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Abstract—Internet of Things (IoT) is gaining increasing pop-
ularity. Overwhelming volumes of data are generated by IoT
devices. Those data after analytics provide significant informa-
tion that could greatly benefit IoT applications. Different from
traditional applications, IoT applications such as environmental
monitoring, smart navigation and smart healthcare come with
new requirements such as mobility, real-time response, and loca-
tion awareness. However, traditional cloud computing paradigm
cannot satisfy these demands due to centralized processing and
being far away from local devices. Hence, edge computing was
introduced to perform data processing and storage in the edge of
networks, which is closer to data sources than cloud computing,
thus efficient and location-aware. Unfortunately, edge computing
brings new security and privacy challenges when applied to data
analytics. The literature still lacks a thorough review on the
recent advances in secure data analytics in edge computing. In
this paper, we first introduce the concept and features of edge
computing, and then propose a number of requirements for its
secure data analytics by analyzing potential security threats in
edge computing. Furthermore, we give a comprehensive review
on the pros and cons of the existing works on data analytics
in edge computing based on our proposed requirements. Based
on our literature survey, we highlight current open issues and
propose future research directions.

Index Terms—edge computing, data analytics, security, privacy
preservation
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R
APID development of Internet of Things (IoT) enables

everything to communicate with each other, which has

changed our life, work and study thoroughly. Many IoT

applications, such as wearable devices, smart environment

monitoring, smart healthcare and so on, have been widely

applied in our daily life and offered great convenience. In order

to benefit from IoT, an overwhelming number of sensors or

devices are employed. Cisco has forecasted based on current

trends that there will be 50 billion devices which are connected

to the Internet by 2020 [1]. Besides, Cisco Global Cloud Index

predicted that the data generated by things, human, machines

would exceed 500 Zettabytes (ZB) by 2020, but the IP traffic

of the global data center will only reach 10.4 ZB at that

time [2]. Furthermore, Cisco’s CEO predicted that about 500

billion user devices will join the Internet by 2025 [3]. As we

all know, smart devices are not powerful enough to process

these data efficiently due to limited computation and storage

capacity. Hence, it becomes a serious issue to process the

rapidly increasing volume of data to alleviate the heavy burden

of networks.

Cloud computing was originally regarded as a promising

computing infrastructure to mitigate the heavy burden on edge

devices, since it can provide various services (such as compu-

tation, storage, and networking) for individuals, organizations

and enterprises. The advantage of cloud computing is that

cloud servers have abundant computing and storage resources

to allow a very large quantity of users to access the services

provided by cloud [4]. However, cloud computing is not effi-

cient enough to support such distributed IoT environment due

to three reasons. First, some IoT applications need to support

real-time response, location awareness, context awareness and

mobility, but cloud computing cannot satisfy these demands

owing to centralization and being far away from user devices

which will be discussed in detail in Section II.C. Second, if

cloud computing is used to handle very large amount of raw

data, the bandwidth of the current network could become a

bottleneck, mainly owing to inevitable queuing delay. Third,

the burden on cloud servers will increase and become a

bottleneck for the increasing amount of service requests.

In order to overcome these issues, edge computing [5], [6]

was introduced to extend cloud computing to the edge of

networks. Edge computing is a new decentralized paradigm

that can also provide data computation, storage and application

services to end users, while it offers several advantages, such

as real-time response, location awareness and mobility due

to its proximity to terminal devices. It is suited for various

scenarios, such as smart gird [7], smart traffic lights [8],
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augmented reality applications [9], video streaming [10] and

so on. Tang et al. [11] showed that edge computing can help

heighten the efficiency and quality of services.

Though edge computing brings many benefits, it also faces

a variety of security and privacy threats. On one hand, since

edge computing is considered as an extension of cloud com-

puting, it inherits some security issues from cloud computing.

On the other hand, edge computing also faces security and

privacy challenges because of its distinctive features, such as

geographic distribution, heterogeneity, and low latency. For

achieving secure data analytics, deploying security mecha-

nisms is indispensable. Unfortunately, due to restricted re-

sources of edge devices, typical security mechanisms proposed

in cloud framework are not suitable for edge framework.

Therefore, it is important to develop security solutions in edge

computing to support reliable and efficient edge computing-

based IoT applications.

Though there exist several surveys on security and privacy

issues in edge computing [4], [7], [9], [12]–[20], it still

lacks a comprehensive survey on security and privacy of data

analytics in edge computing. Stojmenovic et al. [7], [15]

only focused on man-in-the-middle attacks. Yi et al. [9]

identified various issues when designing and implementing fog

computing, but did not provided a comprehensive discussion

on security issues of fog computing. Wang et al. [19] only

highlighted the issues of fog forensics. Zhang et al. [20] only

overviewed access control of user data in fog computing. Some

researchers surveyed the security and privacy challenges in fog

computing [4], [12], [13], but they did not discuss the exiting

security solutions about fog computing. Although [18] and

[14] analyzed the security problems and surveyed recent ad-

vance including secure and privacy-preserving schemes in fog

computing. However, they did not focus on the data analytics

in fog computing. A detailed comparison of our survey with

other existing surveys on security and privacy issues in edge

computing is presented in Table I. Obviously, the literature still

lacks a thorough review on the recent advance of secure data

analytics in edge computing. The objective of this paper is

to provide an in-depth analysis of security threats in existing

edge computing, and provide a framework to compare and

contrast the effectiveness of existing security mechanisms for

data analytics in edge computing.

In this paper, we provide a comprehensive overview of the

existing efforts on secure data analytics in edge computing.

We introduce the concept and features of edge computing, and

then summarize the common security and privacy mechanisms

for outsourcing data analytics. Besides, we first propose a

number of requirements for secure data analytics by summa-

rizing the security threats of data analytics in edge computing.

Furthermore, we thoroughly review the existing works in

edge computing by employing our proposed requirements as

a measure to discuss their pros and cons. Finally, we point

out some open issues and propose future research directions.

The main contributions of this paper can be summarized as

follows:

• We analyze the security threats of data analytics in

edge computing and propose a number of security and

performance requirements.

• We use the proposed security and performance require-

ments as a measure to comprehensively review and dis-

cuss existing data analytics schemes in edge computing.

• We highlight a number of open issues and further propose

future research directions towards secure and privacy-

preserving data analytics in edge computing.

The remainder of this paper is organized as follows. Section

II presents the concept, architecture and features of edge

computing, followed by existing main security and privacy

mechanisms for outsourcing data analytics in Section III . In

Section IV, we analyze the security threats of data analytics

in edge computing and propose a number of requirements

for evaluating the performance of secure data analytics. We

provide a thorough literature review on secure data analytics

in edge computing in Section V. We further highlight open

issues and propose future research directions in Section VI.

Finally, we conclude the paper in the last section.

II. OVERVIEW OF EDGE COMPUTING

This section introduces the basic concepts related to edge

computing, its three-layer architecture and features.

A. Basic Concept

Edge Computing: Edge computing is considered as a

method of moving some of the cloud processing closer to

user devices which require real-time interaction to make the

best use of untapped computational capabilities in the edge of

networks [21], [22]. In [23], edge computing refers to place

application services, data and processing at extremes of a

network instead of placing them centrally. Herein, “Edge” [6]

is defined as any computing and network resources which are

on the path between data sources and cloud service center.

And edge computing requires that computing happens at the

vicinity of data sources. Although edge computing and fog

computing have some differences in concept [23], in fact, they

are interchangeable in academia and industry. Thereby, we do

not distinguish between these two terms in this paper.

Edge Node: Edge nodes are facilities or infrastructures

that have computation and storage capabilities at the edge of

network. They can be resource-limited devices, like set-top-

boxes, road-side units, WiFi access points, gateways, routers,

end devices, etc. They can also be resource-rich devices that

usually possess powerful CPU and abundant storage spaces,

such as cloudlet.

In recent years, some similar terms have emerged, such as

Mobile Edge Computing (MEC), Mobile Cloud Computing

(MCC) and fog computing. In [24], MEC is defined as an

emergent model where cloud computing platform extends to

the mobile base stations at the vicinity of mobile subscribers to

support delay-sensitive and context-aware applications. MCC

refers to an architecture where mobile users offload data

processing and data storage to cloud computing [25]. Fog

computing is regarded as a scenario in which a large number of

heterogeneous and decentralized fog nodes can communicate

and cooperate with each other and perform data storage and

data processing tasks without the involvement of third parties

[9]. All these paradigms are proposed to bring the capabilities
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TABLE I
COMPARISON OF OUR SURVEY WITH OTHER EXISTING SURVEYS

Covered Topic [4] [7], [15] [9] [12] [13] [14] [16] [17] [18] [19] [20] Our Survey

Give a comprehensive review of security

and privacy issues in edge computing

Y N N Y Y Y Y Y Y N N Y

Compare cloud computing and edge

computing in detail

Y Y N Y N Y Y N N N N Y

Summarize mainstream attacks Y N N Y N N N N Y N N Y

Propose security and performance re-

quirements of secure data analytics

N N N N N N N N N N N Y

Compare the computational complexity

of existing mechanisms

N N N N N Y N N Y N N Y

Review secure data analytic N N N N N N N N N N N Y

Y: discussed; N: not discussed

of cloud servers to the edge of network, but there are some

differences between them. With regards to architecture, data

computing is still at a cloud server in MCC, while MEC

and fog computing process data at the edge of networks.

MEC treats mobile base stations as edge nodes to serve

mobile subscribers. Fog computing is a generalized concept

where fog nodes are not only base stations but also access

points, routers, etc. Towards service delivery, MEC and fog

computing can serve for such IoT applications that have strict

requirements on low latency, location awareness, mobility and

context awareness. However, MCC just makes use of the cloud

to serve for mobile devices and does not consider these specific

requirements.

B. Edge Computing Architecture

According to the aforementioned definitions, the architec-

ture of edge computing is shown in Fig. 1. This framework

can be divided into two categories. First, user devices with

some computational power act as edge nodes to preprocess

raw data and then pass them to the cloud server for further

processing. However, when the computation task is so big that

the user devices cannot handle it, the users will offload their

computational tasks to adjacent edge nodes. For example, Shi

et al. [6] proposed a case study where a lost child can be found

via video analysis. The cloud sends the request of searching

the child to all cameras in a targeted area. Then the cameras

perform the search mission and return search results to the

cloud. In this case, a variety of cameras work as edge nodes

to execute the search request, which can release the burden

of cloud and save search time compared to the method which

relies on the cloud to perform search analysis. Second, user

devices offload some computational tasks to adjacent edge

nodes to do preprocessing (such as data compression and data

fusion) and then the cloud does the final analysis. Herein, we

mainly concentrate on the second situation. To achieve sound

interactions among different layers (i.e., user device layer,

edge node layer and cloud server layer), hybrid communication

technologies are applied in edge computing, including wired

communications (such as Ethernet, and optical fiber) and

Fig. 1. Architecture of edge computing

wireless communications (such as ZigBee, WiFi, and LTE)

[26]. The communication between cloud server and edge

nodes and the communication among edge nodes are usually

supported by wired communication technologies, while edge

nodes and IoT devices communicate with each other with

wireless communication technologies. The architecture of edge

computing is described as below.

The lowest layer is user device layer which is constituted by

a large number of IoT devices, such as sensors, smart phones,

smart wearable devices, and so on. Some of these devices are

mobile IoT objects, and others are fixed IoT objects. Raw data

can be generated or perceived by them and sent to a higher

layer device to further process.

