark, "Lithium: Event-driven network control," Georgia Institute of Technology,

(2012), available online: smartech.gatech.edu/jspui/bitstream/1853/43377/1/GT-CS-12-03.pdf, last visit:18.10.2014.

[103] Welcome to project BISmark. available online: http://projectbismark.net, last visit:18.10.2014.
[104] S. Song, S. Hong, X. Guan, B.-Y. Choi, and C. Choi, "NEOD: network embedded on-line disaster management framework for software

defined networking," Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on, (2013), pp.492-498,

available online: http://dx.doi.org/10.1109/ICACT.2014.6778942, last visit: 18.10.2014.

[105] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo, "Implementing Layer 2 Network Virtualization using OpenFlow: Challenges and

Solutions", Proceedings of European Workshop on Software Defined Networking (EWSDN), (2012), pp:30-35, available online:

http://dx.doi.org/10.1109/EWSDN.2012.18, last visit:17.10.2014.
[106] R. Nejbati, S. Azodolmolky, and D. Simeonidou, "Role of Network Virtualization in Future Internet Innovation", Proceedings of 17th

European Conference on Networks and Optical Communications (NOC), (2012), pp:1-4, available online:

http://dx.doi.org/10.1109/NOC.2012.6249915, last visit:17.10.2014.
[107] I. M. Moraes, D. M. Mattos, L. H. G. Ferraz, M. E. M. Campista, M. G. Rubinstein, L. H. M. Costa, et al., "FITS: A Flexible Virtual Network

Testbed Architecture", Computer Networks, Vol.63, (2014), pp:221–237, available online: http://dx.doi.org/10.1145/1477942.1477944, last

visit:17.10.2014.
[108] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, et al., "Xen and the Art of Virtualization", Proceedings of the nineteenth ACM

symposium on Operating systems principles, Vol.37, (2003), pp:164-177, available online: http://dx.doi.org/10.1145/1165389.945462, last

visit:17.10.2014.
[109] J. Hurwitz, A. Nugent, F. Halper, and M. Kaufman, Big Data for Dummies, John Wiley & Sons, Inc., (2013), pp:7-35.

http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1145/2342441.2342452
http://dx.doi.org/10.1145/1866898.1866905
http://dx.doi.org/10.1016/j.bjp.2013.10.011
http://datatracker.ietf.org/wg/netconf
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1109/ICACT.2014.6778942
http://dx.doi.org/10.1109/ICACT.2014.6778942
http://dx.doi.org/10.1109/NOC.2012.6249915

248 Journal of Advanced Computer Science & Technology

[110] C. Baker, A. Anjum, R. Hill, N. Bessis, and S. L. Kiani, "Improving Cloud Datacenter Scalability, Agility and Performance using OpenFlow",

Proceedings of 4th IEEE International Conference on Intelligent Networking and Collaborative Systems (INCoS), (2012), available online:

http://dx.doi.org/10.1109/iNCoS.2012.118, last visit:17.10.2014.

[111] Oracle SDN (Software Defined Network), (2013), Available online: http://www.oracle.com/us/products/networking/virtual-

networking/sdn/overview/index.html, last visit:17.10.2014.
[112] R. Raghavendra, J. Lobo, and K.-W. Lee, "Dynamic Graph Query Primitives for SDN-based Cloud Network Management", Proceedings of

the first workshop on Hot topics in software defined networks, (2012), pp.97-102, available online: http://dx.doi.org/

10.1145/2342441.2342461, last visit:17.10.2014.
[113] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: Dynamic Flow Scheduling for Data Center Networks",

Proceedings of 7th USENIX conference on Networked systems design and implementation, (2010), available online:

http://dl.acm.org/citation.cfm?id=1855730, last visit:17.10.2014.
[114] H. Yang, J. Zhang, Y. Zhao, H. Li, S. Huang, Y. Ji, et al., "Cross Stratum Resilience for OpenFlow-enabled Data Center Interconnection with

Flexi-Grid Optical Networks", Optical Switching and Networking, Vol.11, (2014), pp:72-82, available online:

http://dx.doi.org/10.1016/j.osn.2013.10.001, last visit:17.10.2014.
[115] J. Suh, H. Choi, W. Yoon, T. You, T. Kwon, and Y. Choi, "Implementation of a Content-oriented Networking Architecture (CONA): A Focus

on DDoS Countermeasure", Proceedings of European NetFPGA developers workshop, (2010).