The middle layer is edge node layer. The edge nodes consist

of the devices that possess some computing capability, such

as base stations, routers, set-top boxes, switches, etc. The

edge nodes can provide services to users, including computing

offloading, transient data storage, content caching, and delivery

services from the cloud to the users. Moreover, they can

offload some computational tasks from the cloud in order to

alleviate its burden. In addition, the edge nodes can cooperate

with each other to provide collaborative services for users. For

example, Shi et al. [6] introduced a use case of connected
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health in which hospitals, pharmacies, logistics companies,

governments, and insurance companies form a collaborative

edge to provide health-care services.

The highest layer is cloud server layer. It conducts further

data processing on preprocessed data from edge nodes, and it

can also delegate computational tasks to the edge nodes. There

are two situations where the cloud server requires to perform

further data processing after edge node processing. First, when

coordination among edge nodes is required, the cloud server

can assist them to establish communications. Second, when

data analytics are very large-scale (e.g., city-wide) or long-

term (e.g., over years), the edge nodes normally send data to

the cloud server for analysis [11].

C. Features of Edge Computing

The involvement of the edge node layer makes the edge

computing different from the cloud computing in several

aspects. The detailed comparison between the cloud computing

and the edge computing is summarized as below and also

shown in Table II.

TABLE II
FEATURE COMPARISON BETWEEN CLOUD COMPUTING AND EDGE

COMPUTING

Features Edge Computing Cloud Computing

Location Awareness Yes No

Geographic Position Fixed Positions Various Positions

Latency Low High

Large-Scale IoT Ap-

plication Support

Yes No

Network Architecture Decentralized Centralized

Hardware Heterogeneous Devices General Devices

Mobility Yes No

Location Awareness: Location awareness refers to the abil-

ity to determine the geographical location of a user device.

Location awareness can be used for targeted advertisement and

entertainment. The cloud computing does not offer location

awareness services. When a cloud server needs to know the lo-

cation of users, Location-Based Service (LBS) can be offered.

In this service, users have to send their location information to

the cloud server, which could incur expensive communication

overload. Furthermore, it causes location privacy leakage of

users [16]. In contrast, in the edge computing, an edge node

is aware of user devices in its own coverage area and the users

do not need to send their local information to a remote third

party, like the cloud server.

Geographic Distribution: In the cloud computing, a cloud

server processes data in central cloud servers, which are

deployed at some fixed places. However, edge nodes are

deployed at various positions, like highways, roadways, super-

markets, museum floors, etc. Due to geographic distribution,

the edge nodes can acquire high-quality data streams from IoT

devices and provide real-time response to users.

Latency: Generally, the services provided by the cloud

server are far away from IoT devices, which leads to long

data transmission latency. This is tolerable for non-real-time

applications (e.g., offline games) but intolerable for real-time

applications (e.g., augmented reality and health emergency).

On the contrary, edge nodes are closer to IoT devices, data

transmission between them takes short time.

Large-Scale IoT Application Support: Due to heavy man-

agement and computational overhead, the cloud computing

cannot provide services for large-scale IoT applications. For

example, in a wide range of environment monitoring system,

an overwhelming volume of data are produced by massive

sensors. If these sensors are managed and the data processing

is performed in the central cloud, the burden of the cloud

server could be huge. However, in the edge computing, the

edge nodes have power and autonomy to manage these IoT

devices in their own areas, thus erase the shortcoming of

the cloud computing in terms of large-scale IoT application

support.

Network Architecture: In the cloud computing, there is a

centralized server to manage computation and storage re-

sources. Nevertheless, the edge computing paradigm is a

decentralized framework since each edge node self-organizes

to offer real-time application services to users.

Hardware: In the paradigm of cloud computing, data is

produced by some enterprises and there are only a few

central cloud servers to offer services. In the edge computing,

however, hardware devices are heterogeneous. Heterogeneity

is a distinct feature of the edge computing. This reflects in

three aspects. First, data producers are heterogeneous, that is,

data are generated by heterogeneous IoT devices with various

formats. Second, data transmission is heterogenous, that is,

collected data is transmitted by using different communication

technologies. Third, edge nodes are heterogenous. This means

that services are deployed in multiple types of edge nodes,

including end-user devices, access points, routers, switches,

and so on.

Mobility: In the edge computing, IoT devices that have high

mobility are usually data producers, while in the cloud com-

puting data is often generated by companies and enterprises,

such as YouTube, Facebook, etc. Therefore, compared with

the cloud computing, mobility support is essentially required

in the edge computing because IoT devices are easy to move

from one area to another area covered by edge nodes.

III. SECURITY AND PRIVACY MECHANISMS FOR

OUTSOURCING DATA ANALYTICS

In this section, we briefly introduce main security and

privacy mechanisms for outsourcing data analytics, which

include secure data collection methods, secure data processing

methods and secure data storage methods.

A. Secure Data Collection Methods

The first step in data analysis is to collect data from user

devices. The collected data fundamentally affect quality and

accuracy of data analytics. Therefore, we will first overview

traditional security and privacy methods for secure data col-

lection.
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1) Authentication Mechanism: User authentication mech-

anism in outsourcing data analytics is a critical requirement

to ensure the reliability of data source. It is able to validates

the identity of user to guarantee that the user is legitimate to

access cloud server or edge node [27]. Herein, we summarize

a number of common authentication methods as below.

Password-based Authentication Methods (PAM). Password

authentication is the simplest and the most convenient authen-

tication mechanism [28]. In registration phase, each user sends

a remote server his/her ID and password. The remote server

maintains a password table which is used for storing user

IDs and passwords. In authentication phase, the remote server

verifies the legitimacy of the user with the password table.

However, PAM suffers from the following drawbacks: i) pass-

words are easily leaked, since many users often set passwords

to meaningful characters to prevent them from forgetting their

passwords, such as their own or family members’ birthdays,

phone numbers, names, etc. ii) passwords are static, thus they

are easily eavesdropped and stolen during transmission. iii)

the password table is highly susceptible to be tampered by

intruders [29].

Smart Card-based Authentication Methods (SCAM) [29] .

Smart card is a kind of non-reproducible card, which contains

data related to user identity. In registration phase, the system

gives a user a smart card; In authentication phase, a special

card reader reads the information carried by the smart card to

verify the legitimacy of the user. The advantage of SCAM is

that it does not need to maintain a password table. However,

since the data read from the smart card are still static, the

intruder may obtain the identity information of the user in the

card reader by means of memory scanning.

Dynamic Password-based Authentication Method (DPAM).

DPAM is a technique that allows a user’s password to change

continuously according to time or number of uses. Dynamic

password is usually generated by dedicated hardware in user

side, and the server uses the same algorithm to calculate the

valid password. If only two passwords match, the authenticate

succeeds. Dynamic password authentication adopts a one-time

method to avoid the risk of stolen password. However, if the

number of times the client and the server program are not

synchronized, the authentication failure may occur.

Biometric-based Authentication Methods (BAM). Biometric

authentication is a technology that takes advantage of the

inherent biological or behavioral characteristics of an indi-

vidual to verify his/her identity [30], such as fingerprint,

voice, face, DNA, keystrokes, etc. Biometric authentication is

more reliable than other authentication methods, since physical

human characteristics and behavioral feature are very difficult

to forge [27]. However, BAM may not be applicable in many

application scenarios where human-beings are not involved in

data collection. Moreover, BAM need long execution time and

their security level is always constrained by time complexity,

especially when high security level is needed.

2) Trust Management Mechanism: Although authentication

can determine the authenticity of a device, the user does

not guarantee that the service provider behaves well. Trust

management mechanism refers to utilizing some effective

approaches to achieve the measurement and computation of

trust value in order to choose a more dependable service

provider [31]. According to [32], [33], trust management

mechanisms can be divided into two types: reputation-based

and policy-based trust management.

Reputation-based Trust Management (RTM). RTM concerns

a trust measurement method where utilizes numerical and

computational mechanisms to obtain trust values. For example,

in a social network, the trust value of each user is calculated

by collecting and aggregating the reputation value obtained

according to the opinion of others about it.

Policy-based Trust Management (PTM). PTM is an objec-

tive trust assessment method where logical rules and verifiable

attributes are encoded in signed credentials to decide the

access to data. The PTM method usually makes a binary

decision based on whether a requestee allows access request

[34]. PTW has less flexibility by reason of the binary nature

of trust assessment.

B. Secure Data Processing Methods

In outsourcing data analytics, user devices can rely on

computing and storage resources in cloud or edge servers to

perform computationally intensive operations to obtain various

services. Once data are outsourced to the cloud or edge servers,

data owner loses the control of the data. And then the personal

data of users can be revealed to the service provider or

malicious intruders. Many works were conducted to solve this

issue. Herein, we list main secure data processing methods as

follows.

1) Homomorphic Encryption (HE): HE is a cryptographic

technology that allows arbitrary data computation to be exe-

cuted over ciphertexts and generates an encrypted computation

result [35], [36] . When decrypted, this result is the same

as the result of operations performed on the plaintext. HE

can be divided into Full Homomorphic Encryption (FHE)

and Partial Homomorphic Encryption (PHE). FHE (such as

BGN encryption [37] ) is designed to support mixed data

computations over ciphertexts, but its computation overhead

is much higher than PHE. PHE (such as Paillier encryption

[38]) just supports one or two types of operations, thus it

can only support restrained application scenarios. Therefore,

appropriate algorithms should be selected according to the

practical needs of application scenarios.

2) Differential Privacy (DP): DP is a privacy-preserving

technique that provides strong and provable privacy guaran-

tee for users by adding a random noise to user data [39].

In outsourcing data process, DP is mainly used to achieve

privacy-preserving data aggregation which refers to a statistical

data analysis, such as average, minimum, maximum, sum, and

count over a given time period [40]. There are two ways to

apply differential privacy in data aggregation. i) The first way

is to add random noise to the result of the data aggregation,

which can maximize the accuracy of aggregation to defend

against differential attack and ensure [41]. ii) The second way

is that each data owner adds a random noise to his/her data to

prevent privacy leakage, and then the cloud or edge server

aggregates these perturbed data. Although doing so brings

some statistical error, when the amount of data is large enough,
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it can still protect user privacy while completing data analysis

[42], [43]. But the second way only supports summation

aggregation.

3) Pseudonym Technology (PT): PT allows users to request

the services offered by the cloud or edge server anony-

mously, using pseudonyms [44]. The pseudonym management

is carried out by a centralized cloud server or lots of edge

nodes. This technology is used to protect location privacy or

identity privacy of users. Since edge nodes or cloud servers

do not know the true identity of a user, user private data

user private data cannot be associated with himself/herself.

However, there are many methods of de-anonymization attack

based on modeling and analysis of users’ behaviors [45]–[47].

Therefore, the security of PT is lower than other methods.

C. Secure Data Storage Methods

To relieve the cost of storing data locally, some results of

data processing are typically stored to edge nodes or cloud

servers. In order to prevent the computational results from

being tempered or thieved, these data are usually encrypted.

However, encryption will hinder the operations (such as ac-

cess, search, deduplication) of data results. Herein, we intro-

duce some key mechanisms to protect data privacy without

affecting the use of data.

1) Access Control Mechanism: During data storage, user

needs to access computational results. Access control is a

policy or procedure that only allows authorized user to access

the data [48]. In what follows, we summarize several common

access control models.

Role-based Access Control (RBAC). In RBRC, the access

policies are related to roles and the authorization of users is

achieved by assigning them corresponding roles. By mapping

data owners to roles and roles to privileges on data objects

[49], RBRC provides flexible access control and management.

In cloud/edge computing, data are stored in cloud/edge data

center due to the limited storage capacity of user devices,

and the cloud/edge server acts as an administrator to manage

data and access policies for data, which could lead to privacy

disclosure. Therefore, RBRC must be combined with other

security mechanisms to achieve more secure access control.

Proxy Re-Encryption (PRE). PRE-based access control

model allows a proxy to transform a ciphertext encrypted with

Alice’s public key into one that can be decrypted by Bob’s

private key. PRE is designed to achieve secure data sharing in

outsourcing data storage. A general PRE-based data sharing

scheme is illustrated in Fig. 2. Each data owner may generate

an arbitrary number of re-encryption keys based on his/her

own private key and the recipients’ public keys and then an

access control list with re-encryption key for each recipient are

upload to a semi-trust proxy server deployed in the cloud/edge

server. When someone wants to access data stored in cloud

server, data will be re-encrypted and send to the recipient by

the proxy server.

Attribute-based Access Control (ABAC). Attribute-based en-

cryption (ABE) is a cryptographic technology where the secret

key of a data owner and the ciphertext are relied on attributes

of recipients. Based on it, ABAC can offer fine-grained access

Fig. 2. PRE-based secure data sharing scheme

Fig. 3. KP-ABE access control scheme

control, since it can grant the data owner the ability to set the

access policy in a very fine-grained way to preserve the private

data of data owner. The recipients are able to encrypt data only

when his/her attributes match the specified access policy. ABE

includes two main types: Key-Policy ABE (KP-ABE) and

Ciphertext-Policy ABE (CP-ABE). In KP-ABE access control,

as displayed in Fig. 3, the ciphertexts are labeled with a set of

attributes and private key is associated with access structures

that can control which ciphertext a user is able to decrypt.

CP-ABE access control is shown in Fig. 4. Private key is

labeled with a set of attributes and ciphertext is associated with

access structures that control which user is able to decrypt the

ciphertext. However, decryption of ABAC requires to operate

multiple bilinear pairings, which incurs high computational

overhead.

2) Searchable Encryption: In outsourcing computing

paradigm, data is typically stored in ciphertext onin the

cloud/edge server, which disrupts search functionality. Song

et al. [50] first proposed searchable encryption whichthat not

only can achieve data encryption but also support keyword

search over ciphertext. The two main branches of searchable

encryption are symmetric searchable encryption (SSE) and

Fig. 4. CP-ABE access control scheme
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asymmetric searchable encryption (ASE) [51]. In SSE scheme,

data owner uses his/her symmetric key to encrypt data index

and create search trapdoors. ASE enables many users who

hold the public key to encrypt data but only allows the data

owner to create search trapdoors. And then the trapdoors are

sent to the cloud service, which executes the search algorithm

and returns search results to the data users. Search can also

be based on certain rules (e.g. returning the most matching of

the first n related results).

IV. SECURITY THREATS AND REQUIREMENTS OF DATA

ANALYTICS IN EDGE COMPUTING

This section summarizes the fundamental requirements of

data analytics in edge computing by analyzing potential se-

curity threats with regards to IoT devices, communication

networks and edge-cloud devices.

A. Security Threats of Data Analytics in Edge Computing

Edge computing pioneers a new computing model that

brings great convenience to solve network congestion and la-

tency. However, with intellectualization of local edge devices,

it also encounters various security and privacy challenges. As

an extension of cloud computing, the edge computing not

only inherits the secure threats from the cloud computing, but

also introduces new security risks due to its own features. In

this subsection, we will summarize the potential security and

privacy threats existing in data analytics from three aspects

including IoT devices, communication networks, and edge-

cloud devices.

1) Security Threats on IoT Devices: The IoT devices are

very important components in the framework of edge comput-

ing. On one hand, they generate data and submit raw data to

edge nodes or cloud servers. On the other hand, they can also

participate in the provision of services. Therefore, it is vital to

ensure the security of IoT devices and the reliability of their

collected data. In what follows, we list some common security

attacks on IoT devices.

Physical Attack: In the edge computing, most IoT devices

are deployed in unattended or outdoor environments, such as

tunnels, subways, factories, etc. Therefore, they are highly

susceptible to physical attacks [52], including nature disaster,

energy supply shortage, device damage, etc.

Injection of Information Attack [4]: An adversary can con-

trol and reprogram a device to distribute fake information. For

example, malicious users provide fake data to a crowdsourcing

service.

Service Manipulation Attack [4]: A device might participate

in the provision of services and manipulate the outcome of the

service. For example, a cluster of devices can act as an edge

node to control a service [53].

2) Security Threats on Networks: As aforementioned in

Section II, most IoT devices interact with edge nodes or

cloud servers through wireless communications. Hence, the

data collection in edge computing also faces various network

security challenges related to wireless communications. In

what follows, we summarize security attacks on wireless

networks.

Man-in-the-Middle Attack: Edge nodes like gateways may

be compromised and private communications could be inter-

cepted by a fake node once an attacker exerts control over

normal edge nodes [7].

Sybil Attack: A Sybil attacker claims a large number of

client identities or impersonate some legal nodes to control

or compromise the whole edge computing framework. For

example, in edge computing-based crowdsensing, Sybil attack-

ers could send incorrect reports to an edge node, which will

aggravate the influence of false data injection and impact the

accuracy of data analytics.

Sinkhole Attack [54]: A rogues router performs routing and

attracts surrounding nodes using unfaithful routing informa-

tion. Then the router (i.e., the attacker) may perform selective

forwarding or alters the data passing through it.

Eavesdropping Attack: Due to the broadcast nature in wire-

less communications, the edge computing is vulnerable to

eavesdropping attacks. An attacker might monitor wireless

channels to snatch data packets to obtain private communi-

cation contents. This type of attack is difficult to be detected,

thus some encryption measures should be implemented to

guarantee data confidentiality.

Jamming Channel Attack: An attacker purposely sends a

huge number of forged messages to exhaust communication

channels or computing resources, which makes legal users

unable to communication with each other.

Forgery Attack: Forgery is a common attack in wireless

communications. Malicious attackers compromise the whole

system by forging valid messages and configuration files.

Moreover, these fake messages might consume network band-

width and storage resources of edge nodes, thus further affect

the accuracy of data analytics.

Tampering Attack [55]: A tempering adversary can mali-

ciously delay, drop or even alter transmitting data to undermine

edge computing and degrade the efficiency of edge nodes.

Since the condition of wireless channels and user mobility

may also lead to transmission delay or failure, it is difficult to

detect tampering behaviors.

3) Security Threats on Edge-Cloud Devices: Edge devices

and cloud servers are the core part of edge computing. They

host virtualized servers and provide outsourced data computa-

tion and data storage services for user devices. Thus, external

attackers normally try to disrupt the services provided by the

edge devices and cloud servers in various ways. Herein, we

list several security attacks on edge-cloud devices.

Distributed Denial of Service (DDoS) Attack: DDoS attack

is a severe attack in edge computing. Adversaries deliberately

utilize the drawback of network protocol or directly run out of

the resources of targeted entity, and make targeted edge nodes,

cloud servers, or network fail to provide services or access to

resources. There are generally three kinds of DDoS attacks.

First, many adversaries send a mass of data packets to jam

the bandwidth of a server to make its channel disabled. The

second case is to consume CPU memory resources by sending

specific request packets, e.g., TCP/IP request packets. Third,

when connection is built, adversary sends a good deal of data

packets to consume service resources in edge devices or cloud

servers.
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Insider Attack: The data theft attack raised by an internal

adversary is one of serious attacks in cloud computing and

edge computing. Malicious insiders usually abuse their priv-

ileges and utilize their knowledge to steal user private data

[14].

SQL Injection: In an SQL injection attack, an attack inserts a

malicious piece of code into an SQL code. Thus, the malicious

code is erroneously executed in database backend.

Privacy Leakage: Edge devices are located in the edge of

the network near data sources. Compared with the cloud com-

puting where a data center is located in the core network, the

edge node devices can collect more high-value and sensitive

data from mobile users. Four types of privacy leakage could

occur in the edge computing, including data privacy, location

privacy, usage privacy, and identity privacy.

• Data privacy: In the edge computing, edge nodes usually

collect user data from sensors and end devices for analy-

sis or computing. The edge nodes could be curious even

though honest. They might snoop on user information

driven by pecuniary benefits. However, some of the

collected data is sensitive, such as the drug purchase

records of users, the health status of a patient. Thus, data

privacy could be leaked at the edge nodes.

• Location privacy: Two reasons account for user location

privacy leakage. On the one hand, an edge node requires

to be constantly aware of users in its own coverage

area and the users usually choose to access the nearest

edge node, which results in disclosing user location

information. On the other hand, location privacy might

be exposed from transmission. For example, if a user

device usually delegates its task to the nearest edge node,

it is possible to reveal its location information to an

eavesdropper even without knowing the specific content

of transmission. Moreover, if this user device is moving

from its original region to another region and access the

services of multiple edge nodes, the eavesdropper might

know its trajectory information.

• Usage privacy [13]: Usage privacy is extremely crucial in

edge computing. It primarily refers to the usage patterns

with which a client leverages the services provided by

edge nodes. For instance, in smart grid, an eavesdropper

or a curious edge node can acquire a lot of information of

a family. It can analyze the readings of a smart meter to

infer family private information, such as when the family

is or is not at home, and when the family members go to

sleep. Obviously, resident privacy is leaked.

• Identity privacy: User identity links to a special user.

The identity information includes identity number, name,

address, telephone number, public-key certificate, etc.

When a client accesses services offered by an edge node,

it would be susceptible to identity privacy leakage.

B. Requirements of Data Analytics Based on Edge Computing

Since there exists a growing number of security threats and

privacy leakage problems in edge computing, it is essential

to deploy some security mechanisms to resist those external

and internal threats as mentioned in Section III.A. In this

subsection, we propose a number of essential requirements

that should be satisfied in edge computing in the services of

data analytics. The detailed requirements are classified into

two parts: security and privacy requirements and performance

requirements, as summarized below.

1) Security and Privacy Requirements: First, security

mechanisms should consider the following security require-

ments in order to enhance the security of services provided

by edge nodes.

Authenticity (Au): In order to confirm the identity of in-

volved edge nodes and edge devices, authenticity should

be guaranteed before participating in edge network for data

analysis. Mutual authentication enables involved edge and

user devices to authenticate each other, which is an effective

method to provide authenticity.

Trustworthiness (Tu): Besides authenticity of edge nodes

and user devices, the trustworthiness of networked devices is

of great importance. Authenticity helps establishing an initial

and secure relationship between user devices and edge nodes,

but it cannot guarantee the honesty of their subsequent actions.

They may act dishonestly and even be compromised by attack-

ers. Trust management becomes a good manner to monitor the

nodes and devices, and figure out their trustworthiness.

Confidentiality (Cn): Due to the eavesdropping attack, data

confidentiality also needs to be satisfied, which is important

for data security and user privacy.

Integrity (I): Data integrity should be ensured to prevent

original data from being tampered by attackers during trans-

mission or even by the semi-trusted edge nodes.