[116] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and C. YanRen, "A Novel Design for Future on-demand Service and Security",
Proceedings of 12th IEEE International Conference on Communication Technology, (2010), pp:385-388, available online:

http://dx.doi.org/10.1109/ICCT.2010.5689156, last visit:17.10.2014.

[117] J. H. Jafarian, E. Al-Shaer, and Q. Duan, "Openflow Random Host Mutation: Transparent Moving Target Defense using Software Defined
Networking", Proceedings of the first workshop on Hot topics in software defined networks, (2012), pp:127-132.

[118] X. Liu, H. Xue, X. Feng, and Y. Dai, "Design of the Multi-level Security Network Switch System Which Restricts Covert Channel",

Proceedings of 3rd IEEE International Conference on communication software and networks (ICCSN), (2011), 2011, pp:233-237, available
online: http://dx.doi.org/10.1109/ICCSN.2011.6013582, last visit:17.10.2014.

[119] Y. Juba, H.-H. Huang, and K. Kawagoe, "Dynamic Isolation of Network Devices Using OpenFlow for Keeping LAN Secure from Intra-LAN

Attack", Procedia computer science, vol. 22, pp: 810-819, (2013), available online: http://dx.doi.org/ 10.1016/j.procs.2013.09.163, last visit:
17.10.2014.

[120] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, "Combining OpenFlow and sFlow for an Effective and Scalable

Anomaly Detection and Mitigation Mechanism on SDN Environments", Computer Networks, (2013), available online: http://dx.doi.org/
10.1016/j.bjp.2013.10.014, last visit:17.10.2014.

[121] P. Phaal, "sFlow Specification Version 5", (2004), available online: http://sflow.org/sflow_version_5.txt, last visit: 17.10.2014.

[122] H. T. T. Luo, and T. Quek, "Sensor openflow: Enabling software defined wireless sensor networks", IEEE Communications Letters, Vol.16,
No. 11, (2012), pp. 1896-1899, available online: http://dx.doi.org/10.1109/LCOMM.2012.092812.121712, last visit: 18.10.2014.

[123] A. K. P. Dely, and N. Bayer, "Openflow for wireless mesh networks", Proceedings of the Computer Communications and Networks, (2011),

pp. 1-6, available online: http://dx.doi.org/10.1109/ICCCN.2011.6006100, last visit: 18.10.2014.
[124] Y. S. P. Baskett, W. Zeng, and B. Guttersohn, "SDNAN: Software Defined Networking in Ad hoc Networks of Smartphones", Proceedings of

the Consumer Communications and Networking Conference, (2013), pp. 861-862, http://dx.doi.org/10.1109/CCNC.2013.6488568, last visit:
18.10.2014.

[125] Open Networking Foundation, "Wireless & Mobile", available online: https://www.opennetworking.org/images/stories/downloads/working-

groups/charter-wireless-mobile.pdf, last visit:18.10.2014.
[126] Security Challenges in SDN (Software-defined Networks). available online: http://www.sdncentral.com/security-challenges-sdn-software-

defined-networks/, last visit:18.10.2014.

[127] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe, "Design and implementation of a routing control
platform," Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, Vol.2, (2005), pp.15-28,

available online: https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/caesar/caesar_html/, last visit:18.10.2014.

[128] R. Oshana and S. Addepalli, "Networking Trends-Software Defined Networking, Network Virtualization and Cloud Orchestration," Asia
Power Arch. Conf, (2012), available online: https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-

computing-UPD_Rob-Oshana.pdf, last visit:18.10.2014.

http://www.oracle.com/us/products/networking/virtual-networking/sdn/overview/index.html
http://www.oracle.com/us/products/networking/virtual-networking/sdn/overview/index.html