Location Privacy (LP): As mentioned in Section III.A, user

location may be disclosed when enjoying the services provided

by edge computing, but it is extremely sensitive in some

scenarios. For example, in a fog-based parking navigation

application [56], a moving vehicle uploads the videos or

photos of vacant parking spaces to nearby fog nodes. How-

ever, location privacy of drivers is disclosed due to location

awareness of fog nodes. If location information of the drivers

is not protected, no drivers would like to participate in such a

parking navigation system. Hence, location privacy should be

preserved.

Usage Privacy (UP): Usage patterns indicate the habits of

users to consume the services from edge nodes. Once the usage

patterns of users are disclosed, an adversary may know the

details of the routine life and activities of the users. Hence, a

secure solution is highly expected to protect the usage privacy

of users.

Identity Privacy (IP): Identity privacy plays an important

role in ensuring user privacy. An identity can be easily

linked to a user, and hence it causes big threats to user

private information, such as name, address, etc. If identity

privacy is not guaranteed, users would be unwilling to access

services provided by the edge computing. Anonymity may be

a countermeasure to protect user identity.

Traceability (Ta): Since edge computing introduces an in-

termediate edge node layer, users lose the control of their raw

data. Therefore, it is likely that incorrect results are gained

due to improper operation of one edge node or faked data

updated from users. Furthermore, due to the mobility and
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decentralization of edge nodes, the errors caused by one edge

node might spread to other computation tasks and lead to more

incorrect final results. In order to improve the correctness

of data analysis and reduce the influence of faked data and

malicious users, it is of great significance to realize data

provenance for tracking back to invalid data inputs.

2) Performance Requirements: Different from cloud com-

puting, edge nodes are highly distributed and have lower

computation capabilities and resources. Hence, performance

should also be seriously considered when judging the quality

of data analysis schemes based on edge computing. Generally,

the following criteria related to performance are considered.

Correctness (Cr): As mentioned above, there exist some at-

tacks on data analytics, which may lead to incorrect analytical

results and serious consequences. Hence, correctness of data

analysis is an essential quality attribute of performance.

Scalability (S): Scalability means that edge nodes can run

normally when adding a new device or removing a device.

The edge nodes and user devices join or leave frequently in

an edge computing framework. Hence, scalability is highly

expected to be supported.

Mobility (Mo): As users might pass through several cover-

age areas of edge nodes in a high speed, mobility becomes

an important factor to consider for securing data analytics in

edge computing. For example, edge nodes can be deployed

in self-driving cars to monitor real-time traffic conditions by

analyzing data collected from various sensors.

Efficiency (E): As the resources of user devices and edge

nodes are much less than those of cloud servers, efficiency

is paid more attention in the edge computing than the cloud

computing. Moreover, the edge computing aims to gain the

advantage of low latency over the cloud computing. Usually,

we need to consider communication and computation cost in

the judgement of the performance of a scheme. However, the

communication cost of a scheme refers to the size of trans-

mitted packets and the number of communication interactions,

which is not easy to uniformly measure. Therefore, we mainly

focus on efficiency in our review and show the communication

overhead of all involved entities in edge computing. As the

fixed times of basic computations (such as multiplication and

addition) are very efficient, we merely consider the complex

operations (such as bilinear pairing, exponentiation operation,

modular addition operation, and modular multiplication oper-

ation) in our review and analysis.

V. SECURE DATA ANALYTICS IN EDGE COMPUTING

In this section, we review and discuss recent advance

of data analytics schemes in edge computing by employing

our proposed requirements in Section IV.B as a measure to

comment their pros and cons. In this paper, we focus on

the related works in fog computing and edge computing with

regards to secure data collection, secure data processing and

secure data storage. Before going into the details, we first list

the notations used in computational overhead evaluation in

Table III.

TABLE III
NOTATION DESCRIPTION

Symbol Description

pu The number of participants in crowdsensing application
pf The number of edge nodes involved in crowdsensing appli-

cation
m The number of the dimensions of a sensing vector
l The bit length of m
g The maximum links per node in [53]

u
′

The number of users in [53]
A The simulation area in [53]
u The number of aggregated users per edge node
f The number of aggregated edge nodes per cloud server
t The number of the attribute universe in attribute-based en-

cryption (ABE)

t
′

The number of slots in [57]
a The number of decrypted attributes in ABE

a
′

The number of newly decrypted attributes in ABE after
preprocessing at an edge node

p The number of attribute authorities in [58]
n The number of edges of a proximity polygon area that is

given by a requester
x The accuracy of proximity detection
n1 The number of blocks in an outsourced file

A. Secure Data Collection in Edge Computing

As the first step of data analytics, data collection seriously

influences the performance of data analytics, especially its

accuracy [55]. Hence, we first review the literature on secure

and privacy-preserving data collection.

1) Authentication in Edge Computing: Fake data injection

attack seriously affects the reliability of data sources, while

authentication can help verify the identity of each entity

involved in edge computing. Hence, authentication can be

applied to prevent malicious data injection and improve the

quality of collected data. In this part, we review existing

authentication schemes in edge computing. When discussing

scheme efficiency, we only consider the computational over-

head of authentication.

Ibrahim et al. [59] proposed a mutual authentication scheme

in a hierarchical fog framework, which allows any user device

to authenticate with any fog node in a fog area. In details,

each fog user holds only one long-lived master secret key that

can generate the session key between any fog server and itself.

This design decreases the storage overhead in user device side.

During authentication, a session key is securely shared by both

participants, which provides data confidentiality. However, the

identity of the user device is transferred in plaintext, which

makes it easy for adversary to know which user and which

fog node are communicating and discloses identify privacy of

users. Moreover, mutual authentication can only be provided

in one fog area. Hence, it results in moderate scalability and

mobility. The computational overhead of this scheme includes

one hash and two symmetric encryption operations in user side

and two symmetric encryption operations in edge node side.

In order to solve the issue of limited user mobility support in

[59], Amor et al. [60] designed an anonymous mutual authen-

tication scheme by further revising the work in [59]. Identity

privacy is preserved by pseudonym-based cryptography and

high mobility is supported by considering three cases, namely,
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authentication of a single fog node, intra-fog authentication,

and inter-fog authentication. Different from [59], the session

key between a fog user and a fog node is generated by using

bilinear pairing, which provides data confidentiality. However,

both [59] and [60] just consider the situation where a new fog

node joins the fog layer but does not consider the departure of

old fog nodes, thus its support on mobility is still constrained.

Moreover, they need the fog nodes in one fog to store IDs of

all fog users, which introduces high storage overhead in fog

node side. Besides, data integrity is not ensured in these works.

With regards to computational overhead, we analyze the most

complicated case, inter-fog authentication. This scheme [60]

includes one elliptic curve point multiplication operation, one

hash operation and one bilinear pairing in user side, one ellip-

tic curve point multiplication operation, one bilinear pairing

in edge nodes, and two elliptic curve point multiplication

operations in cloud side.

Currently, biometric authentication is becoming popular

[30], as it automatically recognizes and verifies the identity

of a living person. However, biometric identification takes

relatively long execution time. To improve the efficiency of

authentication, some researchers tended to combine biometric

authentication with edge computing. Hu et al. [61] explored

a face identification and resolution authentication framework

base on fog computing between IoT devices and the cloud,

where some complex operations of face feature extraction

are offloaded to fog nodes. Moreover, it realizes data con-

fidentiality, data integrity and mutual authentication among

cloud servers by leveraging multiple cryptography techniques.

However, this work does not implement secure interactions

between user devices and fog nodes, since it reveals face infor-

mation to the fog node. Furthermore, scalability and mobility

were not considered as well. In addition, several cloud servers

need to frequently interact with each other, which incurs high

communication overhead. Regarding computational overhead,

the edge node needs to do one hash operation, two symmetric

encryption operations, two modular exponentiation operations

and three elliptic curve point multiplication operations, while

the cloud undertakes ten modular exponentiation operations,

15 elliptic curve point multiplication operations, 12 symmetric

encryption operations and nine hash operations.

2) Secure Data Transmission: Owing to the existence of

security and privacy issues in the whole edge networks as

mentioned in Section III.A, data confidentiality and integrity

should be ensured during data transmission. Hence, it is

necessary to explore a secure data transmission scheme to

prevent data from being tampered and stolen. In this part, we

review secure data transmission schemes in edge computing.

With the purpose of achieving the secure communications

between fog nodes and cloud server, Alrawais et al. [62]

designed an encrypted key exchange protocol by combining

ciphertext-policy attribute-based encryption (CP-ABE) with

digital signature to offer data confidentiality and data in-

tegrity. Meanwhile, the system prevents an active attacker from

learning or changing the transmitted data. The computational

overhead of this protocol executes one hash operation,(2a+1)
bilinear pairings, a modular mutiplication operations and a

hash operations in fog node side, and (4a + 1) modular

exponentiation operations and 2a hash operations in cloud

side. Due to high computational overhead, this protocol cannot

be used in delay-sensitive scenarios. Moreover, it neglects

scalability and mobility of user devices and fog nodes in

design.

Though the previous work ensures secure communication, it

ignores efficiency. Signcrytion technology was designed as an

efficient public-key primitive to simultaneously perform both

digital signature and data encryption [63]. Basudan et al. [64]

designed a certificateless aggregate signcryption (CLASC)

protocol for road surface condition monitoring based on vehic-

ular crowdsensing in fog framework, which achieved mutual

authentication, data condfidentiality and integrity. Moreover, it

introduces a pseudo identity generated from a real identity for

vehicular devices to communicate with fog nodes, thus this

protocol preserves identify privacy. In addition, it combines

mix-zone technique with pseudonym technique to realize lo-

cation privacy protection. Mobility was supported in this work,

but scalability was missed. With regards to computational

overhead, the vehicular device undertakes three elliptic curve

point multiplication, one elliptic curve point addition, and

three hash operations. The computational overhead at the fog

node includes 6u elliptic curve point multiplications, u elliptic

curve point addition, 3u hash operations and 3u bilinear

pairings. In addition, fog node first aggregates all messages

about the same road event from different vehicles and performs

batch signature verfication, thus the computational overhead of

this protocol is less than [65], [66].

However , the protocol in [64] needs to do many ex-

pensive bilinear pairings, the computational overhead of this

protocol is still a bit high. Moreover, this protocol has been

demonstrated to be vulnerable to forgery attack by Chen

et al. [67], where an attacker may forge the signature of

arbitrary data. To solve these problems, Chen et al. [67]

designed a light-weight and anonymous aggregate signcryption

for a fog-enabled vehicle-to-infrastructure scenario, which can

guarantee data confidentiality and integrity. The advantage

of this scheme is that the full secret key of mobile sensor

cannot be obtained in any case, thus unforgeability of signature

is ensured. Moreover, the real identity of each user device

cannot be retrieved from the road condition report generated

by each mobile sensor about road event to protect the identity

privacy of users. However, moblity and scalability were not

considered. In this scheme, each mobile sensor needs to do

three elliptic curve point multiplication, one elliptic curve

point addition, five hash operations, five modular mutiplication

operations and four modular addition operations. Each fog

node aggregates signatures of all mobile sensors in its coverage

area to do batch verfication, which needs 2u elliptic curve

point multiplications, 5u modular addition operations, 2u hash

operations and 3u modular mutiplication operations.

3) Trust Management in Edge Computing: Authentication

can only check the authenticity of entities before connection is

established, but it is difficult to ensure whether they behave in

a satisfactory way during service. User devices and edge nodes

frequently join or leave the system of edge computing and they

need to continually interact with unfamiliar objects. Hence,

trust management becomes an especially crucial manner in
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edge computing to determine whether to set up cooperation

with the unfamiliar objects. For example, in a driverless auto-

mobile application based on edge computing, the users prefer

to choose a trusted edge node that offers reliable services.

Such a decision can reduce occurrence of traffic accidents and

protect user personal safety. In this part, we overview trust

management schemes in edge computing.

Su et al. [68] proposed a policy-based end-to-end trustwor-

thiness governance scheme where fog nodes could serve for

user devices only when the security attributes of fog nodes

satisfy the demands of processed data. Since this work can

support multi-organizational trust evaluation, it guarantees the

trustworthiness of fog servers. However, scalability and mobil-

ity of users were not considered in this scheme design. Since

no specific algorithm was given, its computational overhead is

hard to judge.

Furthermore, Sharma et al. [53] developed an entropy-based

trust relaying and privacy preservation system by using edge-

crowd integration in social Internet of things (S-IoT), which

provides trustworthy interactions among user devices. This

scheme utilizes available IoT devices as mini-edge servers

to release the deployment of edge servers near user-site and

reduces the cost and complexity of system network. Moreover,

for leveraging fission computing, it supports distributed trust

management without a centralized reputation system and can

detect fake sources. Also, a user movement model was pro-

posed to support mobility. However, it is specifically designed

for an S-IoT environment, which limits its applicability in

other scenarios. The computational overhead for each user

includes ignorable addition operations and gh+4g+2n+4A
multiplication operations.

Ma et al. [69] proposed two privacy-preserving reputation

management mechanisms for edge computing-based mobile

crowdsensing to deal with malicious participants. The first

scheme is more efficient than the second one, but it discloses

the deviations of each participant. The second scheme updates

the reputation values by utilizing the rank of deviations, but

it increases the computational overhead. Since the nearest

edge node aggregates the encrypted sensing data of all partic-

ipants by applying somewhat-homomorphic encryption, data

confidentiality is guaranteed. However, the location privacy of

participants is revealed to edge nodes. Furthermore, each user

device (both participant and inquirer) can join edge network

but the departure of user is not considered, thus its scalability

is moderate. Moreover, mobility and traceability are missed

as well. In addition, this proposed scheme just explores the

trustworthiness of participants, but neglects the trustworthiness

of edge nodes. Regarding computational overhead, we herein

just analyze the second scheme since it is more secure,

which includes three modular multiplication operations and

three modular addition operations in participant side, two

modular multiplication operations and one modular addition

operation in querier,
pu

2
(17pu + 3pul − 9 − 3l) modular

multiplication operations, l modular exponentiation operarions

and
pu

2
(14pu +3lpu − 6pu − 3l) modular addition operations

in edge node side and 2pu exponentiation operations in cloud

side.

B. Secure Data Processing in Edge Computing

Data analytics/processing is a vital part of various services

based on edge computing. It helps in digging out significant

information and further improving related services. In this

subsection, we review the existing works about secure data

processing and analytics in edge computing by classifying

them into two categories: privacy-preserving data computation

and privacy-preserving data aggregation.

1) Privacy-preserving Data Computation in Edge Comput-

ing: Edge nodes and cloud servers provide the capability to

deal with complex operations for resource-constrained devices.

However, once data is outsourced to the edge nodes or the

cloud servers, data owners will lose full control on their data.

Meanwhile, as honest-but-curious entities, the cloud servers

and the edge nodes may disclose user personal data and invade

user privacy. Even worse, the scope of privacy breach could

be expanded owing to the mobility of users. Therefore, it is

mostly important to achieve large-scale data computation and

preserve user privacy simultaneously.

a) Data Computation Based on Homomorphic Encryption

Technology: Homomorphic encryption is an efficient technol-

ogy that enables arbitrary data computation to be executed

over ciphertexts [35], [36]. It is widely used to realize privacy-

preserving outsourced data computation. Liu et al. [70] de-

signed a hybrid clinical decision system in fog-cloud net-

work to monitor patients’ physical conditions in real time by

combining data mining with Paillier homomorphic encryption.

This system achieves lightweight and real-time data processing

in fog nodes, while high accuracy disease decision algorithms

are implemented in the cloud. The advantage of this work

is that it supports various computations over encrypted non-

integer data. However, authenticity, data integrity, identity

privacy, scalability and mobility are not considered. We take

one data packet for each user as an example for efficiency

analysis. The computation at user side contains one modular

exponentiation operation, one modular addition operation and

one modular multiplication operation. In edge node side, a

real-time process algorithm includes five modular exponen-

tiation operations, two modular addition operations and six

modular multiplication operations.

Similarly, Huo et al. [71] utilized Paillier homomorphic

cryptosystem and decision-tree theory to implement a location

difference-based proximity detection (LoDPD) system in fog

computing. This system protects location privacy of users and

ensures data confidentiality. The advantage of this scheme is

that its communication cost and CPU cost are lower than tra-

ditional private proximity detection (PPD) methods. However,

the friend information of users is sent to a local fog node

in plaintext, which results in leaking private data. Moreover,

it does not consider scalability, mobility, and authenticity

of users. In terms of computational overhead, we assume

that there is only one friend near a requester. In this case,

the requester needs to perform two modular exponentiation

operations and one modular multiplication operation. Every

friend of the requestor undertakes two modular exponentiation

operations and four modular multiplication operations. And in

fog node side, it includes 4n(x + 4) modular exponentiation
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operations and 2n(x+ 3) modular multiplication operations.

b) Data Computation Based on Pseudonym Technology:

Apart from homomorphic encryption, pseudonym technology

is also deemed as an appropriate technique to protect personal

privacy during data computation [44]. Since edge nodes or

cloud servers do not know the true identity of a user, user

private data cannot be associated with himself. Kang et al.

[72] took advantages of edge resources to develop a fog-

assisted pseudonym management scheme. It protects loca-

tion privacy and identify privacy for vehicles. The proposed

scheme achieves timely pseudonym distribution and reduces

management and communication overhead by deploying lo-

cal authority in fog nodes. Moreover, the authors designed

a context-aware pseudonym changing game to dynamically

change pseudonym with context awareness. By leveraging

digital signature and public key encryption during data trans-

mission, the authenticity of all entities, data integrity and data

confidentiality are fulfilled. Furthermore, since this scheme

also offers cross-region pseudonym requesting and changing

services, mobility is supported. However, edge nodes and

cloud server are regarded as honest and they are responsible

for pseudonym generation. Scheme scalability is missed. Since

the encryption and signature algorithms were not detailed, the

computational overhead of the scheme cannot be evaluated.

Also, Wang et al. [73] leveraged randomizing anonymous

credentials to achieve a privacy-preserving crowdsourcing-

based navigation scheme in a fog network. In this scheme,

fog nodes generate and publish crowdsensing tasks, and then

compute an optimal route with the traffic information collected

by vehicles. Combining multiple cryptographic technology,

like group signatures, Advanced Encryption Standard (AES)

and Elgamal encryption algorithm, the scheme fulfills the

security requirements of authenticity, confidentiality, identity

privacy and location privacy. However, data integrity is missed.

Moreover, the correctness of calculation is not validated and

traceability, scalability and mobility are not considered. The

computational overhead of this scheme includes four mod-

ular exponentiation operations, one modular multiplication

operation, one symmetric encryption operation, one bilinear

pairing and one hash operation in querier side, two modular

exponentiation operations, one modular multiplication opera-

tion, one symmetric encryption operation, one bilinear pairing,

three hash operations and one modular addition operation in

participant side, 12 modular exponentiation operations, seven

modular multiplication operations, two symmetric encryption

operations, six bilinear pairings, two hash operations in edge

node side.

c) Data Computation Based on Other Technology: Chaff-

based technology that allows a user device to generate addi-

tional tasks to hide real tasks can also be used to implement

privacy-preserving data analysis. He et al. [57] proposed a

trajectory privacy protection mechanism by utilizing chaff

services to safely offload tasks to distrusted edge nodes. In

this mechanism, a user generates many additional chaffs to

confuse eavesdroppers so that the eavesdroppers cannot detect

the trajectory of the user. The proposed algorithm assumes

that the eavesdroppers detect the user’s location information

by maximizing likelihood detection, and then designs a series

of chaff control strategies to minimize tracking accuracy, e.g.,

impersonation strategy, maximum likelihood strategy, optimal

offline strategy, and optimal online strategy. Each user designs

the trajectories for chaffs through t
′

multiplication operations,

which can be ignored in terms of computational overhead.

However, each chaff consumes the computing resources of

edge nodes, thus this scheme introduces high computational

overhead in edge node side.

There are also other secure data calculation methods which

were only designed to protect some specific privacy. For exam-

ple, Yang et al. [74] first explored the new definition of secure

positioning protocol in fog computing to solve the issue of

location privacy leakage in a bounded retrieval model [75]. In

this work, a prover proves that it is in a certain region in order

to hide its exact position by considering two scenarios, one-

dimension scenario and three-dimension scenario. However,

the disadvantage of this work is the authors assume that the

cost of reading bits and performing computation at a device

is zero, which is not practical. This scheme takes advantage

of the time interval between the two verifiers and the prover

to determine the location area of the prover, which just needs

several addition operations. Therefore, its computational cost

can be ignored.

Dang and Hoang [76] designed a data protection model for

edge computing to guarantee data security and support mobil-

ity. It consists of a Region-Based Trust-Aware (RBTA) model

to achieve trust establishment between two regions, Fog-based

Privacy-aware Role Based Access Control (FPRBAC) and a

mobility management service. This scheme fulfills the require-

ments on trustworthiness, mobility and scalability. However,

data confidentiality and data integrity were not considered.

In addition, location privacy and identity privacy were not

protected. Since no specific algorithm was described in the

scheme, its computational overhead cannot be evaluated.

2) Privacy-preserving Data Aggregation in Edge Comput-

ing: Besides aforementioned complex analysis, data aggre-

gation is one of the simplest but important computations

for providing vital services in edge computing. For example,

in crowdsensing-based traffic monitoring applications, edge

nodes (e.g. road units) collect and preprocess traffic flow data

from multiple vehicles and then send them to a cloud server.

Owing to privacy concern, homomorphic encryption [77]–[79]

and differential privacy [42], [80] were applied to achieve

privacy-preserving data aggregation in edge computing.

Lu et al. [77] employed homomorphic encryption to develop

a lightweight data aggregation scheme for heterogeneous IoT

devices in fog computing, which provides data confidentiality

and data integrity. However, identity privacy, traceability, scal-

ability and mobility were not considered. In terms of computa-

tional overhead, each user device needs to do one symmetric

encryption, one hash operation, five modular multiplication

operations and three modular addition operations. Each edge

node performs one symmetric encryption, five hash operations,

one modular exponentiation operation, and u + 1 modular

multiplication operations. A cloud server undertakes one hash

operation, one modular exponentiation operation, two modular

multiplication operations and one modular addition operation.

Lyu et al. [42] also presented a privacy-preserving fog-
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assisted data aggregation scheme for smart grid by using dif-

ferential privacy and secret sharing. Specifically, this scheme

utilizes Gaussian distribution noise to perturb private data to

ensure differential privacy of aggregate statistic. Moreover,

two-layer aggregation can alleviate privacy leakage and main-

tain data utility. This work uses public-key cryptography to

realize authentication and considers the join and leave of

nodes in order to provide high scalability. However, since data

aggregation service is always offered by the nearest fog node,

the location privacy of users might be disclosed to the fog

node. In addition, data integrity, identity privacy, traceability,

mobility were not considered. But this scheme is efficient and

suitable for resource-constrained devices. It only executes one

modular addition operation in user side, u+1 modular addition

operations in fog node side and f modular addition operations

in cloud side.

The above two data aggregation schemes are fault-tolerance.

But identity privacy protection was not considered. In or-

der to tackle this problem, Wang et al. [78] introduced an

anonymous data aggregation scheme in a fog environment by

employing pseudonyms technology. The cloud authenticates

with fog nodes and user devices in registration phase, which

guarantees the authenticity of all entities engaged in the fog

computing. This scheme not only protects identity privacy

of terminal users but also guarantees data confidentiality via

homomorphic encryption. In this scheme, the fog node and

cloud verify received messages, which ensures data integrity.

Besides, revocation of terminal devices and fog nodes was

considered. However, mobility was left out of consideration.

This scheme executes three exponentiation operations, two

hash operations, one modular exponentiation operation, two

modular multiplication operations and bilinear pairings in user

side, one hash operation, two bilinear pairings, two modular

multiplication operations and 2(u − 1) elliptic curve point

addition operations in fog node side, one hash operation, one

modular exponentiation operation and two bilinear pairings in

cloud side. Different from [77], both [78] and [42] mainly

perform single-modality data aggregation and do not consider

the heterogeneity of data in edge computing.

For the purpose of preserving both data privacy and identity

privacy, Guan et al. [79] combined pseudonym certificate with

Paillier homomorphic encryption to achieve secure data aggre-

gation in a fog-enhanced IoT environment. In this scheme,

each fog area owns a local certification authority (LCA)

and a trusted certificate authority (TCA). It works with user

devices to generate and update the pseudonym certificate,

which prevents certificate forgery. Furthermore, all entities can

verify data integrity with digest during data transmissions. In

addition, both pseudonym certificate update and revocation

were considered, thus scalability can be satisfied to some

extent. However, user mobility among fogs and location pri-

vacy were missed. As for computational complexity, each user

device undertakes eight modular exponentiation operations,

two hash operations and one modular multiplication operation

for pseudonym generation and secure data processing. For the

generation of each user’s pseudonyms, LCA needs to perform

six modular exponentiation operations, one hash operation

and two modular multiplication operations and TCA does

two modular exponentiation operations. Besides, each fog

node takes (u + 3) hash operations and (u + 2) modular

multiplication operations for secure data aggregation. Finally,

the aggregated result uploads to the cloud server and is

verified by the cloud, which needs one modular exponentiation

operation, one hash operation and one modular multiplication

operation. All the above-mentioned data aggregation schemes

do not support traceability and cannot verify the correctness

of aggregated results.

C. Secure Data Storage in Edge Computing

Due to the limited storage capacity of user devices, some

results of data processing are typically stored in edge nodes

or cloud servers. Secure data storage is also important to

prevent computational results from being tempered or thieved.

In this subsection, we overview the existing efforts on security

and privacy in data storage in edge computing. The review

is classified into three parts: data access control, secure data

search, and secure data deduplication.

1) Data Access Control in Edge Computing: After data

processing, user needs to access computational results stored

in edge nodes or cloud servers [81]. If no proper security

mechanism is deployed, any unauthorized user can arbitrarily

access resources of other users, which obviously intrudes

personal privacy. Access control is an efficient manner to

authorize user devices to access distinctive resources in edge

computing [20]. Therefore, it is crucial to explore access

control in edge computing. In the following part, we review the

existing access control schemes in edge computing. Regarding

scheme efficiency, we just analyze the computational overhead

of user decryption in access control.

a) Access Control Based on Attribute-Based Encryption

Technology: Attribute-Based Encryption (ABE) is an efficient

technique to achieve secure and fine-grained access control

[82], as it not only protects private data, but also grants data

owners the ability to directly set access policies. Zuo et al. [83]

proposed an attributed-based encryption with outsourced de-

cryption (OD-ABE) scheme in a fog computing environment.

It achieves chosen ciphertext attack (CCA) security. There are

two ciphertexts in this algorithm: one is from data owner and

the other is from fog node; the latter ciphertexts are decrypted

using a shorter private key, which reduces the computational

overhead of decryption and saves the storage of IoT devices.

Moreover, through CHK and FO transformation, a decryptor

can check the validity of data, thus the integrity of data is

ensured. However, since the shorter private key is generated

by a data owner, the outsourced data cannot be decrypted

except the data owner. Moreover, traceability, scalability and

mobility were not considered. The computational overhead of

decrypting the ciphertexts is only two modular exponentiation

operations in user side. Its computational overhead is lower

than traditional cloud computing.

Fan et al. [58] also designed a CP-ABE-based verifiable

multi-authority outsourced access control scheme in a fog-

cloud network. This scheme offloads most encryption and

decryption computations to fog devices in order to reduce

computational overhead of user side. Computation results can
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be verified by data owners. Meanwhile, user involvement and

revocation were considered, thus scalability was considered.

Besides, attribute revocation are also supported to address

revocation issues. We can see that data confidentiality and

correctness of computation were realized. However, the disad-

vantage of this scheme is that each attribute needs an attribute

authority to manage it, thus a great number of devices should

be deployed. Moreover, identity privacy is disclosed during

service access. Mobility, data integrity, user authenticity as

well as traceability were not considered. With regards to

computational overhead, this scheme executes one modular

exponentiation operation and one modular multiplication op-

eration in user side and (3a + 1)p bilinear pairings in edge

node side.

However, encryption and decryption are performed in user

devices [58] and [83]. Due to limited resources of end devices,

the schemes bring huge computing cost to user devices with

the increase of attributes. By taking advantage of fog node’s

computing power, Zhang et al. [84] proposed an improved CP-

ABE-based access control scheme, which ensures data confi-

dentiality. This work offloads the generation of access control

structure in encryption phase and bilinear pairing operations in

decryption phase to fog nodes to reduce the computational bur-

den of user equipment. Moreover, an efficient attribute update

method without sending re-encrypting messages was proposed

in this scheme. However, the introduction of edge nodes

brings more communication overhead. Besides, data integrity,

location privacy, identity privacy, mobility and scalability were

not considered. Concerning computational cost, there are one

bilinear pairing operation and two modular multiplication

operations in user side and (a+2) bilinear pairing operations

and (2a+2) modular multiplication operations in edge node.

In fact, the ABE-based access control schemes can raise a

key-delegation abuse issue. In order to tackle this issue, Jiang

et al. [85] proposed a CP-ABE-based access control scheme

against key-delegation abuse in fog computing. Obviously, the

data confidentiality was considered. Compared with [83], it

realizes traceable CP-ABE access control to track any users

who want to illegally share their privacy, thus this scheme pro-

vides traceability. However, authenticity, data integrity, identity

privacy, scalability and mobility were missed in the scheme

design. Its computational overhead is mainly in user side and

includes t bilinear pairings. Hence, this scheme requires that

the user device should have some computational power.

b) Access Control Based on Proxy Re-Encryption Technol-

ogy: Proxy Re-Encryption (PRE) was also utilized to solve

access control issue in edge computing, as it can translate a

ciphertext with one key into another ciphertext with different

key by applying a proxy. By modifying Green et al.’s work

[86] to resist key exposures from side-channel attack, Wang

[87] proposed an ID-based proxy re-encryption scheme to

implement access control in fog computing. Users encrypt

files using symmetric keys and upload the ciphertexts to a

cloud server, and then these keys are encrypted by a public

master key and stored in a fog server. When an end user

wants to access the files in the cloud, the fog node re-

encrypts the user’s symmetric key from the public master

key to his own key to achieve data access while ensuring

data confidentiality. However, it needs a fully trusted private

key generator (PKG), which is extremely difficult to achieve

in a practical IoT system. Moreover, user revocation was

not considered. Besides, authenticity, data integrity, identity

privacy preservation, scalability and mobility were missed in

this work. In terms of computational overhead, the user only

needs to do one hash operation, 2d bilinear pairings and two

modular multiplication operations.

In particular, Tang et al. [88] combined CP-ABE with PRE

to implement fine-grained data sharing for big health data

in fog computing, where profile information and health in-

formation are encrypted with different encryption algorithms,

CP-ABE and public key encryption, respectively. After a fog

node preprocesses the health data, the data is re-encrypted

with a new access policy to achieve secure data sharing.

Hence, data confidentiality is ensured in this work. However,

health information and new access policy are disclosed to

fog nodes. Moreover, authentication, data integrity, identity

privacy protection, correctness of calculation, scalability and

mobility were not considered. The computational overhead of

this scheme includes 2(a+a
′

+1) bilinear pairings, 2(a+a
′

)
modular exponentiation operations and a + a

′

+ 1 modular

multiplication operations in user side.

c) Access Control Based on Other Technology: Other ways

were explored to implement access control in edge comput-

ing. For secure data outsourcing and access, Zahra et al.

[89] focused on adding the Shibboleth protocol in a fog-

IoT network to achieve cross domain data access control

between user devices and fog nodes. The authors detailly

introduced the workflow of the Shibboleth system and further

demonstrated its correctness. By leveraging the metadata file

in the Shibboleth protocol, this system protects data integrity.

Moreover, the Shibboleth system can authenticate users be-

fore issuing access rights, which guarantees user authenticity.

Identity privacy was achieved by generating a unique ID to

hide the user’s original identity. However, data confidentiality,

mobility and scalability were not considered. In this scheme,

all the security mechanisms, such as authentication, identity

privacy protection, and data integrity verification are realized

by directly calling the components of the Shibboleth protocol.

The article does not provide specific details. Therefore, the

computational complexity cannot be evaluated.

Zaghdoudi et al. [90] took advantage of Distributed Hash

Table (DHT) to design a generic access control system for ad

hoc mobile cloud computing (MCC) and fog computing. The

authentication of access node and data integrity are verified

by the cloud server This proposed model is suitable for

spontaneous networks that is temporarily created in a pervasive

mobile infrastructure and needs to respond to MCC access

control demands. However, confidentiality, scalability and

mobility were not discussed. Access control is implemented

through an access control list achieved by DHT, thus the

computational complexity depends on querying and inserting

of DHT, which are not described in this work.

Yu et al. [91] provided a fine-grained access control scheme

in fog computing by using leakage-resilient functional encryp-

tion against side channel attack. This scheme first defined

the notion of leakage-resilient pair encodings and achieved



15

the transformation from pair encodings to leakage-resilient

founction encryption in order to improve the security of access

control. Data confidentiality is fulfilled with the consideration

on attribute update. However, authenticity, data integrity, iden-

tity privacy preservation, scalability and mobility were not

discussed. Its computational overhead includes one bilinear

pairing and one modular multiplication operation in user side.

2) Secure Data Search in Edge Computing: To better

protect user privacy, user data are usually encrypted before

being uploaded to edge nodes or cloud servers, which sets

up an obstacle for data utilization, such as data search and

retrieve. In many situations, the users just need parts of data

rather than the whole data. Therefore, searching over encrypted

data [92] becomes a significant research topic for protecting

personal privacy. In what follows, we review the state-of-

art of searchable encryption in edge computing. In terms of

efficiency, we herein only discuss the computational overhead

of ciphertext search.

Fu et al. [93] designed a fog-assisted privacy-preserving

cloud data storage and retrieval system for industrial Inter-

net of Things (IIoT). Specifically, not only can data users

search over encrypted data with identifiers, they can also

search over encrypted data based on monitored objects with

certain features. The first data search manner was achieved

by constructing an ID-AVL (Adelson-Velsky and Landis) tree

for hash values. In the second retrieval manner, an encrypted

Retrieval Feature (RF) tree was designed by utilizing k-Nearest

Neighbor (kNN) algorithm to support efficient and privacy-

preserving data search. This system ensures data confidential-

ity. It also considers the addition and deletion of features of

monitored objects, thus it satisfies the requirement on scalabil-

ity. However, edge node was assumed to be honest, which is

not practical. The system design neglects authenticity of user

devices. Computational overhead is hard to be evaluated since

it does not provide specific operations.

In order to simultaneously realize keyword search over

encrypted files and access control, Miao et al. [94] first pre-

sented a Lightweight Fine-Grained ciphertexts Search (LFGS)

system in fog computing by using CP-ABE-based keyword

search. This system ensures data confidentiality. By offloading

partial computational tasks of end users to a fog node, the

designed algorithm lightens the computational and storage

burden of end users. However, this work cannot support

attribute update and conjunctive keywords search. Moreover,

mobility, scalability, identity privacy and data integrity were

not discussed. This system executes one modular addition

operation, 2t + 1 modular exponentiation operations and one

hash operation in user side, one modular addition operation,

one modular multiplication operation, 2t + 2 modular expo-

nentiation operations and t+2 bilinear pairingings in fog node

side and two modular exponentiation operations, one modular

multiplication operation, two symmetric encryption operations

and 2t+ 1 bilinear pairings in cloud server side.

3) Secure Data Deduplication in Edge Computing: Dedu-

plication is a technique for automatically eliminating coarse-

grained and unrelated duplicate data. In addition to access

control and secure data search, data deduplication is growing

in importance in data storage. There are two reasons to deploy

data deduplication mechanisms in edge computing. On one

hand, an edge server usually collects sensing data generated

by IoT devices, thus it is unavoidable to get replicated data,

which leads to a high communication cost. On the other hand,

because the data from different user devices is outsourced and

flooded to the edge server, it becomes necessary to save storage

cost. However, the data is usually encrypted before uploaded to

the edge server, so secure data deduplication over encrypted

data becomes a critical research topic. In what follows, we

review secure data deduplication in edge computing.

Deduplication is divided into two categories based on the

location where it occurs: server-side and client-side. Server-

side deduplication needs data owners to upload their data to

a remote server, and then the server checks data duplication

and eliminates duplicated data. In the latter, the data owner

only needs to upload data if they are not stored in the server.

Regarding client-side deduplication, Koo and Hur [95] pro-

posed a privacy-preserving cross-user data deduplication over

encrypted data scheme in fog computing. Through efficient

user-level key management and data update, this proposed

scheme achieves fine-grained access control and data confi-

dentiality. The advantage of this scheme is that the number

of keys of data owners is constant regardless of the number

of outsourced files. However, it does not consider data in-

tegrity during data transmission and deduplication. Moreover,

mobility and scalability were missed. Besides, since the data

owner always sends a request to the nearest fog node, location

privacy is disclosed. In terms of computational overhead, we

consider initial data upload, subsequent data upload and data

decryption. The initial upload executes one hash operation,

three bilinear pairings, five modular exponentiation operations

and (n1+5) modular multiplication operations in user side. In

the subsequent upload, the user undertakes one hash operation,

three bilinear pairings, one modular exponentiation operations

and (n1+3) modular multiplication operations. The decryption

includes two bilinear pairings and (n1 + 2) modular multipli-

cation operations in user side.

Different from [95], Ni et al. [96] presented a Fog-

assisted Server-side Deduplication (Fo-SDD) scheme for mo-

bile crowdsensing to prevent replicate data collection and

reduce communication cost. Based on AES and full-domain

hash function, fog nodes detect and eliminate repeated data

in a sensing report but learn nothing about the report, thus

the scheme realizes data confidentiality. Moreover, key ho-

momorphic signature was leveraged to allow fog nodes to

aggregate the signature of replicate data to achieve contribution

claim. In addition, by utilizing blind signature, an extended Fo-

SDD scheme protects identity privacy and location privacy of

mobile users and realizes data integrity. However, traceability,

mobility and scalability were not considered. Except the com-

putational overhead of service setup and data reading phase,

the scheme executes two modular exponentiation operations,

one bilinear pairing, one hash operation, one modular mul-

tiplication operation and one symmetric encryption operation

in customer side, three symmetric encryption operations, three

bilinear pairings, two modular multiplication operations, four

hash operations and seven modular exponentiation operations

in initial reporter side, two symmetric encryption operations,
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three bilinear pairings, two modular multiplication operations,

three hash operations and five modular exponentiation opera-

tions in replicate reporter side.

By combining client-side with server-side deduplication,

Koo et al. [97] proposed a hybrid data deduplication protocol

in fog storage to achieve best-effort bandwidth. The server-

side data deduplication is adopted in a user-fog network to

prohibit malicious users from learning side information. The

client-side deduplication is applied in a cloud-fog network.

This protocol takes advantage of identity-based encryption

to achieve data confidentiality and data integrity. However,

an encryption key is generated based on data deduplication,

which is achieved by comparing received ciphertext and the

ciphertext stored in cloud/fog server, thus key management in

user side is complex and the storage overhead will increase

with the number of uploaded files. Moreover, scalability and

mobility were not discussed. Apart from the computational

overhead in setup and decryption phases, a user needs to do

two symmetric encryption operations, two hash operations, one

bilinear pairing and six modular exponentiation operations,

and both the cloud server and the edge node need to undertake

two bilinear pairings.

Owing to the feature of geographical distribution of edge

computing, data are temporarily stored in lots of edge nodes

in different positions, which incurs the new challenge for data

query in edge computing. However, in some IoT applications,

users need to query the data stored in edge nodes. Thus, it

is vital to achieve a distributed and secure storage model for

edge computing. He et al. [98] designed a secure data storage

model for fog computing to improve the security of data

storage. A three-layer architecture is proposed in this work,

including control, authentication service and data storage layer.

In the authentication service layer, a credible hierarchical de-

ployment strategy was adopted to achieve user authentication,

which ensures authenticity of user. In particular, a cooperative

working mechanism was proposed to achieve efficient data

query services. Moreover, a data synchronization mechanism

was devised to support the storage state of the edge node

changes. Since data is encrypted during transmission, data

confidentiality is considered. However, mobility, scalability,

data integrity, identity privacy and location privacy were

missed. Since this scheme only provides a model of distributed

fog storage and does not give a specific algorithm, there is no

way to evaluate its computational complexity.

In cloud storage, since private data of users is outsourced

to a cloud server, the users lose control on their data. This

introduces various and sophisticated cyber threats, such as

insider attack, data theft attack, and malicious modification.

Edge computing is a promising paradigm to address these

issues due to its unique features. There are some schemes

that focus on cloud data storage by applying edge computing

to fight against data theft attack [99] and insider attack [100],

[101].

Based on a decoy technique, Hamid et al. [99] presented

a fog-assisted cloud storage scheme to resist attacks on

healthcare private data. Applying both an authenticated key

agreement protocol and a photo encryption algorithm guar-

antee authenticity of all entities and data confidentiality. The

proposed scheme undertakes one elliptic curve point multipli-

cation, one elliptic curve point addition, one bilinear pairing

and three hash operations in user side, fog node and cloud side,

respectively. Due to the deployment of a decoy database, this

scheme introduces some additional communication overhead.

The disadvantage of this scheme is that user devices need to

upload additional user photos to the decoy database in a fog

node, which results in high storage overhead. Mobility, scala-

bility, data integrity and identity privacy were not considered

in this study.

To resist inside attack in a cloud server, Wang et al.

[100] designed a three-layer hierarchical storage scheme in

fog computing, which divides user data into three parts of

different size with a Hash-Solomon code algorithm and stores

them in local device, fog node and cloud server, respectively.

Allocating the different ratio of user data stored in different

devices makes insider attackers impossible to recover the

real user data even if they get all data in a certain device.

However, user revocation was not considered. Authenticity,

trustworthiness, data integrity, identity privacy, scalability and

mobility were not discussed, either.

In order to protect private data of users, Wang et al. [101]

proposed an improved fog-based storage scheme by further

revising the work in [100]. In this scheme, additional mecha-

nisms, including a malicious modification detection algorithm

and a reputation evaluation algorithm, were designed to en-

sure data integrity and trustworthiness. However, authenticity,

scalability and mobility were not considered. With respect to

computational overhead, [100] and [101] just need to perform

several basic operations (including addition, multiplication,

and division) to get the ratio of stored data, which is negligible.

D. Summary and Comparison of Aforementioned Existing

Work

Finally, we summarize and compare in Table IV all above

reviewed works by applying the following criteria:

1) Scalability (S):

- H: The work considers the join and departure of devices.

- M: The work considers the join or departure of devices

- L: The work does not consider scalability.

2) Mobility (Mo):

- H: The work supports mobility.

- M: The work only supports limited mobility.

- L: The work does not consider mobility.

3) Efficiency (E): For efficiency analysis, we consider the

following operations to present computational overhead:

- Ha= Hash operation

- SE= Symmetric encryption operation

- PM= Elliptic curve point multiplication operation

- AM= Elliptic curve point addition operation

- BP= Bilinear pairing

- E= Exponentiation operation

- MA= Modular addition operation

- MM= Modular multiplication operation

- ME= Modular exponentiation operation

- Mu= Multiplication operation

- Ad= Addition operation
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For ease of presentation, we ignore the fixed number of

multiplication and addition in the consideration of computa-

tional overhead, as these operations are much more efficient

than other complex computations.

4) Others: Besides the three aspects above, other criteria

including Au, Tu, Cn, I, LP, DP, UP, IP, Ta, and Cr, have the

same meanings regarding to the following marks:

- Y: It is considered in the work.

- N: It is not considered in the work.

- –: It is not mentioned in the work.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

A. Open Issues

Based on the analysis and comparison on the existing works

in Section V, we outline several open issues on secure data

analytics in edge computing as follows.

First of all, how to balance security and efficiency is still an

open problem. From Table IV, we can observe that most works

need user devices or edge nodes to perform some complex

operations, which incurs high computation cost. In fact, some

IoT applications in edge computing have a high demand

on real-time response. The complex computation obviously

impacts efficiency, especially for resource-constrained user

devices. Therefore, making a trade-off between security and

efficiency becomes necessary in many practical situations.

Secondly, the trustworthiness of networked devices in highly

distributed network still need further researches. Though

there are a few studies [53], [68], [69] on trustworthiness

of networked devices, they still have some disadvantages.

For example, the works in [53], [69] consider only single

application scenario and the study in [68] does not support

mobility and scalability. However, device trustworthiness is

an important demand to ensure the QoS of edge nodes and

prevent a device from malfunction. Thus, an effective trust

model for edge computing should be proposed.

Thirdly, usage privacy is ignored in all reviewed works.

However, it is very necessary to protect usage privacy in

edge computing. Since edge computing is designed specifically

for IoT applications, the collected data contain user behavior

information and living habit information. An eavesdropper or

an edge node could easily obtain usage patterns even if data

are encrypted before uploading to an edge server. For example,

an eavesdropper can predict when a user is at home through

the changes of the readings of a smart meter.

Fourthly, the literature still lacks an effective solution to

verify the correctness of data computation when utilizing edge

nodes to do data analytics. The correctness of calculation

remains high importance in outsourced data analytics [102],

[103]. In edge computing, neither cloud servers nor edge

nodes can be fully trusted, which makes it hard to ensure the

correctness of data computation, processing and analytics. If

there is no security solution to guarantee the above correctness,

end users will be reluctant to use the services provided by edge

computing.

Fifthly, mobility and scalability of mobile devices cannot be

well supported in the current literature. Most existing works

neglect the mobility and scalability of user devices when

designing security schemes for edge computing. However,

user devices and edge nodes might frequently migrate from

one place to another. At the same time, user devices could

quickly join or leave an edge network. Thus, a security scheme

should support mobility and scalability in the context of edge

computing, however, this is still an open issue.

B. Future Research Directions

Besides the above indicated open issues, we further propose

a number of promising research directions in order to guide

future research.

First, a flexible and self-adaptive data analytics is expected

in edge computing. Usually, not all user data are sensitive.

Some data are considered as private data, e.g., location

information, health status and social relation information,

while some are not, e.g., social events, environmental status

information. How to automatically identify the sensitivity of

user data and flexibly deal with these data becomes a key

issue for achieving efficient and secure data analytics in edge

computing.

Second, a lightweight and secure data analytics scheme is

highly expected in edge computing. Due to limited capacities

and resources, an edge node cannot perform too many complex

operations (such as bilinear pairing and modular exponential

operation), which could incur high latency. Especially for

the applications with high real-time requirements, efficiency

becomes a crucial issue in secure data analytics. Therefore, it

is urgent to devise a lightweight method to accomplish secure

data processing.

Third, trust management in edge computing is an interesting

and significant research topic. Compared with cloud comput-

ing, edge computing makes it more troublesome in trust man-

agement due to three reasons. First of all, the decentralization

of edge computing puts huge obstacles on collecting and man-

aging evidence information about edge nodes to evaluate their

trust values. Moreover, due the subjectivity of trust, different

entities may have distinct security requirements on the same

edge node, facing a variety of applications and services. This

introduces additional challenges in trust management for edge

computing. Finally, an edge node might frequently move from

one area to another. For example, a vehicle equipped with a

computer can work as a moving edge server. Thus, designing

a universal trust model that can support both mobility and

scalability become a hard problem in edge computing.

Fourth, usage privacy preservation becomes essential and

vital to research in in edge computing. One direct solution

is that the user device creates dummy tasks and delegates

them to multiple edge nodes to hide its real tasks among the

multiple tasks. However, this solution requires the user to pay

for multiple tasks and wastes resources and energy. Designing

an efficient and lightweight scheme to protect usage privacy

is a challenging research topic.

Fifth, verifiable computation [104], [105] is expected to

guarantee the correctness of data analytics edge computing.

However, it is more difficult to implement verifiable com-

putation in edge computing than cloud computing. On one

hand, verifiable computation might bring high latency in edge
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TABLE IV
COMPARISON OF EXISTING SECURITY WORKS IN DATA ANALYTICS BASE ON EDGE COMPUTING

Ref

Security Requirements Performance Requirements

Au Tu Cn I LP UP IP Ta Cr S Mo
E

User side Edge node side Cloud side

[59] Y – Y N – – N – – M M 1 ∗Ha+ 2 ∗ SE 2 ∗ SE –

[60] Y – Y N – – Y – – M H 1∗Ha+1∗BP+1∗PM 1 ∗ PM + 1 ∗BP 2 ∗ PM

[61] Y – Y Y – – N – – L L –
2 ∗ME + 3 ∗ PM + 2 ∗

SE + 1 ∗Ha

10 ∗ME + 15 ∗

PM + 12 ∗ SE +

9 ∗Ha

[62] – – Y Y – – – – – L L –
1 ∗Ha+ (2a+ 1) ∗

BP + a ∗MM

(4a+ 1) ∗ME +

2a ∗Ha

[64] Y – Y Y Y – Y N – L H 1∗Ha+3∗PM+1∗AM
6u ∗ PM + u ∗AM +

3u ∗Ha+ 3u ∗BP
–

[67] Y – Y Y Y – Y N – L L
3 ∗ PM + 1 ∗AM + 5 ∗

Ha+5∗MM +4∗MA

2u ∗ PM + 5u ∗MA+

2u ∗Ha+ 3u ∗MM
–

[68] – Y – – – – – – – L L – – –

[53] – Y – – – – – – – L H
(g ∗ h+ 4 ∗ g + 2 ∗ n+

4 ∗A) ∗Mu
– –

[69] – Y Y – N – – N – M L

Participant :

3 ∗MM + 3 ∗MA

pu
2
(17pu+3pul−9−3l)∗

MM+ pu
2
(14pu+3lpu−

6pu−3l)∗MA+ l∗ME

2pu ∗ EQuerier :

2 ∗MM + 1 ∗MA

[70] N – Y N – – N – – L L
1 ∗ME + 1 ∗MM +

1 ∗MA
5∗ME+6∗M+2∗MA –

[71] N – Y – Y – – – – L L

Requester :

2 ∗ME + 1 ∗MM 4n(x+ 4) ∗ME +

2n(x+ 3) ∗MM
–Friend :

2 ∗ME + 4 ∗MM

[72] Y – Y Y Y – Y Y – L H – – –

[73] Y – Y N Y – Y N N L L

Querier :

4 ∗ME+1 ∗MM +1 ∗

SE + 1 ∗BP + 1 ∗Ha
12∗ME+7∗MM+2∗

SE + 6 ∗BP + 2 ∗Ha
–Participant : 2∗ME+

1 ∗MM + 1 ∗ SE + 1 ∗

BP + 3 ∗Ha+ 1 ∗MA

[57] – – – – Y – – – – L L t
′

∗Mu – –

[74] – – – – Y – – – – L L – – –

[76] – Y N N N – N – – H H – – –

[77] – – Y Y – – N N N L L
1 ∗ SE + 1 ∗Ha+ 5 ∗

MM + 3 ∗MA

5 ∗Ha+ 1 ∗ SE + 1 ∗

ME + (u+ 1) ∗MM

1∗Ha+1∗ME+

2 ∗MM +1 ∗MA

[78] Y – Y Y – – Y N N H L
3 ∗ E + 1 ∗ME + 2 ∗

Ha+2 ∗MM +2 ∗BP

1 ∗Ha+ 2 ∗B + 2 ∗

MM + 2(u− 1) ∗AM

1 ∗Ha+ 1 ∗

ME + 2 ∗BP

[42] Y – Y N N – N N N H L 1 ∗MA (u+ 1) ∗MA f ∗MA

[79] Y – Y Y N – Y N N H L
8 ∗MM + 2 ∗Ha+ 1 ∗

MM

Fog Node : (u+ 3) ∗

Ha+ (u+ 2) ∗MM

1 ∗MM + 1 ∗

Ha+ 1 ∗MM

TCA : 2 ∗ME

LCA :

6∗ME+2∗MM+1∗Ha

(Continued)
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(Continued)

[83] N – Y Y – – N N – L L 2 ∗ME – –

[58] N – Y N – – N N Y L L 1 ∗ME + 1 ∗MM (3a+ 1)p ∗BP –

[84] N – Y N N – N N N L L 1 ∗BP + 2 ∗MM
(a+ 2) ∗BP + (2a+

2) ∗MM
–

[85] N – Y N – – N Y – L L t ∗BP – –

[87] N – Y N – – N – – L L
1 ∗Ha+ 2d ∗BP + 2 ∗

MM
– –

[88] N – Y N – – N – N L L

2(a+ a
′

+ 1) ∗BP +

2(a+ a
′

) ∗ME + (a+

a
′

+ 1) ∗MM

– –

[89] Y – N Y – – Y – – L L – – –

[90] Y – N Y – – N – – L L – – –

[91] N – Y N – – N – – L L 1 ∗BP + 1 ∗MM – –

[93] N – Y – – – – – – H – – – –

[94] – – Y N – – N – – L L
1 ∗MA+ (2t+ 1) ∗

ME + 1 ∗Ha

1∗MA+1∗MM+2(t+

1) ∗ME + (t+ 2) ∗BP

2 ∗ME + 1 ∗

MM + 1 ∗ SE +

(2t+ 1) ∗BP

[95] – – Y N N – – – – L L

Initialupload :

1 ∗Ha+ 3 ∗BP + 5 ∗

ME + (n1 + 5) ∗MM

– –

Subsequentupload :

1 ∗Ha+ 3 ∗BP + 1 ∗

ME + (n1 + 3) ∗MM

Decryption :

2∗BP +(n1+2)∗MM

[96] – – Y Y Y – Y N – L L

Customer :

2 ∗ME + 1 ∗BP + 1 ∗

Ha+1 ∗MM +1 ∗ SE

(2 + 2pu) ∗ME + (1 +

2pu)∗MM +(1+pu)∗

SE + (1 + pu) ∗Ha

pf∗ME+pf∗BP

Initialreporter :

3 ∗ SE + 3 ∗BP + 2 ∗

MM +4∗Ha+7∗ME

Replicatereporter :

2 ∗ SE + 3 ∗BP + 2 ∗

MM +3∗Ha+5∗ME

[97] – – Y Y – – – – – L L
2 ∗ SE + 2 ∗Ha+ 1 ∗

BP + 6 ∗ME
2 ∗BP 2 ∗BP

[98] Y – Y N N – N – – L L – – –

[99] Y – Y N – – N – – L L
3 ∗Ha+ 1 ∗ PM + 1 ∗

BP + 1 ∗AM

3 ∗Ha+ 1 ∗ PM + 1 ∗

BP + 1 ∗AM

3∗Ha+1∗PM+

1 ∗BP + 1 ∗AM

[100] N N Y N – – N – – L L – – –

[101] N Y N Y – – N – – L L – – –
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computing. On the other hand, a user might continuously travel

from one region to another, which incurs multiple edge nodes

in different regions to work together to serve for users. As

long as any one of these edge nodes makes any mistakes,

the final result will be incorrect. In particular, it is extremely

important to track back and remove dishonest edge nodes

for the purpose of saving computational and communication

overhead. Currently, provenance management is a promising

technique to achieve such traceable verifiable computation

[106], which will greatly help finding the origins of mistakes.

However, it might bring high communication overhead. Thus,

how to design an efficient verifiable computation based on

provenance management is a promising topic.

Sixth, mobility, scalability and privacy protection should be

jointly considered in secure data analytics. In edge computing,

edge nodes and user devices have high mobility. Currently,

several works focus on supporting mobility in fog comput-

ing by applying such approaches as a SDN-based method

[107] and a mathematical method [108]. However, in these

approaches, location privacy cannot be ensured due to location

disclosure to edge nodes. Therefore, supporting high mobility

and scalability and simultaneously ensuring user privacy be-

comes a valuable research topic in secure data analytics.

VII. CONCLUSION

Edge computing is regarded as a revolutionary technology

to extend cloud computing to the edge of a network for

supporting various IoT applications. While benefiting from

the edge computing, we are still facing many security and

privacy challenges. In this survey, we introduced the basic

concept and features of edge computing and compared them

with cloud computing. Then, we analyzed its potential security

and privacy threats in order to propose a number of security

requirements and performance requirements. By employing

these requirements as evaluation criteria, we thoroughly re-

viewed and commented on the state-of-art of secure data

analytics in edge computing. Based on our survey, we finally

highlight out a number of open issues and proposed a number

of interesting research problems to motivate future research

directions in secure data analytics in edge computing.
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